1
|
Jin X, Liu S, Fang J, Chen F, Xu B, Nan L, Zhao S, Wu Z, Guan Z, Tao K, Liu J. Optimally Aligned Nerve Scaffolds with Sustained Astaxanthin Release Improve the Inflammatory Microenvironment through Mitophagy Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502939. [PMID: 40370272 DOI: 10.1002/smll.202502939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Effective repair of peripheral nerve injury (PNI) depends on the scaffold orientation and immunomodulatory capabilities of functionalized scaffolds, both of which substantially influence nerve regeneration. In this study, composite nerve scaffolds incorporating astaxanthin (AXT) and polycaprolactone (PCL) are developed to investigate the influence of scaffold orientation and blend concentration on cellular behavior, including adhesion, migration, and proliferation. In vitro analysis identifies 0.2% AXT/PCL fabricated at a rotational speed of 400 rpm as the optimal configuration for facilitating directed cell growth and guiding nerve repair. Moreover, the controlled release of AXT improves the microenvironment by preserving mitochondrial homeostasis, promoting mitophagy, and reducing oxidative stress and inflammation. In vivo assessments reveal that the AXT/PCL group (0.2% AXT/PCL-400) achieves better morphological, histological, electrophysiological, and functional recovery than the PCL, AXT/PCL+M0, and AXT/PCL+M4 groups, approaching the outcomes observed in the autograft (Auto) group. Moreover, the AXT/PCL+M4 group demonstrates better regenerative outcomes than the PCL and AXT/PCL+M0 groups, underscoring the critical role of mitophagy in regulating the regenerative microenvironment.
Collapse
Affiliation(s)
- Xuehan Jin
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Shengfu Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
- Fudan University Affliated Stomatological Hospital, Shanghai, 200040, P. R. China
| | - Bo Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, Anhui, 233004, P. R. China
| | - Liping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Shihong Zhao
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646600, P. R. China
| | - Zhong Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Zhiyuan Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Kun Tao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
2
|
Han C, Jiao J, Gong C, Li J, Zhao M, Lu X. Multidimensional exploration of hydrogels as biological scaffolds for spinal cord regeneration: mechanisms and future perspectives. Front Bioeng Biotechnol 2025; 13:1576524. [PMID: 40336551 PMCID: PMC12055541 DOI: 10.3389/fbioe.2025.1576524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Spinal cord injury (SCI) is a severe condition that frequently leads to permanent disabilities and neurological dysfunction. Its progression is driven by a multifaceted pathophysiology, encompassing direct trauma, secondary injury cascades, and intricate cellular and molecular responses. While current therapies focus on alleviating symptoms and restoring functionality, achieving effective neural regeneration in the spinal cord continues to be a significant challenge. Hydrogels, recognized for their exceptional biocompatibility, conductivity, and injectability, have shown great potential as advanced scaffolds to support neuronal and axonal regeneration. Recently, these materials have attracted significant interest in the field of SCI rehabilitation research. This review concludes recent progress in hydrogel-based strategies for SCI rehabilitation, emphasizing their distinct properties, underlying mechanisms, and integration with bioactive molecules, stem cells, and complementary biomaterials. Hydrogels foster neuronal regeneration by providing a tailored microenvironment, while advanced features such as self-repair, electrical conductivity, and controlled drug release significantly enhance their therapeutic potential in experimental models. This review explores hydrogel technologies and their applications, underscoring their potential to address the challenges of SCI treatment and paving the way for future clinical implementation.
Collapse
Affiliation(s)
- Chenxi Han
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Jiao Jiao
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Chan Gong
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Jiatao Li
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zhao
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Lu
- Department of Rehabilitation, Jiangsu Province People’s Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Du Z, Wang N, Du J. Recent Progress in Cellulose-Based Conductive Hydrogels. Polymers (Basel) 2025; 17:1089. [PMID: 40284353 PMCID: PMC12030236 DOI: 10.3390/polym17081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Cellulose, a widely abundant natural polymer, is well recognized for its remarkable properties, such as biocompatibility, degradability, and mechanical strength. Conductive hydrogels, with their unique ability to conduct electricity, have attracted significant attention in various fields. The combination of cellulose and conductive hydrogels has led to the emergence of cellulose-based conductive hydrogels, which show great potential in flexible electronics, biomedicine, and energy storage. This review article comprehensively presents the latest progress in cellulose-based conductive hydrogels. Firstly, it provides an in-depth overview of cellulose, covering aspects like its structure, diverse sources, and classification. This emphasizes cellulose's role as a renewable and versatile material. The development and applications of different forms of cellulose, including delignified wood, bacterial cellulose, nanocellulose, and modified cellulose, are elaborated. Subsequently, cellulose-based hydrogels are introduced, with a focus on their network structures, such as single-network, interpenetrating network, and semi-interpenetrating network. The construction of cellulose-based conductive hydrogels is then discussed in detail. This includes their conductive forms, which are classified into electronic and ionic conductive hydrogels, and key performance requirements, such as cost-effectiveness, mechanical property regulation, sensitive response to environmental stimuli, self-healing ability, stable conductivity, and multifunctionality. The applications of cellulose-based conductive hydrogels in multiple areas are also presented. In wearable sensors, they can effectively monitor human physiological signals in real time. In intelligent biomedicine, they contribute to wound healing, tissue engineering, and nerve regeneration. In flexible supercapacitors, they offer potential for green and sustainable energy storage. In gel electrolytes for conventional batteries, they help address critical issues like lithium dendrite growth. Despite the significant progress, there are still challenges to overcome. These include enhancing the multifunctionality and intelligence of cellulose-based conductive hydrogels, strengthening their connection with artificial intelligence, and achieving simple, green, and intelligent large-scale industrial production. Future research directions should center around exploring new synthesis methods, optimizing material properties, and expanding applications in emerging fields, aiming to promote the widespread commercialization of these materials.
Collapse
Affiliation(s)
| | | | - Jie Du
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (Z.D.); (N.W.)
| |
Collapse
|
4
|
Cheng T, Xiang Y, He X, Pang J, Zhu W, Luo L, Cao Y, Pei R. Nanostructured conductive polymers: synthesis and application in biomedicine. J Mater Chem B 2025; 13:4739-4769. [PMID: 40171665 DOI: 10.1039/d4tb02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Conductive polymers (CPs), distinguished by their sp2-hybridized carbon backbone, offer remarkable electrical conductivity while maintaining the advantageous mechanical flexibility and processing characteristics typical of organic polymers. Compared to their bulk counterparts, nanostructured CPs exhibit unique physicochemical properties, such as large surface areas and shortened charge/mass transport pathways, making them promising candidates for various applications. This mini review explores various synthesis methodologies for nanostructured CPs, including electrospinning, hard templating, and soft templating techniques, while elucidating their advantages and disadvantages. Additionally, the burgeoning biomedical applications of nanostructured CPs are highlighted, including drug delivery, neural electrodes and interfaces, nerve regeneration, and biosensing, demonstrating their potential to significantly advance contemporary biomedical science.
Collapse
Affiliation(s)
- Tingting Cheng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xuan He
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Ji Pang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Weihao Zhu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Shakibania S, Patel T, Turczyn R, Biggs MJP, Krukiewicz K. Hybrid conducting polymer films promote neural outgrowth and neural-electrode integration in vitro. Bioelectrochemistry 2025; 165:108985. [PMID: 40250210 DOI: 10.1016/j.bioelechem.2025.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
The increase incidence of neurological disorders arising from an aging population has accelerated research into electrical medicine approaches as promising pretreatments options. Achieving chronic therapeutic electrical stimulation is dependent on an optimal charge delivery capacity of a stimulating device. In particular, instability at the electrode-tissue interface is frequently derived from a physicomechanical mismatch in the mechanical properties of the rigid, smooth surface of metallic electrodes and the soft nature of neural tissues, leading to perielectrode scarring, a subsequent reduction in charge transfer capability and decreased stimulation efficacy. This study explores the modification of neural electrodes using electroactive materials to enhance their performance. Specifically, applying sequentially two different conducting polymers, namely polyaniline and poly(3,4-ethylenedioxythiophene), which induced a significant increase in the active surface area of an electrode, moderate hydrophilicity (49 ± 7o), capacitance (19.9 mC/cm2), low impedance (165 ± 6 Ω at 1 kHz), and a fibrillar morphology. Cell culture studies with rat-derived embryonic ventral mesencephalon cells revealed that hybrid conducting polymer coatings supported neural outgrowth and cell adhesion in vitro.
Collapse
Affiliation(s)
- Sara Shakibania
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Taral Patel
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland
| | - Manus J P Biggs
- The Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
6
|
Jin S, Jung H, Song J, Kim S, Yoon S, Kim JH, Lee JS, Kim YJ, Son D, Shin M. Adhesive and Conductive Fibrous Hydrogel Bandages for Effective Peripheral Nerve Regeneration. Adv Healthc Mater 2025; 14:e2403722. [PMID: 39846266 DOI: 10.1002/adhm.202403722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials. Herein, the phenylborate-tethered hydrogel-assisted doping effect is elucidated on conductive polymers, enhancing peripheral nerve regeneration when used as a sutureless bandage on the injured nerve. The adhesive and conductive nerve bandage consists of biocompatible hyaluronic acid hydrogel microfibers produced by electrospinning, followed by in situ conductive polypyrrole polymerization on the fibrous mat. Particularly, phenylborate groups enable high adsorption of pyrrole without mechanical crack on the hydrogel network and allow tissue-like stretchability and on-nerve adhesiveness. In a rat crushed nerve injury model, the nerve bandage can effectively promote nerve regeneration through stable sutureless wrapping followed by great electrical transmission on the defect region, showing anatomical and functional recovery of the nerve tissues and preventing muscular atrophy. Such hydrogel fibrous bandages will be a promising surgical dressing to be combined with versatile biomedical devices/materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Subeen Yoon
- Department of Biomedical science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hyun Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Donghee Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
7
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Liao Z, Liu T, Yao Z, Hu T, Ji X, Yao B. Harnessing stimuli-responsive biomaterials for advanced biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230133. [PMID: 40040822 PMCID: PMC11875454 DOI: 10.1002/exp.20230133] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/18/2024] [Indexed: 03/06/2025]
Abstract
Cell behavior is intricately intertwined with the in vivo microenvironment and endogenous pathways. The ability to guide cellular behavior toward specific goals can be achieved by external stimuli, notably electricity, light, ultrasound, and magnetism, simultaneously harnessed through biomaterial-mediated responses. These external triggers become focal points within the body due to interactions with biomaterials, facilitating a range of cellular pathways: electrical signal transmission, biochemical cues, drug release, cell loading, and modulation of mechanical stress. Stimulus-responsive biomaterials hold immense potential in biomedical research, establishing themselves as a pivotal focal point in interdisciplinary pursuits. This comprehensive review systematically elucidates prevalent physical stimuli and their corresponding biomaterial response mechanisms. Moreover, it delves deeply into the application of biomaterials within the domain of biomedicine. A balanced assessment of distinct physical stimulation techniques is provided, along with a discussion of their merits and limitations. The review aims to shed light on the future trajectory of physical stimulus-responsive biomaterials in disease treatment and outline their application prospects and potential for future development. This review is poised to spark novel concepts for advancing intelligent, stimulus-responsive biomaterials.
Collapse
Affiliation(s)
- Ziming Liao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Tingting Liu
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMassachusettsUSA
- Research Center for Nano‐Biomaterials and Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanShanxiP. R. China
- Department of Laboratory DiagnosisThe 971th HospitalQingdaoP. R. China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DepartmentPLA General Hospital and PLA Medical CollegeBeijingP. R. China
| | - Zhimin Yao
- Sichuan Preschool Educators' CollegeMianyangP. R. China
| | - Tian Hu
- MRC Human Immunology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordJohn Radcliffe HospitalOxfordUK
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| | - Bin Yao
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjinP. R. China
| |
Collapse
|
9
|
Li S, Liu Y, Fan L, Zhu J, Wang L. Preparation and characterization of polysaccharide-based conductive hydrogels for nerve repair. Int J Biol Macromol 2024; 282:136910. [PMID: 39476905 DOI: 10.1016/j.ijbiomac.2024.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/05/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Peripheral nerve injury is a serious medical condition, but the limited availability of autologous grafts often delays timely treatment for many patients. The implantation of functional hydrogels with good biocompatibility provides an effective solution to this challenge. In this study, a novel chitosan derivative, choline functionalized catechol carboxymethyl chitosan (CF-Catechol-CMCS), was synthesized by modifying carboxymethyl chitosan (CMCS) with choline functionalized (CF) molecule and catechol. CF-Catechol-CMCS, sodium alginate (SA), and pyrrole monomer (Py) were then combined, crosslinked with Fe3+ and Ca2+, and polymerized in situ to form polypyrrole (PPy), resulting in the CF-Catechol-CMCS/SA/PPy hydrogel. This hydrogel exhibits excellent thermal stability, with a maximum thermal degradation temperature of 580 °C. By adjusting the ratio of PPy to CF-Catechol-CMCS/SA in the hydrogel, its degradation properties, swelling behavior, mechanical properties, and electrical conductivity can be fine-tuned. Specifically, when the mass ratio of PPy to CF-Catechol-CMCS/SA is 8:10, the hydrogel achieves optimal conductivity within a safe range (1.82 × 10-3 S·cm-1). By controlling the mass ratio of CF-Catechol-CMCS to SA in the hydrogel, the acetylcholine concentration can be regulated. When the CF-Catechol-CMCS:SA ratio is 2:1, the measured Sciatic Function Index (SFI) value is -34.54, indicating that the CF-Catechol-CMCS/SA/PPy hydrogel has excellent nerve repair potential.
Collapse
Affiliation(s)
- Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhao Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lili Fan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiang Zhu
- Department of Orthopedics, The First Affifiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150001, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Fakhraei Khosravieh Z, Nekounam H, Asgari F, Haghighipour N. Electrospun PAN/PANI/CNT scaffolds and electrical pulses: a pathway to stem cell-derived nerve regeneration. Biomed Phys Eng Express 2024; 10:055010. [PMID: 38959871 DOI: 10.1088/2057-1976/ad5e84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Biocompatible polymer-based scaffolds hold great promise for neural repair, especially when they are coupled with electrostimulation to induce neural differentiation. In this study, a combination of polyacrylonitrile/polyaniline (PAN/PANI) and Carbon Nanotubes (CNTs) were used to fabricate three different biomimetic electrospun scaffolds (samples 1, 2 and 3 containing 0.26 wt%, 1 wt% and 2 wt% of CNTs, respectively). These scaffolds underwent thorough characterization for assessing electroconductivity, tensile strength, wettability, degradability, swelling, XRD, and FTIR data. Notably, scanning electron microscopy (SEM) images revealed a three-dimensional scaffold morphology with aligned fibers ranging from 60 nm to 292 nm in diameter. To comprehensively investigate the impact of electrical stimulation on the nervous differentiation of the stem cells seeded on these scaffolds, cell morphology and adhesion were assessed based on SEM images. Additionally, scaffold biocompatibility was studied through MTT assay. Importantly, Real-Time PCR results indicated the expression of neural markers-Nestin,β-tubulin III, and MAP2-by the cells cultured on these samples. In comparison with the control group, samples 1 and 2 exhibited significant increases in Nestin marker expression, indicating early stages of neuronal differentiation, whileβ-tubulin III expression was significantly reduced and MAP2 expression remained statistically unchanged. In contrast, sample 3 did not display a statistically significant upturn in Nestin maker expression, while showcasing remarkable increases in the expression of both MAP2 andβ-tubulin III, as markers of the end stages of differentiation, leading to postmitotic neurons. These results could be attributed to the higher electroconductivity of S3 compared to other samples. Our findings highlight the biomimetic potential of the prepared scaffolds for neural repair, illustrating their effectiveness in guiding stem cell differentiation toward a neural lineage.
Collapse
Affiliation(s)
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asgari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Wang J, Yuan Y, Zhang S, Lu S, Han G, Bian M, huang L, Meng D, Su D, Xiao L, Xiao Y, Zhang J, Gong N, Jiang L. Remodeling of the Intra-Conduit Inflammatory Microenvironment to Improve Peripheral Nerve Regeneration with a Neuromechanical Matching Protein-Based Conduit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302988. [PMID: 38430538 PMCID: PMC11077661 DOI: 10.1002/advs.202302988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/22/2023] [Indexed: 03/04/2024]
Abstract
Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.
Collapse
Affiliation(s)
- Jia‐Yi Wang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ya Yuan
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Department of RehabilitationZhongshan HospitalFudan UniversityShanghai200032China
| | - Shu‐Yan Zhang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Shun‐Yi Lu
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Guan‐Jie Han
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Meng‐Xuan Bian
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Lei huang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - De‐Hua Meng
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Di‐Han Su
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Lan Xiao
- School of MechanicalMedical and Process EngineeringCentre for Biomedical TechnologiesQueensland University of TechnologyBrisbane4059Australia
- Australia‐China Centre for Tissue Engineering and Regenerative MedicineQueensland University of TechnologyBrisbane4059Australia
| | - Yin Xiao
- School of MechanicalMedical and Process EngineeringCentre for Biomedical TechnologiesQueensland University of TechnologyBrisbane4059Australia
- Australia‐China Centre for Tissue Engineering and Regenerative MedicineQueensland University of TechnologyBrisbane4059Australia
- School of Medicine and Dentistry & Menzies Health Institute QueenslandGriffith UniversityGold Coast4222Australia
| | - Jian Zhang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ning‐Ji Gong
- Department of EmergencyDepartment of OrthopedicsThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandong250033China
| | - Li‐Bo Jiang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
12
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
14
|
Yin S, Zhou J, Wang J, Xia B, Chen G. Preparation and performance of electrically conductive decellularized nerve matrix hydrogel conduits. J Biomater Appl 2023; 38:471-483. [PMID: 37670570 DOI: 10.1177/08853282231200963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Peripheral nerve injury (PNI) is one of the major clinical treatment challenges following an impact on the body. When PNI manifests as nerve gaps, surgical connections and exogenous grafts are required. Recently, electrically conductive polymers (CPs) based nerve guidance conduits have yielded promising results for treating PNI. Polypyrrole (PPy) has become one of the most commonly used CPs in PNI repair due to its advantages of high conductivity and excellent biocompatibility. In this study, we combined different PPy concentrations with a chitosan (CS) temperature-sensitive hydrogel system containing decellularized nerve matrix (DNM) to construct the electrically conductive nerve conduits. We evaluated the physical and biological properties of four groups of nerve conduits. It was found that the PPy concentrations were proportional to the electrical conductivity of the nerve conduits. The mechanical properties of the nerve conduits increased with higher PPy concentrations but decreased when the PPy concentration was as high as 8%. Meanwhile, the co-blending of PPy and DNM gave the nerve conduit suitable degradation properties. Furthermore, in vitro cytotoxicity assay and live/dead assay demonstrated these conduits could support the adhesion and growth of cells. In summary, the electrically conductive nerve conduits with high conductivity, mechanical properties, biodegradation characteristics, and cytocompatibility had potential applications in the field of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shiyun Yin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jiangyi Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jinsong Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
15
|
Liu T, Zhang Q, Li H, Cui X, Qi Z, Yang X. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury. J Biol Eng 2023; 17:48. [PMID: 37488558 PMCID: PMC10367392 DOI: 10.1186/s13036-023-00368-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious injury with high mortality and disability rates, and there is no effective treatment at present. It has been reported that some treatments, such as drug intervention and stem cell transplantation have positive effects in promoting neurological recovery. Although those treatments are effective for nerve regeneration, many drawbacks, such as low stem cell survival rates and side effects caused by systemic medication, have limited their development. In recent years, injectable hydrogel materials have been widely used in tissue engineering due to their good biocompatibility, biodegradability, controllable properties, and low invasiveness. The treatment strategy of injectable hydrogels combined with stem cells or drugs has made some progress in SCI repair, showing the potential to overcome the drawbacks of traditional drugs and stem cell therapy. METHODS In this study, a novel injectable electroactive hydrogel (NGP) based on sodium hyaluronate oxide (SAO) and polyaniline-grafted gelatine (NH2-Gel-PANI) was developed as a material in which to load neural stem cells (NSCs) and donepezil (DPL) to facilitate nerve regeneration after SCI. To evaluate the potential of the prepared NGP hydrogel in SCI repair applications, the surface morphology, self-repairing properties, electrical conductivity and cytocompatibility of the resulting hydrogel were analysed. Meanwhile, we evaluated the neural repair ability of NGP hydrogels loaded with DPL and NSCs using a rat model of spinal cord injury. RESULTS The NGP hydrogel has a suitable pore size, good biocompatibility, excellent conductivity, and injectable and self-repairing properties, and its degradation rate matches the repair cycle of spinal cord injury. In addition, DPL could be released continuously and slowly from the NGP hydrogel; thus, the NGP hydrogel could serve as an excellent carrier for drugs and cells. The results of in vitro cell experiments showed that the NGP hydrogel had good cytocompatibility and could significantly promote the neuronal differentiation and axon growth of NSCs, and loading the hydrogel with DPL could significantly enhance this effect. More importantly, the NGP hydrogel loaded with DPL showed a significant inhibitory effect on astrocytic differentiation of NSCs in vitro. Animal experiments showed that the combination of NGP hydrogel, DPL, and NSCs had the best therapeutic effect on the recovery of motor function and nerve conduction function in rats. NGP hydrogel loaded with NSCs and DPL not only significantly increased the myelin sheath area, number of new neurons and axon area but also minimized the area of the cystic cavity and glial scar and promoted neural circuit reconstruction. CONCLUSIONS The DPL- and NSC-laden electroactive hydrogel developed in this study is an ideal biomaterial for the treatment of traumatic spinal cord injury.
Collapse
Affiliation(s)
- Tiemei Liu
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China
| | - Qiang Zhang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Hongru Li
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Xiaoqian Cui
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, 130041, Changchun, PR China
| | - Zhiping Qi
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| | - Xiaoyu Yang
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, 130041, Changchun, China.
| |
Collapse
|
16
|
Liu Y, Wu F. Synthesis and application of polypyrrole nanofibers: a review. NANOSCALE ADVANCES 2023; 5:3606-3618. [PMID: 37441244 PMCID: PMC10334423 DOI: 10.1039/d3na00138e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
State-of-the-art polypyrrole nanofiber-based nanoarchitectonics can be generally fabricated by electrospinning, interfacial polymerization and reactive template methods. Even though analogous nanofiber morphologies and nanofibrous network architectures can be obtained by these methods, the structural details and structural complexities may alter significantly as different synthesis methods are applied. For the electrospinning technique, on one hand, nanofibers can be directly obtained by spinning polypyrrole-containing dope solutions; on the other, the electrospun nanofiber mats can be used as templates to direct the nanofiber formation; a two-step fabrication process, including the electrospinning of polymer nanofiber mats and deposition of polypyrrole on the polymer nanofibers' surface, is generally employed. By tuning the electrospinning parameters, the composition, diameter, morphology, and alignment of the as-obtained electrospun nanofiber mat can be effectively controlled, which may allow the fabrication of polypyrrole nanofibers with sophisticated nanostructures and nanoarchitectures. Interfacial polymerization is capable of generating polypyrrole nanofibers without templates. It is speculated that the protonation and re-orientation of polypyrrole at the oil-water interface may decoil the polymer chains and transform them into more extended conformations, while the charged polymer chains more easily diffuse into the water phase and form a stable dispersion. Different from electrospinning, the reactive templates may drive the formation of polypyrrole nanofibers through either redox or protonation mechanisms. Nanofibers with different curvatures, compositions, and architectures can be obtained by using different types of reactive template in a simple, fast, environment-friendly and one-step manner. A wide range of applications have been demonstrated by the polypyrrole nanofiber-based nanoarchitectonics, including cell culture, tissue engineering, neural stimulation, energy storage, and organic electronics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University Shenzhen China 518107
| | - Feng Wu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials China
- Engineering Research Center of Biodegradable Plastics, Educational Commission of Yunnan Province China
- Faculty of Chemical Engineering, Kunming University of Science and Technology Kunming Yunnan China 650500
| |
Collapse
|
17
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
18
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
19
|
Liu H, Feng Y, Che S, Guan L, Yang X, Zhao Y, Fang L, Zvyagin AV, Lin Q. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 2023; 24:86-97. [PMID: 36512504 DOI: 10.1021/acs.biomac.2c00920] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) generally leads to long-term functional deficits and is difficult to repair spontaneously. Many biological scaffold materials and stem cell treatment strategies have been explored, but very little research focused on the method of combining exogenous neural stem cells (NSCs) with a biodegradable conductive hydrogel scaffold. Here, a NSC loaded conductive hydrogel scaffold (named ICH/NSCs) was assembled by amino-modified gelatin (NH2-Gelatin) and aniline tetramer grafted oxidized hyaluronic acid (AT-OHA). Desirably, the well-conducting ICH/NSCs can be simply injected into the target site of SCI for establishing a good electrical signal pathway of cells, and the proper degradation cycle facilitates new nerve growth. In vitro experiments indicated that the inherent electroactive microenvironment of the hydrogel could better manipulate the differentiation of NSCs into neurons and inhibit the formation of glial cells and scars. Collectively, the ICH/NSC scaffold has successfully stimulated the recovery of SCI and may provide a promising treatment strategy for SCI repair.
Collapse
Affiliation(s)
- Hou Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yubin Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songtian Che
- Department of Ocular Fundus Disease, The Second Hospital of Jilin University, Changchun 130022, P. R. China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinting Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, P. R. China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod 603105, Russia
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
20
|
Polylactic Acid/Polyaniline Nanofibers Subjected to Pre- and Post-Electrospinning Plasma Treatments for Refined Scaffold-Based Nerve Tissue Engineering Applications. Polymers (Basel) 2022; 15:polym15010072. [PMID: 36616422 PMCID: PMC9824446 DOI: 10.3390/polym15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Composite biopolymer/conducting polymer scaffolds, such as polylactic acid (PLA)/ polyaniline (PAni) nanofibers, have emerged as popular alternative scaffolds in the electrical-sensitive nerve tissue engineering (TE). Although mimicking the extracellular matrix geometry, such scaffolds are highly hydrophobic and usually present an inhomogeneous morphology with massive beads that impede nerve cell-material interactions. Therefore, the present study launches an exclusive combinatorial strategy merging successive pre- and post-electrospinning plasma treatments to cope with these issues. Firstly, an atmospheric pressure plasma jet (APPJ) treatment was applied on PLA and PLA/PAni solutions prior to electrospinning, enhancing their viscosity and conductivity. These liquid property changes largely eliminated the beaded structures on the nanofibers, leading to uniform and nicely elongated fibers having average diameters between 170 and 230 nm. After electrospinning, the conceived scaffolds were subjected to a N2 dielectric barrier discharge (DBD) treatment, which significantly increased their surface wettability as illustrated by large decreases in water contact angles for values above 125° to values below 25°. X-ray photoelectron spectroscopy (XPS) analyses revealed that 3.3% of nitrogen was implanted on the nanofibers surface in the form of C-N and N-C=O functionalities upon DBD treatment. Finally, after seeding pheochromocytoma (PC-12) cells on the scaffolds, a greatly enhanced cell adhesion and a more dispersive cell distribution were detected on the DBD-treated samples. Interestingly, when the APPJ treatment was additionally performed, the extension of a high number of long neurites was spotted leading to the formation of a neuronal network between PC-12 cell clusters. In addition, the presence of conducting PAni in the scaffolds further promoted the behavior of PC-12 cells as illustrated by more than a 40% increase in the neurite density without any external electrical stimulation. As such, this work presents a new strategy combining different plasma-assisted biofabrication techniques of conducting nanofibers to create promising scaffolds for electrical-sensitive TE applications.
Collapse
|
21
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
22
|
Jin XH, Fang JQ, Wang JG, Xu B, Wang X, Liu SH, Chen F, Liu JJ. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J Mater Chem B 2022; 10:8771-8784. [PMID: 36196763 DOI: 10.1039/d2tb01624a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are among the leading causes of poor prognosis after peripheral nerve injury (PNI). Urolithin-A (UA), an intermediate product produced by the catabolism of ellagitannins in the gastrointestinal tract, has anti-inflammatory, antioxidant, and immunomodulatory properties for inflammation, oxidative damage, and aging-related diseases. Hence, we prepared UA-loaded hydrogels and embedded them in the lumen of PCL nerve guide conduits (NGCs). The hydrogels continuously released appropriate doses of UA into the microenvironment. Based on in vitro studies, UA facilitates cell proliferation and reduces oxidative damage. Besides, the experimental evaluation revealed good biocompatibility of the materials involved. We implanted NGCs into rat models to bridge the sciatic nerve defects in an in vivo study. The sciatic functional index of the PCL/collagen/UA group was comparable to that of the autograft group. Additionally, the consequences of electrophysiological, gastrocnemius muscle and nerve histology assessment of the PCL/collagen/UA group were better than those in the PCL and PCL/collagen groups and close to those in the autograft group. In this study, UA sustained release via the PCL/collagen/UA NGC was found to be an effective alternative treatment for PNI, validating our hypothesis that UA could promote regeneration of nerve tissue.
Collapse
Affiliation(s)
- Xue-Han Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jia-Qi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jian-Guang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Feng Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jun-Jian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| |
Collapse
|
23
|
Danmatam N, Nakburee W, Pearce J, Pattavarakorn D. Smart carboxymethyl cellulose/polythiophene hydrogel for electrically driven soft actuators: Physical and thermal properties and electroactive performances. J Appl Polym Sci 2022. [DOI: 10.1002/app.52904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nanticha Danmatam
- Department of Industrial Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
- Graduate School Chiang Mai University Chiang Mai Thailand
| | - Wanwipa Nakburee
- Department of Industrial Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
- Graduate School Chiang Mai University Chiang Mai Thailand
| | - John Pearce
- Department of Industrial Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Datchanee Pattavarakorn
- Department of Industrial Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
24
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Samaneh Bakhtiari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
25
|
Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Am J Cancer Res 2022; 12:4993-5014. [PMID: 35836812 PMCID: PMC9274750 DOI: 10.7150/thno.74571] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve injury (PNI) caused by trauma, chronic disease and other factors may lead to partial or complete loss of sensory, motor and autonomic functions, as well as neuropathic pain. Biological activities are always accompanied by mechanical stimulation, and biomechanical microenvironmental homeostasis plays a complicated role in tissue repair and regeneration. Recent studies have focused on the effects of biomechanical microenvironment on peripheral nervous system development and function maintenance, as well as neural regrowth following PNI. For example, biomechanical factors-induced cluster gene expression changes contribute to formation of peripheral nerve structure and maintenance of physiological function. In addition, extracellular matrix and cell responses to biomechanical microenvironment alterations after PNI directly trigger a series of cascades for the well-organized peripheral nerve regeneration (PNR) process, where cell adhesion molecules, cytoskeletons and mechanically gated ion channels serve as mechanosensitive units, mechanical effector including focal adhesion kinase (FAK) and yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) as mechanotransduction elements. With the rapid development of tissue engineering techniques, a substantial number of PNR strategies such as aligned nerve guidance conduits, three-dimensional topological designs and piezoelectric scaffolds emerge expected to improve the neural biomechanical microenvironment in case of PNI. These tissue engineering nerve grafts display optimized mechanical properties and outstanding mechanomodulatory effects, but a few bottlenecks restrict their application scenes. In this review, the current understanding in biomechanical microenvironment homeostasis associated with peripheral nerve function and PNR is integrated, where we proposed the importance of balances of mechanosensitive elements, cytoskeletal structures, mechanotransduction cascades, and extracellular matrix components; a wide variety of promising tissue engineering strategies based on biomechanical modulation are introduced with some suggestions and prospects for future directions.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,✉ Corresponding authors: Yun Qian, E-mail: ; Wei Sun, E-mail: ; Zhengwei You, E-mail: ; Cunyi Fan, E-mail:
| |
Collapse
|
26
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022; 11:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Peripheral nerve regeneration and functional recovery is a major challenge in clinical practice. Nerve conduit is an effective treatment for peripheral nerve repair, but the traditional hollow nerve conduit is not satisfactory in peripheral nerve repair due to the limitation of cell migration and nutrient transport. Herein, the double cross-linked hydrogels with injectable, self-healing, and conductive properties are synthesized by the Schiff base reaction between polyaniline-modified carboxymethyl chitosan and aldehyde-modified Pluronic F-127 (F127-CHO), and the hydrophobic interaction of F127-CHO. The conductive hydrogel is injected into the cavity of chitosan conduit prepared by electrodeposition. The inner conductive hydrogel and the outer chitosan conduit are formed into a whole through the Schiff base reaction to obtain a double-layer composite hydrogel nerve conduit. The double-layer composite hydrogel neural conduit loaded with 7,8-dihydroxyflavone (DHF) has excellent degradability, biocompatibility, antioxidant activity, and Schwann cell proliferation activity. In the rat sciatic nerve defect model, the double-layer composite hydrogel nerve conduit significantly promotes sciatic nerve regeneration compared with the chitosan hollow conduit. Surprisingly, the repair ability of double-layered hydrogel nerve conduit loaded with DHF is comparable to that of autologous transplantation. Therefore, this multifunctional double-layer composite hydrogel conduit has great potential for peripheral nerve repairing.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
- Department of Biomedical Engineering Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Science Wuhan University Wuhan 430071 China
| | - Feixiang Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| | - Yun Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| |
Collapse
|
28
|
Li Q, Kang B, Wang L, Chen T, Zhao Y, Feng S, Li R, Zhang H. Microfluidics embedded with microelectrodes for electrostimulation of neural stem cells proliferation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Pi W, Zhang Y, Li L, Li C, Zhang M, Zhang W, Cai Q, Zhang P. Polydopamine-coated polycaprolactone/carbon nanotubes fibrous scaffolds loaded with brain-derived neurotrophic factor for peripheral nerve regeneration. Biofabrication 2022; 14. [PMID: 35193120 DOI: 10.1088/1758-5090/ac57a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
Abstract
Carbon nanotubes (CNTs) have attracted increasing attention in the field of peripheral nerve tissue engineering owing to their unique structural and physical characteristics. In this study, a novel type of aligned conductive scaffolds composed of polycaprolactone (PCL) and CNTs were fabricated via electrospinning. Utilizing the mussel-inspired polydopamine (PDA) surface modification, brain-derived neurotrophic factor (BDNF) was loaded onto PCL/CNTs fibrous scaffolds to obtain PCL/CNTs-PDA-BDNF fibrous scaffolds capable of the sustained release of BDNF over 28 days. Schwann cells were cultured on these scaffolds, and the effects of the scaffolds on peripheral nerve regeneration in vitro were assessed by studying cell proliferation, morphology and the expressions of myelination-related genes S100, P0 and myelin basic protein (MBP). Furthermore, the effects of these scaffolds on peripheral nerve regeneration in vivo were investigated using a 10-mm rat sciatic nerve defect model. Both the in vitro and in vivo results indicated that PCL/CNTs-PDA-BDNF fibrous scaffolds could effectively promote sciatic nerve regeneration and functional recovery. Therefore, PCL/CNTs-PDA-BDNF fibrous scaffolds have great potential for peripheral nerve restoration.
Collapse
Affiliation(s)
- Wei Pi
- Department of Orthopedics and Trauma, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R.China, Beijing, 100044, CHINA
| | - Yanling Zhang
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, CN, Beijing China, Beijing, 100029, CHINA
| | - Longfei Li
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, CN, Beijing China, Beijing, 100029, CHINA
| | - Ci Li
- Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R.China, Beijing, 100044, CHINA
| | - Meng Zhang
- Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R.China, Beijing, 100044, CHINA
| | - Wei Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R.China, Beijing, 100044, CHINA
| | - Qing Cai
- Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, CN, Beijing China, Beijing, 100029, CHINA
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing, P.R.China, Beijing, 100044, CHINA
| |
Collapse
|
30
|
Khodadadi Yazdi M, Zarrintaj P, Khodadadi A, Arefi A, Seidi F, Shokrani H, Saeb MR, Mozafari M. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydr Polym 2022; 278:118998. [PMID: 34973800 DOI: 10.1016/j.carbpol.2021.118998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023]
Abstract
Architecting an appropriate platform for biomedical applications requires setting a balance between simplicity and complexity. Polysaccharides (PSAs) play essential roles in our life in food resources, structural materials, and energy storage capacitors. Moreover, the diversity and abundance of PSAs have made them an indispensable part of food ingredients and cosmetics. PSA-based hydrogels have been extensively reviewed in biomedical applications. These hydrogels can be designed in different forms to show optimum performance. For instance, electroactive PSA-based hydrogels respond under an electric stimulus. Such performance can be served in stimulus drug release and determining cell fate. This review classifies and discusses the structure, properties, and applications of the most important polysaccharide-based electroactive hydrogels (agarose, alginate, chitosan, cellulose, and dextran) in medicine, focusing on their usage in tissue engineering, flexible electronics, and drug delivery applications.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Hanieh Shokrani
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Guo J, Li Q, Zhang R, Li B, Zhang J, Yao L, Lin Z, Zhang L, Cao X, Duan B. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds. Biomacromolecules 2022; 23:877-888. [PMID: 35142493 DOI: 10.1021/acs.biomac.1c01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The lack of an effective printable ink preparation method and the usual mechanically weak performance obstruct the functional 3D printing hydrogel exploitation and application. Herein, we propose a gentle pre-cross-linking strategy to enable a loosely cross-linked cellulose network for simultaneously achieving favorable printability and a strong hydrogel network via mediating the cellulose self-assembly. A small amount of epichlorohydrin is applied to (i) slightly pre-cross-link the cellulose chains for forming the percolating network to regulate the rheological properties and (ii) form the loosely cross-linked points to mediate the cellulose chains' self-assembly for achieving superior mechanical properties. The fabrication of the complex 3D structures verifies the design flexibility. The printed cellulose hydrogels exhibit a biomimetic nanofibrous topology, remarkable tensile and compressive strength (5.22 and 11.80 MPa), as well as toughness (1.81 and 2.16 MJ/m3). As a demonstration, a bilayer scaffold (mimicking the osteochondral structure) consisting of a top pristine cellulose and a bottom cellulose/bioactive glass hydrogel is printed and exhibits superior osteochondral defect repair performance, showing a potential in tissue engineering. We anticipate that our loose pre-cross-linking 3D printing ink preparation concept can inspire the development of other polymeric inks and strong 3D printing functional hydrogels, eventually spreading the applications in diverse fields.
Collapse
Affiliation(s)
- Jinhua Guo
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingtao Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Bing Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jie Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Longtao Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zefeng Lin
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Guangzhou 510010, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaodong Cao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
32
|
Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomater 2022; 139:43-64. [PMID: 33326879 DOI: 10.1016/j.actbio.2020.12.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The individual approaches of regenerative medicine efforts alone and rehabilitation efforts alone have not yet fully restored function after severe spinal cord injury (SCI). Regenerative rehabilitation may be leveraged to promote regeneration of the spinal cord tissue, and promote reorganization of the regenerated neural pathways and intact spinal circuits for better functional recovery for SCI. Conductive biomaterials may be a linchpin that empowers the synergy between regenerative medicine and rehabilitation approaches, as electrical stimulation applied to the spinal cord could facilitate neural reorganization. In this review, we discuss current regenerative medicine approaches in clinical trials and the rehabilitation, or neuromodulation, approaches for SCI, along with their respective translational limitations. Furthermore, we review the translational potential, in a surgical context, of conductive biomaterials (e.g., conductive polymers, carbon-based materials, metallic nanoparticle-based materials) as they pertain to SCI. While pre-formed scaffolds may be difficult to translate to human contusion SCIs, injectable composites that contain blended conductive components and can form within the injury may be more translational. However, given that there are currently no in vivo SCI studies that evaluated conductive materials combined with rehabilitation approaches, we discuss several limitations of conductive biomaterials, including demonstrating safety and efficacy, that will need to be addressed in the future for conductive biomaterials to become SCI therapeutics. Even so, the use of conductive biomaterials creates a synergistic opportunity to merge the fields of regenerative medicine and rehabilitation and redefine what regenerative rehabilitation means for the spinal cord. STATEMENT OF SIGNIFICANCE: For spinal cord injury (SCI), the individual approaches of regenerative medicine and rehabilitation are insufficient to fully restore functional recovery; however, the goal of regenerative rehabilitation is to combine these two disparate fields to maximize the functional outcomes. Concepts similar to regenerative rehabilitation for SCI have been discussed in several reviews, but for the first time, this review considers how conductive biomaterials may synergize the two approaches. We cover current regenerative medicine and rehabilitation approaches for SCI, and the translational advantages and disadvantages, in a surgical context, of conductive biomaterials used in biomedical applications that may be additionally applied to SCI. Furthermore, we identify the current limitations and translational challenges for conductive biomaterials before they may become therapeutics for SCI.
Collapse
|
33
|
Sang S, Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Han Y. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J Zhejiang Univ Sci B 2022; 23:58-73. [PMID: 35029088 PMCID: PMC8758934 DOI: 10.1631/jzus.b2100155] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.
Collapse
Affiliation(s)
- Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Yayun Yan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Six-Dimensional Artificial Intelligence Biomedical Research Institute, Taiyuan 030031, China
| | - Yajing Zhao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanqing Han
- Department of Neurology, Shanxi Provincial Cardiovascular Hospital, Taiyuan 030024, China
| |
Collapse
|
34
|
Nada AA, Eckstein Andicsová A, Mosnáček J. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Int J Mol Sci 2022; 23:842. [PMID: 35055029 PMCID: PMC8776002 DOI: 10.3390/ijms23020842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.
Collapse
Affiliation(s)
- Ahmed Ali Nada
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Pretreatment and Finishing of Cellulose Based Textiles Department, National Research Centre, Giza 12622, Egypt
| | | | - Jaroslav Mosnáček
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
35
|
Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022; 8:41. [PMID: 35049576 PMCID: PMC8775167 DOI: 10.3390/gels8010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue's biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Songyang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Zhentao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (F.Z.); (M.Z.); (S.L.); (C.L.); (Z.D.); (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
- National Center for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
36
|
Fan L, Xiao C, Guan P, Zou Y, Wen H, Liu C, Luo Y, Tan G, Wang Q, Li Y, Yu P, Zhou L, Ning C. Extracellular Matrix-Based Conductive Interpenetrating Network Hydrogels with Enhanced Neurovascular Regeneration Properties for Diabetic Wounds Repair. Adv Healthc Mater 2022; 11:e2101556. [PMID: 34648694 DOI: 10.1002/adhm.202101556] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Indexed: 12/30/2022]
Abstract
The critical effects that impair diabetic wound healing are characterized by poor vascularization and severe peripheral neuropathy. Current management strategies for diabetic wound healing are unsatisfactory, due to the paucity of neurovascular regeneration at the wound site. Importantly, conductivity in skin tissue is reported to be essential for modulating myriad biological processes especially vascular and nerve regeneration. Herein, an extracellular matrix (ECM)-based conductive dressing is synthesized from an interpenetrating polymer network hydrogel composed of gelatin methacryloyl, oxidized chondroitin sulfate (OCS), and OCS-polypyrrole conductive nanoparticles that can promote diabetic wound repairing by enhancing local neurovascular regeneration. The conductive hydrogels combine the advantageous features of water-swollen hydrogels with conductive polymers (CPs) to provide tissue-matching electrical conductivity and mechanical properties for neurovascular regeneration. In vitro and in vivo studies show that the conductive hydrogel can promote neurovascular regeneration by increasing intracellular Ca2+ concentration, which subsequently promotes phosphorylation of proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Furthermore, the conductive hydrogel stimulates full-thickness diabetic wound repair on day 14 by promoting local neurovascular regeneration and collagen deposition. These findings corroborate that the ECM-based conductive interpenetrating network hydrogel dressing significantly promotes wound repairing due to its neurovascular regeneration properties, suggesting that they are suitable candidates for diabetic wound repair.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Cairong Xiao
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Pengfei Guan
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yan Zou
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Huiquan Wen
- Department of Radiology The Third Affiliated Hospital of Sun Yat‐Sen University Guangzhou 510630 China
| | - Can Liu
- Department of Spine Surgery The First Hospital of Zhejiang University Hangzhou 310003 China
| | - Yian Luo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
| | - Qiyou Wang
- Department of Orthopaedics The Third Affiliated Hospital of Southern Medical University Guangzhou 510515 China
| | - Yangfan Li
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Peng Yu
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Lei Zhou
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| | - Chengyun Ning
- School of Materials Science and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510641 China
| |
Collapse
|
37
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
38
|
Yao Y, Zhou D, Shen Y, Wu H, Wang H. Morphology-controllable amphiphilic cellulose microgels made from self-assembly of hydrophobic long-chain bromide-alkylated-cellulose/gelatin copolymer. Carbohydr Polym 2021; 269:118265. [PMID: 34294297 DOI: 10.1016/j.carbpol.2021.118265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
A cellulose-based microgel is firstly synthesized via chemically coupling gelatin and cellulose, and then amphiphilic cellulose copolymers (HMGC) are prepared by alkylated cellulose-based microgel from different long-chain alkyl groups. The long-chain alkyl group is mainly bonded onto the residual hydroxyl group at C6 from the AGU of cellulose and the imino groups of gelatin, respectively. The results of self-assembly behavior of HMGC demonstrate that the critical aggregation concentrations of the microgels are in the range from 0.628 to 0.075 mg/mL, and the corresponding hydrodynamic diameters are between 104-1000 nm. Besides, the HMGC can self-assemble into microgels of various morphologies including cotton flocculence, sphere, rod-like, vesicle, flower-like cluster, snowflake-like, urchin-like, and coral shapes. These novel morphologies can be controlled by adjusting the degree of alkylation, the length of the alkyl chain, and the concentration of microgel. Furthermore, the possible formation mechanism of the multiform microgels is proposed from the chain conformation.
Collapse
Affiliation(s)
- Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Dan Zhou
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China.
| | - Hongru Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| |
Collapse
|
39
|
Pei X, Li Y, Lu L, Jiao H, Gong W, Zhang L. Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44418-44426. [PMID: 34495649 DOI: 10.1021/acsami.1c12850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the depletion of nonrenewable resources such as oil/coal/gas, more and more research studies began to focus on the high-value utilization of residual biomass resources. Herein, for the first time, honeycomb nanoporous microspheres fabricated from renewable biomass resources of cellulose were used as a carrier to fabricate a highly dispersed palladium (Pd) nanocatalyst. Various physicochemical characterizations presented convincing pieces of evidence for the good dispersion of Pd clusters with a mean diameter of 1.6 nm. As the carrier, cellulose microspheres with an interconnected nanoporous structure contributed to the adhesion and dispersion of Pd particles, and their rich hydroxyl groups could fix the Pd particles. Importantly, the cellulose matrix could in situ induce the formation of metallic Pd(0) during calcination without a reductant. The cellulose/Pd catalyst was applied to the Suzuki coupling reaction, which exhibited promising catalytic activity compared to commercial Pd/C and unsupported homogeneous Pd(OAc)2 catalysts, as well as good stability. The utilization of the residual biomass resource to build catalyst materials would be important for the sustainable chemistry.
Collapse
Affiliation(s)
- Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huibin Jiao
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Tu H, Zhu M, Duan B, Zhang L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000682. [PMID: 32686231 DOI: 10.1002/adma.202000682] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Indexed: 05/22/2023]
Abstract
High-strength petroleum-based materials like plastics have been widely used in various fields, but their nonbiodegradability has caused serious pollution problems. Cellulose, as the most abundant sustainable polymer, has a great chance to act as the ideal substitute for plastics due to its low cost, wide availability, biodegradability, etc. Herein, the recent achievements for developing cellulose "green" solvents and regenerated cellulose materials with high strength via the "bottom-up" route are presented. Cellulose can be regenerated to produce films/membranes, hydrogels/aerogels, filaments/fibers, microspheres/beads, bioplastics, etc., which show potential applications in textiles, biomedicine, energy storage, packaging, etc. Importantly, these cellulose-based materials can be biodegraded in soil and oceans, reducing environmental pollution. The cellulose solvents, dissolving mechanism, and strategies for constructing the regenerated cellulose functional materials with high strength and performances, together with the current achievements and urgent challenges are summarized, and some perspectives are also proposed. The near future will be an exciting era for high-strength biodegradable and renewable materials. The hope is that many environmentally friendly materials with good properties and low cost will be produced for commercial use, which will be beneficial for sustainable development in the world.
Collapse
Affiliation(s)
- Hu Tu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
41
|
Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS. Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 2021; 9:1691-1704. [PMID: 33410823 DOI: 10.1039/d0bm01034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structural parameters, such as metal-like semiconductor and electrochemical properties of functionalized polyaniline, hold great potential especially for the development of the cell-substrate interface due to its ion/electron transfer ability. We report the one-step synthesis of sulfonic acid-doped polyaniline nanobuds (s-PANINbs) with controlled shape/size under various oxidation potentials. The different oxidation states of s-PANINbs are used to investigate the cell-specific platform for the induction of neuronal networks in PC12 cells, including the growth, proliferation, and differentiation of cells. The unique structure of one-dimensional (1-D) s-PANINbs enhances its intrinsic conductive properties, and facilitates the dispersibility and electrochemical activity via covalent bonding with dopants. The protonated emeraldine salt nanobuds of s-PANINbs synthesized at 0.18 V anodic potential demonstrated low resistivity (∼81.18 mΩ) and charge transfer resistance (∼3253 Ω). The most biologically compatible protonated emeraldine salt was used in vitro to induce PC12 cells associated with neurite outgrowth, contributing to the electrophysiology of neuronal cells under an external electrical stimulation. The western blotting analysis and qRT-PCR results show that β-III Tubulin, synapsin I, and TREK-1 are highly expressed in PC12 cells, confirming their successful differentiation into neural-specific cells. Our approach demonstrates the promising role of the self-standing framework based on the s-PANINbs of the protonated emeraldine salt in peripheral nerve repair for the future in vivo cell-interface.
Collapse
Affiliation(s)
- Sita Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Oh Kwang Joong
- Department of chemistry, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea. and Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea and Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
42
|
Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16106-16117. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nerve guidance conduit (NGC) is a promising clinical strategy for regenerating the critical-sized peripheral nerve injury. In this study, the polysaccharide chitin is used to fabricate the hydrogel film for inducing the impaired sciatic nerve regeneration through incorporating the conductive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) and modifying with cell adhesive tetrapeptide Cys-Arg-Gly-Asp (CRGD) (ChT-PEDOT-p). The partial deacetylation process of chitin for exposing the amino groups is performed to (i) improve the electrostatic interaction between chitin and the negatively charged PEDOT for enhancing the composite hydrogel strength and (ii) offer the active sites for peptide modification. The as-prepared hydrogel remarkably promotes the in vitro RSC-96 cell adhesion and proliferation, as well as the Schwann cell activity-related gene S100, NF-200, and myelin basic protein (MBP) expression. Function of gastrocnemius muscle and thickness of myelinated axon in chitin/PEDOT groups are analogous to the autograft in 10 mm rat sciatic nerve defect. Immunofluorescence, immunohistochemistry, western blotting, and toluidine blue staining analyses on the regenerated sciatic nerve explain that the attachment and proliferation enhancement of Schwann cells and angiogenesis are the vital factors for the chitin/PEDOT composite to facilitate the nerve regeneration. This work provides an applicable chitin-based NGC material for accelerating the peripheral nerve restoration.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaqing Yang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Linglong Deng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Daofa Ying
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
43
|
Liu C, Fan L, Tian Z, Wen H, Zhou L, Guan P, Luo Y, Chan C, Tan G, Ning C, Rong L, Liu B. Self-curling electroconductive nerve dressing for enhancing peripheral nerve regeneration in diabetic rats. Bioact Mater 2021; 6:3892-3903. [PMID: 33937592 PMCID: PMC8076708 DOI: 10.1016/j.bioactmat.2021.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Conductive scaffolds have been shown to exert a therapeutic effect on patients suffering from peripheral nerve injuries (PNIs). However, conventional conductive conduits are made of rigid structures and have limited applications for impaired diabetic patients due to their mechanical mismatch with neural tissues and poor plasticity. We propose the development of biocompatible electroconductive hydrogels (ECHs) that are identical to a surgical dressing in this study. Based on excellent adhesive and self-healing properties, the thin film-like dressing can be easily attached to the injured nerve fibers, automatically warps a tubular structure without requiring any invasive techniques. The ECH offers an intimate and stable electrical bridge coupling with the electrogenic nerve tissues. The in vitro experiments indicated that the ECH promoted the migration and adhesion of the Schwann cells. Furthermore, the ECH facilitated axonal regeneration and remyelination in vitro and in vivo through the MEK/ERK pathway, thus preventing muscle denervation atrophy while retaining functional recovery. The results of this study are likely to facilitate the development of non-invasive treatment techniques for PNIs in diabetic patients utilizing electroconductive hydrogels. Conventional conductive conduits are made of rigid structures and have limited applications for diabetic patients. Self-curling electroconductive hydrogel with porous, highly conductive, and adhesive properties were identical to a surgical dressing. Electroconductive hydrogel facilitates axonal regeneration and remyelination via MEK/ERK pathway. ECH dressing prevent muscle denervation atrophy and retain functional recovery in diabetic rats.
Collapse
Affiliation(s)
- Can Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Lei Fan
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Huiquan Wen
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Lei Zhou
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Pengfei Guan
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Yian Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chuncheung Chan
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641, China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, 510630, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, 510630, China
| |
Collapse
|
44
|
Karimi-Soflou R, Nejati S, Karkhaneh A. Electroactive and antioxidant injectable in-situ forming hydrogels with tunable properties by polyethylenimine and polyaniline for nerve tissue engineering. Colloids Surf B Biointerfaces 2021; 199:111565. [DOI: 10.1016/j.colsurfb.2021.111565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022]
|
45
|
Optimizing the electrical conductivity of polyacrylonitrile/polyaniline with nickel nanoparticles for the enhanced electrostimulation of Schwann cells proliferation. Bioelectrochemistry 2021; 140:107750. [PMID: 33578301 DOI: 10.1016/j.bioelechem.2021.107750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/09/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Tissue engineering scaffolds made of biocompatible polymers are promising alternatives for nerve reparation. For this application, cell proliferation will be speeded up by electrostimulation, which required electrically-conductive materials. Here, a biomimicking scaffold with optimized conductivity was developed from electrospun polyacrylonitrile/electrically-conductive polyaniline (PAN/PANI) nanofibers doped with Ni nanoparticles. PAN/PANI/Ni was biocompatible for Schwann cells and exhibited a suitable tensile strength and wettability for cell proliferation. When compared with unmodified PAN/PANI, the electrical conductivity of PAN/PANI/Ni was 6.4 fold higher. Without electrostimulation, PAN/PANI and PAN/PANI/Ni exhibited similar Schwann cells' proliferation rates. Upon electrostimulation at 100 mV cm-1 for one hour per day over five days, PAN/PANI/Ni accelerated Schwann cells' proliferation 2.1 times compared to PAN/PANI. These results demonstrate the importance of expanding the electrical conductivity of the tissue engineering scaffold to ensure optimal electrostimulation of nerve cell growth. Additionally, this study describes a straightforward approach to modulate the electrical conductivity of polymeric materials via the addition of Ni nanoparticles that can be applied to different biomimicking scaffolds for nerve healing.
Collapse
|
46
|
Gonçalves JP, de Oliveira CC, da Silva Trindade E, Riegel-Vidotti IC, Vidotti M, Simas FF. In vitro biocompatibility screening of a colloidal gum Arabic-polyaniline conducting nanocomposite. Int J Biol Macromol 2021; 173:109-117. [PMID: 33476624 DOI: 10.1016/j.ijbiomac.2021.01.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment. The results obtained from a series of in vitro assays showed that, after up to 48 h of exposure to a range of PANI-GA concentrations (1-50 μg/mL), both mouse BALB/3T3 fibroblasts and RAW 264.7 macrophages showed no evidence of change in cellular proliferation, viability and metabolic activity. An increase in macrophage granularity poses as evidence of phagocytic uptake of PANI-GA, without resulting activation of this cell type. Additionally, the PANI-GA nanoparticles modulated the cell morphology changes induced on fibroblasts by GA in a concentration-dependent manner. Thus, this unprecedented biocompatibility study of PANI nanoparticles stabilized by a plant gum exudate polysaccharide showed promising results. This simple biomaterial might be further developed into colloidal formulations for biological and biomedical applications, taking advantage of its versatility, biocompatibility, and conductive properties.
Collapse
Affiliation(s)
- Jenifer Pendiuk Gonçalves
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Izabel Cristina Riegel-Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Marcio Vidotti
- Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil
| | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal do Paraná (UFPR), Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil; Macromolecules and Interfaces Research Group, Department of Chemistry, UFPR, Av Cel Francisco H dos Santos, s/n, CEP 81530-980 Curitiba, PR, Brazil.
| |
Collapse
|
47
|
Idumah CI. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
48
|
Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron 2020; 170:112620. [DOI: 10.1016/j.bios.2020.112620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
49
|
Li R, Xu J, Rao Z, Deng R, Xu Y, Qiu S, Long H, Zhu Q, Liu X, Bai Y, Quan D. Facilitate Angiogenesis and Neurogenesis by Growth Factors Integrated Decellularized Matrix Hydrogel. Tissue Eng Part A 2020; 27:771-787. [PMID: 33107410 DOI: 10.1089/ten.tea.2020.0227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurological functional recovery depends on the synergistic interaction between angiogenesis and neurogenesis after peripheral nerve injury (PNI). Decellularized nerve matrix hydrogels have drawn much attention and been considered as potential therapeutic biomaterials for neurovascularization, due to their intrinsic advantages in construction of a growth-permissive microenvironment, strong affinity to multiple growth factors (GFs), and promotion of neurite outgrowth. In the present study, nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were incorporated into porcine decellularized nerve matrix hydrogel (pDNM-gel) for PNI treatment. Both GFs bound strongly to pDNM-gel and underwent a controlled release manner, which showed facilitated axonal extension and vascular-like tube formation in vitro. Especially, a companion growth was identified when human umbilical vein endothelial cells and neurons were cocultured on the GFs containing pDNM-gel. In a crushed rat sciatic nerve model, the incorporated NGF and VEGF appeared to contribute for axonal growth and neovascularization correspondingly but separately. Both GFs were equally important in improving nerve functional recovery after in situ administration. These findings indicate that pDNM-gel is not only a bioactive hydrogel-based material that can be used alone, but also serves as suitable carrier of multiple GFs for promoting an effective PNI repair. Impact statement Decellularized matrix hydrogel derived from nerve tissue has demonstrated its effectiveness in promoting nerve reinnervation, remyelination, and functionalization. Meanwhile, angiogenesis is highly desirable for treatment of long-distance peripheral nerve defects. To this end, we incorporated both vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) into porcine decellularized nerve matrix hydrogel (pDNM-gel) to induce neovascularization and neuroregeneration. At the cellular level, the pDNM-gel with both growth factors (GFs) exhibited significant capability in promoting axonal elongation, Schwann cell proliferation and migration, as well as vessel/nerve interaction. In crushed peripheral nerve injury (PNI) rat model, the integrated VEGF was more favorable for angiogenesis, whereas NGF mainly contributed to neurogenesis. However, the combination of both GFs in pDNM-gel highly facilitated motor functional recovery, highlighting the therapeutic promise of decellularized matrix hydrogel for growth factor delivery toward neuroprotection and neuroregeneration after PNI.
Collapse
Affiliation(s)
- Rui Li
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Rongli Deng
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Xu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Shuai Qiu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingtang Zhu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Bai
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|