1
|
Yang L, He R, Botifoll M, Zhang Y, Ding Y, Di C, He C, Xu Y, Balcells L, Arbiol J, Zhou Y, Cabot A. Enhanced Oxygen Evolution and Zinc-Air Battery Performance via Electronic Spin Modulation in Heterostructured Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400572. [PMID: 38794833 DOI: 10.1002/adma.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Beyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFe2O4 heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER. NiOOH/MnFeOOH shows a high spin state of Ni, which regulates the OH- and O2 adsorption energy and enables spin alignment of oxygen intermediates. As a result, NiOOH/MnFeOOH electrocatalysts provide excellent OER performance with an overpotential of 261 mV at 10 mA cm-2. Besides, rechargeable zinc-air batteries based on Ni/MnFe2O4 show a high open circuit potential of 1.56 V and excellent stability for more than 1000 cycles. This outstanding performance is rationalized using density functional theory calculations, which show that the optimal spin state of both Ni active sites and oxygen intermediates facilitates spin-selected charge transport, optimizes the reaction kinetics, and decreases the energy barrier to the evolution of oxygen. This study provides valuable insight into spin polarization modulation by heterojunctions enabling the design of next-generation OER catalysts with boosted performance.
Collapse
Affiliation(s)
- Linlin Yang
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Ren He
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- Enginyeria Electrònica i Biomèdica Facultat de Física, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, Bellaterra, 08193, Catalonia, Spain
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Ding
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Chong Di
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Chuansheng He
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Ying Xu
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Lluís Balcells
- Institut de Ciencia de Materials de Barcelona, CSIC, Campus Universitat Autonoma de Barcelona, Bellaterra, A08193, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST, Campus UAB, Bellaterra, 08193, Catalonia, Spain
- ICREA, Pg. Lluis Companys, Barcelona, Catalonia, 08010, Spain
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys, Barcelona, Catalonia, 08010, Spain
| |
Collapse
|
2
|
Yang X, Xu T, Zhang J, Cui H, Jiang L, Ma Y, Cui Q. High-Pressure Induced Continuous Structural Evolution of Kagome Antiferromagnet MgMn 3(OH) 6Cl 2: A Structural Analogue to Quantum Spin Liquid Herbertsmithite. Inorg Chem 2024; 63:12445-12456. [PMID: 38820063 DOI: 10.1021/acs.inorgchem.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
MgMn3(OH)6Cl2 serves readily as the classical Heisenberg kagome antiferromagnet lattice spin frustration material, due to its similarity to herbertsmithite in composition and crystal structure. In this work, nanosheets of MgMn3(OH)6Cl2 are synthesized through a solid-phase reaction. Low-temperature magnetic measurements revealed two antiferromagnetic transitions, occurring at ∼8 and 55 K, respectively. Utilizing high-pressure synchrotron radiation X-ray diffraction techniques, the topological structural evolution of MgMn3(OH)6Cl2 under pressures up to 24.8 GPa was investigated. The sample undergoes a second-order structural phase transition from the rhombohedral phase to the monoclinic phase at pressures exceeding 7.8 GPa. Accompanying the disappearance of the Fano-like line shape in the high-pressure Raman spectra were the emergence of new Raman active modes and discontinuities in the variations of Raman shifts in the high-frequency region. The phase transition to a structure with lower symmetry was attributed to the pressure-induced enhancement of cooperative Jahn-Teller distortion, which is caused by the mutual substitution of Mn2+ ions from the kagome layer and Mg2+ ions from the triangular interlayer. High-pressure ultraviolet-visible absorption measurements support the structural evolution. This research provides a robust experimental approach and physical insights for further exploration of classical geometrical frustration materials with kagome lattice.
Collapse
Affiliation(s)
- Xiaoying Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Tongge Xu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Hang Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Lina Jiang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Yanmei Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Qiliang Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
3
|
Wang R, Zhang L, Li X, Zhu L, Xiang Z, Xu J, Xue D, Deng Z, Su X, Zou M. High-Performance Aluminum Fuels Induced by Monolayer Self-Assembly of Nano-Sized Energetic Fluoride Vesicles on the Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401564. [PMID: 38704734 PMCID: PMC11234408 DOI: 10.1002/advs.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Surface modification is frequently used to solve the problems of low combustion properties and agglomeration for aluminum-based fuels. However, due to the intrinsic incompatibility between the aluminum powder and the organic modifiers, the surface coating is usually uneven and disordered, which significantly deteriorates the uniformity and performances of the Al-based fuels. Herein, a new approach of monolayer nano-vesicular self-assembly is proposed to prepare high-performance Al fuels. Triblock copolymer G-F-G is produced by glycidyl azide polymer (GAP) and 2,2'-(2,2,3,3,4,5,5-Octafluorohexane-1,6-diyl) bis (oxirane) (fluoride) ring-open addition reaction. By utilizing G-F-G vesicular self-assembly in a special solvent, the nano-sized vesicles are firmly adhered to the surface of Al powder through the long-range attraction between the fluorine segments and Al. Meanwhile, the electrostatic repulsion between vesicles ensures an extremely thin coating thickness (≈15 nm), maintaining the monolayer coating structure. Nice ignition, combustion, anti-agglomeration, and water-proof properties of Al@G-F-G(DMF) are achieved, which are superior among the existing Al-based fuels. The derived Al-based fuel has excellent comprehensive properties, which can not only inspire the development of new-generation energetic materials but also provide facile but exquisite strategies for exquisite surface nanostructure construction via ordered self-assembly for many other applications.
Collapse
Affiliation(s)
- Ruibin Wang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Lichen Zhang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Xiaodong Li
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Lixiang Zhu
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Zilong Xiang
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Jin Xu
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Dichang Xue
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Zitong Deng
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Xing Su
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| | - Meishuai Zou
- School of Materials Science and EngineeringBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, HaidianBeijing100081China
| |
Collapse
|
4
|
Pei Y, Wilkinson DP, Gyenge E. Insights into the Electrochemical Behavior of Manganese Oxides as Catalysts for the Oxygen Reduction and Evolution Reactions: Monometallic Core-Shell Mn/Mn 3 O 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204585. [PMID: 36732852 DOI: 10.1002/smll.202204585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/17/2022] [Indexed: 05/11/2023]
Abstract
Overcoming the sluggish electrode kinetics of both oxygen reduction and evolution reactions (ORR/OER) with non-precious metal electrocatalysts will accelerate the development of rechargeable metal-air batteries and regenerative fuel cells. The authors investigated the electrochemical behavior and ORR/OER catalytic activity of core-porous shell Mn/Mn3 O4 nanoparticles in comparison with other manganese dioxides (β- and γ-MnO2 ), and benchmarked against Pt/C and Pt/C-IrO2 . Under reversible operation in O2 -saturated 5 M KOH at 22 °C, the early stage activity of core-shell Mn/Mn3 O4 shows two times higher ORR and OER current density compared to the other MnO2 structures at 0.32 and 1.62 V versus RHE, respectively. It is revealed that Mn(III) oxidation to Mn(IV) is the primary cause of Mn/Mn3 O4 activity loss during ORR/OER potential cycling. To address it, an electrochemical activation method using Co(II) is proposed. By incorporating Co(II) into MnOx , new active sites are introduced and the content of Mn(II) is increased, which can stabilize the Mn(III) sites through comproportionation with Mn(IV). The Co-incorporated Mn/Mn3 O4 has superior activity and durability. Furthermore, it also surpassed the activity of Pt/C-IrO2 with similar durability. This study demonstrates that cost-effective ORR/OER catalysis is possible.
Collapse
Affiliation(s)
- Yu Pei
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David P Wilkinson
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Előd Gyenge
- Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
5
|
Recent Progress of Non-Noble Metal Catalysts for Oxygen Electrode in Zn-Air Batteries: A Mini Review. Catalysts 2022. [DOI: 10.3390/catal12080843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in energy conversion and storage devices. Particularly, the bifunctional ORR/OER catalysts are core components in rechargeable metal–air batteries, which have shown great promise in achieving "carbon emissions peak and carbon neutrality" goals. However, the sluggish ORR and OER kinetics at the oxygen cathode significantly hinder the performance of metal–air batteries. Although noble metal-based catalysts have been widely employed in accelerating the kinetics and improving the bifunctionality, their scarcity and high cost have limited their deployment in the market. In this review, we will discuss the ORR and OER mechanisms, propose the principles for bifunctional electrocatalysts design, and present the recent progress of the state-of-the-art bifunctional catalysts, with the focus on non-noble metal-based materials to replace the noble metal catalysts in Zn–air batteries. The perspectives for the future R&D of bifunctional electrocatalysts will be provided toward high-performance Zn–air batteries at the end of this paper.
Collapse
|
6
|
Zhang X, Zhang X, Xiang X, Pan C, Meng Q, Hao C, Qun Tian Z, Kang Shen P, Ping Jiang S. Nitrogen and Phosphate Co‐doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoran Zhang
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
- WA School of Mines: Minerals, Energy & Chemical Engineering Curtin University Perth Western Australia 6102 Australia
| | - Xiao Zhang
- WA School of Mines: Minerals, Energy & Chemical Engineering Curtin University Perth Western Australia 6102 Australia
| | - Xue Xiang
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - Can Pan
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - Qinghao Meng
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - Chao Hao
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials School of Physical Science and Technology Guangxi University and Guangxi Key Laboratory of Electrochemical Energy Materials Key Laboratory of New Processing Technology for Non-ferrous Metal and Materials State Key Laboratory of Featured Metal Resources and Advanced Materials Nanning 530004 China
| | - San Ping Jiang
- WA School of Mines: Minerals, Energy & Chemical Engineering Curtin University Perth Western Australia 6102 Australia
| |
Collapse
|
7
|
Yu HF, Xin R, Luo H, Huo JC, Zhong GQ. Structure, morphology and capacitance characteristics of Mn2(OH)3Cl obtained by the controlled droplet rate precipitation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Zhang W, Shi J, Duan M, Tong X, Zhou D, Chen J, Guo X, Zhang J, Kong Q, Cheng X. Co
3
O
4
on Fe, N Doped Bio‐Carbon Substrate for Electrocatalysis of Oxygen Reduction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wei Zhang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Jing Shi
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Mengting Duan
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Xiangzhi Tong
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Dongcheng Zhou
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Jiale Chen
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Xingmei Guo
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Junhao Zhang
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| | - Qinghong Kong
- School of the Environment and Safety Engineering Jiangsu University No. 301 Xuefu Road 212013 Zhenjiang China
| | - Xiaofang Cheng
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology No. 2 Mengxi Road 212003 Zhenjiang China
| |
Collapse
|
9
|
Cichocka M, Liang Z, Feng D, Back S, Siahrostami S, Wang X, Samperisi L, Sun Y, Xu H, Hedin N, Zheng H, Zou X, Zhou HC, Huang Z. A Porphyrinic Zirconium Metal-Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. J Am Chem Soc 2020; 142:15386-15395. [PMID: 32786758 PMCID: PMC7498152 DOI: 10.1021/jacs.0c06329] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 01/27/2023]
Abstract
The oxygen reduction reaction (ORR) is central in carbon-neutral energy devices. While platinum group materials have shown high activities for ORR, their practical uses are hampered by concerns over deactivation, slow kinetics, exorbitant cost, and scarce nature reserve. The low cost yet high tunability of metal-organic frameworks (MOFs) provide a unique platform for tailoring their characteristic properties as new electrocatalysts. Herein, we report a new concept of design and present stable Zr-chain-based MOFs as efficient electrocatalysts for ORR. The strategy is based on using Zr-chains to promote high chemical and redox stability and, more importantly, tailor the immobilization and packing of redox active-sites at a density that is ideal to improve the reaction kinetics. The obtained new electrocatalyst, PCN-226, thereby shows high ORR activity. We further demonstrate PCN-226 as a promising electrode material for practical applications in rechargeable Zn-air batteries, with a high peak power density of 133 mW cm-2. Being one of the very few electrocatalytic MOFs for ORR, this work provides a new concept by designing chain-based structures to enrich the diversity of efficient electrocatalysts and MOFs.
Collapse
Affiliation(s)
- Magdalena
Ola Cichocka
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Zuozhong Liang
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Dawei Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Seoin Back
- Department
of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Samira Siahrostami
- Department
of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N1N4, Canada
| | - Xia Wang
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Laura Samperisi
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Yujia Sun
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hongyi Xu
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Niklas Hedin
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Haoquan Zheng
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xiaodong Zou
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843-3003, United States
| | - Zhehao Huang
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
10
|
Chen C, Li Y, Cheng D, He H, Zhou K. Graphite Nanoarrays-Confined Fe and Co Single-Atoms within Graphene Sponges as Bifunctional Oxygen Electrocatalyst for Ultralong Lasting Zinc-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40415-40425. [PMID: 32809790 DOI: 10.1021/acsami.0c12801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The inferior stability of bifunctional oxygen electrocatalysts in the air cathode is one of the main obstacles that impedes the commercialization of zinc-air batteries (ZABs). This work describes a self-assembly technique combined with subsequent calcination to prepare a bifunctional oxygen electrocatalyst of graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges (FeCo-NGS). Specifically, graphene sponges overspread with graphite nanoarrays as a structure regulation, which can prevent the metal single-atoms from aggregating and accelerate the mass/electron transfer, provides a guarantee for the long-term operation. Furthermore, M-N4 (M = Fe/Co) as the intrinsic activity regulation can effectively drive the heterogeneous oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic processes. Thanks to the rationally designed regulations, FeCo-NGS shows both extraordinary electrocatalytic activity for ORR and OER, even outperforming commercial Pt/C and IrO2. Remarkably, ZABs with FeCo-NGS air cathode demonstrate a record-breaking cycle lifetime of more than 1500 h (over 9000 cycles) at 10 mA cm-2 with a small charge-discharge gap.
Collapse
Affiliation(s)
- Chang Chen
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Li
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dan Cheng
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua He
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kebin Zhou
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Deep-Breathing Honeycomb-like Co-N x-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. iScience 2020; 23:101404. [PMID: 32777777 PMCID: PMC7416340 DOI: 10.1016/j.isci.2020.101404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 11/27/2022] Open
Abstract
Metal organic framework (MOF) derivatives have been extensively used as bifunctional oxygen electrocatalysts. However, the utilization of active sites is still not satisfactory owing to the sluggish mass transport within their narrow pore channels. Herein, interconnected macroporous channels were constructed inside MOFs-derived Co-Nx-C electrocatalyst to unblock the mass transfer barrier. The as-synthesized electrocatalyst exhibits a honeycomb-like morphology with highly exposed Co-Nx-C active sites on carbon frame. Owing to the interconnected ordered macropores throughout the electrocatalyst, these active sites can smoothly “exhale/inhale” reactants and products, enhancing the accessibility of active sites and the reaction kinetics. As a result, the honeycomb-like Co-Nx-C displayed a potential difference of 0.773 V between the oxygen evolution reaction potential at 10 mA cm−2 and the oxygen reduction reaction half-wave potential, much lower than that of bulk-Co-Nx-C (0.842 V). The rational modification on porosity makes such honeycomb-like MOF derivative an excellent bifunctional oxygen electrocatalyst in rechargeable Zn-air batteries. A deep-breathing oxygen electrocatalyst with highly dispersed active sites was built Sculpturing ordered macropores in MOF derivatives enables fast mass transport The honeycomb-like Co-Nx-C nanopolyhedron worked well in rechargeable Zn-air battery
Collapse
|
12
|
Liu P, Ran J, Xia B, Xi S, Gao D, Wang J. Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn-Air Batteries. NANO-MICRO LETTERS 2020; 12:68. [PMID: 34138276 PMCID: PMC7770935 DOI: 10.1007/s40820-020-0406-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/04/2020] [Indexed: 05/06/2023]
Abstract
One approach to accelerate the stagnant kinetics of both the oxygen reduction and evolution reactions (ORR/OER) is to develop a rationally designed multiphase nanocomposite, where the functions arising from each of the constituent phases, their interfaces, and the overall structure are properly controlled. Herein, we successfully synthesized an oxygen electrocatalyst consisting of Ni nanoparticles purposely interpenetrated into mesoporous NiO nanosheets (porous Ni/NiO). Benefiting from the contributions of the Ni and NiO phases, the well-established pore channels for charge transport at the interface between the phases, and the enhanced conductivity due to oxygen-deficiency at the pore edges, the porous Ni/NiO nanosheets show a potential of 1.49 V (10 mA cm-2) for the OER and a half-wave potential of 0.76 V for the ORR, outperforming their noble metal counterparts. More significantly, a Zn-air battery employing the porous Ni/NiO nanosheets exhibits an initial charging-discharging voltage gap of 0.83 V (2 mA cm-2), specific capacity of 853 mAh g Zn -1 at 20 mA cm-2, and long-time cycling stability (120 h). In addition, the porous Ni/NiO-based solid-like Zn-air battery shows excellent electrochemical performance and flexibility, illustrating its great potential as a next-generation rechargeable power source for flexible electronics.
Collapse
Affiliation(s)
- Peitao Liu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiaqi Ran
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Baorui Xia
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - John Wang
- Department of Material Science and Engineering, National University of Singapore, Engineering Drive 3, Singapore, 117575, Singapore
| |
Collapse
|
13
|
Wu X, Tang C, Cheng Y, Min X, Jiang SP, Wang S. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry 2020; 26:3906-3929. [PMID: 32057147 DOI: 10.1002/chem.201905346] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Indexed: 11/09/2022]
Abstract
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.
Collapse
Affiliation(s)
- Xing Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Yi Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Shuangyin Wang
- Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
14
|
Zhang Y, Tao L, Xie C, Wang D, Zou Y, Chen R, Wang Y, Jia C, Wang S. Defect Engineering on Electrode Materials for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905923. [PMID: 31930593 DOI: 10.1002/adma.201905923] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Indexed: 05/21/2023]
Abstract
The reasonable design of electrode materials for rechargeable batteries plays an important role in promoting the development of renewable energy technology. With the in-depth understanding of the mechanisms underlying electrode reactions and the rapid development of advanced technology, the performance of batteries has significantly been optimized through the introduction of defect engineering on electrode materials. A large number of coordination unsaturated sites can be exposed by defect construction in electrode materials, which play a crucial role in electrochemical reactions. Herein, recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries. The defects can not only effectively promote ion diffusion and charge transfer but also provide more storage/adsorption/active sites for guest ions and intermediate species, thus improving the performance of batteries. Moreover, the existing challenges and future development prospects are forecast, and the electrode materials are further optimized through defect engineering to promote the development of the battery industry.
Collapse
Affiliation(s)
- Yiqiong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Dongdong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Yanyong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
15
|
Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z. Recent Progress in Electrically Rechargeable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805230. [PMID: 30536643 DOI: 10.1002/adma.201805230] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/07/2018] [Indexed: 05/14/2023]
Abstract
Over the past decade, the surging interest for higher-energy-density, cheaper, and safer battery technology has spurred tremendous research efforts in the development of improved rechargeable zinc-air batteries. Current zinc-air batteries suffer from poor energy efficiency and cycle life, owing mainly to the poor rechargeability of zinc and air electrodes. To achieve high utilization and cyclability in the zinc anode, construction of conductive porous framework through elegant optimization strategies and adaptation of alternate active material are employed. Equally, there is a need to design new and improved bifunctional oxygen catalysts with high activity and stability to increase battery energy efficiency and lifetime. Efforts to engineer catalyst materials to increase the reactivity and/or number of bifunctional active sites are effective for improving air electrode performance. Here, recent key advances in material development for rechargeable zinc-air batteries are described. By improving fundamental understanding of materials properties relevant to the rechargeable zinc and air electrodes, zinc-air batteries will be able to make a significant impact on the future energy storage for electric vehicle application. To conclude, a brief discussion on noteworthy concepts of advanced electrode and electrolyte systems that are beyond the current state-of-the-art zinc-air battery chemistry, is presented.
Collapse
Affiliation(s)
- Jing Fu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ruilin Liang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Guihua Liu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Zhenyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
16
|
Cheng Y, He S, Veder J, De Marco R, Yang S, Ping Jiang S. Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem 2019. [DOI: 10.1002/celc.201900483] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yi Cheng
- Department of Environmental Engineering School of Metallurgy and Environment, Central South University Changsha 410083 China
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering Curtin University, Perth WA 6102 Australia
| | - Shuai He
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering Curtin University, Perth WA 6102 Australia
| | | | - Roland De Marco
- Faculty of Science, Health, Education and Engineering University of Sunshine Coast, Maroochydore DC QLD 4558 Australia
| | - Shi‐ze Yang
- Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge TN 37831 United States
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering Curtin University, Perth WA 6102 Australia
| |
Collapse
|
17
|
Ibrahim KB, Tsai M, Chala SA, Berihun MK, Kahsay AW, Berhe TA, Su W, Hwang B. A review of transition metal‐based bifunctional oxygen electrocatalysts. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kassa B. Ibrahim
- Nano‐Electrochemistry Laboratory, Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology Taipei Taiwan
| | - Meng‐Che Tsai
- Nano‐Electrochemistry Laboratory, Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Soressa A. Chala
- Nano‐Electrochemistry Laboratory, Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Mulatu K. Berihun
- Nano‐Electrochemistry Laboratory, Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Amaha W. Kahsay
- Nano‐Electrochemistry Laboratory, Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
| | - Taame A. Berhe
- Nano‐Electrochemistry Laboratory, Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology Taipei Taiwan
| | - Wei‐Nien Su
- Nano‐Electrochemistry Laboratory, Graduate Institute of Applied Science and TechnologyNational Taiwan University of Science and Technology Taipei Taiwan
| | - Bing‐Joe Hwang
- Nano‐Electrochemistry Laboratory, Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei Taiwan
- National Synchrotron Radiation Research Center Hsin‐Chu Taiwan
| |
Collapse
|
18
|
Li J, Xu P, Zhou R, Li R, Qiu L, Jiang SP, Yuan D. Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Zhao J, He Y, Chen Z, Zheng X, Han X, Rao D, Zhong C, Hu W, Deng Y. Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4915-4921. [PMID: 30537808 DOI: 10.1021/acsami.8b16473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clarifying and controlling the surface catalytic active sites is at the heart of developing low-cost effective bifunctional oxygen catalysts to replace precious metals for metal-air batteries. Herein, a shape-control of hexagon nickel cobalt oxide spinel nanosheets was reported to engineer the surface metal active sites for enhanced electrocatalysis of oxygen evolution and oxygen reduction reactions (OER/ORR). Specifically, through simply tuning annealing temperature, different Ni3+/Ni2+ and Co3+/Co2+ atomic configurations on the nickel cobalt oxide surface were controllably synthesized. Electrochemical results show that the oxide treated at 250 °C (NCO-250) with the highest value of Ni3+/Ni2+ sites and the lowest value of Co3+/Co2+ sites exhibits superior OER/ORR activity in alkaline electrolytes and better discharge/charge performance in Zn-air batteries among all the samples. The optimized surface active site configuration of the NCO-250 sample leads to the optimal energy of adsorption, activation, and desorption for water molecules and oxygen species, thus promoting a high electrocatalytic activity. This work provides a strategy to design cost-effective, highly active, and durable electrocatalysts through regulating active sites on transition-metal surface for Zn-air battery and other advanced energy devices.
Collapse
Affiliation(s)
- Jun Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Yu He
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Zelin Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Cheng Zhong
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , P. R. China
| |
Collapse
|
20
|
Naik KM, Sampath S. Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.138] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Chala SA, Tsai MC, Su WN, Ibrahim KB, Duma AD, Yeh MH, Wen CY, Yu CH, Chan TS, Dai H, Hwang BJ. Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03092] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Soressa Abera Chala
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Meng-Che Tsai
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Nien Su
- NanoElectrochemistry Laboratory, Department of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kassa Belay Ibrahim
- NanoElectrochemistry Laboratory, Department of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Alemayehu Dubale Duma
- NanoElectrochemistry Laboratory, Department of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Min-Hsin Yeh
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Yen Wen
- Department of Material Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hao Yu
- Department of Material Science and Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsin-Chu 30076, Taiwan
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bing-Joe Hwang
- NanoElectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center, Hsin-Chu 30076, Taiwan
| |
Collapse
|
22
|
Chen L, Guo X, Lu W, Chen M, Li Q, Xue H, Pang H. Manganese monoxide-based materials for advanced batteries. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Wu X, Niu Y, Feng B, Yu Y, Huang X, Zhong C, Hu W, Li CM. Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe 2O 4/Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20440-20447. [PMID: 29845856 DOI: 10.1021/acsami.8b04012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exploring sustainable and efficient electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is necessary for the development of fuel cells and metal-air batteries. Herein, we report a bimetal Fe/Mn-N-C material composed of spinel MnFe2O4/metallic Fe hybrid nanoparticles encapsulated in N-doped mesoporous hollow carbon nanospheres as an excellent bifunctional ORR/OER electrocatalyst in alkaline electrolyte. The Fe/Mn-N-C catalyst is synthesized via pyrolysis of bimetal ion-incorporated polydopamine nanospheres and shows impressive ORR electrocatalytic activity superior to Pt/C and good OER activity close to RuO2 catalyst in alkaline environment. When tested in Zn-air battery, the Fe/Mn-N-C catalyst demonstrates excellent ultimate performance including power density, durability, and cycling. This work reports the bimetal Fe/Mn-N-C as a highly efficient bifunctional electrocatalyst and may afford useful insights into the design of sustainable transition-metal-based high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xiuju Wu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Yanli Niu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Bomin Feng
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Yanan Yu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Xiaoqin Huang
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Changyin Zhong
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Weihua Hu
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| | - Chang Ming Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy , Southwest University , Chongqing 400715 , China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies , Chongqing 400715 , China
| |
Collapse
|
24
|
Design and synthesis of conductive carbon polyhedrons enriched with Mn-Oxide active-centres for oxygen reduction reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700691. [PMID: 29721418 PMCID: PMC5908379 DOI: 10.1002/advs.201700691] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/20/2017] [Indexed: 05/19/2023]
Abstract
Zn-air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next-generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn-air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn-air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn-air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn-air batteries with high performance.
Collapse
Affiliation(s)
- Jing Pan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Yang Yang Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Huan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Zehua Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringWuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST)1037 Luoyu RoadWuhan430074P. R. China
- Shenzhen Institute of Huazhong University of Science and TechnologyShenzhen518000P. R. China
| |
Collapse
|
26
|
Kou Y, Liu J, Li Y, Qu S, Ma C, Song Z, Han X, Deng Y, Hu W, Zhong C. Electrochemical Oxidation of Chlorine-Doped Co(OH) 2 Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS APPLIED MATERIALS & INTERFACES 2018; 10:796-805. [PMID: 29240400 DOI: 10.1021/acsami.7b17002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The primary challenge of developing clean energy conversion/storage systems is to exploit an efficient bifunctional electrocatalyst both for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with low cost and good durability. Here, we synthesized chlorine-doped Co(OH)2 in situ grown on carbon cloth (Cl-doped Co(OH)2) as an integrated electrode by a facial electrodeposition method. The anodic potential was then applied to the Cl-doped Co(OH)2 in an alkaline solution to remove chlorine atoms (electro-oxidation (EO)/Cl-doped Co(OH)2), which can further enhance the electrocatalytic activity without any thermal treatment. EO/Cl-doped Co(OH)2 exhibits a better performance both for ORR and OER in terms of activity and durability because of the formation of a defective structure with a larger electrochemically active surface area after the electrochemical oxidation. This approach provides a new idea for introducing defects and developing active electrocatalyst.
Collapse
Affiliation(s)
- Yue Kou
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yingbo Li
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Shengxiang Qu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Chao Ma
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Zhishuang Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering and ‡Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|
27
|
Cheng Y, Liang J, Veder J, Li M, Chen S, Pan J, Song L, Cheng H, Liu C, Jiang SP. Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. ChemCatChem 2017. [DOI: 10.1002/cctc.201701183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yi Cheng
- Fuels and Energy Technology Institute Department of Chemical Engineering Curtin University Perth WA 6102 Australia
| | - Ji Liang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
| | | | - Meng Li
- Fuels and Energy Technology Institute Department of Chemical Engineering Curtin University Perth WA 6102 Australia
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230029 China
| | - Jian Pan
- Fuels and Energy Technology Institute Department of Chemical Engineering Curtin University Perth WA 6102 Australia
| | - Li Song
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei Anhui 230029 China
| | - Hui‐Ming Cheng
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 China
| | - San Ping Jiang
- Fuels and Energy Technology Institute Department of Chemical Engineering Curtin University Perth WA 6102 Australia
| |
Collapse
|
28
|
Lyu YQ, Ciucci F. Activating the Bifunctionality of a Perovskite Oxide toward Oxygen Reduction and Oxygen Evolution Reactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35829-35836. [PMID: 28948763 DOI: 10.1021/acsami.7b10216] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article presents a facile and effective approach to activate the bifunctionality of calcium-manganese perovskites toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). We substituted Nb into the Mn site of CaMnO3 (CMO) and treated the material with H2. The as-obtained CaMn0.75Nb0.25O3-δ (H2-CMNO) displays the same structure as that of CMO, and compared to that of CMO, H2-CMNO exhibits significantly improved OER performance, including a lower overpotential, a reduced Tafel slope, a higher mass activity, and enhanced stability. In addition, the ORR performance of H2-CMNO is also greatly enhanced, relative to CMO, with a higher ORR activity and a more efficient electron-transfer pathway. H2-CMNO shows an even higher activity-per-catalyst cost and superior stability than that of state-of-the-art materials, such as IrO2 and Pt/C. This great enhancement in ORR and OER activity of H2-CMNO is attributed to several factors, including phase stabilization, optimized eg filling, better OH- adsorption, and improved electrical conductivity.
Collapse
Affiliation(s)
- Yu-Qi Lyu
- Department of Mechanical and Aerospace Engineering and ‡Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology , Kowloon, Hong Kong
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering and ‡Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology , Kowloon, Hong Kong
| |
Collapse
|
29
|
Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01800] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Varun Vij
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Siraj Sultan
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ahmad M. Harzandi
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Abhishek Meena
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jitendra N. Tiwari
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Wang-Geun Lee
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taeseung Yoon
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kwang S. Kim
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Polyoxometalates Assemblies and Their Electrochemical Applications. STRUCTURE AND BONDING 2017. [DOI: 10.1007/430_2017_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
31
|
Zhang X, Liu G, Zhao C, Wang G, Zhang Y, Zhang H, Zhao H. Highly efficient electrocatalytic oxidation of urea on a Mn-incorporated Ni(OH)2/carbon fiber cloth for energy-saving rechargeable Zn–air batteries. Chem Commun (Camb) 2017; 53:10711-10714. [DOI: 10.1039/c7cc04368f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of Mn can effectively regulate the electronic structure of Ni hydroxides on CFC, exhibiting superior electrocatalytic oxidation activity toward urea and potential applications in energy-saving rechargeable Zn–air batteries.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Guoqiang Liu
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Cuijiao Zhao
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Guozhong Wang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Yunxia Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Haimin Zhang
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| | - Huijun Zhao
- Key Laboratory of Materials Physics
- Centre for Environmental and Energy Nanomaterials
- Anhui Key Laboratory of Nanomaterials and Nanotechnology
- CAS Center for Excellence in Nanoscience
- Institute of Solid State Physics
| |
Collapse
|