1
|
Liu X, Hu H, Ma J, Wang B. Mineralized cellulose nanofibers reinforced bioactive hydrogel remodels the osteogenic and angiogenic microenvironment for enhancing bone regeneration. Carbohydr Polym 2025; 357:123480. [PMID: 40159001 DOI: 10.1016/j.carbpol.2025.123480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Slow osteogenesis and insufficient vascularization remain significant challenges in achieving effective bone repair and functional restoration with tissue-engineered scaffolds. Herein, a novel mineralized nanofibers reinforced bioactive hydrogel was designed to enhance bone regeneration inspired from the structural and functional properties of the bone tissue extracellular matrix (ECM). This bioactive hydrogel integrated enzymatically mineralized TEMPO-oxidized bacterial cellulose (m-TOBC) nanofibers and mesoporous silica nanoparticles (MSNs) loaded with the angiogenic drug dimethyloxalylglycine (DMOG) into gelatin methacryloyl (GelMA). The m-TOBC nanofibers achieved one stone, three birds: improving the printability of GelMA ink, mechanical properties, and osteoconduction of the hydrogel. The incorporation of MSNs loaded with DMOG fostered an angiogenic microenvironment through the release of DMOG. Results indicated that the bioactive hydrogel significantly enhanced in vitro mineralized matrix deposition and osteoblastic alkaline phosphatase expression. Additionally, the bioactive hydrogel had good ability to promote angiogenesis in terms of enhanced endothelial cell migration, tube formation, and upregulated angiogenic genes expression levels. In a critical-sized rat cranial defect model, the bioactive hydrogel significantly enhanced bone regeneration. Overall, this research offered a promising strategy to design nanofibers enhanced hydrogel to remodel osteogenic and angiogenic microenvironment for enhancing bone repair.
Collapse
Affiliation(s)
- Xiaokang Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoran Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinghong Ma
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
2
|
Ghamari M, Suvish, Hwang See C, Yu H, Anitha T, Balamurugan VT, Velusamy S, Hughes D, Sundaram S. Nanocellulose Extraction from Biomass Waste: Unlocking Sustainable Pathways for Biomedical Applications. CHEM REC 2025; 25:e202400249. [PMID: 40035542 PMCID: PMC12067182 DOI: 10.1002/tcr.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Indexed: 03/05/2025]
Abstract
The escalating global waste crisis necessitates innovative solutions. This study investigates the sustainable production of nanocellulose from biomass waste and its biomedical applications. Cellulose-rich materials-including wood, textiles, agricultural residues, and food by-products-were systematically processed using alkaline, acid, and oxidative pretreatments to enhance fiber accessibility. Mechanical techniques, such as grinding and homogenization, combined with chemical methods like acid hydrolysis and 2,2,6,6-Tetramethylpiperidin-1-yl-oxyl (TEMPO) oxidation, were employed to successfully isolate nanocellulose. Post-treatment modifications, including surface coating and cross-linking, further tailored its properties for specific applications. The results demonstrated nanocellulose's biocompatibility, biodegradability, and functional versatility. In wound healing, it enhanced moisture management and exhibited antimicrobial properties. Its high surface area facilitated efficient drug loading and controlled release in drug delivery applications. Nanocellulose bioinks supported cell proliferation in 3D bioprinting for tissue engineering. Additional applications in biosensors and personal care products were also identified. This study advances sustainable materials science, aligning resource conservation with circular economy principles to address biomedical sector needs.
Collapse
Affiliation(s)
- Mehrdad Ghamari
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Suvish
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - Chan Hwang See
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Hongnian Yu
- Cybersecurity and Systems EngineeringSchool of Computing, Engineering and the Built EnvironmentEdinburgh Napier UniversityMerchiston CampusEdinburghEH10 5DTUnited Kingdom
| | - Thiyagarajan Anitha
- Department of Postharvest TechnologyHorticultural College and Research InstitutePeriyakulam, Theni, Tamil Nadu625 604India
| | - V. T. Balamurugan
- Department of Biomedical EngineeringBannari Amman Institute of TechnologySathya Mangalam, Theni, Tamil Nadu638 402India
| | - Sasireka Velusamy
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - David Hughes
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| | - Senthilarasu Sundaram
- School of Computing, Engineering and Digital TechnologiesTeesside UniversityTees ValleyMiddlesbroughTS1 3BXUnited Kingdom
| |
Collapse
|
3
|
Xie L, Yu Y, Wu D, Long Z, Liu D, Ren L, Tong Y, McCormack BR, Lv P, Wei Q. UV-Induced Photochromic Macrofibers Derived from Bacterial Cellulose. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408097. [PMID: 40183708 DOI: 10.1002/smll.202408097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/22/2025] [Indexed: 04/05/2025]
Abstract
The emergence of photochromic fibers has created numerous opportunities in the realm of intelligent textiles and functional materials. However, commercially accessible photochromic fibers are predominantly produced from petroleum-based polymers, which contradicts the current emphasis on sustainability and minimizing carbon emissions. In this work, eco-friendly and fast-reversible photochromic bio-based bacterial cellulose (BC) macrofibers that are combined with 2,2,6,6-Tetramethylpiperidine-1-oxy (TEMPO) -oxidized BC (TOBC) nanofibers and spirooxazine-based photochromic microcapsules (PM) through amide reaction via a simple wet spinning strategy, are developed. The findings suggest that the highest breaking strength of the resulting macrofiber is attained at a PM concentration of 0.2 wt.%, reaching 1.51 cN/dtex, which is 14% greater than that of pure TOBC macrofibers produced. Prepared macrofibers with photochromic properties demonstrate fast response times of just 1 s, durability, and reversible color-changing characteristics when stimulated by ultraviolet (UV) light in the 200-400 nm range. As a proof-of-concept, UV-induced color-changing flowers and patterned textiles are demonstrated by the macrofiber integrated with normal yarns. In conclusion, these innovative bio-based polymer fibers can shine new light into the development of a new generation of anti-counterfeiting and fashion textiles.
Collapse
Affiliation(s)
- Lixi Xie
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Dingsheng Wu
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- Key Laboratory of Textile Fabrics, College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China
| | - Zhiwen Long
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingyun Ren
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Braylon Ryan McCormack
- International Curriculum Center, Wuxi Foreign Language School, Wuxi, Jiangsu, 214131, P. R. China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
4
|
Ujjwal RR, Slaughter G. Advances in Bacterial Cellulose-Based Scaffolds for Tissue Engineering: Review. J Biomed Mater Res A 2025; 113:e37912. [PMID: 40233003 DOI: 10.1002/jbm.a.37912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Bacterial cellulose (BC) has emerged as a highly versatile and promising biomaterial in tissue engineering, with potential applications across skin, bone, cartilage, and vascular regeneration. Its exceptional properties like high mechanical strength, superior biocompatibility, excellent moisture retention, and inherent ability to support cell adhesion and proliferation, make BC particularly effective for wound healing and skin regeneration. These attributes accelerate tissue repair and foster new tissue formation, highlighting its value in skin-related applications. Additionally, BC's capacity to support osteogenic differentiation, combined with its mechanical robustness, positions it as a strong candidate for bone tissue engineering, facilitating regeneration and repair. Recent advancements have emphasized the development of BC-based hybrid scaffolds to enhance tissue-specific functionalities, including vascularization and cartilage regeneration. These innovations aim to address the complex requirements of various tissue engineering applications. However, challenges remain, particularly regarding the scalability of BC production, cost-effectiveness, and the long-term stability of BC-based scaffolds. Such barriers continue to limit its broader clinical adoption. This review critically examines the synthesis methods, intrinsic properties, and recent innovations in the design of BC-based scaffolds, offering insights into their potential to revolutionize regenerative medicine. Furthermore, it addresses the key challenges and limitations that must be overcome to enable the clinical integration of BC. By addressing these limitations, BC could play a transformative role in advancing tissue engineering and regenerative therapies, bridging the gap between laboratory research and clinical application.
Collapse
Affiliation(s)
- Rewati Raman Ujjwal
- Center for Bioelectronics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
5
|
Fang R, Yu N, Wang F, Xu X, Zhang J. Hemoadhican Fiber Composite with Carbon Dots for Treating Severe Hemorrhage and Infected Wounds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9087-9102. [PMID: 39882714 DOI: 10.1021/acsami.4c20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization. The selected H-CDs possess nanoscale dimensions and a positive surface charge. They contain aldehyde groups and generate reactive oxygen species, which effectively eliminate bacteria. Subsequently, H-CDs were integrated into HD fibers (CDs-HD fibers) using a wet-spinning technique. The water vapor transmission rate, blood contact angle, and in vitro antimicrobial efficacy were evaluated. In a rat model of severe femoral artery hemorrhage and a noncompressible hepatic hemorrhage model, CDs-HD fibers demonstrated superior hemostatic performance compared to the commercially available QuikClot Combat Gauze. Furthermore, in a rat model of mixed bacterial wound infection, CDs-HD fibers significantly enhanced epithelial tissue remodeling and collagen deposition. In vivo studies confirmed the excellent biocompatibility of CDs-HD fibers. These findings suggest that CDs-HD fibers hold promise as a potential dressing for managing severe bleeding and preventing wound infections.
Collapse
Affiliation(s)
- Rui Fang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Fa Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
6
|
Koshani R, Pitcher ML, Yu J, Mahajan CL, Kim SH, Sheikhi A. Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications. NANO-MICRO LETTERS 2025; 17:103. [PMID: 39777633 PMCID: PMC11711842 DOI: 10.1007/s40820-024-01569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofabrication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcapsules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative soft materials and elucidating the complex structure-property relationships inherent in native CWs.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mica L Pitcher
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jingyi Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christine L Mahajan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
7
|
Guo N, Wang K, Chen J, Chang J, Gan H, Xie G, Zhang L, Wu Z, Liu Y. Fluorescent alginate fiber with super-strong and super-tough mechanical performances for biomedical applications. Carbohydr Polym 2025; 347:122764. [PMID: 39486991 DOI: 10.1016/j.carbpol.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
Emerging research attentions are focused on the development of fluorescent biomaterials for various biomedical applications, including fluorescence-guided surgery. However, it is still challenging to prepare biomolecules-based fluorescent fibers with both satisfactory biocompatibility and optimal mechanical properties. Here, we develop a fluorescent robust biofiber through using a tetraphenylethene-containing surfactant as the contact points between polysaccharide chains of alginate. This newly developed contact points not only strengthen the cross-linking network of polysaccharide chains, but also afford enough energy-dissipating slippage for polysaccharide chains. Consequently, the generated fluorescent fiber is endowed with highly improved mechanical performances from plastic strain stage. The experimental results indicate that the fluorescent fiber shows good mechanical properties of breaking strength of 1.10 GPa (12.09 cN/dtex), Young's modulus of 39.81 GPa and toughness of 137.26 MJ/m3, which are comparable to those of dragline silk and outperforming spider silk proteins and other artificial materials. More importantly, its satisfactory biosafety and wound healing-promoting ability as a fluorescent suture are solidly proved by both in vitro and in vivo assays, which opens an opportunity for its biological and biomedical applications. This study provides a novel strategy for the development of robust fluorescent biomaterials.
Collapse
Affiliation(s)
- Ning Guo
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Kang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia Chen
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahao Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Huixuan Gan
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guolie Xie
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yun Liu
- The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Greco G, Schmuck B, Bäcklund FG, Reiter G, Rising A. Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers. ACS APPLIED POLYMER MATERIALS 2024; 6:14342-14350. [PMID: 39697840 PMCID: PMC11650584 DOI: 10.1021/acsapm.4c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
Recent biotechnological advancements in protein production and development of biomimetic spinning procedures make artificial spider silk a promising alternative to petroleum-based fibers. To enhance the competitiveness of artificial silk in terms of mechanical properties, refining the spinning techniques is imperative. One potential strategy involves the integration of post-spin stretching, known to improve fiber strength and stiffness while potentially offering additional advantages. Here, we demonstrate that post-spin stretching not only enhances the mechanical properties of artificial silk fibers but also restores a higher and more uniform alignment of the protein chains, leading to a higher fiber toughness. Additionally, fiber properties may be reduced by processes, such as aging, that cause increased network entropy. Post-spin stretching was found to partially restore the initial properties of fibers exposed aging. Finally, we propose to use the degree of necking as a simple measure of fiber quality in the development of spinning procedures for biobased fibers.
Collapse
Affiliation(s)
- Gabriele Greco
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
| | - Benjamin Schmuck
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Fredrik G. Bäcklund
- Division
Materials and Production, Department of Polymers, Fibers and Composites, RISE Research Institutes of Sweden, Mölndal 431 53, Sweden
| | - Günter Reiter
- Physikalisches
Institut, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Straße
3, Freiburg 79104, Germany
| | - Anna Rising
- Department
of Animal Biosciences, Swedish University
of Agricultural Sciences, Box 7011, Uppsala 750
07, Sweden
- Department
of Medicine Huddinge, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| |
Collapse
|
9
|
Wu Z, Wang K, Chen J, Chang J, Zhu S, Xie C, Liu Y, Wang Z, Zhang L. Super-Strong, Super-Stiff, and Super-Tough Fluorescent Alginate Fibers with Outstanding Tolerance to Extreme Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406163. [PMID: 39308423 DOI: 10.1002/smll.202406163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Indexed: 12/13/2024]
Abstract
The combination of multiple physical properties is of great importance for widening the application scenarios of biomaterials. It remains a great challenge to fabricate biomolecules-based fibers gaining both mechanical strength and toughness which are comparable to natural spider dragline silks. Here, by mimicking the structure of dragline silks, a high-performance fluorescent fiber Alg-TPEA-PEG is designed by non-covalently cross-linking the polysaccharide chains of alginate with AIEgen-based surfactant molecules as the flexible contact points. The non-covalent cross-linking network provides sufficient energy-dissipating slippage between polysaccharide chains, leading to Alg-TPEA-PEG with highly improved mechanical performances from the plastic strain stage. By successfully transferring the extraordinary mechanical performances of polysaccharide chains to macroscopic fibers, Alg-TPEA-PEG exhibits an outstanding breaking strength of 1.27 GPa, Young's modulus of 34.13 GPa, and toughness of 150.48 MJ m-3, which are comparable to those of dragline silk and outperforming other artificial materials. More importantly, both fluorescent and mechanical properties of Alg-TPEA-PEG can be well preserved under various harsh conditions, and the fluorescence and biocompatibility facilitate its biological and biomedical applications. This study affords a new biomimetic designing strategy for gaining super-strong, super-stiff, and super-tough fluorescent biomaterials.
Collapse
Affiliation(s)
- Zhongtao Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Kang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Laicheng power plant, Huadian Power International Corporation LTD, 288 Changshao North Road, Laiwu, Shandong, 271100, China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jiahao Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, China
| | - Shanhui Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
10
|
Ospennikov AS, Chesnokov YM, Shibaev AV, Lokshin BV, Philippova OE. Nanostructured Hydrogels of Carboxylated Cellulose Nanocrystals Crosslinked by Calcium Ions. Gels 2024; 10:777. [PMID: 39727535 DOI: 10.3390/gels10120777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl2 using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl2 concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network. Comparison of the rheological data at the same ionic strength provided by NaCl and CaCl2 shows much higher dynamic moduli in the presence of CaCl2, which implies that calcium cations not only screen the repulsion between similarly charged nanocrystals favoring their self-assembly, but also crosslink the polyanionic nanocrystals. Crosslinking is endothermic and driven by increasing entropy, which is most likely due to the release of water molecules surrounding the interacting COO- and Ca2+ ions. The hydrogels can be easily destroyed by increasing the shear rate because of the alignment of rodlike nanocrystals along the direction of flow and then quickly recover up to 90% of their viscosity in 15 s, when the shear rate is decreased.
Collapse
Affiliation(s)
| | - Yuri M Chesnokov
- National Research Center "Kurchatov Institute", 123182 Moscow, Russia
| | - Andrey V Shibaev
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Chemistry Department, Karaganda E.A. Buketov University, Karaganda 100028, Kazakhstan
| | - Boris V Lokshin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga E Philippova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Greco G, Schmuck B, Del Bianco L, Spizzo F, Fambri L, Pugno NM, Veintemillas-Verdaguer S, Morales MP, Rising A. High-performance magnetic artificial silk fibers produced by a scalable and eco-friendly production method. ADVANCED COMPOSITES AND HYBRID MATERIALS 2024; 7:163. [PMID: 39371407 PMCID: PMC11447077 DOI: 10.1007/s42114-024-00962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Flexible magnetic materials have great potential for biomedical and soft robotics applications, but they need to be mechanically robust. An extraordinary material from a mechanical point of view is spider silk. Recently, methods for producing artificial spider silk fibers in a scalable and all-aqueous-based process have been developed. If endowed with magnetic properties, such biomimetic artificial spider silk fibers would be excellent candidates for making magnetic actuators. In this study, we introduce magnetic artificial spider silk fibers, comprising magnetite nanoparticles coated with meso-2,3-dimercaptosuccinic acid. The composite fibers can be produced in large quantities, employing an environmentally friendly wet-spinning process. The nanoparticles were found to be uniformly dispersed in the protein matrix even at high concentrations (up to 20% w/w magnetite), and the fibers were superparamagnetic at room temperature. This enabled external magnetic field control of fiber movement, rendering the material suitable for actuation applications. Notably, the fibers exhibited superior mechanical properties and actuation stresses compared to conventional fiber-based magnetic actuators. Moreover, the fibers developed herein could be used to create macroscopic systems with self-recovery shapes, underscoring their potential in soft robotics applications. Supplementary information The online version contains supplementary material available at 10.1007/s42114-024-00962-y.
Collapse
Affiliation(s)
- Gabriele Greco
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7011, 75007 Uppsala, Sweden
| | - Benjamin Schmuck
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7011, 75007 Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Neo, 14183 Huddinge, Sweden
| | - Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, Via G. Saragat 1, 44122 Ferrara, Italy
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, Via G. Saragat 1, 44122 Ferrara, Italy
| | - Luca Fambri
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, University of Trento, Via Mesiano 77, 38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, UK, Mile End Road, London, E1 4NS UK
| | | | - Maria Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Anna Rising
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7011, 75007 Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Neo, 14183 Huddinge, Sweden
| |
Collapse
|
12
|
Sharma VM, Valsaraj TV, Venkataramana Sudeep H, Raj A, Kodimule S, Jacob J. Preparation, characterization, in vitro and in vivo studies of liposomal berberine using novel natural Fiber Interlaced Liposomal technology. Eur J Pharm Biopharm 2024; 203:114431. [PMID: 39094668 DOI: 10.1016/j.ejpb.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Berberine hydrochloride (BBR), used in various traditional medicinal practices, has a variety of pharmacological effects. It is a plant-derived quaternary isoquinoline alkaloid with a low water solubility and can be used in the treatment of various conditions. However, the therapeutic use of BBR has been compromised because of its hydrophobic characteristics, in addition to its low stability and poor bioavailability. To overcome these drawbacks of BBR's oral bioavailability, technologies like liposomal delivery systems have been developed to ensure enhanced absorption. But conventional liposomes have low physical and chemical stability due to delicate liposomal membranes, peroxidation and rapid clearance from the bloodstream. Surface modification of liposomes could be a solution and creating a liposome with plant-based fibers as surface material will provide enhanced stability, aqueous solubility and protection against degradation. Consequently, the aim of this study is to create and describe a Fiber Interlaced Liposome™ (FIL) as a vehicle for an enhanced bioavailability platform for BBR and other biomolecules. This optimised FIL-BBR formulation was analysed for its structural and surface morphological characteristics by using FTIR, SEM, TEM, XRD, zeta potential and DSC. Encapsulation efficiency, stability, and sustained release studies using an in vitro digestion model with simulated gastric and intestinal fluids were also examined. FIL formulation showed a sustained release of BBR at 59.03 % as compared to the unformulated control (46.73 %) after 8 h of dialysis. Furthermore, the FIL-BBR demonstrated enhanced stability in the simulated gastric fluid (SGF) in addition to a more sustained release in the simulated intestinal fluid (SIF). The efficacy of FIL-BBR were further anlaysed by an in vivo bioavailability study using male Wistar rats and it demonstrated a 3.37-fold higher relative oral bioavailability compared to the unformulated BBR. The AUC 0-t for BBR in FIL-BBR was 1.38 ng.h/mL, significantly greater than the unformulated BBR (0.41 ng.h/mL). Similarly, the Cmax for BBR in FIL-BBR (50.98 ng/mL) was discovered to be far greater than unformulated BBR (15.54 ng/mL) after the oral administration. These findings imply that fruit fiber based liposomal encapsulation improves the stability and slows down BBR release, which could be advantageous for applications requiring a higher bioavailability and a more sustained release.
Collapse
Affiliation(s)
- Vedashree M Sharma
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | - T V Valsaraj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Amritha Raj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Joby Jacob
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India.
| |
Collapse
|
13
|
Zhang L, Du Q, Chen J, Liu Y, Chang J, Wu Z, Luo X. Highly-Strong and Highly-Tough Alginate Fibers with Photo-Modulating Mechanical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402949. [PMID: 39206754 PMCID: PMC11516064 DOI: 10.1002/advs.202402949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The good combination of high strength and high toughness is a long-standing challenge in the design of robust biomaterials. Meanwhile, robust biomaterials hardly perform fast and significant mechanical property changes under the trigger of light at room temperature. These limit the application of biomaterials in some specific areas. Here, photoresponsive alginate fibers are fabricated by using the designed azobenzene-containing surfactant as flexible contact point for cross-linking polysaccharide chains of alginate, which gain high mechanics through reinforced plastic strain and photo-modulating mechanics through isomerization of azobenzene. By transferring molecular motion into macro-scale mechanical property changes, such alginate fibers achieve reversible photo-modulations on the mechanics. Their breaking strength and toughness can be photo-modulated from 732 MPa and 112 MJ m-3 to 299 MPa and 27 MJ m-3, respectively, leading to record high mechanical changes among the developed smart biomaterials. With merits of good tolerance to pH and temperature, fast response to light, and good biocompatibility, the reported fibers will be suitable for working in various application scenarios as new smart biomaterials. This study provides a new design strategy for gaining highly-strong and highly-tough photoresponsive biomaterials.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Qianyao Du
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Jia Chen
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiang524023China
| | - Yun Liu
- Guangdong Key Laboratory for Research and Development of Natural DrugsGuangdong Medical UniversityZhanjiang524023China
| | - Jiahao Chang
- School of Clinical MedicineShandong Second Medical UniversityWeifang261053China
| | - Zhongtao Wu
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| | - Xiliang Luo
- Key Laboratory of Optic‐electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdao266042China
| |
Collapse
|
14
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
15
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
16
|
Ji H, Feng S, Yang M. Controlled Structural Relaxation of Aramid Nanofibers for Superstretchable Polymer Fibers with High Toughness and Heat Resistance. ACS NANO 2024; 18:18548-18559. [PMID: 38968387 DOI: 10.1021/acsnano.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Polymer fibers that combine high toughness and heat resistance are hard to achieve, which, however, hold tremendous promise in demanding applications such as aerospace and military. This prohibitive design task exists due to the opposing property dependencies on chain dynamics because traditional heat-resistant materials with rigid molecular structures typically lack the mechanism of energy dissipation. Aramid nanofibers have received great attention as high-performance nanoscale building units due to their intriguing mechanical and thermal properties, but their distinct structural features are yet to be fully captured. We show that aramid nanofibers form nanoscale crimps during the removal of water, which primarily resides at the defect planes of pleated sheets, where the folding can occur. The precise control of such a structural relaxation can be realized by exerting axial loadings on hydrogel fibers, which allows the emergence of aramid fibers with varying angles of crimps. These crimped fibers integrate high toughness with heat resistance, thanks to the extensible nature of nanoscale crimps with rigid molecular structures of poly(p-phenylene terephthalamide), promising as a template for stable stretchable electronics. The tensile strength/modulus (392-944 MPa/11-29 GPa), stretchability (25-163%), and toughness (154-445 MJ/cm3) are achieved according to the degree of crimping. Intriguingly, a toughness of around 430 MJ/m3 can be maintained after calcination below the relaxation temperature (259 °C) for 50 h. Even after calcination at 300 °C for 10 h, a toughness of 310 MJ/m3 is kept, outperforming existing polymer materials. Our multiscale design strategy based on water-bearing aramid nanofibers provides a potent pathway for tackling the challenge for achieving conflicting property combinations.
Collapse
Affiliation(s)
- He Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Hasan Aneem T, Sarker M, Wong SY, Lim S, Li X, Rashed A, Chakravarty S, Arafat MT. Antimicrobial peptide immobilization on catechol-functionalized PCL/alginate wet-spun fibers to combat surgical site infection. J Mater Chem B 2024. [PMID: 38958038 DOI: 10.1039/d4tb00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities. In this study, naturally sourced AMPs were studied along with microfibers, fabricated by a novel wet-spinning method using sodium alginate and polycaprolactone. Afterward, fibers were functionalized by the catechol groups of dopamine immobilizing nucleophilic AMPs on the surface. Conjugation between PCL and alginate resulted in fibers with smooth surfaces improving their mechanical strength via hydrogen bonds. Having an average diameter of 220 μm, the mechanical properties of the fiber complied with USP standards for suture size 3-0. Engineered microfibers were able to hinder the growth of Proteus spp., a pathogenic bacterium for at least 60 hours whereas antibiotic ceftazidime failed. When subjected to a linear incisional wound model study, accelerated healing was observed when the wound was closed using the engineered fiber compared to Vicryl. The microfibers promoted faster re-epithelialization compared to Vicryl proving their higher wound healing capacity.
Collapse
Affiliation(s)
- Taufiq Hasan Aneem
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| | - Mridul Sarker
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Asif Rashed
- Department of Microbiology, Mugda Medical College, Dhaka-1214, Bangladesh
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka-1000, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| |
Collapse
|
18
|
Xie X, Cui M, Wang T, Yang J, Li W, Wang K, Lin M. Constructing Stiff β-Sheet for Self-Reinforced Alginate Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3047. [PMID: 38998130 PMCID: PMC11242387 DOI: 10.3390/ma17133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
The application of alginate fibers is limited by relatively low mechanical properties. Herein, a self-reinforcing strategy inspired by nature is proposed to fabricate alginate fibers with minimal changes in the wet-spinning process. By adapting a coagulation bath composing of CaCl2 and ethanol, the secondary structure of sodium alginate (SA) was regulated during the fibrous formation. Ethanol mainly increased the content of β-sheet in SA. Rheological analysis revealed a reinforcing mechanism of stiff β-sheet for enhanced modulus and strength. In combination with Ca2+ crosslinking, the self-reinforced alginate fibers exhibited an increment of 39.0% in tensile strength and 71.9% in toughness. This work provides fundamental understanding for β-sheet structures in polysaccharides and a subsequent self-reinforcing mechanism. It is significant for synthesizing strong and tough materials. The self-reinforcing strategy involved no extra additives and preserved the degradability of the alginate. The reinforced alginate fibers exhibited promising potentials for biological applications.
Collapse
Affiliation(s)
- Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Min Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Wenli Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Kai Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
19
|
Cui M, Liu S, Xie X, Yang J, Wang T, Jiao Y, Lin M, Sui K. Self-Assembly Reinforced Alginate Fibers for Enhanced Strength, Toughness, and Bone Regeneration. Biomacromolecules 2024; 25:3475-3485. [PMID: 38741285 DOI: 10.1021/acs.biomac.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Material reinforcement commonly exists in a contradiction between strength and toughness enhancement. Herein, a reinforced strategy through self-assembly is proposed for alginate fibers. Sodium alginate (SA) microstructures with regulated secondary structures are assembled in acidic and ethanol as reinforcing units for alginate fibers. Acidity increases the flexibility of the helix and contributes to enhanced extendibility. Ethanol is responsible for formation of a stiff β-sheet, which enhances the modulus and strength. The structurally engineered SA assembly exhibits robust mechanical compatibility, and thus reinforced alginate fibers possess an improved tensile strength of 2.1 times, a prolonged elongation of 1.5 times, and an enhanced toughness of 3.0 times compared with SA fibers without reinforcement. The reinforcement through self-assembly provides an understanding of strengthening and toughening mechanism based on secondary structures. Due to a similar modulus with bones, reinforced alginate fibers exhibit good efficacy in accelerating bone regeneration in vivo.
Collapse
Affiliation(s)
- Min Cui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130012, P. R. China
| | - Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Yuyang Jiao
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
20
|
Utoiu E, Manoiu VS, Oprita EI, Craciunescu O. Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering. Gels 2024; 10:387. [PMID: 38920933 PMCID: PMC11203293 DOI: 10.3390/gels10060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Elena Iulia Oprita
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania; (E.U.); (V.S.M.); (O.C.)
| | | |
Collapse
|
21
|
Lin H, Kehinde O, Lin C, Fei M, Li R, Zhang X, Yang W, Li J. Mechanically strong micro-nano fibrillated cellulose paper with improved barrier and water-resistant properties for replacing plastic. Int J Biol Macromol 2024; 263:130102. [PMID: 38342270 DOI: 10.1016/j.ijbiomac.2024.130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Replacing nonbiodegradable plastics with environmentally friendly cellulose materials has emerged as a key trend in environmental protection. This study highlights the development of a strong and hydrophobic micro-nano fibrillated cellulose paper (MNP) through the incorporation of micro-nano fibrillated cellulose fiber (MNF) and chitin nanocrystal (Ch), followed by the impregnation of polymethylsiloxane (PMHS). A low-acid, heat-assisted colloidal grinding strategy was employed to prepare MNF with a high aspect ratio effectively. Ch was incorporated as a reinforcing matrix into the cellulose fiber scaffold through straightforward mechanical mixing and mechanical hot-pressing treatments. Compared to pure MNP, the 5Ch-MNP exhibited a 25 % improvement in tensile strength, reaching 170 MPa, and showed enhanced barrier properties against oxygen and water vapor. The impregnation of PMHS rapidly confers environmentally resistant hydrophobic properties to 1 % PMHS-5Ch-MNP, leading to a water contact angle exceeding 112°, and a 290 % increase in tensile strength under wet conditions. Additionally, the paper demonstrated excellent antibacterial adhesion properties, with the adhesion rates for E. coli and S. aureus exceeding 98 %. This study successfully produced functional cellulose paper with remarkable mechanical properties and barrier properties, as well as hydrophobicity, using a simple, efficient, and environmentally friendly method, making it a promising substitute for petroleum-based plastics.
Collapse
Affiliation(s)
- Huiping Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Olonisakin Kehinde
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Chengwei Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Mingen Fei
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Ran Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xinxiang Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Wenbin Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| | - Jian Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; Northeast Forestry University, Haerbin 150040, China.
| |
Collapse
|
22
|
罗 川, 张 莉, 冉 力, 尤 炫, 黄 石. [New Advances in the Application of Bacterial Cellulose Composite Materials in the Field of Bone Tissue Engineering]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:243-248. [PMID: 38645860 PMCID: PMC11026885 DOI: 10.12182/20240360507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 04/23/2024]
Abstract
Bacterial cellulose (BC) is a type of extracellular polymeric nanomaterial secreted by microorganisms over the course of their growth. It has gained significant attention in the field of bone tissue engineering due to its unique structure of three-dimensional fibrous network, excellent biocompatibility, biodegradability, and exceptional mechanical properties. Nevertheless, BC still has some weaknesses, including low osteogenic activity, a lack of antimicrobial properties, small pore size, issues with the degradation rate, and a mismatch in bone tissue regeneration, limiting its standalone use in the field of bone tissue engineering. Therefore, the modification of BC and the preparation of BC composite materials have become a recent research focus. Herein, we summarized the relationships between the production, modification, and bone repair applications of BC. We introduced the methods for the preparation and the modification of BC. Additionally, we elaborated on the new advances in the application of BC composite materials in the field of bone tissue engineering. We also highlighted the existing challenges and future prospects of BC composite materials.
Collapse
Affiliation(s)
- 川 罗
- 四川大学华西医院 骨科 (成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 莉 张
- 四川大学华西医院 骨科 (成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 力瑜 冉
- 四川大学华西医院 骨科 (成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 炫合 尤
- 四川大学华西医院 骨科 (成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 石书 黄
- 四川大学华西医院 骨科 (成都 610041)Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Zhang Z, Kong Y, Gao J, Han X, Lian Z, Liu J, Wang WJ, Yang X. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. NANOSCALE 2024. [PMID: 38465763 DOI: 10.1039/d3nr06126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
With the goal of sustainable development, manufacturing continuous high-performance fibers based on sustainable resources is an emerging research direction. However, compared to traditional synthetic fibers, plant fibers have limited length/diameter and uncontrollable natural defects, while regenerated cellulose fibers such as viscose and Lyocell suffer from inferior mechanical properties. Wet-spun fibers based on nanocelluloses especially cellulose nanofibrils (CNFs) offer superior mechanical performance since CNFs are the fundamental high-performance building blocks of plant cell walls. This review aims to summarize the progress of making CNF wet-spun fibers, emphasizing on the whole wet spinning process including spinning suspension preparation, spinning, coagulation, washing, drying and post-stretching steps. By establishing the relationships between the nano-scale assembling structure and the macroscopic changes in the CNF dope from gels to dried fibers, effective methods and strategies to improve the mechanical properties of the final fibers are analyzed and proposed. Based on this, the opportunities and challenges for potential industrial-scale production are discussed.
Collapse
Affiliation(s)
- Zihuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Yuying Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Junqi Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xiao Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Zechun Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jiamin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Wen-Jun Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| |
Collapse
|
24
|
Jia X, Zhang M, Zhang Y, Fu Y, Sheng N, Chen S, Wang H, Du Y. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. NANO LETTERS 2024; 24:2218-2225. [PMID: 38277614 DOI: 10.1021/acs.nanolett.3c04343] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Significant untapped energy exists within low-grade heat sources and salinity gradients. Traditional nanofluidic membranes exhibit inherent limitations, including low ion selectivity, high internal resistance, reliance on nonrenewable resources, and instability in aqueous solutions, invariably constraining their practical application. Here, an innovative composite membrane-based nanofluidic system is reported, involving the strategy of integrating tailor-modified bacterial nanofibers with boron nitride nanosheets, enabling high surface charge densities while maintaining a delicate balance between ion selectivity and permeability, ultimately facilitating effective thermo-osmotic energy harvesting. The device exhibits an impressive output power density of 10 W m-2 with artificial seawater and river water at a 50 K temperature gradient. Furthermore, it demonstrates robust power density stability under prolonged exposure to salinity gradients or even at elevated temperatures. This work opens new avenues for the development of nanofluidic systems utilizing composite materials and presents promising solutions for low-grade heat recovery and osmotic energy harvesting.
Collapse
Affiliation(s)
- Xiwei Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Minghao Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yating Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yuyang Fu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Nan Sheng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yong Du
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
25
|
Li Z, Ai J, Wu D, Yu Y, Xie L, Ke H, Wang Q, Zhang K, Lv P, Wei Q. Robust integration of light-driven carbon quantum dots with bacterial cellulose enables excellent mechanical and antibacterial biodegradable yarn. Int J Biol Macromol 2024; 257:128741. [PMID: 38101674 DOI: 10.1016/j.ijbiomac.2023.128741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Due to the overuse of antimicrobial drugs, bacterial resistance became an urgent problem to be solved. In this study, carbon quantum dots (CQDs) with high photodynamic antibacterial activity were synthesized by a one-pot hydrothermal method and introduced into bacterial cellulose (BC) dispersion solution. Through a wet-spinning and wet-twisting processing strategy, bionic ordering nanocomposite macrofiber (BC/CQDs-based yarn) based on BC were obtained. The results showed that BC/CQDs-based yarn had excellent tensile strength (226.8 MPa) and elongation (22.2 %). Utilizing the light-driven generation of singlet oxygen (1O2) and hydroxyl radical (·OH), BC/CQDs-based yarn demonstrated remarkable antibacterial efficacy, with 99.9999 % (6 log, P < 0.0001) and 96.54 % (1.46 log, P < 0.0004) effectiveness against E. coli and S. aureus, respectively. At the same time, BC/CQDs-based yarn also displayed the characteristics of photothermal, fluorescent, and biodegradability. In summary, the application potential of BC/CQDs-based yarn is significant, opening up a new strategy for the development of sustainable green weaving and bio-based multi-function yarn.
Collapse
Affiliation(s)
- Zhuquan Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingwen Ai
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dingsheng Wu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yajing Yu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lixi Xie
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Huizhen Ke
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Pengfei Lv
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
26
|
Liu Z, Wang Y, Guo S, Liu J, Zhu P. Preparation and characterization of bacterial cellulose synthesized by kombucha from vinegar residue. Int J Biol Macromol 2024; 258:128939. [PMID: 38143062 DOI: 10.1016/j.ijbiomac.2023.128939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Bacterial cellulose (BC) has been widely applied in various fields due to its excellent physicochemical properties, but its high production cost remains a challenge. Herein, the present study aimed to utilize the hydrolysate of vinegar residue (VR) as the only medium to realize the cost-effective production of BC. The BC production was optimized by the single-factor test. The treatment of 6 % VR concentration with 3 % acid concentration at 100 °C for 1.5 h and 96 U/mL of cellulase for 4 h at 50 °C obtained a maximum reducing sugar concentration of about 32 g/L. Additionally, the VR hydrolysate treated with 3 % active carbon (AC) at 40 °C for 0.5 h achieved a total phenol removal ratio of 86 %. The yield of BC reached 2.1 g/L under the optimum conditions, which was twice compared to the standard medium. The produced BC was characterized by SEM, FT-IR, XRD, and TGA analyses, and the results indicated that the BC prepared by AC-treated VR hydrolysate had higher fiber density, higher crystallinity, and good thermal stability. Furthermore, the regenerated BC (RBC) fibers with a tensile stress of 400 MPa were prepared successfully using AmimCl solution as a solvent by dry-wet-spinning method. Overall, the VR waste could be used as an alternative carbon source for the sustainable production of BC, which could be further applied to RBC fibers preparation.
Collapse
Affiliation(s)
- Zhanna Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Yingying Wang
- Zibo Key Laboratory of Bio-based Textile Materials, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Shengnan Guo
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China; Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China.
| | - Ping Zhu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
27
|
Wu Z, Wang B, Li J, Jia Y, Chen S, Wang H, Chen L, Shuai L. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. NANO LETTERS 2023; 23:10297-10304. [PMID: 37955657 DOI: 10.1021/acs.nanolett.3c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Low-grade heat exists ubiquitously in the environment, and gel-state thermogalvanic cells (GTCs) can directly convert thermal energy into electricity by a redox reaction. However, their low ionic conductivity and poor mechanical properties are still insufficient for their potential applications. Here, we designed a bacterial cellulose (BC) nanofiber-macromolecular entanglement network to balance the GTC's thermopower and mechanical properties. Therefore, the BC-GTC shows a Seebeck coefficient of 3.84 mV K-1, an ionic conductivity of 108.5 mS cm-1, and a high specific output power density of 1760 μW m-2 K-2, which are much higher than most current literature. Further connecting 15 units of BC-GTCs, the output voltage of 3.35 V can be obtained at a temperature gradient of 65 K, which can directly power electronic devices such as electronic calculators, thermohydrometers, fans, and light-emitting diodes (LEDs). This work offers a promising method for developing high-performance and durable GTC in sustainable green energy.
Collapse
Affiliation(s)
- Zhuotong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Baoxiu Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Yuhang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| |
Collapse
|
28
|
Greco G, Schmuck B, Jalali SK, Pugno NM, Rising A. Influence of experimental methods on the mechanical properties of silk fibers: A systematic literature review and future road map. BIOPHYSICS REVIEWS 2023; 4:031301. [PMID: 38510706 PMCID: PMC10903380 DOI: 10.1063/5.0155552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 03/22/2024]
Abstract
Spider silk fibers are of scientific and industrial interest because of their extraordinary mechanical properties. These properties are normally determined by tensile tests, but the values obtained are dependent on the morphology of the fibers, the test conditions, and the methods by which stress and strain are calculated. Because of this, results from many studies are not directly comparable, which has led to widespread misconceptions in the field. Here, we critically review most of the reports from the past 50 years on spider silk mechanical performance and use artificial spider silk and native silks as models to highlight the effect that different experimental setups have on the fibers' mechanical properties. The results clearly illustrate the importance of carefully evaluating the tensile test methods when comparing the results from different studies. Finally, we suggest a protocol for how to perform tensile tests on silk and biobased fibers.
Collapse
Affiliation(s)
| | | | - S. K. Jalali
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123 Trento, Italy
| | | | - Anna Rising
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
29
|
Niu P, Mao H, Lim KH, Wang Q, Wang WJ, Yang X. Nanocellulose-Based Hollow Fibers for Advanced Water and Moisture Management. ACS NANO 2023; 17:14686-14694. [PMID: 37459214 DOI: 10.1021/acsnano.3c02553] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Natural plant fibers such as cotton have favorable performance in water and moisture management; however, they suffer from inferior processing ability due to limited diameter and length, as well as natural defects. Although commercially available regenerated cellulose fibers such as lyocell fibers can have tunable structures, they rely on the complete dissolution of cellulose molecules, including the highly crystalline parts, leading to inferior mechanical properties. Through a specially designed coaxial wet-spinning process, we prepare a type of hollow fiber using only cellulose nanofibrils (CNFs) as building blocks. It mimics cotton fibers with a lumen structure but with a tunable diameter and a long length. Moreover, such hollow fibers have superior mechanical properties with a Young's modulus of 24.7 GPa and tensile strength of 341 MPa, surpassing lyocell fibers and most wet-spun CNF-based fibers. Importantly, they have 10 times higher wicking ability, wetting rate, drying rate, and maximum wetting ratio compared to lyocell fibers. Together with a superior long-term performance after 500 rounds of wetting-drying tests, such CNF-based hollow fibers are sustainable choices for advanced textile applications. And this study provides a greater understanding of nanoscale building blocks and their assembled macromaterials, which may help to reveal the magic hierarchical design of natural materials, in this case, plant fibers.
Collapse
Affiliation(s)
- Panpan Niu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Institute of Zhejiang University, Quzhou 324000, People's Republic of China
| | - Hui Mao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Khak Ho Lim
- Institute of Zhejiang University, Quzhou 324000, People's Republic of China
| | - Qingyue Wang
- Institute of Zhejiang University, Quzhou 324000, People's Republic of China
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Institute of Zhejiang University, Quzhou 324000, People's Republic of China
| | - Xuan Yang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Institute of Zhejiang University, Quzhou 324000, People's Republic of China
| |
Collapse
|
30
|
Chen Y, Du Z, Zhang J, Zeng P, Liang H, Wang Y, Sun Q, Zhou G, Li H. Personal Microenvironment Management by Smart Textiles with Negative Oxygen Ions Releasing and Radiative Cooling Performance. ACS NANO 2023. [PMID: 37428964 DOI: 10.1021/acsnano.3c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
In recent years, significant strides have been made in the development of smart clothing, which combines traditional apparel with advanced technology. As our climate and environment undergo continuous changes, it has become critically important to invent and refine sophisticated textiles that enhance thermal comfort and human health. In this study, we present a "wearable forest-like textile". This textile is based on helical lignocellulose-tourmaline composite fibers, boasting mechanical strength that outperforms that of cellulose-based and natural macrofibers. This wearable microenvironment does more than generate approximately 18625 ions/cm3 of negative oxygen ions; it also effectively purifies particulate matter. Furthermore, our experiments demonstrate that the negative oxygen ion environment can slow fruit decay by neutralizing free radicals, suggesting promising implications for aging retardation. In addition, this wearable microenvironment reflects solar irradiation and selectively transmits human body thermal radiation, enabling effective radiative cooling of approximately 8.2 °C compared with conventional textiles. This sustainable and efficient wearable microenvironment provides a compelling textile choice that can enhance personal heat management and human health.
Collapse
Affiliation(s)
- Yipeng Chen
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhichen Du
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayi Zhang
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Pei Zeng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan 430022, China
| | - Huageng Liang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Since and Technology, Wuhan 430022, China
| | - Yixiang Wang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemical and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Guomo Zhou
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
31
|
Jia Y, Fiedler B, Yang W, Feng X, Tang J, Liu J, Zhang P. Durability of Plant Fiber Composites for Structural Application: A Brief Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113962. [PMID: 37297093 DOI: 10.3390/ma16113962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Environmental sustainability and eco-efficiency stand as imperative benchmarks for the upcoming era of materials. The use of sustainable plant fiber composites (PFCs) in structural components has garnered significant interest within industrial community. The durability of PFCs is an important consideration and needs to be well understood before their widespread application. Moisture/water aging, creep properties, and fatigue properties are the most critical aspects of the durability of PFCs. Currently, proposed approaches, such as fiber surface treatments, can alleviate the impact of water uptake on the mechanical properties of PFCs, but complete elimination seems impossible, thus limiting the application of PFCs in moist environments. Creep in PFCs has not received as much attention as water/moisture aging. Existing research has already found the significant creep deformation of PFCs due to the unique microstructure of plant fibers, and fortunately, strengthening fiber-matrix bonding has been reported to effectively improve creep resistance, although data remain limited. Regarding fatigue research in PFCs, most research focuses on tension-tension fatigue properties, but more attention is required on compression-related fatigue properties. PFCs have demonstrated a high endurance of one million cycles under a tension-tension fatigue load at 40% of their ultimate tensile strength (UTS), regardless of plant fiber type and textile architecture. These findings bolster confidence in the use of PFCs for structural applications, provided special measures are taken to alleviate creep and water absorption. This article outlines the current state of the research on the durability of PFCs in terms of the three critical factors mentioned above, and also discusses the associated improvement methods, with the hope that it can provide readers with a comprehensive overview of PFCs' durability and highlight areas worthy of further research.
Collapse
Affiliation(s)
- Yunlong Jia
- School of Aerospace and Mechanical Engineering/Aviation, Changzhou Institute of Technology, Changzhou 213032, China
| | - Bodo Fiedler
- Institute of Polymers and Composites, Hamburg University of Technology, D21073 Hamburg, Germany
| | - Wenkai Yang
- School of Aerospace and Mechanical Engineering/Aviation, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xinjian Feng
- Zhejiang Xingyu Autoparts Co., Ltd., Taizhou 317300, China
| | - Jingwen Tang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Jian Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Wuxi Lintex Advanced Materials Co., Ltd., Wuxi 214145, China
| | - Peigen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
32
|
Wang W, Li J, Shi J, Jiao Y, Wang X, Xia C. Structure and Physical Properties of Conductive Bamboo Fiber Bundle Fabricated by Magnetron Sputtering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3154. [PMID: 37109990 PMCID: PMC10143196 DOI: 10.3390/ma16083154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
The variety of conductive fibers has been constantly enriched in recent years, and it has made rapid development in the fields of electronic textiles, intelligent wearable, and medical care. However, the environmental damage caused by the use of large quantities of synthetic fibers cannot be ignored, and there is little research on conductive fibers in the field of bamboo, a green and sustainable material. In this work, we used the alkaline sodium sulfite method to remove lignin from bamboo, prepared a conductive bamboo fiber bundle by coating a copper film on single bamboo fiber bundles using DC magnetron sputtering, and analyzed its structure and physical properties under different process parameters, finding the most suitable preparation condition that combines cost and performance. The results of the scanning electron microscope show that the coverage of copper film can be improved by increasing the sputtering power and prolonging the sputtering time. The resistivity of the conductive bamboo fiber bundle decreased with the increase of the sputtering power and sputtering time, up to 0.22 Ω·mm; at the same time, the tensile strength of the conductive bamboo fiber bundle continuously decreased to 375.6 MPa. According to the X-ray diffraction results, Cu in the copper film on the surface of the conductive bamboo fiber bundle shows the preferred orientation of (111) the crystal plane, indicating that the prepared Cu film has high crystallinity and good film quality. X-ray photoelectron spectroscopy results show that Cu in the copper film exists in the form of Cu0 and Cu2+, and most are Cu0. Overall, the development of the conductive bamboo fiber bundle provides a research basis for the development of conductive fibers in a natural renewable direction.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
| | - Jiayao Li
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
| | - Jiangtao Shi
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Jiao
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xinzhou Wang
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Changlei Xia
- Department of Wood Science and Engineering, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (W.W.); (J.L.); (Y.J.); (X.W.)
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
33
|
Mao H, Niu P, Zhang Z, Kong Y, Wang WJ, Yang X. High-strength and functional nanocellulose filaments made by direct wet spinning from low concentration suspensions. Carbohydr Polym 2023; 313:120881. [PMID: 37182934 DOI: 10.1016/j.carbpol.2023.120881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Continuous filaments obtained through the wet spinning of nanocellulose have promising mechanical properties with sustainable features. To guarantee proper spinnability for wet spinning, freshly made cellulose nanofibril (CNF) suspension needs to be concentrated to have a concentration above 1 wt%, resulting in energy- and time-consuming, and inferior mechanical properties of the final filaments owing to decreasing the CNF alignment against shear flows. In this study, a CNF spinning suspension at a low concentration (0.4 wt%) can be used right after the fibrillation process without further treatments. The effects of the concentration and re-concentrating process are studied by carefully characterizing the rheological behavior and filament solidification processes, which provides more fundamental understandings on the spinnability and CNF network formation of such colloidal CNF suspensions. Combined with a post stretching process, the final dried CNF filaments have superior mechanical properties with Young's modulus and tensile strength of 35 GPa and 567 MPa, surpassing most literature data. Moreover, different functional particles can be easily incorporated to prepare functional filaments. With facile preparation and superior properties, these CNF filaments may be suitable for advanced composite filler and special textile applications.
Collapse
|
34
|
Xie W, Liang X, Wang H, Zhao X, Tang Y, Wu M, Yang H. Structurally Tailoring Clay Nanosheets to Design Emerging Macrofibers with Tunable Mechanical Properties and Thermal Behavior. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3141-3151. [PMID: 36598369 DOI: 10.1021/acsami.2c19295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bio-derived nanomaterials are promising candidates for spinning high-performance sustainable textiles, but the inherent flammability of biomass-based fibers seriously limits their applications. There is still an urgent need to improve fiber flame retardancy while maintaining excellent mechanical performance. Here, inspired by the structural properties of layered nanoclay, we report a novel and efficient strategy to synthesize the strong, super tough, and flame-retardant nanocellulose/clay/sodium alginate (CRS) macrofibers via wet-spinning and directional drying. Benefiting from the precise modulation of arrangement and orientation of nanoclay in macrofibers, the new inorganic structure exhibits excellent mechanical and thermal functional properties. The anisotropic structure contributes to high toughness: the tensile strength was 373.3 MPa and the toughness was 26.92 MJ·m-3. Remarkably, rectorite nanosheets as a thermal and qualitative insulator significantly improve the flame retardancy of the CRS fibers with a heat release rate as low as 6.07 W/g, thermal conductivity of 90.5 mW/(m·K), and good temperature tolerance (ranging from -196 to 100 °C). This facile and high-efficiency strategy may have great scalability in manufacturing high-strength, super tough, and flame-retardant fibers for emerging biodegradable next-generation artificial fibers.
Collapse
Affiliation(s)
- Weimin Xie
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Xiaozheng Liang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Hao Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| | - Xiaoguang Zhao
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
| | - Yili Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Mingjie Wu
- Electrochemistry/Corrosion Laboratory, Department of Chemical Engineering, McGill University, Montréal, QuébecH3A 0C5, Canada
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha410083, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan430074, China
| |
Collapse
|
35
|
Li Y, Hu MX, Yan M, Guo YX, Ma XK, Han JZ, Qin YM. Intestinal models based on biomimetic scaffolds with an ECM micro-architecture and intestinal macro-elasticity: close to intestinal tissue and immune response analysis. Biomater Sci 2023; 11:567-582. [PMID: 36484321 DOI: 10.1039/d2bm01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergetic biological effect of scaffolds with biomimetic properties including the ECM micro-architecture and intestinal macro-mechanical properties on intestinal models in vitro remains unclear. Here, we investigate the profitable role of biomimetic scaffolds on 3D intestinal epithelium models. Gelatin/bacterial cellulose nanofiber composite scaffolds crosslinked by the Maillard reaction are tuned to mimic the chemical component, nanofibrous network, and crypt architecture of intestinal ECM collagen and the stability and mechanical properties of intestinal tissue. In particular, scaffolds with comparable elasticity and viscoelasticity of intestinal tissue possess the highest biocompatibility and best cell proliferation and differentiation ability, which makes the intestinal epithelium models closest to their counterpart intestinal tissues. The constructed duodenal epithelium models and colon epithelium models are utilized to assess the immunobiotics-host interactions, and both of them can sensitively respond to foreign microorganisms, but the secretion levels of cytokines are intestinal cell specific. The results demonstrate that probiotics alleviate the inflammation and cell apoptosis induced by Escherichia coli, indicating that probiotics can protect the intestinal epithelium from damage by inhibiting the adhesion and invasion of E. coli to intestinal cells. The designed biomimetic scaffolds can serve as powerful tools to construct in vitro intestinal epithelium models, providing a convenient platform to screen intestinal anti-inflammatory components and even to assess other physiological functions of the intestine.
Collapse
Affiliation(s)
- Yue Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ya-Xin Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jian-Zhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yu-Mei Qin
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
36
|
Wang B, Qiu S, Chen Z, Hu Y, Shi G, Zhuo H, Zhang H, Zhong L. Assembling nanocelluloses into fibrous materials and their emerging applications. Carbohydr Polym 2023; 299:120008. [PMID: 36876760 DOI: 10.1016/j.carbpol.2022.120008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Nanocelluloses, derived from various plants or specific bacteria, represent the renewable and sophisticated nano building blocks for emerging functional materials. Especially, the assembly of nanocelluloses as fibrous materials can mimic the structural organization of their natural counterparts to integrate various functions, thus holding great promise for potential applications in various fields, such as electrical device, fire retardance, sensing, medical antibiosis, and drug release. Due to the advantages of nanocelluloses, a variety of fibrous materials have been fabricated with the assistance of advanced techniques, and their applications have attracted great interest in the past decade. This review begins with an overview of nanocellulose properties followed by the historical development of assembling processes. There will be a focus on assembling techniques, including traditional methods (wet spinning, dry spinning, and electrostatic spinning) and advanced methods (self-assembly, microfluidic, and 3D printing). In particular, the design rules and various influencing factors of assembling processes related to the structure and function of fibrous materials are introduced and discussed in detail. Then, the emerging applications of these nanocellulose-based fibrous materials are highlighted. Finally, some perspectives, key opportunities, and critical challenges on future research trends within this field are proposed.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuting Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yijie Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hao Zhuo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huili Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
37
|
Wang Q, Xiao W, Luo X, Wang L, Gao J. Flexible and hydrophobic nanofiber composites with self-enhanced interfacial adhesion for high performance strain sensing and body motion detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Han Z, Chen S, Deng L, Liang Q, Qu X, Li J, Wang B, Wang H. Anti-Fouling, Adhesive Polyzwitterionic Hydrogel Electrodes Toughened Using a Tannic Acid Nanoflower. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45954-45965. [PMID: 36181479 DOI: 10.1021/acsami.2c14614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive polyzwitterionic hydrogels with good adhesion properties show potential prospect in implantable electrodes and electronic devices. Adhesive property of polyzwitterionic hydrogels in humid environments can be improved by the introduction of catechol groups. However, common catechol modifiers can usually quench free radicals, resulting in a contradiction between long-term tissue adhesion and hydrogel toughness. By adding tannic acid (TA) to the dispersion of clay nanosheets and nanofibers, we designed TA-coated nanoflowers and nanofibers as the reinforcing phase to prepare polyzwitterionic hydrogels with adhesion properties. The hydrogel combines the mussel-like and zwitterionic co-adhesive mechanism to maintain long-term adhesion in underwater environments. In particular, the noncovalent cross-linking provided by the nanoflower structure effectively compensates for the defects caused by free-radical quenching so that the hydrogel obtained a high stretchability of over 2900% and a toughness of 1.16 J/m3. The hydrogel also has excellent anti-biofouling property and shows resistance to bacteria and cells. In addition, the hydrogel possesses a low modulus (<10 kPa) and ionic conductivity (0.25 S/m), making it an ideal material for the preparation of implantable electrodes.
Collapse
Affiliation(s)
- Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
39
|
Kang Y, Xiao J, Ding R, Xu K, Zhang T, Tremblay PL. A two-stage process for the autotrophic and mixotrophic conversion of C1 gases into bacterial cellulose. BIORESOURCE TECHNOLOGY 2022; 361:127711. [PMID: 35907600 DOI: 10.1016/j.biortech.2022.127711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Gas fermentation is a well-established process for the conversion of greenhouse gases from industrial wastes into valuable multi-carbon chemicals. Here, a two-stage process was developed to expand the product range of gas fermentation and synthesized the versatile biopolymer bacterial cellulose (BC). In the first stage, the acetogen Clostridium autoethanogenum was cultivated with H2:CO:CO2 and produced ethanol and acetate. In the second stage, BC-synthesizing Komagataeibacter sucrofermentans was grown in the spent medium from gas fermentation. K. sucrofermentans was able to produce BC autotrophically from gas-derived metabolites alone as well as mixotrophically with the addition of exogenous glucose. In these circumstances, 1.31 g/L BC was synthesized with a major energetic contribution from C1 gas fermentation products. Mixotrophic BC characterization reveals unique properties including augmented mechanical strength, porosity, and crystallinity. This proof-of-concept process demonstrates that BC can be produced from gases and holds good potential for the efficient conversion of C1 wastes.
Collapse
Affiliation(s)
- Yu Kang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianxun Xiao
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Ran Ding
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| |
Collapse
|
40
|
Murugarren N, Roig‐Sanchez S, Antón‐Sales I, Malandain N, Xu K, Solano E, Reparaz JS, Laromaine A. Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201947. [PMID: 35861401 PMCID: PMC9475533 DOI: 10.1002/advs.202201947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bacterial nanocellulose (BNC) is usually produced as randomly-organized highly pure cellulose nanofibers films. Its high water-holding capacity, porosity, mechanical strength, and biocompatibility make it unique. Ordered structures are found in nature and the properties appearing upon aligning polymers fibers inspire everyone to achieve highly aligned BNC (A-BNC) films. This work takes advantage of natural bacteria biosynthesis in a reproducible and straightforward approach. Bacteria confined and statically incubated biosynthesized BNC nanofibers in a single direction without entanglement. The obtained film is highly oriented within the total volume confirmed by polarization-resolved second-harmonic generation signal and Small Angle X-ray Scattering. The biosynthesis approach is improved by reusing the bacterial substrates to obtain A-BNC reproducibly and repeatedly. The suitability of A-BNC as cell carriers is confirmed by adhering to and growing fibroblasts in the substrate. Finally, the thermal conductivity is evaluated by two independent approaches, i.e., using the well-known 3ω-method and a recently developed contactless thermoreflectance approach, confirming a thermal conductivity of 1.63 W mK-1 in the direction of the aligned fibers versus 0.3 W mK-1 perpendicularly. The fivefold increase in thermal conductivity of BNC in the alignment direction forecasts the potential of BNC-based devices outperforming some other natural polymer and synthetic materials.
Collapse
Affiliation(s)
- Nerea Murugarren
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Soledad Roig‐Sanchez
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Irene Antón‐Sales
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Nanthilde Malandain
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Kai Xu
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| | - Eduardo Solano
- NCD‐SWEET beamlineALBA Synchrotron Light SourceCarrer de la Llum 2−26Cerdanyola del VallèsBarcelona08290Spain
| | | | - Anna Laromaine
- Institut Ciencia de Materials de Barcelona (ICMAB‐CSIC)Campus UABBellaterra08193Spain
| |
Collapse
|
41
|
Hierarchical nano-helix as a new reinforcing unit for simultaneously ultra-strong and super-tough alginate fibers. Carbohydr Polym 2022; 297:119998. [DOI: 10.1016/j.carbpol.2022.119998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022]
|
42
|
Xi P, Wu L, Quan F, Xia Y, Fang K, Jiang Y. Scalable Nano Building Blocks of Waterborne Polyurethane and Nanocellulose for Tough and Strong Bioinspired Nanocomposites by a Self-Healing and Shape-Retaining Strategy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24787-24797. [PMID: 35603943 DOI: 10.1021/acsami.2c04257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature has given us significant inspiration to reproduce bioinspired materials with high strength and toughness. The fabrication of well-defined three-dimensional (3D) hierarchically structured nanocomposite materials from nano- to the macroscale using simple, green, and scalable methods is still a big challenge. Here, we report a successful attempt at the fabrication of multidimensional bioinspired nanocomposites (fiber, films, plates, hollow tubes, chair models, etc.) with high strength and toughness through self-healing and shape-retaining methods using waterborne polyurethane (WPU) and nanocellulose. In our method, the prepared TEMPO oxide cellulose nanofiber (TOCNF)-WPU hybrid films show excellent moisture-induced self-healing and shape-retaining abilities, which can be used to fabricate all sorts of 3D bioinspired nanocomposites with internal aligned and hierarchical architectures just using water as media. The tensile and flexural strength of the self-assembled plate can reach 186.8 and 193.2 MPa, respectively, and it also has a high toughness of 11.6 MJ m-3. Because of this bottom-up self-assembly strategy, every multidimensional structure we processed has high strength and toughness. This achievement would provide a promising future to realize a large-scale and reliable production of various sorts of bioinspired multidimensional materials with high strength and toughness in a sustainable manner.
Collapse
Affiliation(s)
- Panyi Xi
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Lin Wu
- Qingdao Technical College, Qingdao, Shandong 266000, China
| | - Fengyu Quan
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yanzhi Xia
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Kuanjun Fang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yijun Jiang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| |
Collapse
|
43
|
Liang Q, Zhang D, Wu Y, Chen S, Han Z, Wang B, Wang H. Self-Stretchable Fiber Liquid Sensors Made with Bacterial Cellulose/Carbon Nanotubes for Smart Diapers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21319-21329. [PMID: 35471964 DOI: 10.1021/acsami.2c00960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid sensors for detecting water and body fluids are crucial in daily water usage and health monitoring, but it is challenging to combine sensing performance with high tensile deformation and multifunctional applications. Here, a substrate-free, self-stretchable bacterial cellulose (BC)/carbon nanotube (CNT) helical fiber liquid sensor was prepared by the solution spinning and coiling process using BC as the water-sensitive matrix and CNTs as the active sensing materials. The BC/CNT (BCT) fiber sensor has a high stretch ratio of more than 1000% and a rapid response for a current change rate of 104% within 1 s, which is almost unaffected under washing and various stretching or knotting deformations. By combination of the BCT fiber, we can design smart diapers or water level detectors, which rapidly monitor the status of smart diapers or water level, and the monitoring result can be transferred on time through an alarm device or smartphone. In short, the scalable and continuous preparation of the self-stretchable BCT helical fiber will provide a capacious platform for the development of a wearable sensor applied in daily life (such as smart diapers, water level detection, etc.).
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yuchen Wu
- College of Information Sciences and Technology, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
44
|
Zhang Y, Zhou J, He Y, Ye Y, An J. SERS active fibers from wet-spinning of alginate with gold nanoparticles for pH sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120848. [PMID: 35042046 DOI: 10.1016/j.saa.2021.120848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Functional composite fibers were prepared by a wet-spinning method and used for pH sensing based on surface enhanced Raman scattering (SERS). Alginate solution with gold nanoparticles (AuNPs) was spun to fibers that acting as active substrate showed distinct SERS enhancement for low concentrations of dyes (1.0 × 10-9 M for rhodamine 6G and 1.0 × 10-8 M for crystal violet). After AuNPs were modified with 4-mercaptopyridine (4-MPY), the as-synthesized composite fibers (AuNPs@4-MPY/Ca-ALG fibers) displayed pH dependent SERS spectra due to the changes of chemical structures of 4-MPY under different pH conditions. The AuNPs@4-MPY/Ca-ALG fibers achieved fast response to the pH changes between 1.00 and 13.00. The flexible composite fibers were woven to a wearable "wrist band", which has potential applications in health monitoring involving pH variation.
Collapse
Affiliation(s)
- Yue Zhang
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Wuhan 430062, PR China
| | - Ji Zhou
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Wuhan 430062, PR China.
| | - Ying He
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Wuhan 430062, PR China
| | - Yong Ye
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Wuhan 430062, PR China
| | - Jing An
- School of Chemical Engineering and New Energy Materials, Zhuhai College of Jilin University, Zhuhai, 519041, PR China.
| |
Collapse
|
45
|
da Silva IGR, Pantoja BTDS, Almeida GHDR, Carreira ACO, Miglino MA. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073955. [PMID: 35409314 PMCID: PMC8999934 DOI: 10.3390/ijms23073955] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
Collapse
Affiliation(s)
- Izabela Gabriela Rodrigues da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- NUCEL-Cell and Molecular Therapy Center, School of Medicine, Sao Paulo University, Sao Paulo 05508-270, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- Correspondence:
| |
Collapse
|
46
|
Zhao X, Chen S, Wu Z, Sheng N, Zhang M, Liang Q, Han Z, Wang H. Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning. Carbohydr Polym 2022; 282:119133. [DOI: 10.1016/j.carbpol.2022.119133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/27/2022]
|
47
|
Pingrey B, Hsieh YL. Sulfated Cellulose Nanofibrils from Chlorosulfonic Acid Treatment and Their Wet Spinning into High-Strength Fibers. Biomacromolecules 2022; 23:1269-1277. [PMID: 35148066 DOI: 10.1021/acs.biomac.1c01505] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper presents the proof of concept for a facile sulfation-disintegration approach toward generating sulfated cellulose nanofibrils (SCNF) via direct sulfation of rice straw cellulose with chlorosulfonic acid (HSO3Cl) followed by blending. The direct sulfation of cellulose with chlorosulfonic acid (HSO3Cl) was optimized at acid ratios of 1-1.5 HSO3Cl per anhydroglucose unit (AGU) and short reaction times (30-60 min) at ambient temperature to produce SCNF with tunable charges of 1.0-2.2 mmol/g, all in impressively high yields of 94-97%. SCNF were characterized via AFM, TEM, FTIR, and XRD. SCNF lengths (L: 0.75-1.24 μm) and widths (W: 3.9-5.9 nm) decreased with harsher sulfation, while heights (H: 1.23-1.32 nm) remained relatively static. The SCNF had uniquely anisotropic cross sections (W/H: 3.0-4.7) and high aspect ratios (L/H: 568-984) while also exhibiting amphiphilicity, thixotropy, and shear thinning behaviors that closely followed a power law model. Aqueous SCNF dispersions could be wet spun into organic and mixed organic/ionic coagulants, producing continuous fibers possessing an impressively high tensile strength and Young's modulus of up to 675 ± 120 MPa and 26 ± 5 GPa, respectively.
Collapse
Affiliation(s)
- Benjamin Pingrey
- Biological and Agricultural Engineering, Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
48
|
Cao S, Li Q, Zhang S, Liu K, Yang Y, Chen J. Oxidized bacterial cellulose reinforced nanocomposite scaffolds for bone repair. Colloids Surf B Biointerfaces 2022; 211:112316. [PMID: 35026542 DOI: 10.1016/j.colsurfb.2021.112316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering has been widely used in promoting the repair and regeneration of bone defects. Tissue-engineered bone scaffolds can simulate the extracellular matrix environment and induce the proliferation and differentiation of osteoblasts. The first issues to be considered when constructing bone repair scaffolds include biocompatibility, stress resistance, degradability and stability. Here, a low-cost manufacturing introduces a new bone repair composite scaffold (CS/OBC/nHAP). The scaffolds were composed of only natural derived components, including nano hydroxyapatite (nHAP) formed by in-situ crystallization of Ca2+/PO42- solution and evenly dispersed in oxidized bacterial cellulose (OBC) and chitosan (CS) scaffolds. The experimental results showed that compared with CS/nHAP scaffold, CS/OBC/nHAP scaffold has significantly improve mechanical properties and water retention performance, and has a more stable degradation rate. Cell experiments showed that the CS/OBC/nHAP scaffold has good biocompatibility and significantly promote the proliferation of MC3T3-E1 cells. The rat skull defect model further proves that the CS/OBC/nHAP scaffold could induce the formation of bone tissue. Meanwhile, H&E staining experiment show that the CS/OBC/nHAP scaffold has good stability in vivo and could better promote the formation of bone tissue.
Collapse
Affiliation(s)
- Shujun Cao
- Marine College, Shandong University, Weihai 264209, China
| | - Qiujing Li
- Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264299, China
| | - Shukun Zhang
- Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264299, China
| | - Kaihua Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Yifan Yang
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
49
|
Incorporations of gold, silver and carbon nanomaterials to kombucha-derived bacterial cellulose: Development of antibacterial leather-like materials. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers (Basel) 2021; 14:polym14010078. [PMID: 35012101 PMCID: PMC8747671 DOI: 10.3390/polym14010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
The route for the preparation of cellulose nanofiber dispersions from bacterial cellulose using ethylene glycol- or glycerol-based deep eutectic solvents (DES) is demonstrated. Choline chloride was used as a hydrogen bond acceptor and the effect of the combined influence of DES treatment and ultrasound on the thermal and mechanical properties of bacterial cellulose nanofibers (BC-NFs) is demonstrated. It was found that the maximal Young’s modulus (9.2 GPa) is achieved for samples prepared using a combination of ethylene glycol-based DES and ultrasound treatment. Samples prepared with glycerol-based DES combined with ultrasound exhibit the maximal strength (132 MPa). Results on the mechanical properties are discussed based on the structural investigations that were performed using FTIR, Raman, WAXD, SEM and AFM measurements, as well as the determination of the degree of polymerization and the density of BC-NF packing during drying with the formation of paper. We propose that the disordering of the BC-NF surface structure along with the preservation of high crystallinity bulk are the key factors leading to the improved mechanical and thermal characteristics of prepared BC-NF-based papers.
Collapse
|