1
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Salimi M, Mosca S, Gardner B, Palombo F, Matousek P, Stone N. Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:922. [PMID: 35335735 PMCID: PMC8951621 DOI: 10.3390/nano12060922] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022]
Abstract
The development of new effective cancer treatment methods has attracted much attention, mainly due to the limited efficacy and considerable side effects of currently used cancer treatment methods such as radiation therapy and chemotherapy. Photothermal therapy based on the use of plasmonically resonant metallic nanoparticles has emerged as a promising technique to eradicate cancer cells selectively. In this method, plasmonic nanoparticles are first preferentially uptaken by a tumor and then selectively heated by exposure to laser radiation with a specific plasmonic resonant wavelength, to destroy the tumor whilst minimizing damage to adjacent normal tissue. However, several parameters can limit the effectiveness of photothermal therapy, resulting in insufficient heating and potentially leading to cancer recurrence. One of these parameters is the patient's pain sensation during the treatment, if this is performed without use of anesthetic. Pain can restrict the level of applicable laser radiation, cause an interruption to the treatment course and, as such, affect its efficacy, as well as leading to a negative patient experience and consequential general population hesitancy to this type of therapy. Since having a comfortable and painless procedure is one of the important treatment goals in the clinic, along with its high effectiveness, and due to the relatively low number of studies devoted to this specific topic, we have compiled this review. Moreover, non-invasive and painless methods for temperature measurement during photothermal therapy (PTT), such as Raman spectroscopy and nanothermometry, will be discussed in the following. Here, we firstly outline the physical phenomena underlying the photothermal therapy, and then discuss studies devoted to photothermal cancer treatment concerning pain management and pathways for improved efficiency of photothermal therapy whilst minimizing pain experienced by the patient.
Collapse
Affiliation(s)
- Marzieh Salimi
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, The Science and Technology Facilities Council Rutherford Appleton Laboratory, UK Research and Innovation, Didcot OX11 0QX, UK;
| | - Benjamin Gardner
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, The Science and Technology Facilities Council Rutherford Appleton Laboratory, UK Research and Innovation, Didcot OX11 0QX, UK;
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK; (M.S.); (B.G.); (F.P.)
| |
Collapse
|
3
|
Yim W, Borum RM, Zhou J, Mantri Y, Wu Z, Zhou J, Jin Z, Creyer M, Jokerst JV. Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics 2022; 6:79-90. [PMID: 34976582 PMCID: PMC8671965 DOI: 10.7150/ntno.63634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gold nanorods (GNRs) have attracted great interest for photo-mediated biomedicines due to their tunable and high optical absorption, high photothermal conversion efficiency and facile surface modifiability. GNRs that have efficient absorption in second near-infrared (NIR-II) window hold further promise in bio-applications due to low background signal from tissue and deep tissue penetration. However, bare GNRs readily undergo shape deformation (termed as 'melting effect') during the laser illumination losing their unique localized surface plasmon resonance (LSPR) properties, which subsequently leads to PA signal attenuation and decreased photothermal efficiency. Polydopamine (PDA) is a robust synthetic melanin that has broad absorption and high photothermal conversion. Herein, we coated GNRs with PDA to prepare photothermally robust GNR@PDA hybrids for enhanced photo-mediated theranostic agents. Ultrasmall GNRs (SGNRs) and conventional large GNRs (LGNRs) that possess similar LSPR characteristics as well as GNR@PDA hybrids were compared side-by-side in terms of the size-dependent photoacoustic (PA) imaging, photothermal therapy (PTT), and structural stability. In vitro experiments further demonstrated that SGNR@PDA showed 95% ablation of SKOV3 ovarian cancer cells, which is significantly higher than that of LGNRs (66%) and SGNRs (74%). Collectively, our PDA coating strategy represents a rational design for enhanced PA imaging and efficient PTT via a nanoparticle, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, 92093, United States
| | - Raina M. Borum
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Zhuohong Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jingcheng Zhou
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Zhicheng Jin
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Matthew Creyer
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Jesse V. Jokerst
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California, 92093, United States
- Department of Nanoengineering, University of California San Diego, La Jolla, California, 92093, United States
- Department of Radiology, University of California San Diego, La Jolla, California, 92093, United States
| |
Collapse
|
4
|
Lu JY, Chen HA, Yang CM, Chu LK. Radiative Relaxation of Gold Nanorods Coated with Mesoporous Silica with Different Porosities upon Nanosecond Photoexcitation Monitored by Time-Resolved Infrared Emission Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60018-60026. [PMID: 34898178 DOI: 10.1021/acsami.1c19613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gold nanorods (AuNRs) have been widely used in photothermal conversion, and a coating of silica (SiO2) provides higher thermal stability, better biocompatibility, and versatile chemical functionalization. In this work, two gold nanorods coated with surfactant-templated mesoporous silica layers of the same thickness but different porosities, and thus different specific surface areas, were prepared. Upon irradiation with 1064 nm nanosecond pulsed laser, the transient infrared emissions of AuNR@SiO2 enveloped the stretching mode of the Si-O-Si bridge (1000-1250 cm-1), the bending mode of adsorbed H2O (1600-1650 cm-1) within the mesoporous silica layer, and blackbody radiation, in terms of an underlying broad band (1000-2000 cm-1) probed with a step-scan Fourier transform spectrometer. The mesoporous silica shell and the adsorbed H2O gained populations of their vibrationally excited states, and the whole AuNR@SiO2 was heated up via the photothermal energy of the core AuNRs. An average temperature after 5-10 μs within 80% of the emission intensity was ca. 200 °C. The decay of the emission at 1000-1250 and 1500-1750 cm-1 was both accelerated, and the blackbody radiation components were negatively correlated with the porosity of the mesoporous silica layer. Higher porosity of the mesoporous silica layer was associated with more effective depopulation of the vibrationally excited states of the silica layers on the AuNRs via the nonradiative thermal conduction of the adsorbed H2O, since H2O has a larger thermal conduction coefficient than that of silica, in concomitance with the accelerated emission kinetics. This work unveils the roles of the porosity, capping materials, and entrapping molecules of a core-shell nanostructure during the thermalization after photoexcitation.
Collapse
Affiliation(s)
- Jun-Yi Lu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Hsi-An Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Jin X, Yang H, Mao Z, Wang B. Cathepsin B-responsive multifunctional peptide conjugated gold nanorods for mitochondrial targeting and precise photothermal cancer therapy. J Colloid Interface Sci 2021; 601:714-726. [PMID: 34091318 DOI: 10.1016/j.jcis.2021.05.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown great potential in cancer therapy, but the phenomenon of poor tumor recognition without cellular organelle accumulation usually leads to reduced therapeutic effects and enhanced side effects. Herein, we resolved this issue by employing a multifunctional peptide coating mainly composed of, from the inside out, a mitochondrial targeting segment, a cathepsin B-responsive segment and a zwitterionic antifouling segment. Then gold nanorods were modified with a peptide via ligand exchange, displaying excellent photothermal property and superior stability both before and after enzyme treatment. The in vitro and in vivo results showed that this nanoplatform possessed good biocompatibility, satisfactory mitochondria targeting ability, prolonged blood circulation lifetime and enhanced cellular uptake in tumors. This nanoplatform promoted effective near-infrared light-triggered subcellular hyperthermia treatment in vitro and exhibited excellent tumor ablation ability in vivo. These findings suggested that this multifunctional nanoplatform could significantly enhance the therapeutic efficiency of photothermal therapy based on activated mitochondrial targeting.
Collapse
Affiliation(s)
- Xiaokang Jin
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021; 10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Indexed: 12/24/2022]
Abstract
It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.
Collapse
Affiliation(s)
- Zhuoqian Lv
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sijia He
- Cancer Center Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 650 Xinsongjiang Road Shanghai 201620 China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
8
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
9
|
Caramelized carbonaceous shell-coated γ-Fe2O3 as a magnetic solid-phase extraction sorbent for LC-MS/MS analysis of triphenylmethane dyes. Mikrochim Acta 2020; 187:371. [DOI: 10.1007/s00604-020-04346-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
10
|
Zhu H, Jiang X. Development of a General Fabrication Strategy for Carbonaceous Noble Metal Nanocomposites with Photothermal Property. NANOSCALE RESEARCH LETTERS 2020; 15:17. [PMID: 31965343 PMCID: PMC6974232 DOI: 10.1186/s11671-019-3242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrates a simple hydrothermal method while can be generalized for controllable synthesis of noble metallic carbonaceous nanostructures (e.g., Au@C, Ag@C) under mild conditions (180-200 °C), which also provides a unique approach for fabricating hollow carbonaceous structures by removal of cores (e.g., silver) via a redox etching process. The microstructure and composition of the as-achieved nanoparticles have been characterized using various microscopic and spectroscopic techniques. Cetyltrimethylammonium bromide (CTAB), serving as a surfactant in the reaction system, plays a key role in the formation of Ag@C, Au@C nanocables, and their corresponding hollow carbonaceous nanotubes in this work. The dynamic growth and formation mechanism of carbonaceous nanostructures was discussed in detail. And finally, laser-induced photothermal property of Au@C nanocomposites was examined. The results may be useful for designing and constructing carbonaceous metal(s) or metal oxide(s) nanostructures with potential applications in the areas of electrochemical catalysis, energy storage, adsorbents, and biomedicine. This study demonstrate a facile hydrothermal synthesis of noble metal carbonaceous nanocomposites (e.g., Au@C) with simple procedures under mild conditions, which can be25expanded as a general method for preparing diverse carbonaceous core-shell nanoparticles. The Au@C carbonaceous nanostructures exhibit interesting UV-Vis properties dependent upon shell thickness.
Collapse
Affiliation(s)
- Hongmei Zhu
- School of Mechanical Engineering, University of South China, Hengyang, 421001, Hunan, China
| | - Xuchuan Jiang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
11
|
Jin N, Zhang Q, Yang M, Yang M. Detoxification and functionalization of gold nanorods with organic polymers and their applications in cancer photothermal therapy. Microsc Res Tech 2019; 82:670-679. [DOI: 10.1002/jemt.23213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Na Jin
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Qing Zhang
- School of Materials Science and EngineeringZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Manyi Yang
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| | - Mingying Yang
- Institute of Applied Bioresource, College of Animal SciencesZhejiang University Zhejiang Hangzhou People's Republic of China
| |
Collapse
|
12
|
Wang X, Cai J, Sun L, Zhang S, Gong D, Li X, Yue S, Feng L, Zhang D. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4745-4756. [PMID: 30638360 DOI: 10.1021/acsami.8b15586] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnetic microrobots can be actuated in fuel-free conditions and are envisioned for biomedical applications related to targeted delivery and therapy in a minimally invasive manner. However, mass fabrication of microrobots with precise propulsion performance and excellent therapeutic efficacy is still challenging, especially in a predictable and controllable manner. Herein, we propose a facile technique for mass production of magnetic microrobots with multiple functions using Spirulina ( Sp.) as biotemplate. Core-shell-structured Pd@Au nanoparticles (NPs) were synthesized in Sp. cells by electroless deposition, working as photothermal conversion agents. Subsequently, the Fe3O4 NPs were deposited onto the surface of the obtained (Pd@Au)@ Sp. particles via a sol-gel process, enabling them to be magnetically actuated. Moreover, the anticancer drug doxorubicin (DOX) was loaded on the (Pd@Au)/Fe3O4@ Sp. microrobots, which endows them with additional chemotherapeutic efficacy. The as-prepared biohybrid (Pd@Au)/Fe3O4@ Sp.-DOX microrobots not only possess efficient propulsion performance with the highest speed of 526.2 μm/s under a rotating magnetic field but also have enhanced synergistic chemo-photothermal therapeutic efficacy. Furthermore, they can be structurally disassembled into individual particles under near-infrared (NIR) laser irradiation and exhibit pH- and NIR-triggered drug release. These intriguing properties enable the microrobots to be a very promising and efficient platform for drug loading, targeted delivery, and chemo-photothermal therapy.
Collapse
|
13
|
Zhao X, Liu S, Peng J, Li X, Niu H, Zhang H, Wang L, Wu R. Facile one-pot synthesized hydrothermal carbon from cyclodextrin: A stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2019; 1585:144-151. [DOI: 10.1016/j.chroma.2018.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
|
14
|
Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. Colloids Surf B Biointerfaces 2019; 173:266-275. [DOI: 10.1016/j.colsurfb.2018.09.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023]
|
15
|
Gorgizadeh M, Azarpira N, Sattarahmady N. In vitro and in vivo tumor annihilation by near-infrared photothermal effect of a NiFe2O4/C nanocomposite. Colloids Surf B Biointerfaces 2018; 170:393-400. [DOI: 10.1016/j.colsurfb.2018.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 01/06/2023]
|
16
|
An N, Lin H, Qu F. Synthesis of a GNRs@mSiO2
-ICG-DOX@Se-Se-FA Nanocomposite for Controlled Chemo-/Photothermal/Photodynamic Therapy. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Na An
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| |
Collapse
|
17
|
The Effect of Gold Nanorods Clustering on Near-Infrared Radiation Absorption. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this paper, the plasmonic resonant absorption of gold nanorods (GNRs) and GNR solutions was studied both numerically and experimentally. The heat generation in clustered GNR solutions with various concentrations was measured by exposing them to Near Infrared (NIR) light in experiment. Correspondingly, calculations based on the discrete-dipole approximation (DDA) revealed the same relationship between the maximum absorption efficiency and the nanorod orientation for the incident radiation. Additionally, both the plasmonic wavelength and the maximum absorption efficiency of a single nanorod were found to increase linearly with increasing aspect ratio (for a fixed nanorod volume). The wavelength of the surface plasmonic resonance (SPR) was found to change when the gold nanorods were closely spaced. Specifically, both a shift and a broadening of the resonance peak were attained when the distance between the nanorods was set to about 50 nm or less. The absorbance spectra of suspended nanorods at various volume fractions also showed that the plasmonic wavelength of the nanorods solution was at 780 ± 10 nm, which was in good agreement with the computational predictions for coupled side-by-side nanorods. When heated by NIR light, the rate of increase for both the temperature of solution and the absorbed light diminished when the volume fraction of suspended nanorods reached a value of 1.24×10−6. This matches with expectations for a partially clustered suspension of nanorods in water. Overall, this study reveals that particle clustering should be considered to accurately gauge the heat generation of the GNR hyperthermia treatments.
Collapse
|
18
|
Rahimi-Moghaddam F, Azarpira N, Sattarahmady N. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Lasers Med Sci 2018; 33:1769-1779. [DOI: 10.1007/s10103-018-2538-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
|
19
|
Yang F, Lu J, Ke Q, Peng X, Guo Y, Xie X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci Rep 2018; 8:7345. [PMID: 29743489 PMCID: PMC5943301 DOI: 10.1038/s41598-018-25595-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
The development of multifunctional biomaterials to repair bone defects after neoplasm removal and inhibit tumor recurrence remained huge clinical challenges. Here, we demonstrate a kind of innovative and multifunctional magnetic mesoporous calcium sillicate/chitosan (MCSC) porous scaffolds, made of M-type ferrite particles (SrFe12O19), mesoporous calcium silicate (CaSiO3) and chitosan (CS), which exert robust anti-tumor and bone regeneration properties. The mesopores in the CaSiO3 microspheres contributed to the drug delivery property, and the SrFe12O19 particles improved photothermal therapy (PTT) conversion efficacy. With the irradiation of NIR laser, doxorubicin (DOX) was rapidly released from the MCSC/DOX scaffolds. In vitro and in vivo tests demonstrated that the MCSC scaffolds possessed the excellent anti-tumor efficacy via the synergetic effect of DOX drug release and hyperthermia ablation. Moreover, BMP-2/Smad/Runx2 pathway was involved in the MCSC scaffolds promoted proliferation and osteogenic differentiation of human bone marrow stromal cells (hBMSCs). Taken together, the MCSC scaffolds have the ability to promote osteogenesis and enhance synergetic photothermal-chemotherapy against osteosarcoma, indicating MCSC scaffolds may have great application potential for bone tumor-related defects.
Collapse
Affiliation(s)
- Fan Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiawei Lu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Xiaoyuan Peng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China.
| | - Xuetao Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
20
|
Zhang Z, Suo H, Zhao X, Sun D, Fan L, Guo C. NIR-to-NIR Deep Penetrating Nanoplatforms Y 2O 3:Nd 3+/Yb 3+@SiO 2@Cu 2S toward Highly Efficient Photothermal Ablation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14570-14576. [PMID: 29637783 DOI: 10.1021/acsami.8b03239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A difunctional nano-photothermal therapy (PTT) platform with near-infrared excitation to near-infrared emission (NIR-to-NIR) was constructed through core-shell structures Y2O3:Nd3+/Yb3+@SiO2@Cu2S (YRSC), in which the core Y2O3:Nd3+/Yb3+ and shell Cu2S play the role of bioimaging and photothermal conversion function, respectively. The structure and composition of the present PTT agents (PTAs) were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectra. The NIR emissions of samples in the biological window area were measured by photoluminescence spectra under the excitation of 808 nm laser; further, the penetration depth of NIR emission at different wavelengths in biological tissue was also demonstrated by comparing with visible (vis) emission from Y2O3:Yb3+/Er3+@SiO2@Cu2S and NIR emission from YRSC through different injection depths in pork muscle tissues. The photo-thermal conversion effects were achieved through the outer ultrasmall Cu2S nanoparticles simultaneously absorb NIR light emission from the core Y2O3:Nd3+/Yb3+ and the 808 nm excitation source to generate heat. Further, the heating effect of YRSC nanoparticles was confirmed by thermal imaging and ablation of YRSC to Escherichia coli and human hepatoma (HepG-2) cells. Results indicate that the YRSC has potential applications in PTT and NIR imaging in biological tissue.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Key Laboratory of Photoelectric Technology, Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology, Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Hao Suo
- National Key Laboratory of Photoelectric Technology, Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology, Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Xiaoqi Zhao
- National Key Laboratory of Photoelectric Technology, Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology, Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Dan Sun
- National Key Laboratory of Photoelectric Technology, Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology, Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Li Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, and the State Key Laboratory of Cancer Biology (CBSKL) , The Fourth Military Medical University , 169th Changle West Road , Xi'an , Shaanxi 710032 , China
| | - Chongfeng Guo
- National Key Laboratory of Photoelectric Technology, Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology, Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|
21
|
Yang Y, Ma L, Cheng C, Deng Y, Huang J, Fan X, Nie C, Zhao W, Zhao C. Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201705708] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Chong Cheng
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Yiyi Deng
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Xin Fan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
22
|
Sacrificial-template-free synthesis of core-shell C@Bi 2S 3 heterostructures for efficient supercapacitor and H 2 production applications. Sci Rep 2018. [PMID: 29520107 PMCID: PMC5843642 DOI: 10.1038/s41598-018-22622-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Core-shell heterostructures have attracted considerable attention owing to their unique properties and broad range of applications in lithium ion batteries, supercapacitors, and catalysis. Conversely, the effective synthesis of Bi2S3 nanorod core@ amorphous carbon shell heterostructure remains an important challenge. In this study, C@Bi2S3 core-shell heterostructures with enhanced supercapacitor performance were synthesized via sacrificial- template-free one-pot-synthesis method. The highest specific capacities of the C@Bi2S3 core shell was 333.43 F g-1 at a current density of 1 A g-1. Core-shell-structured C@Bi2S3 exhibits 1.86 times higher photocatalytic H2 production than the pristine Bi2S3 under simulated solar light irradiation. This core-shell feature of C@Bi2S3 provides efficient charge separation and transfer owing to the formed heterojunction and a short radial transfer path, thus efficiently diminishing the charge recombination; it also facilitates plenty of active sites for the hydrogen evolution reaction owing to its mesoporous nature. These outcomes will open opportunities for developing low-cost and noble-metal-free efficient electrode materials for water splitting and supercapacitor applications.
Collapse
|
23
|
Nair RV, Santhakumar H, Jayasree RS. Gold nanorods decorated with a cancer drug for multimodal imaging and therapy. Faraday Discuss 2018; 207:423-435. [PMID: 29355869 DOI: 10.1039/c7fd00185a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer, a condition with uncontrolled cell division, is the second leading cause of death worldwide. The currently available techniques for the imaging and treatment of cancer have their own limitations and hence a combination of more than one modality is expected to increase the efficacy of both diagnosis and treatment. In the present study, we have developed a multimodal imaging and therapeutic system by incorporating a chemotherapeutic drug, mitoxantrone (MTX) onto PEG coated gold nanorods (GNR). Strong absorption in the near-infrared (NIR) and visible regions qualifies GNR as an efficient photothermal (PTT) agent upon irradiation with either a NIR or visible laser. Additionally, the enhanced electric field of GNR makes it a suitable substrate for surface enhanced Raman scattering (SERS). Modification of GNR with amino PEG offers biocompatibility without affecting its optical property. In order to achieve tumor specificity, GNR-PEG was conjugated with tumor specific marker that can target cancer cells, leaving the normal cells unaffected. The incorporation of fluorescent chemotherapeutic drug mitoxantrone onto GNR-PEG facilitates chemotherapy as well as fluorescence imaging. The therapeutic efficacy of the developed GNR based system is tracked using fluorescence imaging and Raman imaging. The careful design of the system also facilitates the controlled release of the drug by photothermal triggering. Likewise, the imaging modality could be chosen as either Raman or fluorescence to monitor drug release in accordance with irradiation. The physico-chemical properties, and drug release profiles under different physiological conditions have been well studied. Finally, the developed system was tested for its therapeutic efficacy using cancer cells, in vitro. The receptor mediated cell uptake was more effective in folate receptor over-expressing cancer cells than in the normal and low-expressing cells. Accordingly the percentage of cell death was higher in folate receptor over-expressing cancer cells, which was further enhanced due to the effect of the dual therapeutic approach. The cell uptake and treatment efficacy was monitored using fluorescence microscopy and SERS. In conclusion, the developed GNR-PEG-MTX system is found to be an efficient multimodal therapeutic agent against cancer which could be tracked using two different techniques.
Collapse
Affiliation(s)
- Resmi V Nair
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum 695012, India.
| | - Hema Santhakumar
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum 695012, India.
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum 695012, India.
| |
Collapse
|
24
|
Zhang J, Feng Y, Mi J, Shen Y, Tu Z, Liu L. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:121-130. [PMID: 28826054 DOI: 10.1016/j.jhazmat.2017.07.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Photothermal lysis is an effective method for fast removal of pathogenic bacteria from bacterial contaminated environments and human body, irrespective of bacterial drug resistance. In the present work, a highly effective photothermal agent, Au@Pt nanorods (NRs), was prepared by modification of Pt nanodots with particle size of 5nm on the surface of Au NRs with a length of ca. 41nm and a width of ca. 13nm. The LSPR absorbance band of Au@Pt NRs could be tuned from 755 to 845nm by changing the Pt loading from 0.05 to 0.2, as compared to Au NRs. The photothermal conversion efficiency of Au@Pt NRs depended on the Pt loading, Au@Pt NRs concentration, and power density. Under NIR irradiation, the Au@Pt0.1 NRs exhibited the highest efficiency in photothermal lysis of both gram-positive and gram-negative bacteria. The introduction of Pt nanodots on the surface of Au@Pt NRs not only enhanced their photothermal conversions but also enhanced their affinity to bacteria and significantly decreased their cytotoxicity. The photothermal lysis of bacteria over Au@Pt NRs caused the damage onto the cell walls of bacteria, implying that the killing of bacteria probably went through the thermal ablation mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yonghai Feng
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| | - Jianli Mi
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yanting Shen
- Institute of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Zhigang Tu
- Institute of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Wei X, Zhang L, Li S, Chen X, Zhang M, Wang C, Wang T, Li L. A designed synthesis of multifunctional carbon nanoframes for simultaneous imaging and synergistic chemo-photothermal cancer therapy. NEW J CHEM 2018. [DOI: 10.1039/c7nj03598e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple synthetic route was developed to fabricate mesoporous carbon nanoframes for simultaneous photoacoustic imaging and synergistic chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- Department of Chemistry
| | - Lingyu Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Shengnan Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xiangjun Chen
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Manjie Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Chungang Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tingting Wang
- School of Chemistry & Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Lu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
26
|
Tang Y, Liu Q, Yang X, Wei M, Zhang M. Copper oxide coated gold Nanorods like a film: A facile route to nanocomposites for electrochemical application. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Niu C, Xu Y, An S, Zhang M, Hu Y, Wang L, Peng Q. Near-infrared induced phase-shifted ICG/Fe 3O 4 loaded PLGA nanoparticles for photothermal tumor ablation. Sci Rep 2017; 7:5490. [PMID: 28710483 PMCID: PMC5511230 DOI: 10.1038/s41598-017-06122-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023] Open
Abstract
Near-infrared (NIR) laser-induced photothermal therapy (PTT) uses a photothermal agent to convert optical energy into thermal energy and has great potential as an effective local, minimally invasive treatment modality for killing cancer cells. To improve the efficacy of PTT, we developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) encapsulating superparamagnetic iron oxide (Fe3O4), indocyanine green (ICG), and perfluoropentane (PFP) as synergistic agents for NIR laser-induced PTT. We fabricated a novel type of phase-shifting fluorescent magnetic NPs, Fe3O4/ICG@PLGA/PFP NPs, that effectively produce heat in response to NIR laser irradiation for an enhanced thermal ablation effect and a phase-shift thermoelastic expansion effect, and thus, can be used as a photothermal agent. After in vitro treatment of MCF-7 breast cancer cells with Fe3O4/ICG@PLGA/PFP NPs and NIR laser irradiation, histology and electron microscopy confirmed severe damage to the cells and the formation of many microbubbles with iron particles at the edge or outside of the microbubbles. In vivo experiments in mice with MCF-7 tumors demonstrated that Fe3O4/ICG@PLGA/PFP NPs could achieve tumor ablation upon NIR laser irradiation with minimal toxicity to non-irradiated tissues. Together, our results indicate that Fe3O4/ICG@PLGA/PFP NPs can be used as effective nanotheranostic agents for tumor ablation.
Collapse
Affiliation(s)
- Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Senbo An
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Qinghai Peng
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
28
|
Pan L, Liu J, Shi J. Nuclear-Targeting Gold Nanorods for Extremely Low NIR Activated Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15952-15961. [PMID: 28447447 DOI: 10.1021/acsami.7b03017] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photorelated nanomedicine is of particular interest as an emerging paradigm toward precise cancer therapy, as demonstrated by recent developments of photothermal therapy (PTT), an emerging technique employing light-converting agents to burn cancerous cells by overdosed optical energy-converted heat. However, most of the laser irradiations needed for effective PTT significantly exceed the maximal permissible power density in human skin, which is likely to damage surrounding normal tissues. Herein, we report a strategy of intranuclear PTT of cancer enabled by nuclear-targeted delivery of gold nanorods of ∼10.5 × 40.5 nm in size via conjugation with nuclear location signal peptides (GNRs-NLS) under an extremely low near-infrared irradiation of 0.2 W/cm2, much below the maximal permissible exposure of skin. Interestingly, we found that a mild but nuclear-focused temperature increase generated by GNRs-NLS is sufficient to cause damage to intranuclear DNA and the inhibition of DNA repair process, which, interestingly, led to the cancer cell apoptosis rather than to conventional cell necrosis by thermal ablation during PTT. Correspondingly, tumors treated with GNRs-NLS exhibited gradual but significant regressions rather than traditional harsh burning-up of tumors, in comparison with negligible antitumor effect by GNRs without nuclear targeting under the same ultralow NIR irradiation. This report demonstrates the successful intranuclear efficient photothermal therapy of cancer via cell apoptosis by photoadsorbing agents, e.g., GNRs-NLS in the present case, with largely mitigated side-effect on normal tissues and therefore substantially improved biosafety.
Collapse
Affiliation(s)
- Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-Xi Road, Shanghai 200050, China
| | - Jianan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-Xi Road, Shanghai 200050, China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Ding-Xi Road, Shanghai 200050, China
| |
Collapse
|
29
|
Zhao F, Li X, Li J, Dou Y, Wang L, Wu M, Liu Y, Chang J, Zhang X. Activatable ultrasmall gold nanorods for “off–on” fluorescence imaging-guided photothermal therapy. J Mater Chem B 2017; 5:2145-2151. [PMID: 32263687 DOI: 10.1039/c6tb02873j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We developed activatable ultrasmall gold nanorods (AUGNRs) to realize “off–on” switched fluorescence imaging-guided efficient PTT.
Collapse
Affiliation(s)
- Feixiang Zhao
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Xue Li
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Jiang Li
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Yan Dou
- School of Life Sciences
- Tianjin University
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology and Detection-Treatment Technology
- Tianjin 300072
- P. R. China
| | - Lingwei Wang
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Menglin Wu
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| | - Yajuan Liu
- School of Life Sciences
- Tianjin University
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology and Detection-Treatment Technology
- Tianjin 300072
- P. R. China
| | - Jin Chang
- School of Life Sciences
- Tianjin University
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology and Detection-Treatment Technology
- Tianjin 300072
- P. R. China
| | - Xuening Zhang
- Department of Radiology
- Second Hospital of Tianjin Medical University
- Tianjin 300211
- P. R. China
| |
Collapse
|
30
|
Chen J, Liang H, Lin L, Guo Z, Sun P, Chen M, Tian H, Deng M, Chen X. Gold-Nanorods-Based Gene Carriers with the Capability of Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:31558-31566. [PMID: 27775317 DOI: 10.1021/acsami.6b10166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multifunctional nanoparticles with high gene transfection activity, low cytotoxicity, photoacoustic imaging ability, and photothermal therapeutic properties were prepared by conjugating low-molecular-weight polyethylenimine onto the surfaces of gold nanorods through the formation of stable S-Au bonded conjugates. Results revealed that the gene transfection efficiency of the prepared polyethylenimine-modified gold nanorods (GNRs-PEI1.8k) was higher and their cytotoxicity was less than those of the commercial reagent PEI25k. GNRs-PEI1.8k could also be potentially used as a photoacoustic and photothermal reagent to evaluate the pharmacokinetics, biodistribution, and antitumor effects of gene/drug nanoparticles. Therefore, GNRs-PEI1.8k can be considered a promising candidate for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Hong Liang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
- Department of Chemistry, Northeast Normal University , Changchun 130024, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Pingjie Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| | - Mingxiao Deng
- Department of Chemistry, Northeast Normal University , Changchun 130024, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, China
| |
Collapse
|
31
|
Liu D, Ma L, Liu L, Wang L, Liu Y, Jia Q, Guo Q, Zhang G, Zhou J. Polydopamine-Encapsulated Fe3O4 with an Adsorbed HSP70 Inhibitor for Improved Photothermal Inactivation of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24455-24462. [PMID: 27581753 DOI: 10.1021/acsami.6b08119] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photothermal treatment, a new approach for inactivation of bacteria and pathogens that does not depend on traditional therapeutic approaches, has recently received much attention. In this study, a new type of nanoplatform (PDA@Fe3O4 + PES) was fabricated by using polydopamine (PDA, a photothermal conversion agent) to encapsulate Fe3O4 (a magnetic nanoparticle) and support 2-phenylethynesulfonamide (PES, an inhibitor of heat shock protein 70 (HSP70)). Upon near-infrared light irradiation, the increased temperature weakens π-π and hydrogen bonding interactions, and PES is released from the PDA@Fe3O4 + PES. The released PES inhibits the function of HSP70, reducing bacterial tolerance to photothermal therapy and improving the therapeutic effect against infectious bacterial pathogens. After treatment, PDA@Fe3O4 + PES can be recovered using the magnetic property of the Fe3O4 cores. Consequently, PDA@Fe3O4 + PES possesses the potential to be a recyclable photothermal agent for enhanced photothermal bacterial inactivation without causing secondary pollution.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
- College of Resource Environment, Tourism, Capital Normal University , Beijing 100048, People's Republic of China
| | - Liyi Ma
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Lidong Liu
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Lu Wang
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Qi Jia
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Quanwei Guo
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Ge Zhang
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University , Beijing 100048, People's Republic of China
| |
Collapse
|
32
|
Miao ZH, Wang H, Yang H, Li Z, Zhen L, Xu CY. Glucose-Derived Carbonaceous Nanospheres for Photoacoustic Imaging and Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15904-15910. [PMID: 27281299 DOI: 10.1021/acsami.6b03652] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon nanomaterials with small size and unique optical properties have attracted intensive interest for their promising biomedical applications. In this work, glucose-derived carbonaceous nanospheres (CNSs) with high photothermal conversion efficiency up to 35.1% are explored for the first time as a novel carbon-based theranostic agent. Different from most other carbon nanomaterials, the obtained CNSs are highly biocompatible and nontoxic because of their intrinsic hydrophilic property and the use of glucose as raw materials. Under near-infrared laser irradiation (808 nm, 6 W cm(-2)) for 10 min, less than 15% of PC-3M-IE8 cells exposed to CNSs aqueous dispersions (0.16 mg/mL) remained alive. After intravenous administration of CNSs aqueous dispersions into nude mice, the photoacoustic intensity of the tumor region is about 2.5 times higher than that of preinjection. These results indicate that CNSs are suitable for simultaneous photoacoustic imaging and photothermal ablation of cancer cells and can serve as promising biocompatible carbon-based agents for further clinical trials.
Collapse
Affiliation(s)
- Zhao-Hua Miao
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, Peoples' Republic of China
- MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology , Harbin, Heilongjiang 150080, Peoples' Republic of China
| | - Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang 150080, Peoples' Republic of China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology , Harbin, Heilongjiang 150080, Peoples' Republic of China
| | - Zhenglin Li
- Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology , Harbin, Heilongjiang 150001, Peoples' Republic of China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, Peoples' Republic of China
- MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology , Harbin, Heilongjiang 150080, Peoples' Republic of China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, Peoples' Republic of China
- MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology , Harbin, Heilongjiang 150080, Peoples' Republic of China
| |
Collapse
|
33
|
Wang XW, Gao W, Fan H, Ding D, Lai XF, Zou YX, Chen L, Chen Z, Tan W. Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorod-carbon nanocapsules during thermo-chemotherapy. NANOSCALE 2016; 8:7942-7948. [PMID: 27004915 DOI: 10.1039/c6nr00369a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Xue-Wei Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Wei Gao
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Huanhuan Fan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Ding Ding
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Xiao-Fang Lai
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Yu-Xiu Zou
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Av. Padre Tomás Pereira Taipa, Macau, China
| | - Zhuo Chen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology and Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| |
Collapse
|
34
|
Huang Z, Qi Y, Yu D, Zhan J. Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy. RSC Adv 2016. [DOI: 10.1039/c6ra03226e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radar-like MoS2 nanoparticles were demonstrated and used as highly efficient photothermal therapy for cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Zichen Huang
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| | - Yafei Qi
- Qilu Hospital of Shandong University
- Jinan 250100
- China
| | - Dexin Yu
- Qilu Hospital of Shandong University
- Jinan 250100
- China
| | - Jinhua Zhan
- National Engineering Research Center for Colloidal Materials
- Key Laboratory for Colloid and Interface Chemistry of Ministry of Education
- Department of Chemistry
- Shandong University
- Jinan 250100
| |
Collapse
|
35
|
Gou M, Li S, Zhang L, Li L, Wang C, Su Z. Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chem Commun (Camb) 2016; 52:11068-71. [DOI: 10.1039/c6cc05515j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report herein a facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles, which were employed as pH/NIR-responsive drug delivery vehicles for simultaneous MRI and chemo-photothermal therapy.
Collapse
Affiliation(s)
- Mingyu Gou
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Shengnan Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Lingyu Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Lu Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Chungang Wang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhongmin Su
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|