1
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
2
|
Mondal A, Paul S, De P. Recent Advancements in Polymeric N-Nitrosamine-Based Nitric Oxide (NO) Donors and their Therapeutic Applications. Biomacromolecules 2024; 25:5592-5608. [PMID: 39116284 DOI: 10.1021/acs.biomac.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Nitric oxide (NO), a gasotransmitter, is known for its wide range of effects in vasodilation, cardiac relaxation, and angiogenesis. This diatomic free radical also plays a pivotal role in reducing the risk of platelet aggregation and thrombosis. Furthermore, NO demonstrates promising potential in cancer therapy as well as in antibacterial and antibiofilm activities at higher concentrations. To leverage their biomedical activities, numerous NO donors have been developed. Among these, N-nitrosamines are emerging as a notable class, capable of releasing NO under suitable photoirradiation and finding a broad range of therapeutic applications. This review discusses the design, synthesis, and biological applications of polymeric N-nitrosamines, highlighting their advantages over small molecular NO donors in terms of stability, NO payload, and target-specific delivery. Additionally, various small-molecule N-nitrosamines are explored to provide a comprehensive overview of this burgeoning field. We anticipate that this review will aid in developing next-generation polymeric N-nitrosamines with improved physicochemical properties.
Collapse
Affiliation(s)
- Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
3
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
4
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
5
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
6
|
Chai Y, Shangguan L, Yu H, Sun Y, Huang X, Zhu Y, Wang H, Liu Y. Near Infrared Light-Activatable Platelet-Mimicking NIR-II NO Nano-Prodrug for Precise Atherosclerosis Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304994. [PMID: 38037484 PMCID: PMC10797437 DOI: 10.1002/advs.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that affects arteries and is the main cause of cardiovascular disease. Atherosclerotic plaque formation is usually asymptomatic and does not manifest until the occurrence of clinical events. Therefore, early diagnosis and treatment of atherosclerotic plaques is particularly important. Here, a series of NIR-II fluorescent dyes (RBT-NH) are developed for three photoresponsive NO prodrugs (RBT-NO), which can be controllably triggered by 808 nm laser to release NO and turn on the NIR-II emission in the clinical medicine "therapeutic window". Notably, RBT3-NO is selected for its exhibited high NO releasing efficiency and superior fluorescence signal enhancement. Subsequently, a platelet-mimicking nano-prodrug system (RBT3-NO-PEG@PM) is constructed by DSPE-mPEG5k and platelet membrane (PM) for effectively targeted diagnosis and therapy of atherosclerosis in mice. The results indicate that this platelet-mimicking NO nano-prodrug system can reduce the accumulation of lipids at the sites of atherosclerotic plaques, improve the inflammatory response at the lesion sites, and promote endothelial cell migration, thereby slowing the progression of plaques.
Collapse
Affiliation(s)
- Yun Chai
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Lina Shangguan
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hui Yu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Ye Sun
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Xiaoyan Huang
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Yanyan Zhu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hai‐Yan Wang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189China
| | - Yi Liu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
7
|
Peng W, Li L, Zhang Y, Su H, Jiang X, Liu H, Huang X, Zhou L, Shen XC, Liu C. Photothermal synergistic nitric oxide controlled release injectable self-healing adhesive hydrogel for biofilm eradication and wound healing. J Mater Chem B 2023; 12:158-175. [PMID: 38054356 DOI: 10.1039/d3tb02040a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the in situ encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability. The numerous phenylboronic acid and catechol-like moieties on the QCS backbone confer the hydrogel with specific bacterial affinity, desirable tissue adhesion, and antioxidant stress ability that enhance bactericidal activity and facilitate the regeneration of infection wounds. Under NIR irradiation, the QP/QT-MB hydrogels exhibited a desirable mild photothermal effect and NIR-activity controllable NO delivery, combined with the endogenous contact antimicrobial activity of hydrogel, contributing jointly to induce dispersal of biofilms and disruption of the bacterial plasma membranes, ultimately leading to bacteria inactivation and biofilm elimination. In vivo experiments demonstrated that the fabricated QP/QT-MB hydrogel platform was capable of inducing efficient eradication of the S. aureus biofilm in a severely infected wound model and accelerating infected wound repair by promoting collagen deposition, angiogenesis, and suppressing inflammatory responses. Additionally, the QP/QT-MB hydrogel demonstrated excellent biocompatibility in vitro and in vivo. Collectively, the hydrogel (QP/QT-MB) reveals great potential application prospects as a promising alternative in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Weiling Peng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haibing Su
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541001, China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
8
|
Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q. Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 2023; 261:115884. [PMID: 37862817 DOI: 10.1016/j.ejmech.2023.115884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Dongwei Ma
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Gang Wang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Jingsheng Lu
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Xiaoxuan Zeng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Yanwei Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| |
Collapse
|
9
|
Liang D, Kuang G, Chen X, Lu J, Shang L, Sun W. Near-infrared light-responsive Nitric oxide microcarrier for multimodal tumor therapy. SMART MEDICINE 2023; 2:e20230016. [PMID: 39188343 PMCID: PMC11236066 DOI: 10.1002/smmd.20230016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 08/28/2024]
Abstract
Nitric oxide (NO) has shown great potential in tumor therapy, and the development of a platform for precise and controllable NO release still needs to be explored. Herein, a microfluidic electrospray strategy is proposed for the fabrication of hydrogel microspheres encapsulating NO donors (S-nitrosoglutathione, GSNO) together with black phosphorus (BP) and chemotherapeutic doxorubicin (DOX) as microcarriers for tumor therapy. Based on the excellent photothermal property of BP and thermal sensitivity of GSNO, the microcarriers exhibit a near-infrared light (NIR)-responsive NO release behavior. Besides, the photothermal performance of the microcarriers accelerates the release of DOX. All these contribute to the excellent tumor-killing effect of the microcarriers by combining multiple therapeutic strategies including NO therapy, photothermal therapy, and chemotherapy. Moreover, it was demonstrated that the NIR-responsive NO delivery microcarriers could significantly inhibit tumor growth without apparent side effects in vivo. Therefore, it is believed that the novel NIR-responsive NO microcarriers are promising candidates in clinical tumor therapy applications.
Collapse
Affiliation(s)
- Danna Liang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Gaizhen Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiang Chen
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jianhua Lu
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Luoran Shang
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
10
|
Chang K, Sun X, Qi Q, Fu M, Han B, Zhang Y, Zhao W, Ni T, Li Q, Yang Z, Ge C. NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. BIOSENSORS 2023; 13:642. [PMID: 37367007 DOI: 10.3390/bios13060642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Photothermal therapy (PTT) has received constant attention as a promising cancer treatment. However, PTT-induced inflammation can limit its effectiveness. To address this shortcoming, we developed second near-infrared (NIR-II) light-activated nanotheranostics (CPNPBs), which include a thermosensitive nitric oxide (NO) donor (BNN6) to enhance PTT. Under a 1064 nm laser irradiation, the conjugated polymer in CPNPBs serves as a photothermal agent for photothermal conversion, and the generated heat triggers the decomposition of BNN6 to release NO. The combination of hyperthermia and NO generation under single NIR-II laser irradiation allows enhanced thermal ablation of tumors. Consequently, CPNPBs can be exploited as potential candidates for NO-enhanced PTT, holding great promise for their clinical translational development.
Collapse
Affiliation(s)
- Kaiwen Chang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaolin Sun
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiaofang Qi
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Mingying Fu
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Bing Han
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Yang Zhang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei Zhao
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianjun Ni
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China
| | - Zhijun Yang
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunpo Ge
- Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
11
|
Zhang M, Fan Z, Zhang J, Yang Y, Huang C, Zhang W, Ding D, Liu G, Cheng N. Multifunctional chitosan/alginate hydrogel incorporated with bioactive glass nanocomposites enabling photothermal and nitric oxide release activities for bacteria-infected wound healing. Int J Biol Macromol 2023; 232:123445. [PMID: 36709818 DOI: 10.1016/j.ijbiomac.2023.123445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
It is highly desirable to develop novel multifunctional wound dressing materials capable of delivering active molecules capable of resolving bacterial infections and replenishment of appropriate growth factors for bacteria-infected wound healing. Polysaccharides have numerous biomedical benefits and have been widely used to construct biomaterial scaffolds. Herein, multifunctional chitosan/alginate hydrogel decorated with β-cyclodextrin (β-CD) modified polydopamine (PDA)-bioactive glass (BG) nanoparticles (NPs) integrating photothermal performance and nitric-oxide release activities for the treatment of bacterially infected wounds is presented. As the NO precursor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6) encapsulated into the hydrophobic cavity of β-CD on the PDA-coated BG NPs, the resultant NO@CD-PDA/BG NPs, are imparted with the feature of NIR triggered NO release and desired PTT/NO synergetic antibacterial effects. Furthermore, the release of NO, Ca, and Si ions from the NO@CD-PDA/BG NPs, has the benefit of regulating inflammation, promoting fibroblast proliferation, and stimulating angiogenesis. Besides, the chitosan/alginate hydrogel scaffolds provided a suitable microenvironment to accelerate wound healing. By applying the multifunctional chitosan/alginate nanocomposite hydrogel to S. aureus-infected full-thickness skin defect mouse model, the authors demonstrated that chitosan/alginate nanocomposite hydrogel has multiple functions in preventing bacterial infections, accelerating angiogenesis and wound regeneration, indicating promising application in wound healing.
Collapse
Affiliation(s)
- Man Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zunqing Fan
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, PR China; Shandong Provincial Hospital for Skin Diseases, Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, PR China
| | - Jie Zhang
- Shandong Boyuan Pharmaceutical & Chemical Co., Ltd., North of XinSha Road, West of Dajiu Road, Houzhen Industrial Zone, Shouguang City, Shandong 262725, PR China
| | - Yilei Yang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Changbao Huang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| | - Guoyan Liu
- Shandong Provincial Hospital for Skin Diseases, Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, PR China.
| | - Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
12
|
Wang Y, Tang Q, Wu R, Sun S, Zhang J, Chen J, Gong M, Chen C, Liang X. Ultrasound-Triggered Piezocatalysis for Selectively Controlled NO Gas and Chemodrug Release to Enhance Drug Penetration in Pancreatic Cancer. ACS NANO 2023; 17:3557-3573. [PMID: 36775922 DOI: 10.1021/acsnano.2c09948] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitric oxide (NO) is drawing widespread attention in treating pancreatic ductal adenocarcinoma (PDAC) as a safe and therapeutically efficient technique through modulating the dense fibrotic stroma in the tumor microenvironment to enhance drug penetration. Considerable NO nanogenerators and NO releasing molecules have been developed to shield the systemic toxicity caused by free diffusion of NO gas. However, on-demand controlled release of NO and chemotherapy drugs at tumor sites remains a problem limited by the complex and dynamic tumor microenvironment. Herein, we present an ultrasound-responsive nanoprodrug of CPT-t-R-PEG2000@BaTiO3 (CRB) which encapsulates piezoelectric nanomaterials barium titanate nanoparticle (BaTiO3) with amphiphilic prodrug molecules that consisted of thioketal bond (t) linked chemotherapy drug camptothecin (CPT) and NO-donor l-arginine (R). Based on ultrasound-triggered piezocatalysis, BaTiO3 can continuously generate ROS in the hypoxic tumor environment, which induces a cascade of reaction processes to break the thioketal bond to release CPT and oxidize R to release NO, simultaneously delivering CPT and NO to the tumor site. It is revealed that CRB shows a uniform size distribution, prolonged blood circulation time, and excellent tumor targeting ability. Moreover, controlled release of CPT and NO were observed both in vitro and in vivo under the stimulation of ultrasound, which is beneficial to the depletion of dense stroma and subsequently enhanced delivery and efficacy of CPT. Taken together, CRB significantly increased the antitumor efficacy against highly malignant Panc02 tumors in mice through inhibiting chemoresistance, representing a feasible approach for targeted therapies against Panc02 and other PDAC.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Chaoyi Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
14
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
15
|
Zhang H, Zhao Z, Sun S, Zhang S, Wang Y, Zhang X, Sun J, He Z, Zhang S, Luo C. Molecularly self-fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke. Nat Commun 2023; 14:255. [PMID: 36650139 PMCID: PMC9845202 DOI: 10.1038/s41467-023-35895-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Thrombotic cerebro-cardiovascular diseases are the leading causes of disability and death worldwide. However, current drug therapeutics are compromised by narrow therapeutic windows, unsatisfactory thrombolysis effects, severe bleeding events, and high recurrence rates. In this study, we exploit a self-propelling nano-penetrator with high fuel loading and controllable motion features, which is molecularly co-assembled using a photothermal photosensitizer (DiR) and a photothermal-activable NO donor (BNN6). The precisely engineered nano-penetrator of the BNN6-DiR fuel pair shows distinct advantages in terms of NO productivity and autonomous motion under laser irradiation. In animal models of artery/vein thrombosis and acute ischemic stroke, the self-fueled nano-penetrator enables self-navigated thrombus-homing accumulation, self-propelled clot deep penetration, fluorescence image-guided photothermal/mechanical thrombolysis, and NO-mediated prevention of thrombosis recurrence and acute ischemic stroke salvage. As expected, the molecularly self-fueled nano-penetrator displayed favorable therapeutic outcomes without bleeding risk compared to the clinically available thrombolytic drug. This study offers a facile, safe, and effective nonpharmaceutical modality towards the clinical treatment of thrombosis and ischemic stroke.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shengnan Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| |
Collapse
|
16
|
Tao S, Shen Z, Chen J, Shan Z, Huang B, Zhang X, Zheng L, Liu J, You T, Zhao F, Hu J. Red Light-Mediated Photoredox Catalysis Triggers Nitric Oxide Release for Treatment of Cutibacterium Acne Induced Intervertebral Disc Degeneration. ACS NANO 2022; 16:20376-20388. [PMID: 36469724 DOI: 10.1021/acsnano.2c06328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been known as a highly prevalent and disabling disease, which is one of the main causes of low back pain and disability. Unfortunately, there is no effective cure to treat this formidable disease, and surgical interventions are typically applied. Herein, we report that the local administration of nitric oxide (NO)-releasing micellar nanoparticles can efficiently treat IVDD associated with Modic changes in a rat model established by infection with Cutibacterium acnes (C. acnes). By covalent incorporation of palladium(II) meso-tetraphenyltetrabenzoporphyrin photocatalyst and coumarin-based NO donors into the core of micellar nanoparticles, we demonstrate that the activation of the UV-absorbing coumarin-based NO donors can be achieved under red light irradiation via photoredox catalysis, although it remains a great challenge to implement photoredox catalysis reactions in biological conditions due to the complex microenvironments. Notably, the local delivery of NO can not only efficiently eradicate C. acnes pathogens but also inhibit the inflammatory response and osteoclast differentiation in the intervertebral disc tissues, exerting antibacterial, anti-inflammatory, and antiosteoclastogenesis effects. This work provides a feasible means to efficiently treat IVDD by the local administration of NO signaling molecules without resorting to a surgical approach.
Collapse
Affiliation(s)
- Siyue Tao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| | - Jian Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Zhi Shan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Bao Huang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Lin Zheng
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Junhui Liu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei230001, AnhuiChina
| | - Fengdong Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, Anhui, China
| |
Collapse
|
17
|
Li T, Sun J, Yin Y, Zhang Q, Wang C, Wang S. Photothermal/nitric oxide synergistic anti-tumour therapy based on MOF-derived carbon composite nanoparticles. NANOSCALE 2022; 14:16193-16207. [PMID: 36281716 DOI: 10.1039/d2nr03027f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional organic photothermal conversion reagents still face some challenges for their real applications, such as the requirement of carriers for in vivo transport, uncontrolled degradation during use, reduction in photothermal conversion efficiency by repeated exposure to a near-infrared laser, and so on. Herein, uniform ZIF-8 nanoparticles were prepared first, and then carbonized and etched to form porous carbon nanoparticles (CNPs). After loading an NO donor and wrapping with red blood cell membrane, the novel CNP-NO@RBC photothermal agent integrated with in situ imaging ability was obtained. Due to the great photothermal conversion efficiency of the carbon material and the specific release of NO from the loaded NO conformer, the CNP-NO@RBCs show excellent tumour cell killing ability based on light-triggered photothermal/gas therapy at lower doses of CNP-NO@RBCs.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
18
|
Kim DS, Lee YJ, Wang Y, Park J, Winey KI, Yang S. Self-Folding Liquid Crystal Network Filaments Patterned with Vertically Aligned Mesogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50171-50179. [PMID: 36282177 DOI: 10.1021/acsami.2c14947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fibrous soft actuators with high molecular anisotropy are of interest for shape morphing from 1D to 2D and 3D in response to external stimuli with high actuation efficiency. Nevertheless, few have fabricated fibrous actuators with controlled molecular orientations and stiffness. Here, we fabricate filaments from liquid crystal networks (LCNs) with segmental crosslinking density and gradient porosity from a mixture of di-acrylate mesogenic monomers and small-molecule nematic or smectic liquid crystals (LCs) filled in a capillary. During photopolymerization, phase separation between the small-molecule LCs and LCN occurs, making one side of the filament considerably denser than the other side. To direct its folding mode (bending or twisting), we control the alignment of LC molecules within the capillary, either along or perpendicular to the filament long axis. We show that the direction of UV exposure can determine the direction of phase separation, which in turn direct the deformation of the filament after removal of the small-molecule LCs. We find that the vertical alignment of LCs within the filament is essential to efficiently direct bending deformation. By photopatterning the filament with segmental crosslinking density, we can induce a reversible folding/unfolding into 2D and 3D geometries triggered by deswelling/swelling in an organic solvent. Moreover, by taking advantage of the large elastic modulus of LCNs and large contrast of the modulus before and after swelling, we show that the self-folded LCP filament could act as a strong gripper.
Collapse
Affiliation(s)
- Dae Seok Kim
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, South Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Yang C, Mu G, Zhang Y, Gao Y, Zhang W, Liu J, Zhang W, Li P, Yang L, Yang Z, Gao J, Liu J. Supramolecular Nitric Oxide Depot for Hypoxic Tumor Vessel Normalization and Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202625. [PMID: 35906003 DOI: 10.1002/adma.202202625] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In cancer radiotherapy, the lack of fixed DNA damage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16 tumors more efficiently than releasing at single dosage.
Collapse
Affiliation(s)
- Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Paiyun Li
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
20
|
Veletić M, Apu EH, Simić M, Bergsland J, Balasingham I, Contag CH, Ashammakhi N. Implants with Sensing Capabilities. Chem Rev 2022; 122:16329-16363. [PMID: 35981266 DOI: 10.1021/acs.chemrev.2c00005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention. Therefore, integrating sensors with implants will enable real-time monitoring and lead to improvements in implant function. Sensor integration has been mostly applied to cardiovascular, neural, and orthopedic implants, and advances in combined implant-sensor devices have been significant, yet there are needs still to be addressed. Sensor-integrating implants are still in their infancy; however, some have already made it to the clinic. With an interdisciplinary approach, these sensor-integrating devices will become more efficient, providing clear paths to clinical translation in the future.
Collapse
Affiliation(s)
- Mladen Veletić
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ehsanul Hoque Apu
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Mitar Simić
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jacob Bergsland
- The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Ilangko Balasingham
- Department of Electronic Systems, Norwegian University of Science and Technology, 7491 Trondheim, Norway.,The Intervention Centre, Technology and Innovation Clinic, Oslo University Hospital, 0372 Oslo, Norway
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Michigan State University, East Lansing, Michigan 48824, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen-Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022; 61:e202204526. [PMID: 35579256 DOI: 10.1002/anie.202204526] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 12/30/2022]
Abstract
Photoredox catalysis has emerged as a robust tool for chemical synthesis. However, it remains challenging to implement photoredox catalysis under physiological conditions due to the complex microenvironment and the quenching of photocatalyst by biologically relevant molecules such as oxygen. Here, we report that UV-absorbing N,N'-dinitroso-1,4-phenylenediamine derivatives can be selectively activated by fac-Ir(ppy)3 photocatalyst within micellar nanoparticles under visible light irradiation (e.g., 500 nm) through photoredox catalysis in aerated aqueous solutions to form quinonediimine (QDI) residues with concomitant release of NO. Notably, the formation of QDI derivatives can actively scavenge the reactive oxygen species generated by fac-Ir(ppy)3 , thus avoiding oxygen quenching of the photocatalyst. Further, we exemplify that the oxygen-tolerant photoredox catalysis-mediated NO release can not only kill planktonic bacteria in vitro but also efficiently treat MRSA infections in vivo.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyan Xiao
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater 2022; 146:107-118. [PMID: 35545186 DOI: 10.1016/j.actbio.2022.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.
Collapse
|
23
|
Sritharan S, Guha S, Hazarika S, Sivalingam N. Meta analysis of bioactive compounds, miRNA, siRNA and cell death regulators as sensitizers to doxorubicin induced chemoresistance. Apoptosis 2022; 27:622-646. [PMID: 35716277 DOI: 10.1007/s10495-022-01742-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Cancer has presented to be the most challenging disease, contributing to one in six mortalities worldwide. The current treatment regimen involves multiple rounds of chemotherapy administration, alone or in combination. The treatment has adverse effects including cardiomyopathy, hepatotoxicity, and nephrotoxicity. In addition, the development of resistance to chemo has been attributed to cancer relapse and low patient overall survivability. Multiple drug resistance development may be through numerous factors such as up-regulation of drug transporters, drug inactivation, alteration of drug targets and drug degradation. Doxorubicin is a widely used first line chemotherapeutic drug for a myriad of cancers. It has multiple intracellular targets, DNA intercalation, adduct formation, topoisomerase inhibition, iron chelation, reactive oxygen species generation and promotes immune mediated clearance of the tumor. Agents that can sensitize the resistant cancer cells to the chemotherapeutic drug are currently the focus to improve the clinical efficiency of cancer therapy. This review summarizes the recent 10-year research on the use of natural phytochemicals, inhibitors of apoptosis and autophagy, miRNAs, siRNAs and nanoformulations being investigated for doxorubicin chemosensitization.
Collapse
Affiliation(s)
- Sruthi Sritharan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Sampurna Guha
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Snoopy Hazarika
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
24
|
Chen Z, Zheng S, Shen Z, Cheng J, Xiao S, Zhang G, Liu S, Hu J. Oxygen‐Tolerant Photoredox Catalysis Triggers Nitric Oxide Release for Antibacterial Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenhua Chen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaoqiu Zheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhiqiang Shen
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jian Cheng
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyan Xiao
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Guoying Zhang
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shiyong Liu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinming Hu
- Department of Pharmacy The First Affiliated Hospital of USTC Division of Life Sciences and Medicine and CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
25
|
Liu Y, Zhu M, Meng M, Wang Q, Wang Y, Lei Y, Zhang Y, Weng L, Chen X. A dual-responsive hyaluronic acid nanocomposite hydrogel drug delivery system for overcoming multiple drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Chang LH, Hu TM. Co-delivery of nitric oxide and camptothecin using organic-inorganic composite colloidal particles for enhanced anticancer activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Affiliation(s)
- Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
28
|
Ren X, Wang Y, Jia L, Guo X, He X, Zhao Z, Gao D, Yang Z. Intelligent Nanomedicine Approaches Using Medical Gas-Mediated Multi-Therapeutic Modalities Against Cancer. J Biomed Nanotechnol 2022; 18:24-49. [PMID: 35180898 DOI: 10.1166/jbn.2022.3224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The emerging area of gas-mediated cancer treatment has received widespread attention in the medical community. Featuring unique physical, chemical, and biological properties, nanomaterials can facilitate the delivery and controllable release of medicinal gases at tumor sites, and also serve as ideal platforms for the integration of other therapeutic modalities with gas therapy to augment cancer therapeutic efficacy. This review presents an overview of anti-cancer mechanisms of several therapeutic gases: nitric oxide (NO), hydrogen sulfide (H₂S), carbon monoxide (CO), oxygen (O₂), and hydrogen (H₂). Controlled release behaviors of gases under different endogenous and exogenous stimuli are also briefly discussed, followed by their synergistic effects with different therapeutic modes. Moreover, the potential challenges and future prospects regarding gas therapy based on nanomaterials are also described, aiming to facilitate the advancement of gas therapeutic nanomedicine in new frontiers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Xuechun Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Liangliang Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoqing Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyu He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhipeng Zhao
- School of Physical Education, Xizang Minzu University, Xianyang, 712000, Shaanxi, China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
29
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
30
|
Zhao Y, Ouyang X, Peng Y, Peng S. Stimuli Responsive Nitric Oxide-Based Nanomedicine for Synergistic Therapy. Pharmaceutics 2021; 13:1917. [PMID: 34834332 PMCID: PMC8622285 DOI: 10.3390/pharmaceutics13111917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
Gas therapy has received widespread attention from the medical community as an emerging and promising therapeutic approach to cancer treatment. Among all gas molecules, nitric oxide (NO) was the first one to be applied in the biomedical field for its intriguing properties and unique anti-tumor mechanisms which have become a research hotspot in recent years. Despite the great progress of NO in cancer therapy, the non-specific distribution of NO in vivo and its side effects on normal tissue at high concentrations have impaired its clinical application. Therefore, it is important to develop facile NO-based nanomedicines to achieve the on-demand release of NO in tumor tissue while avoiding the leakage of NO in normal tissue, which could enhance therapeutic efficacy and reduce side effects at the same time. In recent years, numerous studies have reported the design and development of NO-based nanomedicines which were triggered by exogenous stimulus (light, ultrasound, X-ray) or tumor endogenous signals (glutathione, weak acid, glucose). In this review, we summarized the design principles and release behaviors of NO-based nanomedicines upon various stimuli and their applications in synergistic cancer therapy. We also discuss the anti-tumor mechanisms of NO-based nanomedicines in vivo for enhanced cancer therapy. Moreover, we discuss the existing challenges and further perspectives in this field in the aim of furthering its development.
Collapse
Affiliation(s)
- Yijun Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Xumei Ouyang
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| | - Yongjun Peng
- The Department of Medical Imaging, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China; (Y.Z.); (X.O.)
| |
Collapse
|
31
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
32
|
Liu Z, Zhong Y, Zhou X, Huang X, Zhou J, Huang D, Li Y, Wang Z, Dong B, Qiao H, Chen W. Inherently nitric oxide containing polymersomes remotely regulated by NIR for improving multi-modal therapy on drug resistant cancer. Biomaterials 2021; 277:121118. [PMID: 34481293 DOI: 10.1016/j.biomaterials.2021.121118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
The therapeutic potential of nitric oxide (NO) has been highly attractive to tumor treatment, especially for surmounting the multidrug resistance (MDR) of cancer. However, the NO-involved therapy remains extremely challenging because of the difficulty to simultaneously control the NO release rate and real-time concentration. Herein, we construct NO-containing polymersomes with high amount of NO donors inherently grown on the polymer chains to keep the stability. These polymersomes can be simultaneously loaded with photosensitizer of IR780 iodide on the membrane layer and chemotherapeutic of DOX·HCl in the lumen. NO release can be triggered by the reduction conditions, and further accelerated by remote NIR irradiation due to the increased local temperature. The instantaneous NO release with high concentration significantly inhibits the P-gp expression and sensitize the chemotherapy, thus overcoming the tumor MDR and improving the anti-tumor activity. Meanwhile, DOX·HCl release is highly promoted at the intracellular conditions because of the cleavage of acid-labile cis-aconitic amide at endo/lysosomal pH, and the improved hydrophilicity of the membrane layer after NO release. The in vivo results show that the single intravenous injection of polymersome formulation companying with NIR irradiation exerts multi-modal therapies of chemotherapy, PTT/PDT, and NO-therapy on the MCF-7/R tumor models, showing superior and combinational treatment efficacy with the complete eradication of tumors and few side effects.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yanfei Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Gong W, Xia C, He Q. Therapeutic gas delivery strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Gas molecules with pharmaceutical effects offer emerging solutions to diseases. In addition to traditional medical gases including O2 and NO, more gases such as H2 , H2 S, SO2 , and CO have recently been discovered to play important roles in various diseases. Though some issues need to be addressed before clinical application, the increasing attention to gas therapy clearly indicates the potentials of these gases for disease treatment. The most important and difficult part of developing gas therapy systems is to transport gas molecules of high diffusibility and penetrability to interesting targets. Given the particular importance of gas molecule delivery for gas therapy, distinguished strategies have been explored to improve gas delivery efficiency and controllable gas release. Here, we summarize the strategies of therapeutic gas delivery for gas therapy, including direct gas molecule delivery by chemical and physical absorption, inorganic/organic/hybrid gas prodrugs, and natural/artificial/hybrid catalyst delivery for gas generation. The advantages and shortcomings of these gas delivery strategies are analyzed. On this basis, intelligent gas delivery strategies and catalysts use in future gas therapy are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wanjun Gong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chao Xia
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Bayoumi NA, El-Kolaly MT. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The rapid progress of nanomedicine field has a great influence on the different tumor therapeutic trends. It achieves a potential targeting of the therapeutic agent to the tumor site with neglectable exposure of the normal tissue. In nuclear medicine, nanocarriers have been employed for targeted delivery of therapeutic radioisotopes to the malignant tissues. This systemic radiotherapy is employed to overcome the external radiation therapy drawbacks. This review overviews studies concerned with investigation of different nanoparticles as promising carriers for targeted radiotherapy. It discusses the employment of different nanovehicles for achievement of the synergistic effect of targeted radiotherapy with other tumor therapeutic modalities such as hyperthermia and photodynamic therapy. Radiosensitization utilizing different nanosensitizer loaded nanoparticles has also been discussed briefly as one of the nanomedicine approach in radiotherapy.
Collapse
Affiliation(s)
- Noha Anwer Bayoumi
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| | - Mohamed Taha El-Kolaly
- Department of Radiolabeled Compounds , Hot Laboratories Center, Egyptian Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
35
|
Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Am J Cancer Res 2021; 11:6334-6354. [PMID: 33995661 PMCID: PMC8120214 DOI: 10.7150/thno.59342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Clinically, the primary cause of chemotherapy failure belongs to the occurrence of cancer multidrug resistance (MDR), which directly leads to the recurrence and metastasis of cancer along with high mortality. More and more attention has been paid to multifunctional nanoplatform-based dual-therapeutic combination to eliminate resistant cancers. In addition to helping both cargoes improve hydrophobicity and pharmacokinetic properties, increase bioavailability, release on demand and enhance therapeutic efficacy with low toxic effects, these smart co-delivery nanocarriers can even overcome drug resistance. Here, this review will not only present different types of co-delivery nanocarriers, but also summarize targeted and stimuli-responsive combination nanomedicines. Furthermore, we will focus on the recent progress in the co-delivery of dual-drug using such intelligent nanocarriers for surmounting cancer MDR. Whereas it remains to be seriously considered that there are some knotty issues in the fight against MDR of cancers via using co-delivery nanoplatforms, including limited intratumoral retention, the possible changes of combinatorial ratio under complex biological environments, drug release sequence from the nanocarriers, and subsequent free-drug resistance after detachment from the nanocarriers. It is hoped that, with the advantage of continuously developing nanomaterials, two personalized therapeutic agents in combination can be better exploited to achieve the goal of cooperatively combating cancer MDR, thus advancing the time to clinical transformation.
Collapse
|
36
|
Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021; 11:6370-6392. [PMID: 33995663 PMCID: PMC8120226 DOI: 10.7150/thno.57828] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
As one of the most important cancer treatment strategies, conventional chemotherapy has substantial side effects and leads easily to cancer treatment failure. Therefore, exploring and developing more efficient methods to enhance cancer chemotherapy is an urgently important problem that must be solved. With the development of nanotechnology, nanomedicine has showed a good application prospect in improving cancer chemotherapy. In this review, we aim to present a discussion on the significant research progress in nanomedicine for enhanced cancer chemotherapy. First, increased enrichment of drugs in tumor tissues relying on different targeting ligands and promoting tissue penetration are summarized. Second, specific subcellular organelle-targeted chemotherapy is discussed. Next, different combinational strategies to reverse multidrug resistance (MDR) and improve the effective intracellular concentration of therapeutics are discussed. Furthermore, the advantages of combination therapy for cancer treatment are emphasized. Finally, we discuss the major problems facing therapeutic nanomedicine for cancer chemotherapy, and propose possible future directions in this field.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yu Wang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
37
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Chen D, Jin Z, Zhao B, Wang Y, He Q. MBene as a Theranostic Nanoplatform for Photocontrolled Intratumoral Retention and Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008089. [PMID: 33734515 DOI: 10.1002/adma.202008089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Tumor-targeted drug delivery by nanomaterials is important to improve tumor therapy efficacy and reduce toxic side effects, but its efficiency is quite limited. In this work, a new type of MBene, zirconium boride nanosheet (ZBN), as a versatile nanoplatform to realize near-infrared (NIR)-controlled intratumoral retention and drug release is developed. ZBN exhibits high NIR-photothermal conversion efficiency (76.8%), surface modification with hyaluronic acid (HA) by polyol-borate esterfication endows ZBN-HA with good dispersion, and the photopyrolysis of borate ester causes HA detachment and ZBN aggregation, enabling NIR-controlled intratumoral retention to achieve high intratumoral accumulation. By virtue of surface borate esterfication, polyol chemotherapeutic drug (doxorubicin, DOX), and NO prodrug (β-galactosyl-diazeniumdiolate, Gal-NO) can be efficiently and stably conjugated on the surface of ZBN-HA (1.21 g DOX or 0.57 g Gal-NO per gram ZBN) without visible drug leakage, and the photopyrolysis of borate ester enables NIR-controlled drug release with high responsiveness and controllability. Combined chemothermal/gasothermal therapies based on ZBN-HA/DOX and ZBN-HA/NO nanomedicines eradicate primary tumors and interdict tumor metastasis by changing the tumor microenvironment and killing cancer cells in primary tumors. The developed NIR-photothermal MBene is confirmed as a versatile nanoplatform capable of high-efficacy tumor-targeted drug delivery and controlled drug release.
Collapse
Affiliation(s)
- Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Bin Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Zhang J, Deng M, Shi X, Zhang C, Qu X, Hu X, Wang W, Kong D, Huang P. Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioact Mater 2021; 6:3300-3313. [PMID: 33778206 PMCID: PMC7970318 DOI: 10.1016/j.bioactmat.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Supramolecular hydrogel was facilely developed by self-assembly of NO prodrug conjugated hydrogelator sequence. The locoregionally sustained NO release from the hydrogel could be triggered by intracellular over-expressed GSH/GST. NO could effectively reverse the P-gp mediated MDR effect and facilitate the intracellular accumulation of DOX. This type of stimuli-sensitive NO delivery platform holds great potential for combating drug-resistance cancer.
Collapse
Affiliation(s)
- Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
40
|
Zheng Y, Liu Y, Wei F, Xiao H, Mou J, Wu H, Yang S. Functionalized g-C 3N 4 nanosheets for potential use in magnetic resonance imaging-guided sonodynamic and nitric oxide combination therapy. Acta Biomater 2021; 121:592-604. [PMID: 33316398 DOI: 10.1016/j.actbio.2020.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
The oxygen consumption-induced hypoxia and the high concentration of glutathione in tumor microenvironment limit the treatment outcomes of sonodynamic therapy (SDT). SDT needs to be combined with other treatment modalities to achieve the desired therapeutic efficiency. In this study, an oxidized g-C3N4 (OCN) nanosheet-based theranostic nanoplatform is developed for sonodynamic and nitric oxide (NO) combination therapy of cancer. The OCN nanosheets are successively modified with amino-terminated 6-armed polyethylene glycol, chlorin e6, and Gd3+ ions, and then the as-prepared OCN-PEG-(Ce6-Gd3+) nanosheets are loaded with the NO donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6). Upon ultrasound (US) irradiation, the OCN-PEG-(Ce6-Gd3+)/BNN6 nanocomposite can induce the generation of reactive oxygen species (ROS) and simultaneously release NO molecules to effectively kill the cancer cells, thereby significantly suppressing the tumor growth. Moreover, a good in vivo T1-weighted magnetic resonance imaging (MRI) contrast effect is achieved after intravenous injection of OCN-PEG-(Ce6-Gd3+)/BNN6 due to remarkably enhanced contrast performance of the nanocomposite. Therefore, the OCN-PEG-(Ce6-Gd3+)/BNN6 formulation can serve as a promising theranostic agent for MRI-guided sonodynamic-NO combination therapy.
Collapse
|
41
|
Yang Y, Huang Z, Li LL. Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications. NANOSCALE 2021; 13:444-459. [PMID: 33403376 DOI: 10.1039/d0nr07484e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), as an endogenous diatomic molecule, plays a key regulatory role in many physiological and pathological processes. This diatomic free radical has been shown to affect different physiological and cellular functions and participates in many regulatory functions ranging from changing the cardiovascular system to regulating neuronal functions. Thus, NO gas therapy as an emerging and promising treatment method has attracted increasing attention in the treatment of various pathological diseases. As is known, the physiological and pathological regulation of NO depends mainly on its location, exposure time and released dosage. However, NO gas lacks effective accumulation and controlled long-term gas releasing capacity at specific sites, resulting in limited therapeutic efficacy and potential side effects. Thus, researchers have developed various NO donors, but eventually found that it is still difficult to control the long-term release of NO. Inspired by the self-assembly properties of nanomaterials, researchers have realized that nanomaterials can be used to support NO donors to form nanomedicine to achieve spatial and temporal controlled release of NO. In this review, according to the history of the medicinal development of NO, we first summarize the chemical design of NO donors, NO prodrugs, and NO-conjugated drugs. Then, NO nanomedicines formed by various nanomaterials and NO donors depending on nanotechnology are highlighted. Finally, the biomedical applications of NO nanomedicine with optimized properties are summarized.
Collapse
Affiliation(s)
- Yueqi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China. and Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Li-Li Li
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, P. R. China.
| |
Collapse
|
42
|
Low dose soft X-ray-controlled deep-tissue long-lasting NO release of persistent luminescence nanoplatform for gas-sensitized anticancer therapy. Biomaterials 2020; 263:120384. [DOI: 10.1016/j.biomaterials.2020.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 01/16/2023]
|
43
|
Gao M, Liu T, Li J, Guan Q, Wang H, Yan S, Li Z, Zuo D, Zhang W, Wu Y. YAN, a novel microtubule inhibitor, inhibits P-gp and MRP1 function and induces mitotic slippage followed by apoptosis in multidrug-resistant A549/Taxol cells. Toxicol In Vitro 2020; 69:104971. [DOI: 10.1016/j.tiv.2020.104971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
|
44
|
Jin R, Xie J, Yang X, Tian Y, Yuan P, Bai Y, Liu S, Cai B, Chen X. A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy. Biomater Sci 2020; 8:1865-1874. [PMID: 32021991 DOI: 10.1039/c9bm01992h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, a rambutan-like nanocomplex (PDA-SNO-GA-HA-DOX, PSGHD for short) was designed to enable effective and accurate tumor therapy. The PSGHD nanocomplex consists of an S-nitrosothiol-functionalized polydopamine (PDA-SNO) core and a gambogic acid-derivatized hyaluronic acid (HA-GA) shell with doxorubicin (DOX) as the cargo. Due to the HA section, the PSGHD nanocomplex can be rapidly and selectively internalized by tumor cells instead of healthy cells in 12 h of co-incubation. After that, the internalized PSGHD nanocomplex is able to gradually release both DOX (agent for chemotherapy) and GA (agent for enhancing thermal damage) under different tumor-specific physiological conditions (low pH and rich HAase). When 808 nm NIR radiation was employed, the PSGHD nanocomplex further demonstrated excellent photothermal conversion to increase the local temperature over 43 °C and convert SNO to nitric oxide (NO, an agent for decreasing drug-efflux). Based on the synergistic effects of NO/DOX and GA/heat, the PSGHD nanocomplex simultaneously achieved tumor-specific low-drug-efflux chemotherapy and low-temperature photothermal therapy, resulting in an eight-fold apoptosis of tumor cells over normal cells under NIR radiation. In vivo data from mouse models further showed that the PSGHD nanocomplex can completely inhibit tumor growth and significantly prolong the survival rate of tumor bearing mice in 50 days, demonstrating the high efficiency of the PSGHD nanocomplex for tumor therapy.
Collapse
Affiliation(s)
- Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China.
| | - Jirong Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China and Department of Prosthodontics, School of Stomatology, Jiamusi University, Jiamusi, 154003, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China.
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China.
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China.
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, 710049, China.
| |
Collapse
|
45
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
46
|
Vong LB, Nagasaki Y. Nitric Oxide Nano-Delivery Systems for Cancer Therapeutics: Advances and Challenges. Antioxidants (Basel) 2020; 9:E791. [PMID: 32858970 PMCID: PMC7555477 DOI: 10.3390/antiox9090791] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) plays important roles in various physiological and pathological functions and processes in the human body. Therapeutic application of NO molecules has been investigated in various diseases, including cardiovascular disease, cancer, and infections. However, the extremely short half-life of NO, which limits its clinical use considerably, along with non-specific distribution, has resulted in a low therapeutic index and undesired adverse effects. To overcome the drawbacks of using this gaseous signaling molecule, researchers in the last several decades have focused on innovative medical technologies, specifically nanoparticle-based drug delivery systems (DDSs), because these systems alter the biodistribution of the therapeutic agent through controlled release at the target tissues, resulting in a significant therapeutic drug effect. Thus, the application of nano-systems for NO delivery in the field of biomedicine, particularly in the development of new drugs for cancer treatment, has been increasing worldwide. In this review, we discuss NO delivery nanoparticle systems, with the aim of improving drug delivery development for conventional chemotherapies and controlling multidrug resistance in cancer treatments.
Collapse
Affiliation(s)
- Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
47
|
Enhanced Bax upregulating in mitochondria for deep tumor therapy based on SO2 prodrug loaded Au–Ag hollow nanotriangles. Biomaterials 2020; 250:120076. [DOI: 10.1016/j.biomaterials.2020.120076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
|
48
|
Li S, Song X, Zhu W, Chen Y, Zhu R, Wang L, Chen X, Song J, Yang H. Light-Switchable Yolk-Mesoporous Shell UCNPs@MgSiO 3 for Nitric Oxide-Evoked Multidrug Resistance Reversal in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30066-30076. [PMID: 32393026 DOI: 10.1021/acsami.0c06102] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gas therapy has emerged as a forceful strategy for augmenting the effects of chemotherapeutic drugs against cancer cells. However, it remains extremely challenging to effectively deliver gas into tissues of interest and unravel its underlying mechanisms. Herein, we designed a near-infrared (NIR) light-switchable nitric oxide (NO) delivery nanosystem for high-efficacy multidrug resistance (MDR) reversal in cancer therapy based on a yolk-shell upconverting nanoparticles@magnesium silica (UCNP@MgSiO3). The internal hollow cavity and flower-like mesoporous shell of UCNPs@MgSiO3 not only enabled a significantly high encapsulation capacity for the NO precursor (BNN6) and doxorubicin (DOX) but also allowed the enhanced cellular uptake, resulting in NIR-triggered NO generation and low pH-triggered DOX release in cancer cells. Mechanistically, intracellular NO can downregulate the drug efflux-related P-glycoprotein and adenosine 5'-triphosphate-binding cassette transporters, thereby increasing the DOX accumulation in the cell nuclei. Such combination therapy of NO and DOX induced the apoptosis of MDR cells and completely inhibited in vivo MDR tumor growth. We further elucidated the therapy mechanism via proteomic profiling, showcasing the downregulation of the ubiquitin-proteasome pathway and nuclear factor kappa-B signaling pathway in the NO-treated MDR cells. Therefore, our findings develop a promising nanoscale gas/drug delivery paradigm for fighting MDR tumors and providing molecular insights into cancer therapy.
Collapse
Affiliation(s)
- Shihua Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wei Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongling Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xian Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
49
|
Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020; 9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Injectable materials represent very attractive ready-to-use biomaterials for application in minimally invasive surgical procedures. It is shown that this approach to treat, for example, vertebral fracture, craniofacial defects, or tumor resection has significant clinical potential in the biomedical field. In the last four decades, calcium phosphate cements have been widely used as injectable materials for orthopedic surgery due to their excellent properties in terms of biocompatibility and osteoconductivity. However, few clinical studies have demonstrated certain weaknesses of these cements, which include high viscosity, long degradation time, and difficulties being manipulated. To overcome these limitations, the use of sol-gel technology has been investigated, which has shown good results for synthesis of injectable calcium phosphate-based materials. In the last few decades, injectable hydrogels have gained increasing attention owing to their structural similarities with the extracellular matrix, easy process conditions, and potential applications in minimally invasive surgery. However, the need to protect cells during injection leads to the development of double network injectable hydrogels that are capable of being cross-linked in situ. This review will provide the current state of the art and recent advances in the field of injectable biomaterials for minimally invasive surgery.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| |
Collapse
|
50
|
Abstract
Initially being considered as an environmental pollutant, nitric oxide has gained the momentum of research since its discovery as endothelial derived growth factor in 1987. Extensive researches have revealed the various pathological and physiological roles of nitric oxide such as inflammation, vascular and neurological regulation functions. Hence, the development of methods for quantifying nitric oxide concentration and its metabolites will be beneficial to well know about its biological functions and effects. This review summaries various methods for in vitro and in vivo nitric oxide detection, and introduces their merits and demerits.
Collapse
Affiliation(s)
- Ekta Goshi
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Gaoxin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|