1
|
Jing R, Pennisi CP, Nielsen TT, Larsen KL. Advanced supramolecular hydrogels and their applications in the formulation of next-generation bioinks for tissue engineering: A review. Int J Biol Macromol 2025; 311:143461. [PMID: 40280522 DOI: 10.1016/j.ijbiomac.2025.143461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Supramolecular hydrogels are three-dimensional structures composed of cross-linked macromolecules interconnected by dynamic physical bonds, which allow them to absorb and retain significant volumes of water. Their intrinsic properties, such as viscoelasticity, self-healing capabilities, and high water content, render them promising materials for cell-laden scaffolds utilized in bioinks. This review systematically summarizes the current state-of-the-art advancements in hydrogels for tissue engineering, categorizing them based on the nature of their supramolecular interactions. Particular emphasis is placed on the classification of supramolecular hydrogels and their associated properties, including kinetics, mechanical characteristics, responsiveness, and swelling behavior. The review specifically addresses the criteria that hydrogels must fulfill prior to their application in bioinks. Achieving biocompatibility and bioactivity necessitates the careful selection of hydrogel compositions with suitable properties, as well as the incorporation of external organic or inorganic bioactive molecules. Methods for measuring and enhancing biophysical and biochemical properties are discussed in detail, alongside an exploration of the unique requirements of bioinks tailored for each additive manufacturing method. This review paper serves as an instructive resource for the construction and characterization of supramolecular hydrogels, facilitating their application in bioinks for tissue engineering.
Collapse
Affiliation(s)
- Ruiqi Jing
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Cristian P Pennisi
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Thorbjørn T Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Kim L Larsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
2
|
Shaikh S, Chary PS, Mehra NK. Supramolecular polymers: A perspective on the stability, biocompatibility and regulatory aspects. Int J Pharm 2025; 671:125277. [PMID: 39884590 DOI: 10.1016/j.ijpharm.2025.125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Supramolecular polymers represent a distinctive class of polymers exhibiting similarities with covalent polymers, while also showcasing distinctive attributes such as responsiveness, reversibility, self-healing, and dynamism, which are conferred upon them by non-covalent interactions including hydrogen bonding, electrostatic interactions, van der Waals forces, π-π arrangements, and donor-acceptor interactions, among others. The noteworthy features of these supramolecular polymers have attracted considerable interest across diverse fields of science and technology, spanning electrochemistry, environmental science, drug delivery and tissue engineering. Nonetheless, the prevailing research focus in the realm of supramolecular polymers revolves around the advancement of novel methodologies aimed at synthesizing a broad spectrum of polymers characterized by diverse topologies. However, to fully capitalize on their potential applications within these domains, it is imperative to scrutinize these versatile polymers through the lens of thermodynamic and kinetic stability. Moreover, their integration into healthcare and medical realms necessitates rigorous assessment of safety and biocompatibility attributes. Thus, the present review endeavours to critically evaluate supramolecular polymers from perspectives of stability, safety, and regulatory considerations, thereby elucidating their potential for translation into commercial domains.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Hyderabad Telangana India.
| |
Collapse
|
3
|
Rus F, Neculau C, Imre M, Duica F, Popa A, Moisa RM, Voicu-Balasea B, Radulescu R, Ripszky A, Ene R, Pituru S. Polymeric Materials Used in 3DP in Dentistry-Biocompatibility Testing Challenges. Polymers (Basel) 2024; 16:3550. [PMID: 39771402 PMCID: PMC11679966 DOI: 10.3390/polym16243550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
In the latter part of the 20th century, remarkable developments in new dental materials and technologies were achieved. However, regarding the impact of dental resin-based materials 3D-printed on cellular responses, there have been a limited number of published studies recently. The biocompatibility of dental restorative materials is a controversial topic, especially when discussing modern manufacturing technologies. Three-dimensional printing generates the release of residual monomers due to incomplete polymerization of materials and involves the use of potentially toxic substances in post-printing processes that cannot be completely eliminated. Considering the issue of biocompatibility, this article aims to establish an overview of this aspect, summarizing the different types of biocompatibility tests performed on materials used in 3D printing in dentistry. In order to create this comprehensive review, articles dealing with the issue of 3D printing in dentistry were analysed by accessing the main specialized search engines using specific keywords. Relevant data referring to types of materials used in 3DP to manufacture various dental devices, polymerization methods, factors affecting monomer release, cytotoxicity of unreacted products or post-curing treatments, and methods for assessing biocompatibility were analysed. Although the introduction of new restorative materials used in dental treatments is subject to national and international regulations and standards, it is necessary to investigate them regarding biocompatibility in order to support or deny the manufacturers' statements regarding this aspect.
Collapse
Affiliation(s)
- Florentina Rus
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Cristina Neculau
- Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Marina Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Calea Plevnei, 010221 Bucharest, Romania;
| | - Florentina Duica
- Clinical Emergency Hospital Bucharest, Floreasca 8, 014451 Bucharest, Romania
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Alexandra Popa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Radu Mihai Moisa
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Bianca Voicu-Balasea
- The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Alexandra Ripszky
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania; (F.R.); (A.P.); (R.M.M.); (R.R.); (A.R.)
| | - Razvan Ene
- Orthopedics and Traumatology Department, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari Blvd, 050474 Bucharest, Romania
| | - Silviu Pituru
- Department of Professional Organization and Medical Legislation-Malpractice, “Carol Davila” University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania;
| |
Collapse
|
4
|
Chen X, Xu Z, Gao Y, Chen Y, Yin W, Liu Z, Cui W, Li Y, Sun J, Yang Y, Ma W, Zhang T, Tian T, Lin Y. Framework Nucleic Acid-Based Selective Cell Catcher for Endogenous Stem Cell Recruitment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406118. [PMID: 39543443 DOI: 10.1002/adma.202406118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Indexed: 11/17/2024]
Abstract
Cell-surface engineering holds great promise in boosting endogenous stem cell attraction for tissue regeneration. However, challenges such as cellular internalization of ligand and the dynamic nature of cell membranes often complicate ligand-receptor interactions. The aim of this study is to harness the innovative potential of programmable tetrahedral framework nucleic acid (tFNA) to enable precise, tunable ligand-receptor interactions, thereby improving stem cell recruitment efficiency. This approach involves experimental screening and theoretical analysis using dissipative particle dynamics. The results demonstrate that altering the flexibility and topology of ligands on tFNA changes their cellular internalization and membrane binding efficiency. Furthermore, optimizing the distribution of the mesenchymal stem cell (MSC)-binding aptamer 19S (Apt19S) on the tFNA enhances the stem cell capture efficiency. Following successful in vitro MSC capture, Apt19S-modified tFNA is chemically linked to a hyaluronic acid hydrogel, forming an efficient "stem cell catcher" system. Subsequent in vivo experiments demonstrate that this system effectively promotes early stem cell recruitment and accelerates bone regeneration in different bone healing scenarios, including cranial and maxillary defects.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ziang Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Shahbazi M, Jäger H, Ettelaie R, Chen J, Kashi PA, Mohammadi A. Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review. Adv Colloid Interface Sci 2024; 333:103285. [PMID: 39216400 DOI: 10.1016/j.cis.2024.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.
Collapse
Affiliation(s)
- Mahdiyar Shahbazi
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Henry Jäger
- Institute of Material Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| | - Rammile Ettelaie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Peyman Asghartabar Kashi
- Faculty of Biosystem, College of Agricultural and Natural Resources Tehran University, Tehran, Iran
| | - Adeleh Mohammadi
- Department of Chemistry, University Hamburg, Institute of Food Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Mohammadi M, Sharifi F, Khanmohammadi A. Effect of non-covalent interactions on the stability and structural properties of 2,4-dioxo-4-phenylbutanoic complex: a computational analysis. J Mol Model 2024; 30:376. [PMID: 39404895 DOI: 10.1007/s00894-024-06176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
CONTEXT The 2,4-dioxo-4-phenylbutanoic acid (DPBA) is a subject of interest in pharmaceutical research, particularly in developing new drugs targeting viral and bacterial infections. Complexation with metal ions can improve the stability and solubility of organic compounds. The present study uses quantum chemical calculations to explore the structural and electronic results arising from the interaction between the metal cation (Fe2+) and the π-system of DPBA in different solvents. For this purpose, the analyses of atoms in molecules (AIM) and natural bond orbital (NBO) are employed to comprehend the interaction features and the charge delocalization during the process of complexation. The results demonstrate that the strongest/weakest interactions are evident when the complex is situated in non-polar/polar solvents, respectively. In addition, the investigated complex exhibits two intramolecular hydrogen bonds (IMHBs) characterized by the O-H···O motif. The results indicate that the HBs present in the complex fall within the category of weak to medium HBs. Moreover, the O-H···O HBs are influenced by cation-π interactions, which can increase/decrease their strength in polar/non-polar solvents. To enhance understanding of the interactions above, an examination is conducted on various physical properties including the energy gap, electronic chemical potential, chemical hardness, softness, and electrophilicity power. METHOD All calculations are conducted within the density functional theory (DFT) using the ωB97XD functional and 6-311 + + G(d,p) basis set. The computations are performed using the quantum chemistry package GAMESS, and the obtained results are visualized by employing the GaussView program.
Collapse
Affiliation(s)
- Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Fatemeh Sharifi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Azadeh Khanmohammadi
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395‑4697, Tehran, Iran
| |
Collapse
|
7
|
Alzhrani RF, Xu H, Zhang Y, Maniruzzaman M, Cui Z. Development of novel 3D printable inks for protein delivery. Int J Pharm 2024; 659:124277. [PMID: 38802027 DOI: 10.1016/j.ijpharm.2024.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The application of 3D printing technology in the delivery of macromolecules, such as proteins and enzymes, is limited by the lack of suitable inks. In this study, we report the development of novel inks for 3D printing of constructs containing proteins while maintaining the activity of the proteins during and after printing. Different ink formulations containing Pluronic F-127 (20-35 %, w/v), trehalose (2-10 %, w/v) or mannitol, poly (ethylene glycol) diacrylate (PEGDA) (0 or 10 %, w/w), and diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO, 0 or 0.2 mg/mL) were prepared for 3D-microextrusion printing. The F2 formulation that contained β-galactosidase (β-gal) as a model enzyme, Pluronic F-127 (30 %), and trehalose (10 %) demonstrated the desired viscosity, printability, and dose flexibility. The shear-thinning property of the F2 formulation enabled the printing of β-gal containing constructs with a good peak force during extrusion. After 3D printing, the enzymatic activity of the β-gal in the constructs was maintained for an extended period, depending on the construct design and storage conditions. For instance, there was a 50 % reduction in β-gal activity in the two-layer constructs, but only a 20 % reduction in the four-layer construct (i.e., 54.5 ± 1.2 % and 82.7 ± 9.9 %, respectively), after 4 days of storage. The β-gal activity in constructs printed from the F2 formulation was maintained for up to 20 days when stored in sealed bags at room temperatures (21 ± 2 °C), but not when stored unsealed in the same conditions (e.g., ∼60 % activity loss within 7 days). The β-gal from constructs printed from F2 started to release within 5 min and reached 100 % after 20 min. With the design flexibility offered by the 3D printing, the β-gal release from the constructs was delayed to 3 h by printing a backing layer of β-gal-free F5 ink on the constructs printed from the F2 ink. Finally, ovalbumin as an alternative protein was also incorporated in similar ink compositions. Ovalbumin exhibited a release profile like that of the β-gal, and the release can also be modified with different shape design and/or ink composition. In conclusion, ink formulations that possess desirable properties for 3D printing of protein-containing constructs while maintaining the protein activity during and after printing were developed.
Collapse
Affiliation(s)
- Riyad F Alzhrani
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States
| | - Yu Zhang
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Mohammed Maniruzzaman
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, United States.
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, United States.
| |
Collapse
|
8
|
Salimi S, Graham AM, Wu Y, Song P, Hart LR, Irvine DJ, Wildman RD, Siviour CR, Hayes W. An effective route to the additive manufacturing of a mechanically gradient supramolecular polymer nanocomposite structure. J Mech Behav Biomed Mater 2024; 150:106358. [PMID: 38169206 DOI: 10.1016/j.jmbbm.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
3D Printing techniques are additive methods of fabricating parts directly from computer-aided designs. Whilst the clearest benefit is the realisation of geometrical freedom, multi-material printing allows the introduction of compositional variation and highly tailored product functionality. The paper reports a proof-of-concept additive manufacturing study to deposit a supramolecular polymer and a complementary organic filler to form composites with gradient composition to enable spatial distribution of mechanical properties and functionality by tuning the number of supramolecular interactions. We use a dual-feed extrusion 3D printing process, with feed stocks based on the supramolecular polymer and its organic composite, delivered at ratios predetermined. This allows for production of a graded specimen with varying filler concentration that dictates the mechanical properties. The printed specimen was inspected under dynamic load in a tensile test using digital image correlation to produce full-field deformation maps, which showed clear differences in deformation in regions with varying compositions, corresponding to the designed-in variations. This approach affords a novel method for printing material with graded mechanical properties which are not currently commercially available or easily accessible, however, the method can potentially be directly translated to the generation of biomaterial-based composites featuring gradients of mechanical properties.
Collapse
Affiliation(s)
- Sara Salimi
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, L8S 4M1, Canada
| | - Aaron M Graham
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Yuyang Wu
- Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Peihao Song
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Lewis R Hart
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Derek J Irvine
- Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ricky D Wildman
- Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Clive R Siviour
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Wayne Hayes
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| |
Collapse
|
9
|
Ortiz-Ortiz DN, Mokarizadeh AH, Segal M, Dang F, Zafari M, Tsige M, Joy A. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters. Biomacromolecules 2023; 24:5091-5104. [PMID: 37882707 DOI: 10.1021/acs.biomac.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Collapse
Affiliation(s)
- Deliris N Ortiz-Ortiz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Maddison Segal
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
10
|
Wang S, Han X, Gao X, Zhang H, Li C, Duan S, Wu J, Wang Z, Zheng A. The Evaluation and Exploration of Piezoelectric Parameter Optimization for Droplet Ejection in Binder Jet 3D Printing Drugs. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1090-1100. [PMID: 37886408 PMCID: PMC10599426 DOI: 10.1089/3dp.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Since the first three-dimensional (3D) printed drug was approved by the Food and Drug Administration in 2015, there has been a growing interest in using binder jet 3D printing (BJ-3DP) technology for pharmaceuticals. However, most studies are still at an exploratory stage, lacking micromechanism research, such as the droplet ejection mechanism, the effect of printhead piezoelectric parameters on inkjet smoothness and preparation formability. In this study, based on the inkjet printing and observation platform, the Epson I3200-A1 piezoelectric printhead matched to the self-developed BJ-3DP was selected to analyze the droplet ejection state of self-developed ink at the microlevel with different piezoelectric pulse parameters. The results showed that there was a stable inkjet state with an inkjet pulse width of 3.5 μs, an ink supply pulse width of 4.5 μs, and a jet frequency in the range of 5000-19,000 Hz, ensuring both better droplet pattern and print accuracy, as well as high ejection efficiency. In conclusion, we performed a systematic evaluation of the inkjet behavior under different piezoelectric pulse parameters and provided a good idea and case study for the optimization of printhead piezoelectric parameters when BJ-3DP technology was used in pharmaceuticals.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xiaolu Han
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Xiang Gao
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hui Zhang
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Conghui Li
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Zengming Wang
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Aiping Zheng
- Pharmacy Research Laboratory, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| |
Collapse
|
11
|
Fei J, Rong Y, Zhu L, Li H, Zhang X, Lu Y, An J, Bao Q, Huang X. Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review. Macromol Rapid Commun 2023; 44:e2300211. [PMID: 37294875 DOI: 10.1002/marc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Indexed: 06/11/2023]
Abstract
In recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area-selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.
Collapse
Affiliation(s)
- Jianhua Fei
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Youjie Rong
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Lisheng Zhu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Huijie Li
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaomin Zhang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ying Lu
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, 030032, P. R. China
| | - Jian An
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Qingbo Bao
- Shanxi Coal Center Hospital, Taiyuan, 030006, P. R. China
- Department of Cardiology, Cardiovascular Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Xiaobo Huang
- Key Laboratory of Medical Metal Materials of Shanxi Province, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| |
Collapse
|
12
|
Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (Beijing) 2023; 4:e194. [PMID: 36582305 PMCID: PMC9790048 DOI: 10.1002/mco2.194] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/26/2022] Open
Abstract
3D bioprinting or additive manufacturing is an emerging innovative technology revolutionizing the field of biomedical applications by combining engineering, manufacturing, art, education, and medicine. This process involved incorporating the cells with biocompatible materials to design the required tissue or organ model in situ for various in vivo applications. Conventional 3D printing is involved in constructing the model without incorporating any living components, thereby limiting its use in several recent biological applications. However, this uses additional biological complexities, including material choice, cell types, and their growth and differentiation factors. This state-of-the-art technology consciously summarizes different methods used in bioprinting and their importance and setbacks. It also elaborates on the concept of bioinks and their utility. Biomedical applications such as cancer therapy, tissue engineering, bone regeneration, and wound healing involving 3D printing have gained much attention in recent years. This article aims to provide a comprehensive review of all the aspects associated with 3D bioprinting, from material selection, technology, and fabrication to applications in the biomedical fields. Attempts have been made to highlight each element in detail, along with the associated available reports from recent literature. This review focuses on providing a single platform for cancer and tissue engineering applications associated with 3D bioprinting in the biomedical field.
Collapse
Affiliation(s)
- Swikriti Tripathi
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Subham Shekhar Mandal
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Sudepta Bauri
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Material Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
13
|
Cai C, Wu S, Zhang Y, Li F, Tan Z, Dong S. Poly(thioctic acid): From Bottom-Up Self-Assembly to 3D-Fused Deposition Modeling Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203630. [PMID: 36220340 PMCID: PMC9685451 DOI: 10.1002/advs.202203630] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Inspired by the bottom-up assembly in nature, an artificial self-assembly pattern is introduced into 3D-fused deposition modeling (FDM) printing to achieve additive manufacturing on the macroscopic scale. Thermally activated polymerization of thioctic acid (TA) enabled the bulk construction of poly(TA), and yielded unique time-dependent self-assembly. Freshly prepared poly(TA) can spontaneously and continuously transfer into higher-molecular-weight species and low-molecular-weight TA monomers. Poly(TA) and the newly formed TA further assembled into self-reinforcing materials via microscopic-phase separation. Bottom-up self-assembly patterns on different scales are fully realized by 3D FDM printing of poly(TA): thermally induced polymerization of TA (microscopic-scale assembly) to poly(TA) and 3D printing (macroscopic-scale assembly) of poly(TA) are simultaneously achieved in the 3D-printing process; after 3D printing, the poly(TA) modes show mechanically enhanced features over time, arising from the microscopic self-assembly of poly(TA) and TA. This study clearly demonstrates that micro- and macroscopic bottom-up self-assembly can be applied in 3D additive manufacturing.
Collapse
Affiliation(s)
- Changyong Cai
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Shuanggen Wu
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Yunfei Zhang
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Fenfang Li
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Zhijian Tan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangsha410205China
| | - Shengyi Dong
- Department of Organic ChemistryCollege of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| |
Collapse
|
14
|
Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022; 14:pharmaceutics14081733. [PMID: 36015356 PMCID: PMC9412871 DOI: 10.3390/pharmaceutics14081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue regeneration is a prominent area of research, developing biomaterials aimed to be tunable, mechanistic scaffolds that mimic the physiological environment of the tissue. These biomaterials are projected to effectively possess similar chemical and biological properties, while at the same time are required to be safely and quickly degradable in the body once the desired restoration is achieved. Supramolecular systems composed of reversible, non-covalently connected, self-assembly units that respond to biological stimuli and signal cells have efficiently been developed as preferred biomaterials. Their biocompatibility and the ability to engineer the functionality have led to promising results in regenerative therapy. This review was intended to illuminate those who wish to envisage the niche translational research in regenerative therapy by summarizing the various explored types, chemistry, mechanisms, stimuli receptivity, and other advancements of supramolecular systems.
Collapse
Affiliation(s)
- Saketh Reddy Ranamalla
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence:
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Bio Pharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, “Babeș-Bolyai” University, 400015 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Ghorai SK, Dutta A, Roy T, Guha Ray P, Ganguly D, Ashokkumar M, Dhara S, Chattopadhyay S. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28455-28475. [PMID: 35715225 DOI: 10.1021/acsami.2c01657] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Critical bone defects with a sluggish rate of auto-osteoconduction and imperfect reconstruction are motivators for the development of an alternate innovative approach for the regeneration of bone. Tissue engineering for bone regeneration signifies an advanced way to overcome this problem by creating an additional bone tissue substitute. Among different fabrication techniques, the 3D printing technique is obviously the most efficient and advanced way to fabricate an osteoconductive scaffold with a controlled porous structure. In the current article, the polycarbonate and polyester diol based polyurethane-urea (P12) was synthesized and 3D porous nanohybrid scaffolds (P12/TP-nHA) were fabricated using the 3D printing technique by incorporating the osteoconductive nanomaterial titanium phosphate adorned nanohydroxyapatite (TP-nHA). To improve the bioactivity, the surface of the fabricated scaffolds was modified with the immobilized biomolecule polydopamine (PDA) at room temperature. XPS study as well as the measurement of surface wettability confirmed the higher amount of PDA immobilization on TP-nHA incorporated nanohybrid scaffolds through the dative bone formation between the vacant d orbital of the incorporated titanium ion and the lone pair electron of the catechol group of dopamine. The incorporated titanium phosphate (TP) increased the tensile strength (53.1%) and elongation at break (96.8%) of the nanohybrid composite as compared to pristine P12. Moreover, the TP incorporated nanohybrid scaffold with calcium and phosphate moieties and a higher amount of immobilized active biomolecule improved the in vitro bioactivity, including the cell viability, cell proliferation, and osteogenic gene expression using hMSCs, of the fabricated nanohybrid scaffolds. A rat tibia defect model depicted that the TP incorporated nanohybrid scaffold with immobilized PDA enhanced the in vivo bone regeneration ability compared to the control sample without revealing any organ toxicity signifying the superior osteogenic bioactivity. Thus, a TP augmented polydopamine immobilized polyurethane-urea based nanohybrid 3D printed scaffold with improved physicochemical properties and osteogenic bioactivity could be utilized as an excellent advanced material for bone regeneration substitute.
Collapse
Affiliation(s)
- Sanjoy Kumar Ghorai
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India
| | - Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur-721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Debabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India
| | | | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
16
|
Valdez S, Robertson M, Qiang Z. Fluorescence Resonance Energy Transfer Measurements in Polymer Science: A Review. Macromol Rapid Commun 2022; 43:e2200421. [PMID: 35689335 DOI: 10.1002/marc.202200421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/06/2022] [Indexed: 12/27/2022]
Abstract
Fluorescence resonance energy transfer (FRET) is a non-invasive characterization method for studying molecular structures and dynamics, providing high spatial resolution at nanometer scale. Over the past decades, FRET-based measurements are developed and widely implemented in synthetic polymer systems for understanding and detecting a variety of nanoscale phenomena, enabling significant advances in polymer science. In this review, the basic principles of fluorescence and FRET are briefly discussed. Several representative research areas are highlighted, where FRET spectroscopy and imaging can be employed to reveal polymer morphology and kinetics. These examples include understanding polymer micelle formation and stability, detecting guest molecule release from polymer host, characterizing supramolecular assembly, imaging composite interfaces, and determining polymer chain conformations and their diffusion kinetics. Finally, a perspective on the opportunities of FRET-based measurements is provided for further allowing their greater contributions in this exciting area.
Collapse
Affiliation(s)
- Sara Valdez
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
17
|
Chen J, Wen Y, Zeng L, Wang X, Chen H, Huang WM, Bai Y, Yu W, Zhao K, Hu P. Room-Temperature Solid-State UV Cross-Linkable Vitrimer-like Polymers for Additive Manufacturing. Polymers (Basel) 2022; 14:2203. [PMID: 35683876 PMCID: PMC9182850 DOI: 10.3390/polym14112203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, a UV cross-linkable vitrimer-like polymer, ureidopyrimidinone functionalized telechelic polybutadiene, is reported. It is synthesized in two steps. First, 2(6-isocyanatohexylaminocarbonylamino)-6-methyl-4[1H]-pyrimidinone (UPy-NCO) reacts with hydroxy-functionalized polybutadiene (HTPB) to obtain UPy-HTPB-UPy, and then the resulted UPy-HTPB-UPy is cross-linked under 365 nm UV light (photo-initiator: bimethoxy-2-phenylacetophenone, DMPA). Further investigation reveals that the density of cross-linking and mechanical properties of the resulting polymers can be tailored via varying the amount of photo-initiator and UV exposure time. Before UV cross-linking, UPy-HTPB-UPy is found to be vitrimer-like due to the quadruple hydrogen-bonding interactions. The UPy groups at the end of the chain also enable for rapid solidification upon the evaporation of the solvent. The unsaturated double bonds in the HTPB chains enable UPy-HTPB-UPy to be UV cross-linkable in the solid state at room temperature. After cross-linking, the polymers have good shape memory effect (SME). Here, we demonstrate that this type of polymer can have many potential applications in additive manufacturing. In the cases of fused deposition modelling (FDM) and direct ink writing (DIW), not only the strength of the interlayer bonding but also the strength of the polymer itself can be enhanced via UV exposure (from thermoplastic to thermoset) either during printing or after printing. The SME after cross-linking further helps to achieve rapid volumetric additive manufacturing anytime and anywhere.
Collapse
Affiliation(s)
- Jian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Ya Wen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Lingyi Zeng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Xinchun Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Hongmei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuefeng Bai
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Keqing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; (J.C.); (Y.W.); (L.Z.); (X.W.); (Y.B.); (W.Y.); (K.Z.)
| |
Collapse
|
18
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Rupp H, Binder WH. 3D Printing of Solvent-Free Supramolecular Polymers. Front Chem 2021; 9:771974. [PMID: 34912780 PMCID: PMC8666451 DOI: 10.3389/fchem.2021.771974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing has significantly changed polymer science and technology by engineering complex material shapes and compositions. With the advent of dynamic properties in polymeric materials as a fundamental principle to achieve, e.g., self-healing properties, the use of supramolecular chemistry as a tool for molecular ordering has become important. By adjusting molecular nanoscopic (supramolecular) bonds in polymers, rheological properties, immanent for 3D printing, can be adjusted, resulting in shape persistence and improved printing. We here review recent progress in the 3D printing of supramolecular polymers, with a focus on fused deposition modelling (FDM) to overcome some of its limitations still being present up to date and open perspectives for their application.
Collapse
Affiliation(s)
| | - Wolfgang H. Binder
- Division of Technical and Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
20
|
Hamachi LS, Rau DA, Arrington CB, Sheppard DT, Fortman DJ, Long TE, Williams CB, Dichtel WR. Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38680-38687. [PMID: 34369767 DOI: 10.1021/acsami.1c09373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials via self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.
Collapse
Affiliation(s)
- Leslie S Hamachi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Daniel A Rau
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Clay B Arrington
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Daylan T Sheppard
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David J Fortman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, United States
| | - Timothy E Long
- School of Molecular Sciences, Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, Arizona 85281, United States
| | - Christopher B Williams
- Department of Mechanical Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Affiliation(s)
| | | | - Wolfgang H. Binder
- Martin‐Luther‐Universität Halle‐Wittenberg Makromolekulare Chemie Fakultät Naturwissenschaften II Von‐Danckelmann‐Platz 4 D‐06120 Halle
| |
Collapse
|
22
|
Abdollahiyan P, Oroojalian F, Hejazi M, de la Guardia M, Mokhtarzadeh A. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering. J Control Release 2021; 333:391-417. [DOI: 10.1016/j.jconrel.2021.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
|
23
|
Amekyeh H, Tarlochan F, Billa N. Practicality of 3D Printed Personalized Medicines in Therapeutics. Front Pharmacol 2021; 12:646836. [PMID: 33912058 PMCID: PMC8072378 DOI: 10.3389/fphar.2021.646836] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Technological advances in science over the past century have paved the way for remedial treatment outcomes in various diseases. Pharmacogenomic predispositions, the emergence of multidrug resistance, medication and formulation errors contribute significantly to patient mortality. The concept of "personalized" or "precision" medicines provides a window to addressing these issues and hence reducing mortality. The emergence of three-dimensional printing of medicines over the past decades has generated interests in therapeutics and dispensing, whereby the provisions of personalized medicines can be built within the framework of producing medicines at dispensaries or pharmacies. This plan is a good replacement of the fit-for-all modality in conventional therapeutics, where clinicians are constrained to prescribe pre-formulated dose units available on the market. However, three-dimension printing of personalized medicines faces several hurdles, but these are not insurmountable. In this review, we explore the relevance of personalized medicines in therapeutics and how three-dimensional printing makes a good fit in current gaps within conventional therapeutics in order to secure an effective implementation of personalized medicines. We also explore the deployment of three-dimensional printing of personalized medicines based on practical, legal and regulatory provisions.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | | | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Hermida-Merino D, Hart LR, Harris PJ, Slark AT, Hamley IW, Hayes W. The effect of chiral end groups on the assembly of supramolecular polyurethanes. Polym Chem 2021. [DOI: 10.1039/d1py00714a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the generation of supramolecular polyurethanes and the positive effect that chirality has upon the physical properties of these materials.
Collapse
Affiliation(s)
| | - Lewis R. Hart
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Peter J. Harris
- Electron Microscopy Laboratory
- University of Reading
- Reading
- UK
| | | | - Ian W. Hamley
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Wayne Hayes
- Department of Chemistry
- University of Reading
- Reading
- UK
| |
Collapse
|
25
|
Maldonado N, Amo-Ochoa P. New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry 2020; 27:2887-2907. [PMID: 32894574 DOI: 10.1002/chem.202002259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Indexed: 12/17/2022]
Abstract
This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal-organic gels, or metal-organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal-organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds.
Collapse
Affiliation(s)
- Noelia Maldonado
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Pilar Amo-Ochoa
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IADCHEM), Autonomous University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
26
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
27
|
Thompson CB, Korley LTJ. 100th Anniversary of Macromolecular Science Viewpoint: Engineering Supramolecular Materials for Responsive Applications-Design and Functionality. ACS Macro Lett 2020; 9:1198-1216. [PMID: 35638621 DOI: 10.1021/acsmacrolett.0c00418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supramolecular polymers allow access to dynamic materials, where noncovalent interactions can be used to offer both enhanced material toughness and stimuli-responsiveness. The versatility of self-assembly has enabled these supramolecular motifs to be incorporated into a wide array of glassy and elastomeric materials; moreover, the interaction of these noncovalent motifs with their environment has shown to be a convenient platform for controlling material properties. In this Viewpoint, supramolecular polymers are examined through their self-assembly chemistries, approaches that can be used to control their self-assembly (e.g., covalent cross-links, nanofillers, etc.), and how the strategic application of supramolecular polymers can be used as a platform for designing the next generation of smart materials. This Viewpoint provides an overview of the aspects that have garnered interest in supramolecular polymer chemistry, while also highlighting challenges faced and innovations developed by researchers in the field.
Collapse
Affiliation(s)
- Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
| | - LaShanda T. J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
28
|
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002931. [PMID: 32734720 PMCID: PMC7754762 DOI: 10.1002/smll.202002931] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites. Polymers (Basel) 2020; 12:polym12081694. [PMID: 32751199 PMCID: PMC7463693 DOI: 10.3390/polym12081694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) printing technology has proven to be a convenient and effective method to fabricate structural electromagnetic wave (EMW) absorbers with tunable EMW absorption properties. To obtain a functional material with strong EMW absorbing performance and excellent mechanical properties for fused deposition modeling (FDM) 3D printing technology, in this work, carbonyl iron powder (CIP)/acrylonitrile-butadiene-styrene copolymer (ABS) composites with different CIP contents were prepared by the melt-mixing process. The effects of the CIP content on the EMW absorption and mechanical properties of CIP/ABS composites were investigated. The CIP/ABS composite with a CIP content of 40 wt.% presented the lowest reflection loss (RL) of -48.71 dB for the optimal impedance matching. In addition, this composite exhibited optimal mechanical properties due to the good dispersion of the CIPs in the matrix ABS. Not only were the tensile and flexural strength similar to pure ABS, but the tensile and flexural modulus were 32% and 37% higher than those of pure ABS, respectively. With a CIP content of 40 wt.%, the CIP/ABS composite proved to be a novel functional material with excellent EMW absorbing and mechanical properties, providing great potential for the development of structural absorbers via FDM 3D printing technology.
Collapse
|
30
|
Hedegaard CL, Mata A. Integrating self-assembly and biofabrication for the development of structures with enhanced complexity and hierarchical control. Biofabrication 2020; 12:032002. [DOI: 10.1088/1758-5090/ab84cb] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Lai W, Wang Y, He J. Electromagnetic Wave Absorption Properties of Structural Conductive ABS Fabricated by Fused Deposition Modeling. Polymers (Basel) 2020; 12:polym12061217. [PMID: 32471065 PMCID: PMC7362245 DOI: 10.3390/polym12061217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022] Open
Abstract
To obtain excellent electromagnetic wave (EMW) absorption materials, the design of microstructures has been considered as an effective method to adjust EMW absorption performance. Owing to its inherent capability of effectively fabricating materials with complex various structures, three-dimensional (3D) printing technology has been regarded as a powerful tool to design EMW absorbers with plentiful microstructures for the adjustment of EMW absorption performance. In this work, five samples with various microstructures were prepared via fused deposition modeling (FDM). An analysis method combining theoretical simulation calculations with experimental measurements was adopted to investigate EMW absorbing properties of all samples. The wood-pile-structural sample possessed wider effective absorption bandwidth (EAB; reflection loss (RL) <−10 dB, for over 90% microwave absorption) of 5.43 GHz and generated more absorption bands (C-band and Ku-band) as compared to the honeycomb-structural sample at the same thickness. Designing various microstructures via FDM proved to be a convenient and feasible method to fabricate absorbers with tunable EMW absorption properties, which provides a novel path for the preparation of EMW absorption materials with wider EAB and lower RL.
Collapse
Affiliation(s)
| | - Yan Wang
- Correspondence: ; Tel.: +86-159-9426-3868
| | | |
Collapse
|
32
|
Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B 2020; 8:2930-2950. [PMID: 32239017 PMCID: PMC8092991 DOI: 10.1039/d0tb00034e] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
Collapse
Affiliation(s)
- Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
33
|
Guzzi EA, Tibbitt MW. Additive Manufacturing of Precision Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901994. [PMID: 31423679 DOI: 10.1002/adma.201901994] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Biomaterials play a critical role in modern medicine as surgical guides, implants for tissue repair, and as drug delivery systems. The emerging paradigm of precision medicine exploits individual patient information to tailor clinical therapy. While the main focus of precision medicine to date is the design of improved pharmaceutical treatments based on "-omics" data, the concept extends to all forms of customized medical care. This includes the design of precision biomaterials that are tailored to meet specific patient needs. Additive manufacturing (AM) enables free-form manufacturing and mass customization, and is a critical enabling technology for the clinical implementation of precision biomaterials. Materials scientists and engineers can contribute to the realization of precision biomaterials by developing new AM technologies, synthesizing advanced (bio)materials for AM, and improving medical-image-based digital design. As the field matures, AM is poised to provide patient-specific tissue and organ substitutes, reproducible microtissues for drug screening and disease modeling, personalized drug delivery systems, as well as customized medical devices.
Collapse
Affiliation(s)
- Elia A Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
34
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
35
|
Jockusch J, Özcan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J 2020; 39:345-354. [PMID: 32037387 DOI: 10.4012/dmj.2019-123] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Additive manufacturing (AM) processes are increasingly used in dentistry. The underlying process is the joining of material layer by layer based on 3D data models. Four additive processes (laser stereolithography, polymer jetting, digital light processing, fused deposition modeling) are mainly used for processing dental polymers. The number of polymer materials that can be used for AM in dentistry is small compared to other areas. Applications in dentistry using AM are limited (e.g. study models, maxillo-facial prostheses, orthodontic appliances etc.). New and further developments of materials are currently taking place due to the increasing demand for safer and other applications. Biocompatibility and the possibility of using materials not only as temporarily but as definitive reconstructions under oral conditions, mechanically more stable materials where less or no post-processing is needed are current targets in AM technologies. Printing parameters are also open for further development where optical aspects are also important.
Collapse
Affiliation(s)
- Julia Jockusch
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zürich
| | - Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic for Reconstructive Dentistry, University of Zürich
| |
Collapse
|
36
|
Dai C, Huang ZB, Liu L, Han Y, Shi DQ, Zhao Y. Palladium-Catalyzed ortho
-Heteroarylation of β-Arylethylamines Through Cross-Dehydrogenative Coupling. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Zhi-Bin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Lingling Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yi Han
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| |
Collapse
|
37
|
Yan X, Wu X, Fang Y, Sun W, Yao C, Wang Y, Zhang X, Song Y. Effect of silver doping on ultrafast broadband nonlinear optical responses in polycrystalline Ag-doped InSe nanofilms at near-infrared. RSC Adv 2020; 10:2959-2966. [PMID: 35496091 PMCID: PMC9048421 DOI: 10.1039/c9ra09186f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022] Open
Abstract
There is great interest in transition metal-doped InSe because of its high nonlinearity and ultrafast response time at higher light fluence. Herein, Ag-doped InSe nanofilms were precisely manufactured using a direct current-radio frequency sputtering method, and their ultrafast broadband nonlinear optical responses in near-infrared were systematically researched. Ag-doped InSe nanofilm exhibited a broadband nonlinear optical response (800–1100 nm) and ultrafast carrier absorption (<1 ps), and can act as a potential semiconducting material for all-optical devices. Through precise control of the sputtering process parameters, Ag-doped InSe nanofilms were successfully prepared that were smooth, uniform, and exhibited no cracks. Nonlinear optical studies (femtosecond transient absorption spectroscopy and Z-scan measurement) indicated that nonlinear absorption behavior in Ag-doped InSe nanofilm withstands a transformation from saturation absorption to reverse saturation absorption arising from ground state bleaching, free-carrier absorption (FCA), and two-photon absorption (TPA). Additionally, nonlinear refraction behavior in Ag-doped InSe nanofilm was successfully detected near the intrinsic absorption edge, which arose from Kerr refraction and free-carrier refraction. More importantly, the broadband nonlinear response, ultrafast carrier absorption, and carrier recovery time of Ag-doped InSe nanofilm has the ability to controllably tune via Ag doping. Furthermore, Ag-doped InSe nanofilm possesses the nonlinear figure of merit (FOM) of 2.02, which indicates that Ag-doped InSe nanofilm is a promising semiconducting material for all-optical switching devices in near-infrared. Schematic illustration of the preparation and morphology in Ag-doped InSe nano film.![]()
Collapse
Affiliation(s)
- Xiaoyan Yan
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
| | - Xingzhi Wu
- School of Mathematics and Physics, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yu Fang
- School of Mathematics and Physics, Suzhou University of Science and Technology Suzhou 215009 China
| | - Wenjun Sun
- School of Physics and Electronic Engineering, Harbin Normal University Harbin 150025 China
| | - Chengbao Yao
- School of Physics and Electronic Engineering, Harbin Normal University Harbin 150025 China
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
38
|
Salimi S, Wu Y, Barreiros MIE, Natfji AA, Khaled S, Wildman R, Hart LR, Greco F, Clark EA, Roberts CJ, Hayes W. A 3D printed drug delivery implant formed from a dynamic supramolecular polyurethane formulation. Polym Chem 2020. [DOI: 10.1039/d0py00068j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Prototype drug eluting implants have been 3D printed using a supramolecular polyurethane-PEG formulation. The implants are capable of releasing a pharmaceutical active with effective drug release over a period of up to 8.5 months.
Collapse
Affiliation(s)
- S. Salimi
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - Y. Wu
- Faculty of Engineering
- The University of Nottingham
- University Park
- Nottingham
- UK
| | | | - A. A. Natfji
- School of Pharmacy
- University of Reading
- Reading
- UK
| | - S. Khaled
- School of Pharmacy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | - R. Wildman
- Faculty of Engineering
- The University of Nottingham
- University Park
- Nottingham
- UK
| | - L. R. Hart
- Department of Chemistry
- University of Reading
- Reading
- UK
| | - F. Greco
- School of Pharmacy
- University of Reading
- Reading
- UK
| | - E. A. Clark
- School of Pharmacy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | - C. J. Roberts
- School of Pharmacy
- University of Nottingham
- Nottingham NG7 2RD
- UK
| | - W. Hayes
- Department of Chemistry
- University of Reading
- Reading
- UK
| |
Collapse
|
39
|
Golkaram M, Loos K. A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules 2019; 52:9427-9444. [PMID: 31894159 PMCID: PMC6933822 DOI: 10.1021/acs.macromol.9b02085] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2019] [Indexed: 12/15/2022]
Abstract
Over the past few years, the concurrent (1) development of polymer synthesis and (2) introduction of new mathematical models for polymer dynamics have evolved the classical framework for polymer dynamics once established by Doi-Edwards/de Gennes. Although the analysis of supramolecular polymer dynamics based on linear rheology has improved a lot recently, there are a large number of insecurities behind the conclusions, which originate from the complexity of these novel systems. The interdependent effect of supramolecular entities (stickers) and chain dynamics can be overwhelming depending on the type and location of stickers as well as the architecture and chemistry of polymers. This Perspective illustrates these parameters and strives to determine what is still missing and has to be improved in the future works.
Collapse
Affiliation(s)
- Milad Golkaram
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry
and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| |
Collapse
|
40
|
Rupp H, Döhler D, Hilgeroth P, Mahmood N, Beiner M, Binder WH. 3D Printing of Supramolecular Polymers: Impact of Nanoparticles and Phase Separation on Printability. Macromol Rapid Commun 2019; 40:e1900467. [DOI: 10.1002/marc.201900467] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Harald Rupp
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Diana Döhler
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Philipp Hilgeroth
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
| | - Nasir Mahmood
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| | - Mario Beiner
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| | - Wolfgang H. Binder
- Macromolecular ChemistryDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg von‐Danckelmann‐Platz 4 Halle D‐06120 Germany
- Micro‐ and Nanostructure Based Polymer CompositesDivision of Technical and Macromolecular ChemistryInstitute of ChemistryFaculty of Natural Sciences II(Chemistry, Physics and Mathematics)Martin Luther University Halle–Wittenberg Heinrich‐Damerow‐Straße 4 Halle D‐06120 Germany
| |
Collapse
|
41
|
Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larrañeta E, Lamprou DA. Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomater Sci Eng 2019; 5:6300-6310. [PMID: 33405537 DOI: 10.1021/acsbiomaterials.9b01185] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Catheter-associated infections are a common complication that occurs in dialysis patients. Current strategies to prevent infection include catheter coatings containing heparin, pyrogallol, or silver nanoparticles, which all have an increased risk of causing resistance in bacteria. Therefore, a novel approach for manufacture, such as the use of additive manufacturing (AM), also known as three-dimensional (3D) printing, is required. Filaments were produced by extrusion using thermoplastic polyurethane (TPU) and tetracycline hydrochloride (TC) in various concentrations (e.g., 0, 0.25, 0.5, and 1%). The extruded filaments were used in a fused deposition modeling (FDM) 3D printer to print catheter constructs at varying concentrations. Release studies in phosphate-buffered saline, microbiology studies, thermal analysis, contact angle, attenuated total reflection-Fourier transform infrared, scanning electron microscopy, and X-ray microcomputer tomography (μCT) analysis were conducted on the printed catheters. The results suggested that TC was uniformly distributed within the TPU matrix. The microbiology testing of the catheters showed that devices containing TC had an inhibitory effect on the growth of Staphylococcus aureus NCTC 10788 bacteria. Catheters containing 1% TC maintained inhibitory effect after 10 day release studies. After an initial burst release in the first 24 h, there was a steady release of TC in all concentrations of catheters. 3D-printed antibiotic catheters were successfully printed with inhibitory effect on S. aureus bacteria. Finally, TC containing catheters showed resistance to S. aureus adherence to their surfaces when compared with catheters containing no TC. Catheters containing 1% of TC showed a bacterial adherence reduction of up to 99.97%. Accordingly, the incorporation of TC to TPU materials can be effectively used to prepare anti-infective catheters using FDM. This study highlights the potential for drug-impregnated medical devices to be created through AM.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Kieran O'Donnell
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
42
|
Heidarian P, Kouzani AZ, Kaynak A, Paulino M, Nasri-Nasrabadi B. Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing. ACS Biomater Sci Eng 2019; 5:2688-2707. [DOI: 10.1021/acsbiomaterials.9b00047] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Akif Kaynak
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Mariana Paulino
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | | |
Collapse
|
43
|
Zhao T, Yu R, Li S, Li X, Zhang Y, Yang X, Zhao X, Wang C, Liu Z, Dou R, Huang W. Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14391-14398. [PMID: 30912634 DOI: 10.1021/acsami.9b03156] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A series of photosensitive resins suitable for the production of silicone elastomers through digital light processing 3D printing are reported. Based on thiol-ene click reaction between a branched mercaptan-functionalized polysiloxane and different-molecular-weight vinyl-terminated poly(dimethylsiloxane), silicone elastomers with tunable hardness and mechanical properties are obtained. Printed elastomeric objects show high printing resolution and excellent mechanical properties. The break elongation of the silicone elastomers can get up to 1400%, which is much higher than the reported UV-cured elastomers and is even higher than the most stretchable thermocuring silicone elastomers. The superstretchable silicone elastomers are then applied to fabricate stretchable electronics with carbon nanotubes-doped hydrogel. The printable and processable silicone elastomers have great potential applications in various fields, including soft robotics, flexible actuators, and medical implants.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ran Yu
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Shan Li
- Key Laboratory of Space Manufacturing Technology (SMT), Technology and Engineering Center for Space Utilization , Chinese Academy of Sciences , Beijing 100094 , People's Republic of China
| | - Xinpan Li
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Ying Zhang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Xin Yang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Xiaojuan Zhao
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Chen Wang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhichao Liu
- Key Laboratory of Space Manufacturing Technology (SMT), Technology and Engineering Center for Space Utilization , Chinese Academy of Sciences , Beijing 100094 , People's Republic of China
| | - Rui Dou
- Key Laboratory of Space Manufacturing Technology (SMT), Technology and Engineering Center for Space Utilization , Chinese Academy of Sciences , Beijing 100094 , People's Republic of China
| | - Wei Huang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
44
|
Ameeduzzafar, Alruwaili NK, Rizwanullah M, Abbas Bukhari SN, Amir M, Ahmed MM, Fazil M. 3D Printing Technology in Design of Pharmaceutical Products. Curr Pharm Des 2019; 24:5009-5018. [DOI: 10.2174/1381612825666190116104620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 01/30/2023]
Abstract
Background:
Three-dimensional printing (3DP) is a novel technology for fabrication of personalized
medicine. As of late, FDA affirmed 3D printed tranquilize item in August 2015, which is characteristic of another
section of Pharmaceutical assembling. 3DP incorporates a wide range of assembling procedures, which are altogether
founded on computer-aided design (CAD), and controlled deposition of materials (layer-by-layer) to make
freestyle geometries. Conventionally, many pharmaceutical processes like compressed tablet have been used from
many years for the development of tablet with established regulatory pathways. But this simple process is outdated
in terms of process competence and manufacturing flexibility (design space). 3DP is a new technology for the creation
of plan, proving to be superior for complex products, customized items and items made on-request. It creates
new opportunities for improving efficacy, safety, and convenience of medicines.
Method:
There are many of the 3D printing technology used for the development of personalized medicine on demand
for better treatment like 3D powder direct printing technology, fused-filament 3D printing, 3D extrusion
printer, piezoelectric inkjet printer, fused deposition 3D printing, 3D printer, ink-jet printer, micro-drop inkjet 3DP,
thermal inkjet printer, multi-nozzle 3D printer, stereolithographic 3D printer.
Result:
This review highlights features how item and process comprehension can encourage the improvement of a
control technique for various 3D printing strategies.
Conclusion:
It is concluded that the 3D printing technology is a novel potential for manufacturing of personalized
dose medicines, due to better patient compliance which can be prepared when needed.
Collapse
Affiliation(s)
- Ameeduzzafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi, India
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Mohd Amir
- College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Masood Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al-Jouf, Saudi Arabia
| | - Mohammad Fazil
- Formulation Research and Development Unit, Kusum Healthcare Private Limited, Bhiwadi, Rajasthan, India
| |
Collapse
|
45
|
Kan L, Zhang P, Jiang H, Zhang S, Liu Z, Zhang X, Ma N, Qiu D, Wei H. Microphase separation of a quadruple hydrogen bonding supramolecular polymer: effect of the steric hindrance of the ureido-pyrimidone on their viscoelasticity. RSC Adv 2019; 9:8905-8911. [PMID: 35517677 PMCID: PMC9061864 DOI: 10.1039/c8ra08861f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Supramolecular polymers based on 2-ureido-4[1H]-pyrimidone (UPy) units with extremely high dimerization constants and adjustable properties have received significant attention. In this work, we attempt to discuss the relationship between the micro-phase separation and the viscoelastic properties of the supramolecular polymers. For this reason, polymers with different UPy moieties structures and different UPy moieties contents were prepared and studied. It was found that the UPy moiety with little hindrance at the six-position of the pyrimidone could self-assemble into a nano-fiber structure and the degree of the micro-phase separation increased with the content of the UPy moiety. With the enlargement of the steric hindrance of the six-position of the pyrimidone, the nano-fiber structure gradually disappeared, meaning the degree of the micro-phase separation decreased astonishingly. More importantly, with the degree of the micro-phase separation increased, the storage modulus or the elasticity modulus increased exponentially and the T m and the loss modulus area increased linearly. These results would lead a new way to study and develop novel polymeric materials.
Collapse
Affiliation(s)
- Lei Kan
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Peng Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Hongkun Jiang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Shuai Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Zhengdao Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Xinyue Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Ning Ma
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| | - Dengli Qiu
- Bruker (Beijing) Scientific Technology Co., Ltd. Beijing 100081 China
| | - Hao Wei
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education & College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin 150001 China
| |
Collapse
|
46
|
Banerjee SS, Burbine S, Kodihalli Shivaprakash N, Mead J. 3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties. Polymers (Basel) 2019; 11:polym11020347. [PMID: 30960331 PMCID: PMC6419175 DOI: 10.3390/polym11020347] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/20/2023] Open
Abstract
Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young’s modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.
Collapse
Affiliation(s)
- Shib Shankar Banerjee
- Nanomanufacturing Center, Department of Plastic Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| | - Stephen Burbine
- Nanomanufacturing Center, Department of Plastic Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| | - Nischay Kodihalli Shivaprakash
- Nanomanufacturing Center, Department of Plastic Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| | - Joey Mead
- Nanomanufacturing Center, Department of Plastic Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
47
|
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arya Prasad
- Institute of Plastics Technology, Central Institute of Plastics Engineering & Technology (CIPET), Kochi, Kerala, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Lab, Department of Metallurgical & Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, India
| |
Collapse
|
48
|
Liu Q, Wang C, Guo Y, Peng C, Narayanan A, Kaur S, Xu Y, Weiss RA, Joy A. Opposing Effects of Side-Chain Flexibility and Hydrogen Bonding on the Thermal, Mechanical, and Rheological Properties of Supramolecularly Cross-Linked Polyesters. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01781] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018; 132:235-251. [PMID: 29935988 PMCID: PMC6226327 DOI: 10.1016/j.addr.2018.06.011] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
3D bioprinting is emerging as a promising technology for fabricating complex tissue constructs with tailored biological components and mechanical properties. Recent advances have enabled scientists to precisely position materials and cells to build functional tissue models for in vitro drug screening and disease modeling. This review presents state-of-the-art 3D bioprinting techniques and discusses the choice of cell source and biomaterials for building functional tissue models that can be used for personalized drug screening and disease modeling. In particular, we focus on 3D-bioprinted liver models, cardiac tissues, vascularized constructs, and cancer models for their promising applications in medical research, drug discovery, toxicology, and other pre-clinical studies.
Collapse
Affiliation(s)
- Xuanyi Ma
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Justin Liu
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wei Zhu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Natalie Lawrence
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Shaochen Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, PR China.
| |
Collapse
|
50
|
Luo Q, Yu F, Yang F, Yang C, Qiu P, Wang X. A 3D-printed self-propelled, highly sensitive mini-motor for underwater pesticide detection. Talanta 2018; 183:297-303. [DOI: 10.1016/j.talanta.2018.02.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 10/18/2022]
|