1
|
Li L, Wu Y, Xu Z, Xu Y, Gao X, Diao Y, Liu Y, Chen L, Sun J. Controlled release of magnesium ions from PLA microsphere-chitosan hydrogel complex for enhancing osteogenic and angiogenic activities in vitro. Int J Biol Macromol 2024; 283:137649. [PMID: 39579813 DOI: 10.1016/j.ijbiomac.2024.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Magnesium ions (Mg2+) play an essential role in the metabolism and regeneration of bone tissue. Appropriate amounts of Mg2+ have been shown to promote osteogenic differentiation of bone-derived cells and angiogenesis of endothelial cells. However, the initial burst release of Mg2+ may compromise the osteogenic effect, so the controlled release of Mg2+ is the critical consideration of the magnesium-containing tissue-engineered bone materials. This study proposes a microsphere-hydrogel complex to enhance the sustained-release effect and prolong the release cycle of Mg2+. For the initial release of Mg2+, polylactic acid (PLA) microspheres containing MgO and MgCO3 were fabricated with uniform morphology. Further microspheres were incorporated into the chitosan-based hydrogel to form microsphere- hydrogel complex for extended release. The complex demonstrated effective sustained release of Mg2+ over a period exceeding 28 days. In vitro cell experiments, CS/PLA@MgO-MgCO3 significantly enhanced migration and osteogenic differentiation of MC3T3-E1. Meanwhile, it can facilitate the generation of blood vessels in HUVECs. In conclusion, the magnesium-loaded microsphere-hydrogel complex achieves excellent dual sustained-release properties with an extended-release cycle while enhancing vascularized osteogenic activity in vitro, showing promising prospects for clinical application in bone defect treatment.
Collapse
Affiliation(s)
- Li Li
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yupeng Wu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Zexian Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaoxiang Xu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Xiaohan Gao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yaru Diao
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China
| | - Yanshan Liu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China
| | - Liqiang Chen
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| | - Jian Sun
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China; School of Stomatology, Qingdao University, Qingdao 266000, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266000, China; The Climbing Peak Discipline Project of Qingdao, Qingdao, 266003, China.
| |
Collapse
|
2
|
On SW, An HW, Lee SM, Choi YI, Woo J, Hong SO, Choi JY. Safety and efficacy of Mg-Dy membrane with poly-L-lactic acid coating for guided bone regeneration. Sci Rep 2024; 14:25522. [PMID: 39462023 PMCID: PMC11513034 DOI: 10.1038/s41598-024-77211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
The aim of this study was to evaluate safety and efficacy of a poly-L-lactic acid (PLLA)-coated magnesium (Mg)-Dysprosium (Dy) membrane in guided bone regeneration (GBR) using a rabbit calvarium model. The microstructure of the Mg-Dy membrane surface and thickness of the PLLA coating were examined. In vitro degradation and cytotoxicity test was conducted. The in vivo study used 24 white male rabbits with two 8 mm-diameter defects created on the calvaria; 12 defects were randomly assigned per group: (1) Negative control, (2) positive control, (3) uncoated Mg, and (4) PLLA-coated Mg group. Specimens were harvested at 4, 8, and 12 weeks postoperatively for radiological, histological, and histomorphometric analyses. The PLLA-coated Mg-Dy membrane showed a low degree of degradation, indicating that the coating exerted a protective effect. In the cytotoxicity test, no deformed or degenerated cells were observed. In the in vivo study, radiographic and histomorphometric analyses indicated favorable new bone formation and maintenance of the graft material for PLLA-coated Mg group. PLLA-coated Mg group, compared to the uncoated counterpart, restored the bony contour more completely, without inducing significant inflammatory response. Our results support the safety and efficacy of PLLA-coated Mg-Dy membranes for GBR both in vitro and in vivo.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyun-Wook An
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Sang Min Lee
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Young In Choi
- R&D Center, Megagen Implant Co., Ltd, Daegu, Republic of Korea
| | - Jaeman Woo
- Department of Dentistry, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Sung Ok Hong
- Department of Oral and Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Dental Hospital at Gangdong, Seoul, Republic of Korea
| | - Jin-Young Choi
- Department of Oral and Maxillofacial surgery, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Guan Q, Hu T, Zhang L, Yu M, Niu J, Ding Z, Yu P, Yuan G, An Z, Pei J. Concerting magnesium implant degradation facilitates local chemotherapy in tumor-associated bone defect. Bioact Mater 2024; 40:445-459. [PMID: 39027327 PMCID: PMC11255111 DOI: 10.1016/j.bioactmat.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Effective management of malignant tumor-induced bone defects remains challenging due to severe systemic side effects, substantial tumor recurrence, and long-lasting bone reconstruction post tumor resection. Magnesium and its alloys have recently emerged in clinics as orthopedics implantable metals but mostly restricted to mechanical devices. Here, by deposition of calcium-based bilayer coating on the surface, a Mg-based composite implant platform is developed with tailored degradation characteristics, simultaneously integrated with chemotherapeutic (Taxol) loading capacity. The delicate modulation of Mg degradation occurring in aqueous environment is observed to play dual roles, not only in eliciting desirable osteoinductivity, but allows for modification of tumor microenvironment (TME) owing to the continuous release of degradation products. Specifically, the sustainable H2 evolution and Ca2+ from the implant is distinguished to cooperate with local Taxol delivery to achieve superior antineoplastic activity through activating Cyt-c pathway to induce mitochondrial dysfunction, which in turn leads to significant tumor-growth inhibition in vivo. In addition, the local chemotherapeutic delivery of the implant minimizes toxicity and side effects, but markedly fosters osteogenesis and bone repair with appropriate structure degradation in rat femoral defect model. Taken together, a promising intraosseous administration strategy with biodegradable Mg-based implants to facilitate tumor-associated bone defect is proposed.
Collapse
Affiliation(s)
- Qingqing Guan
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tu Hu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiguang Ding
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pei Yu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiquan An
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming, Center of Hydrogen Science & State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
5
|
Keerthiga G, Prasad MJNV, Vijayshankar D, Singh Raman RK. Polymeric Coatings for Magnesium Alloys for Biodegradable Implant Application: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4700. [PMID: 37445014 DOI: 10.3390/ma16134700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Magnesium (Mg) alloys are a very attractive material of construction for biodegradable temporary implants. However, Mg alloys suffer unacceptably rapid corrosion rates in aqueous environments, including physiological fluid, that may cause premature mechanical failure of the implant. This necessitates a biodegradable surface barrier coating that should delay the corrosion of the implant until the fractured/damaged bone has healed. This review takes a brief account of the merits and demerits of various existing coating methodologies for the mitigation of Mg alloy corrosion. Since among the different coating approaches investigated, no single coating recipe seems to address the degradation control and functionality entirely, this review argues the need for polymer-based and biodegradable composite coatings.
Collapse
Affiliation(s)
- G Keerthiga
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - M J N V Prasad
- Microstructural Engineering and Mechanical Performance Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Dandapani Vijayshankar
- Electrochemistry at Interface Lab, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - R K Singh Raman
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Zhang Y, Yang C, Yin S, Zhang X, Peng X, Li G. Exploration of 2D and 2.5D Conformational Designs Applied on Epoxide/Collagen-Based Integrative Biointerfaces with Device/Tissue Heterogeneous Affinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22876-22891. [PMID: 37144968 DOI: 10.1021/acsami.3c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Collagen and multifunctional epoxides, which are respectively the common constituents of natural and polymer interfaces, were combined to fabricate integrative biointerfaces with device/tissue heterogeneous affinity. Further, the traditional 2D and advanced 2.5D conformational designs were achieved on collagen-based biointerfaces. The 2D conformational biointerfaces were formed by the self-entanglement of collagen molecules based on extensive hydrogen bonds among molecules, and the lamellar structures of 2D conformational biointerfaces could act as barriers to protect both biointerfaces and substrates from enzymes and corrosion. The unique stacking structures of 2.5D conformational biointerfaces were formed by cross-linking microaggregates that were established and connected by epoxy cross-linking bonds and provided the extra 0.5D degree of freedom on structure design and functional specialization through artificially manipulating the constituents and density of microaggregates. Besides, the intersecting channels among microaggregates gave 2.5D biointerfaces diffusion behaviors, which further brought good wettability and biodegradability. The integrative biointerfaces behaved well on cell viability and enhanced the cell adhesion strength in vitro, which could be attributed to the collaborations of collagen and epoxy groups. The subcutaneous implant model in rats was utilized to investigate soft tissue response, and the results demonstrated that the tissues around implantation areas healed well and without calcification or infection. The coating of integrative biointerfaces alleviated the fibrosis around implantation areas, and the inflammatory responses and foreign body reactions were improved.
Collapse
Affiliation(s)
- Yuanzhi Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Changkai Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Simiao Yin
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Guoying Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| |
Collapse
|
7
|
Streza A, Antoniac A, Manescu (Paltanea) V, Paltanea G, Robu A, Dura H, Verestiuc L, Stanica E, Voicu SI, Antoniac I, Cristea MB, Dragomir BR, Rau JV, Manolea MM. Effect of Filler Types on Cellulose-Acetate-Based Composite Used as Coatings for Biodegradable Magnesium Implants for Trauma. MATERIALS (BASEL, SWITZERLAND) 2023; 16:554. [PMID: 36676290 PMCID: PMC9863609 DOI: 10.3390/ma16020554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Magnesium alloys are considered one of the most promising materials for biodegradable trauma implants because they promote bone healing and exhibit adequate mechanical strength during their biodegradation in relation to the bone healing process. Surface modification of biodegradable magnesium alloys is an important research field that is analyzed in many publications as the biodegradation due to the corrosion process and the interface with human tissue is improved. The aim of the current preliminary study is to develop a polymeric-based composite coating on biodegradable magnesium alloys by the solvent evaporation method to reduce the biodegradation rate much more than in the case of simple polymeric coatings by involving some bioactive filler in the form of particles consisting of hydroxyapatite and magnesium. Various techniques such as SEM coupled with EDS, FTIR, and RAMAN spectroscopy, and contact angle were used for the structural and morphological characterization of the coatings. In addition, thermogravimetric analysis (TGA) was used to study the effect of filler particles on polymer thermostability. In vitro cytotoxicity assays were performed on MG-63 cells (human osteosarcomas). The experimental analysis highlights the positive effect of magnesium and hydroxyapatite particles as filler for cellulose acetate when they are used alone from biocompatibility and surface analysis points of view, and it is not recommended to use both types of particles (hydroxyapatite and magnesium) as hybrid filling. In future studies focused on implantation testing, we will use only CA-based composite coatings with one filler on magnesium alloys because these composite coatings have shown better results from the in vitro testing point of view for future potential orthopedic biodegradable implants for trauma.
Collapse
Affiliation(s)
- Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
| | - Enache Stanica
- National Institute for Cryogenics and Isotopic Technologies ICSI-Rm. Valcea, ICSI Energy, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, District 1, 011061 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Mihai Bogdan Cristea
- Department of Morphological Sciences, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Bogdan Radu Dragomir
- Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 University Street, 700115 Iasi, Romania
- DDD Medical Services SRL, 78 Vasile Lupu Street, 700350 Iasi, Romania
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 8 Trubetskaya Street, Build. 2, 119991 Moscow, Russia
| | - Maria-Magdalena Manolea
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| |
Collapse
|
8
|
Singh N, Batra U, Kumar K, Ahuja N, Mahapatro A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact Mater 2023; 19:717-757. [PMID: 35633903 PMCID: PMC9117289 DOI: 10.1016/j.bioactmat.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Mg and its alloys evince strong candidature for biodegradable bone implants, cardiovascular stents, and wound closing devices. However, their rapid degradation rate causes premature implant failure, constraining clinical applications. Bio-functional surface coatings have emerged as the most competent strategy to fulfill the diverse clinical requirements, besides yielding effective corrosion resistance. This article reviews the progress of biodegradable and advanced surface coatings on Mg alloys investigated in recent years, aiming to build up a comprehensive knowledge framework of coating techniques, processing parameters, performance measures in terms of corrosion resistance, adhesion strength, and biocompatibility. Recently developed conversion and deposition type surface coatings are thoroughly discussed by reporting their essential therapeutic responses like osteogenesis, angiogenesis, cytocompatibility, hemocompatibility, anti-bacterial, and controlled drug release towards in-vitro and in-vivo study models. The challenges associated with metallic, ceramic and polymeric coatings along with merits and demerits of various coatings have been illustrated. The use of multilayered hybrid coating comprising a unique combination of organic and inorganic components has been emphasized with future perspectives to obtain diverse bio-functionalities in a facile single coating system for orthopedic implant applications.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Uma Batra
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Kamal Kumar
- Department of Mechanical Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Neeraj Ahuja
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Anil Mahapatro
- Department of Biomedical Engineering, Wichita State University, Wichita, KS, 67260, United States
| |
Collapse
|
9
|
He N, Li J, Li W, Lin X, Fu Q, Peng X, Jin W, Yu Z, Chu PK. Poly(lactic acid) coating with a silane transition layer on MgAl LDH-coated biomedical Mg alloys for enhanced corrosion and cytocompatibility. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Rajan ST, Arockiarajan A. A comprehensive review of properties of the biocompatible thin films on biodegradable Mg alloys. Biomed Mater 2022; 18. [PMID: 36541465 DOI: 10.1088/1748-605x/aca85b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg) and its alloys have attracted attention as biodegradable materials for biomedical applications owing to their mechanical properties being comparable to that of bone. Mg is a vital trace element in many enzymes and thus forms one of the essential factors for human metabolism. However, before being used in biomedical applications, the early stage or fast degradation of Mg and its alloys in the physiological environment should be controlled. The degradation of Mg alloys is a critical criterion that can be controlled by a surface modification which is an effective process for conserving their desired properties. Different coating methods have been employed to modify Mg surfaces to provide good corrosion resistance and biocompatibility. This review aims to provide information on different coatings and discuss their physical and biological properties. Finally, the current withstanding challenges have been highlighted and discussed, followed by shedding some light on future perspectives.
Collapse
Affiliation(s)
- S Thanka Rajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Arockiarajan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India.,Ceramic Technology Group-Center of Excellence in Materials and Manufacturing Futuristic Mobility, Indian Institute of Technology Madras (IIT Madras), Chennai 600036, India
| |
Collapse
|
11
|
Zhang Z, Yang Y, Guo Y, Sha P, Xu Z, Yu Z, Si J, Zhang Z, Guo J, Chen Y. Adhesion and corrosion resistance of polycaprolactone coating on NiTi alloy surface after alkali heat pretreatment. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zhihui Zhang
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionic Jilin University Weihai China
| | - Yanan Yang
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionic Jilin University Weihai China
| | - Yunting Guo
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionic Jilin University Weihai China
| | - Pengwei Sha
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionic Jilin University Weihai China
| | - Zezhou Xu
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Weihai Institute for Bionic Jilin University Weihai China
| | - Zhenglei Yu
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- State Key Laboratory of Automotive Simulation and Control Jilin University Changchun China
| | - Jiashun Si
- Beijing Reserarch Institute of Automation for Machinery Industry Co., Ltd Beijing China
| | - Zhengao Zhang
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Jia Guo
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- Key Laboratory of Automobile Materials Ministry of Education College of Materials Science and Engineering Jilin University Changchun China
| | - Yifan Chen
- Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
- State Key Laboratory of Automotive Simulation and Control Jilin University Changchun China
| |
Collapse
|
12
|
Yuan Z, Wan Z, Gao C, Wang Y, Huang J, Cai Q. Controlled magnesium ion delivery system for in situ bone tissue engineering. J Control Release 2022; 350:360-376. [PMID: 36002052 DOI: 10.1016/j.jconrel.2022.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Magnesium cation (Mg2+) has been an emerging therapeutic agent for inducing vascularized bone regeneration. However, the therapeutic effects of current magnesium (Mg) -containing biomaterials are controversial due to the concentration- and stage-dependent behavior of Mg2+. Here, we first provide an overview of biochemical mechanism of Mg2+ in various concentrations and suggest that 2-10 mM Mg2+in vitro may be optimized. This review systematically summarizes and discusses several types of controlled Mg2+ delivery systems based on polymer-Mg composite scaffolds and Mg-containing hydrogels, as well as their design philosophy and several parameters that regulate Mg2+ release. Given that the continuous supply of Mg2+ may prevent biomineral deposition in the later stage of bone regeneration and maturation, we highlight the controlled delivery of Mg2+ based dual- or multi-ions system, especially for the hierarchical therapeutic ion release system, which shows enhanced biomineralization. Finally, the remaining challenges and perspectives of Mg-containing biomaterials for future in situ bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
- Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuo Wan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China.
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China..
| |
Collapse
|
13
|
Lin H, Yuan Y, Hang T, Wang P, Lu S, Wang H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J Pharm Biomed Anal 2022; 219:114888. [PMID: 35752027 DOI: 10.1016/j.jpba.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
In recent years, the development and optimization of biodegradable coronary stents have become the research focus of many medical device manufacturers and scientific research institutions since they can be completely degraded and absorbed, and they restore vascular function. However, there is a lack of in situ quantification of these stents spatially in tissue in vivo. In this study, matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FT ICR) and time-of-flight (TOF) mass spectrometric imaging (MSI) were used to analyze the time-dependent distributions of a biodegradable vascular scaffold, which consisted of copolymers of lactic acid and glycolic acid (PLGA) and its degradation products in cross-sections and longitudinal sections of blood vessels. The MALDI-MSI methods for analyzing the distribution of PLGA and its derivatives in vivo were established by optimizing the conditions of sample pretreatment and mass spectrometry (MS). In order to semi-quantify the contents of PLGA degradation products in blood vessels, self-made stainless-steel and indium tin oxide (ITO) target plates were developed to compare and establish the standard curves for semi-quantitative analysis. The target plate can be placed on the target carrier of MS simultaneously with the conductive slide, which can simultaneously carry out vapor deposition or spray on the substrate, to ensure the parallelism of the pretreatment experiments between the standards and the actual vascular samples. The proposed method provided a powerful tool for evaluating the distributions and degradation process of biological stent materials in the coronary artery, as well as provided technical support for the research and development of degradable biological stents and product optimization.
Collapse
Affiliation(s)
- Houwei Lin
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Yinlian Yuan
- Department of Paediatric Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Hang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Peng Wang
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Shijiao Lu
- Department of Pediatric surgery, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314050, China
| | - Hang Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Wang W, Liu Y, Ye L, Coates P, Caton-Rose F, Zhao X. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application. J Biomed Mater Res B Appl Biomater 2022; 110:2480-2493. [PMID: 35674722 DOI: 10.1002/jbm.b.35106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022]
Abstract
Poly (lactic acid) (PLA) has been proposed as a promising orthopedic implant material, whereas insufficient mechanical strength, unsatisfied biocompatibility and inappropriate degradation rate restrict its further application. In this work, self-reinforced poly (lactic acid)-b-poly(lactide-co-caprolactone) (PLA-b-PLCL) block copolymer with long-chain branches was fabricated through two-stage orientation. Compared with smooth and hydrophobic PLA surface, the surface of PLA-b-PLCL presented micro-phase separated structure with improved hydrophilicity, and cells seeded on it showed improved adhesion/proliferation and high alkaline phosphatase (ALP) activity. After the 1st stage orientation at temperature higher than Tg1 (glass transition temperature of PLA phase), the amount of CH3 and CO groups on surface of PLA-b-PLCL increased, while "groove-ridge" structure formed, resulting in enhancement of surface hydrophobicity. After the 2nd stage orientation at Tg1 ~ Tg2 (glass transition temperature of PLCL phase), surface hydrophobicity/amount of CO groups further increased and "groove-ridge" structure became more significant. Due to suitable wettability and enhanced material-cell mechanical interlocking, cell proliferation/ALP activity were improved and a continuous cell layer formed on sample surface. During in vitro degradation in phosphate buffered saline solution, by introduction of PLCL segments, the crystallinity decreased and solution absorption increased, resulting in a rapid deterioration of mechanical properties. After the 1st stage orientation, a dense microfibrillar structure with high crystallinity formed, which hindered diffusion of solution and delay hydrolytic degradation. After the 2nd stage orientation, PLCL segments were arranged more closely, resulting in a further inhibition of degradation, which was helpful for controlling the strength decay rate of PLA as bone fixation materials.
Collapse
Affiliation(s)
- Wuyou Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Yalong Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Lin Ye
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Phil Coates
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Fin Caton-Rose
- School of Engineering, Design and Technology, University of Bradford, Bradford, UK
| | - Xiaowen Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Oxyhydroxide-Coated PEO–Treated Mg Alloy for Enhanced Corrosion Resistance and Bone Regeneration. J Funct Biomater 2022; 13:jfb13020050. [PMID: 35645258 PMCID: PMC9149893 DOI: 10.3390/jfb13020050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Plasma electrolytic oxidation (PEO) is widely used as a surface modification method to enhance the corrosion resistance of Mg alloy, the most likely applied biodegradable material used in orthopedic implants. However, the pores and cracks easily formed on the PEO surface are unfavorable for long-term corrosion resistance. In this study, to solve this problem, we used simple immersion processes to construct Mn and Fe oxyhydroxide duplex layers on the PEO-treated AZ31 (PEO–Mn/Fe). As control groups, single Mn and Fe oxyhydroxide layers were also fabricated on PEO (denoted as PEO–Mn and PEO–Fe, respectively). PEO–Mn showed a similar porous morphology to the PEO sample. However, the PEO–Fe and PEO–Mn/Fe films completely sealed the pores on the PEO surfaces, and no cracks were observed even after the samples were immersed in water for 7 days. Compared with PEO, PEO–Mn, and PEO–Fe, PEO–Mn/Fe exhibited a significantly lower self-corrosion current, suggesting better corrosion resistance. In vitro C3H10T1/2 cell culture showed that PEO–Fe/Mn promoted the best cell growth, alkaline phosphatase activity, and bone-related gene expression. Furthermore, the rat femur implantation experiment showed that PEO–Fe/Mn–coated Mg showed the best bone regeneration and osteointegration abilities. Owing to enhanced corrosion resistance and osteogenesis, the PEO–Fe/Mn film on Mg alloy is promising for orthopedic applications.
Collapse
|
16
|
Guo Y, Li G, Xu Z, Xu Y, Yin L, Yu Z, Zhang Z, Lian J, Ren L. Corrosion Resistance and Biocompatibility of Calcium Phosphate Coatings with a Micro-Nanofibrous Porous Structure on Biodegradable Magnesium Alloys. ACS APPLIED BIO MATERIALS 2022; 5:1528-1537. [PMID: 35312270 DOI: 10.1021/acsabm.1c01277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium (Mg) and its alloys have exhibited great potential for orthopedic applications; however, their poor corrosion resistance and potential cytotoxicity have hindered their further clinical applications. In this study, we prepared a calcium phosphate (Ca-P) coating with a micro-nanofibrous porous structure on the Mg alloy surface by a chemical conversion method. The morphology, composition, and corrosion performance of the coatings were investigated by scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), immersion tests, and electrochemical measurements. The effects of the preparation temperature of the Ca-P coatings were analyzed, and the results confirmed that the coating obtained at 60 °C had the densest structure and the best corrosion resistance. In addition, a systematic investigation into cell viability, ALP activity, and cell morphology confirmed that the Ca-P coating had excellent biocompatibility, which could effectively promote the proliferation, differentiation, and adhesion of osteoblasts. Hence, the Ca-P coating demonstrates great potential in the field of biodegradable Mg-based orthopedic implant materials.
Collapse
Affiliation(s)
- Yunting Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Guangyu Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zezhou Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China.,Weihai Institute for Bionic, Jilin University, Weihai 264402, China
| | - Yingchao Xu
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Liquan Yin
- Department of Rehabilitation Medicine, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Zhenglei Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Jianshe Lian
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, China
| |
Collapse
|
17
|
Zhang Z, Sun X, Yang J, Wang C. In vitro evaluation of freeze-drying chitosan-mineralized collagen/Mg-Ca alloy composites for osteogenesis. J Biomater Appl 2022; 36:1359-1377. [PMID: 34995142 DOI: 10.1177/08853282211049296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Magnesium (Mg) alloy with good mechanical properties and biodegradability is considered as one of the ideal bone repair materials. However, the rapid corrosion of Mg-based metals can pose harm to the function of an implant in clinical applications. In this study, micro-arc oxidation coating was prepared on the surface of the Mg-Ca matrix, then the chitosan and mineralized collagen (nano-hydroxyapatite/collagen; nHAC) were immobilized on the surface of the MAO/Mg-Ca matrix to construct the CS-nHAC/Mg-Ca composites of different component proportions (the ratio of CS to nHAC is 2:1, 1:1, and 1:2, respectively). The corrosion resistance, osteogenic activity, and angiogenic ability were extensively investigated. The results indicated that the CS-nHAC reinforcement materials can improve the corrosion resistance of the Mg matrix significantly and promote the proliferation and adhesion of mouse embryo osteoblast precursor cells (MC3T3-E1) and human umbilical vein endothelial cells (HUVECs). In addition, the CS-nHAC/Mg-Ca composites can not only promote the alkaline phosphatase (ALP) activity and extracellular matrix mineralization of MC3T3-E1 cells but also enhance the migration motility and vascular endothelial growth factor (VEGF) expression of HUVECs. Meanwhile, the 2CS-1nHAC/Mg-Ca composite exhibited the optimum function characteristics compared with other samples. Therefore, considering the improvement of corrosion resistance and biocompatibility, the CS-nHAC/Mg-Ca composites are expected to be a promising orthopedic implant.
Collapse
Affiliation(s)
- Zhenbao Zhang
- 154516Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xirao Sun
- 154516Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jingxin Yang
- 70541Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, China.,70541College of Robotics, Beijing Union University, Beijing, China
| | - Chengyue Wang
- 154516Department of Prosthodontics, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
18
|
Tang H, Li S, Zhao Y, Liu C, Gu X, Fan Y. A surface-eroding poly(1,3-trimethylene carbonate) coating for magnesium based cardiovascular stents with stable drug release and improved corrosion resistance. Bioact Mater 2022; 7:144-153. [PMID: 34466723 PMCID: PMC8379472 DOI: 10.1016/j.bioactmat.2021.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Magnesium alloys with integration of degradability and good mechanical performance are desired for vascular stent application. Drug-eluting coatings may optimize the corrosion profiles of magnesium substrate and reduce the incidence of restenosis simultaneously. In this paper, poly (trimethylene carbonate) (PTMC) with different molecular weight (50,000 g/mol named as PTMC5 and 350,000 g/mol named as PTMC35) was applied as drug-eluting coatings on magnesium alloys. A conventional antiproliferative drug, paclitaxel (PTX), was incorporated in the PTMC coating. The adhesive strength, corrosion behavior, drug release and biocompatibility were investigated. Compared with the PLGA control group, PTMC coating was uniform and gradually degraded from surface to inside, which could provide long-term protection for the magnesium substrate. PTMC35 coated samples exhibited much slower corrosion rate 0.05 μA/cm2 in comparison with 0.11 μA/cm2 and 0.13 μA/cm2 for PLGA and PTMC5 coated counterparts. In addition, PTMC35 coating showed more stable and sustained drug release ability and effectively inhibited the proliferation of human umbilical vein vascular smooth muscle cells. Hemocompatibility test indicated that few platelets were adhered on PTMC5 and PTMC35 coatings. PTMC35 coating, exhibiting surface erosion behavior, stable drug release and good biocompatibility, could be a good candidate as a drug-eluting coating for magnesium-based stent.
Collapse
Affiliation(s)
- Hongyan Tang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Shuangshuang Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Yuan Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Cunli Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 10083, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 102402, China
| |
Collapse
|
19
|
Zhang S, Liang R, Xu K, Zheng S, Mukherjee S, Liu P, Wang C, Chen Y. Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112636. [DOI: 10.1016/j.msec.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
20
|
Guo X, Xue M, Chen F, Guo Q, Zhou X, Lin H, Chen Y. Local delivery and controlled release of miR-34a loaded in hydroxyapatite/mesoporous organosilica nanoparticles composite-coated implant wire to accelerate bone fracture healing. Biomaterials 2021; 280:121300. [PMID: 34920369 DOI: 10.1016/j.biomaterials.2021.121300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
Immediate mechanical stability is a prerequisite for fracture healing. In addition to bringing immediate mechanical stability in fracture site, implants with bioactive coating can release active substance to accelerate bone-fracture healing. However, limited drug-loading capacity of established coatings weakens their biological functions, which urges the engineering of more effective coating biomaterials for accelerating fracture healing. Herein, mesoporous organosilica nanoparticles (MONs), as miR-34a delivers, are loaded onto hydroxyapatite (HA)-coated Kirschner wire to engineer a HA/MONs@miR-34a composite coating. The composite coating can effectively deliver miR-34a into osteoclasts, generate gene dose-dependent inhibiting effect on differentiation and resorptive activity of osteoclasts by regulating multiple downstream gene expression at the early stage of fracture healing, which additionally exhibits decent bone regeneration potentials as evidenced in rat tibial fracture model. In particular, differentially expressed genes regulated by miR-34a are identified using RNA-seq followed by bioinformatics analysis. Functional enrichment analysis reveals that genes with altered expression mainly distribute in mainly distribute in DNA replication and cell cycle, which are associated with the development of osteoclasts. This work not only demonstrates the high clinical translation potential of HA/MONs@miR-34a to accelerate fracture healing, but also reveals the underlying molecular mechanism of regulating physiological functions of osteoclasts based on analysis of singlecell RNA sequencing.
Collapse
Affiliation(s)
- Xiang Guo
- Department of Orthopedics, Second Affiliated Hospital, Navy Medical University, 200003, PR China
| | - Mintao Xue
- Department of Orthopedics, Second Affiliated Hospital, Navy Medical University, 200003, PR China
| | - Fei Chen
- Department of Orthopedics, Second Affiliated Hospital, Navy Medical University, 200003, PR China
| | - Qunfeng Guo
- Department of Orthopedics, Second Affiliated Hospital, Navy Medical University, 200003, PR China
| | - Xin Zhou
- Department of Orthopedics, Second Affiliated Hospital, Navy Medical University, 200003, PR China
| | - Han Lin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| | - Yu Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
21
|
Dong J, Tümer N, Putra NE, Zhu J, Li Y, Leeflang MA, Taheri P, Fratila-Apachitei LE, Mol JMC, Zadpoor AA, Zhou J. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF 2 and MgF 2-CaP coatings. Biomater Sci 2021; 9:7159-7182. [PMID: 34549742 DOI: 10.1039/d1bm01238j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts to apply AM techniques, mainly powder bed fusion AM, for the preparation of Mg scaffolds, have encountered some crucial difficulties related to safety in AM operations and severe oxidation during AM processes. To avoid these difficulties, extrusion-based 3D printing has been recently developed to prepare porous Mg scaffolds with highly interconnected structures. However, limited bioactivity and a too high rate of biodegradation remain the major challenges that need to be addressed. Here, we present a new generation of extrusion-based 3D printed porous Mg scaffolds that are coated with MgF2 and MgF2-CaP to improve their corrosion resistance and biocompatibility, thereby bringing the AM scaffolds closer to meeting the clinical requirements for bone substitutes. The mechanical properties, in vitro biodegradation behavior, electrochemical response, and biocompatibility of the 3D printed Mg scaffolds with a macroporosity of 55% and a strut density of 92% were evaluated. Furthermore, comparisons were made between the bare scaffolds and the scaffolds with coatings. The coating not only covered the struts but also infiltrated the struts through micropores, resulting in decreases in both macro- and micro-porosity. The bare Mg scaffolds exhibited poor corrosion resistance due to the highly interconnected porous structure, while the MgF2-CaP coatings remarkably improved the corrosion resistance, lowering the biodegradation rate of the scaffolds down to 0.2 mm y-1. The compressive mechanical properties of the bare and coated Mg scaffolds before and during in vitro immersion tests for up to 7 days were both in the range of the values reported for the trabecular bone. Moreover, direct culture of MC3T3-E1 preosteoblasts on the coated Mg scaffolds confirmed their good biocompatibility. Overall, this study clearly demonstrated the great potential of MgF2-CaP coated porous Mg prepared by extrusion-based 3D printing for further development as a bone substitute.
Collapse
Affiliation(s)
- J Dong
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N Tümer
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N E Putra
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhu
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Y Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - P Taheri
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| |
Collapse
|
22
|
Zhu Y, Liu W, Ngai T. Polymer coatings on magnesium‐based implants for orthopedic applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuwei Zhu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - Wei Liu
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| | - To Ngai
- Department of Chemistry The Chinese University of Hong Kong Shatin N. T. Hong Kong
| |
Collapse
|
23
|
Liu T, Li Y, Zhang Y, Zhao M, Wen Z, Zhang L. A biodegradable, mechanically tunable micro-arc oxidation AZ91D-based composite implant with calcium phosphate/chitosan coating promotes long-term bone tissue regeneration. Biotechnol J 2021; 16:e2000653. [PMID: 34350725 DOI: 10.1002/biot.202000653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND To reduce the biodegradable rate and develop the long-term osteogenic ability of magnesium (Mg) alloy, we prepared a new biodegradable micro arc oxidation AZ91D-based composite implant with calcium phosphate/chitosan coating (CaP-CS/MAO/AZ91D) and investigated its mechanical property and long-term bone tissue regeneration ability. MAIN METHODS AND MAJOR RESULTS The results showed that the binding force and bioactivity of CaP-CS/MAO/AZ91D was better when the ratio of water to ethanol was 4:6 and MAO constant current was 0.1 A cm-2 . Compressive strengths of 4:6 sample were more than 1300 N when the soaking time was increased to 21 days. CaP-CS/MAO/AZ91D extracts promoted differentiation and proliferation of rat mesenchymal stem cells (RMSC), which achieved higher proliferation rates over 16 days of culture and exhibited early alkaline phosphatase activity and late bone sialoprotein markers. CONCLUSIONS AND IMPLICATIONS CaP-CS/MAO/AZ91D was established to promote RMSC osteogenic differentiation within a proper range for at least 90 days through Wnt/β-catenin pathway activation, which would allow sufficient time for bone healing. Collectively, our findings suggest that the CaP-CS/MAO/AZ91D coating could not only reduce the corrosion rate and lead to better long-term biocompatibility but also promote osteogenic mineralization.
Collapse
Affiliation(s)
- Tingjiao Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Li
- School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Meng Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaohui Wen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
24
|
A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. COATINGS 2021. [DOI: 10.3390/coatings11070747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of biodegradable implants is certainly intriguing, and magnesium and its alloys are considered significant among the various biodegradable materials. Nevertheless, the fast degradation, the generation of a significant amount of hydrogen gas, and the escalation in the pH value of the body solution are significant barriers to their use as an implant material. The appropriate approach is able to solve this issue, resulting in a decrease the rate of Mg degradation, which can be accomplished by alloying, surface adjustment, and mechanical treatment. Surface modification is a practical option because it not only improves corrosion resistance but also prepares a treated surface to improve bone regeneration and cell attachment. Metal coatings, ceramic coatings, and permanent polymers were shown to minimize degradation rates, but inflammation and foreign body responses were also suggested. In contrast to permanent materials, the bioabsorbable polymers normally show the desired biocompatibility. In order to improve the performance of drugs, they are generally encapsulated in biodegradable polymers. This study summarized the most recent advancements in manufacturing polymeric coatings on Mg alloys. The related corrosion resistance enhancement strategies and future potentials are discussed. Ultimately, the major challenges and difficulties are presented with aim of the development of polymer-coated Mg-based implant materials.
Collapse
|
25
|
Odashima K, Shimizu Y, Sano Y, Yamamoto A, Mukai T, Takada Y, Yanagisawa Y, Imai Y, Takahashi T, Kumamoto H. Osteogenic response under the periosteum by magnesium implantation in rat tibia. Dent Mater J 2021; 40:498-507. [PMID: 33642444 DOI: 10.4012/dmj.2020-011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was designed to examine osteoconductive effects of Mg in rats tibia. The animals were sacrificed after 1, 2, and 8 weeks. The elemental analysis was performed using SEM/EDX at week 1. Following X-ray micrography at weeks 2 and 8, samples were embedded in paraffin. The expression of osteocalcin was observed by immunohistochemical staining. The element concentrations of fibrous capsules around the specimens were also measured by ICP-MS. The concentrations of Ca and P on the surface of the Mg specimen increased in SEM/EDX. The tissue specimen showed new bone formation on the bone surface near the implanted area. The concentrations of Mg, Ca, and P were high in the fibrous capsules surrounding Mg. Implantation induced differentiation of osteoblasts, and this process was considered to be associated with new bone formation. Induction of cell differentiation may be influenced by corrosion products in addition to corroding magnesium.
Collapse
Affiliation(s)
- Kenji Odashima
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Yoshinaka Shimizu
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Yuya Sano
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Akiko Yamamoto
- Biometals Group, Biomaterials Unit, Nano-life Field, International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Toshiji Mukai
- Department of Mechanical Engineering, Kobe University
| | - Yukyo Takada
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry, Tohoku University
| | - Yuta Yanagisawa
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Department of Oral and Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| | - Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
26
|
You M, Echeverry-Rendón M, Zhang L, Niu J, Zhang J, Pei J, Yuan G. Effects of composition and hierarchical structures of calcium phosphate coating on the corrosion resistance and osteoblast compatibility of Mg alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111734. [PMID: 33545877 DOI: 10.1016/j.msec.2020.111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Magnesium and its alloys have been recently used in biomedical applications such as orthopedic implants, whereas the weak corrosion resistance undermines their clinical efficacy. Herein, to address this critical challenge, the preparation of hierarchically structured hydroxyapatite-based coatings was proposed. Compact coatings were fabricated on a Mg alloy through a facile two-step method of chemical deposition of brushite precursor and subsequent hydrothermal conversion. A series of HA-based coatings were obtained with kinetic conversion process with formation mechanism revealed. The hydroxyapatite coating demonstrated the greatest corrosion resistance for Mg in electrochemical and long-term immersion tests, especially against pitting corrosion, attributable to its compact structure, alkaline degradation environment and self-induced growth capacity. The in vitro cytocompatibility and osteoinductivity were dictated. Additionally, anti-corrosion mechanisms were compared among different coating compositions and structures, along with their correlation with cellular response. Our study brings hints for a tailored surface design for resorbable biomedical device applications.
Collapse
Affiliation(s)
- Mingyu You
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mónica Echeverry-Rendón
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zhang
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Innovation Medical Technology Co., Ltd., Shanghai 201306, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Cheng S, Zhang D, Li M, Liu X, Zhang Y, Qian S, Peng F. Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioact Mater 2021; 6:91-105. [PMID: 32817917 PMCID: PMC7426541 DOI: 10.1016/j.bioactmat.2020.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Layered double hydroxides (LDHs) are widely studied to enhance corrosion resistance and biocompatibility of Mg alloys, which are promising bone implants. However, the influence of LDH coating on the osteointegration of Mg implants lacks of a systematic study. In this work, Mg-Al LDH coating was prepared on pure Mg via hydrothermal treatment. The as-prepared Mg-Al LDH coated Mg exhibited better in vitro and in vivo corrosion resistance than bare Mg and Mg(OH)2 coated Mg. In vitro culture of mouse osteoblast cell line (MC3T3-E1) suggested that Mg-Al LDH coated Mg was more favorable for its osteogenic differentiation. In vitro culture of HUVECs revealed that cells cultured in the extract of Mg-Al LDH coated Mg showed superior angiogenic behaviors. More importantly, the immune response of Mg-Al LDH coated Mg was studied by in vitro culturing murine-derived macrophage cell line (RAW264.7). The results verified that Mg-Al LDH coated Mg could induce macrophage polarize to M2 phenotype (anti-inflammatory). Furthermore, the secreted factor in the macrophage-conditioned culture medium of Mg-Al LDH group was more suitable for the bone differentiation of rat bone marrow stem cells (rBMSCs) and the angiogenic behavior of human umbilical vein endothelial cells (HUVECs). Finally, the result of femoral implantation suggested that Mg-Al LDH coated Mg exhibited better osteointegration than bare Mg and Mg(OH)2 coated Mg. With favorable in vitro and in vivo performances, Mg-Al LDH is promising as protective coating on Mg for orthopedic applications.
Collapse
Affiliation(s)
- Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Mei Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
28
|
Controllable Synthesis of Nanostructured Ca-P Coating on Magnesium Alloys via Sodium Citrate Template-Assisted Hydrothermal Method and Its Corrosion Resistance. COATINGS 2020. [DOI: 10.3390/coatings10121232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a nanostructured needle-like hydroxyapatite (HA) coating was prepared by the sodium citrate template-assisted hydrothermal method on magnesium alloy (AZ31). The influence of sodium citrate on the composition, microstructure and corrosion behavior of the coatings was studied. The results showed that with the increase in the mole ratio of Ca/sodium citrate from 1 to 13, the coating gradually changed from the needle-like morphology of HA to the flake morphology of β-tricalcium phosphate (β-TCP), which was related to the existing form of citrate in the solution and the trend of complexation reaction. When the mole ratio of Ca/sodium citrate was 1, the HA coating sample with the nano needle-like morphology had a high corrosion resistance (Rt = 235.300 ± 3.584 kΩ·cm2), which was almost 200 times that of the naked AZ31 alloy. Moreover, the corrosion rates of the Ca-P coated AZ31 alloy stabilized at about 0.55 mm/year and could provide more than 56 days of corrosion protection to the samples, which approximated the degradation rate requirement for biomaterials used as bone fixture.
Collapse
|
29
|
Perumal G, Ramasamy B, Nandkumar A M, Dhanasekaran S, Ramasamy S, Doble M. Bilayer nanostructure coated AZ31 magnesium alloy implants: in vivo reconstruction of critical-sized rabbit femoral segmental bone defect. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 29:102232. [PMID: 32562860 DOI: 10.1016/j.nano.2020.102232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Healing or reconstruction of critical-sized bone defects is still challenging in orthopaedic practice. In this study, we developed a new approach to control the degradation and improve the bone regeneration of the AZ31 magnesium substrate, fabricated as mesh cage implants. Subsequently, bilayer nanocomposite coating was carried out using polycaprolactone (PCL) and nano-hydroxyapatite (nHA) by dip-coating and electrospinning. Lastly, the healing capacity of the implants was studied in New Zealand White (NZW) rabbit critical-sized femur bone defects. X-ray analysis showed the coated implant group bridged and healed the critical defects 100% during four weeks of post-implantation. Micro-computed tomography (Micro-CT) study showed higher total bone volume (21.10%), trabecular thickness (0.73), and total porosity (85.71%) with bilayer coated implants than uncoated. Our results showed that nanocomposite coated implants controlled the in vivo degradation and improved bioactivity. Hence, the coated implants can be used as a promising bioresorbable implant for critical segmental bone defect repair applications.
Collapse
Affiliation(s)
- Govindaraj Perumal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Boopalan Ramasamy
- Department of Orthopaedics/Centre for Stem Cell Research, Christian Medical College, Vellore, India; Department of Orthopaedics, Royal Darwin Hospital, Tiwi, Australia
| | - Maya Nandkumar A
- Division of Microbial Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Sivaraman Dhanasekaran
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, India
| | | | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
30
|
Filipović U, Dahmane RG, Ghannouchi S, Zore A, Bohinc K. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci 2020; 283:102228. [PMID: 32858407 DOI: 10.1016/j.cis.2020.102228] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
Abstract
Orthopedic implants are routinely used for fixation of fractures, correction of deformities, joint replacements, and soft tissue anchorage. Different biomaterials have been engineered for orthopedic implants. Previously, they were designed merely as mechanical devices, now new strategies to enhance bone healing and implant osteointegration via local delivery of molecules and via implant coatings are being developed. These biological coatings should enhance osteointegration and reduce foreign body response or infection. This article reviews current and future orthopedic implants, materials and surface characteristics, biocompatibility, and mechanisms of bacterial adhesion. Additionally, the review is addressing implant-related infection, the main strategies to prevent it and suggest possible future research that may control implant related-infection.
Collapse
Affiliation(s)
- Urška Filipović
- University Clinical Center of Ljubljana, Department of Traumatology, Zaloska 7, 1000 Ljubljana, Slovenia
| | - Raja Gošnak Dahmane
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Institute of Anatomy, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | - Anamarija Zore
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Klemen Bohinc
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
31
|
Weng W, Wu W, Yu X, Sun M, Lin Z, Ibrahim M, Yang H. Effect of GelMA Hydrogel Coatings on Corrosion Resistance and Biocompatibility of MAO-Coated Mg Alloys. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3834. [PMID: 32872664 PMCID: PMC7503508 DOI: 10.3390/ma13173834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Micro-arc oxidation (MAO) treatment is a simple and effective technique to improve the corrosion resistance for magnesium alloys. However, the presence of micro-pores and cracks on the coatings provides paths for corrosive ions to penetrate into and react with the substrate, limiting the long-term corrosion resistance. In this paper, we designed a composite coating with which GelMA hydrogel coatings with varying thicknesses were prepared on the surface of MAO-coated magnesium alloys via a dip-coating method, aiming to improve the biocorrosion resistance and biocompatibility. The surface morphology, the chemical composition of GelMA hydrogels, and the crystallographic structure of magnesium alloys were characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), respectively. The corrosion resistance and biocompatibility of all samples were evaluated through electrochemical and biological experiments. The results demonstrated that the addition of GelMA hydrogel could effectively seal the pores and improve the corrosion resistance and biocompatibility of MAO-coated magnesium alloys, especially for the sample with one layer of GelMA hydrogel, showing high cell proliferation rate, and its current density (Icorr) was two orders of magnitude lower than that of the MAO coating. Besides, the balance mechanism between corrosion and protection was proposed. As a result, the GelMA hydrogel coatings are beneficial to the application of MAO-coated magnesium alloys in bone tissue engineering and other fields.
Collapse
Affiliation(s)
- Wenxian Weng
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (W.W.); (W.W.); (M.S.); (Z.L.)
| | - Weiwei Wu
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (W.W.); (W.W.); (M.S.); (Z.L.)
| | - Xiaoming Yu
- School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;
| | - Mingyue Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (W.W.); (W.W.); (M.S.); (Z.L.)
| | - Zhensheng Lin
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (W.W.); (W.W.); (M.S.); (Z.L.)
| | - Muhammad Ibrahim
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (W.W.); (W.W.); (M.S.); (Z.L.)
| |
Collapse
|
32
|
Yang XJ, Wang FQ, Lu CB, Zou JW, Hu JB, Yang Z, Sang HX, Zhang Y. Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. ACTA ACUST UNITED AC 2020; 15:055013. [PMID: 32252046 DOI: 10.1088/1748-605x/ab8720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Osteoporotic bone defects are a major challenge in clinics for bone regeneration. With the condition of osteoporosis, excessive bone absorption and impaired osteogenesis result in unexpectedly long healing procedures for defects. In order to simultaneously enhance bone formation and reduce bone resorption, a polydopamine-coated porous titanium scaffold was designed, to be integrated with anti-catabolic drug zoledronic acid nanoparticles (ZOL loaded gelatin NPs), which was able to achieve a local sustained release of ZOL as expected. The in vitro study demonstrated that extracts of the composite scaffolds would stimulate osteoblast differentiation; they also inhibited osteoclastogenesis at a ZOL loading concentration of 50 μmol l-1. In the subsequent in vivo study, the composite scaffolds were implanted into ovariectomy-induced osteoporotic rabbits suffering from femoral condyles defects. The results indicated that the composite scaffolds without ZOL loaded gelatin NPs only induced callus formation, mainly at the interface margin between the implant and bone, whereas the composite scaffolds with ZOL loaded gelatin NPs were capable of further enhancing osteogenesis and bone growth into the scaffolds. Moreover, the research proved that the promoting effect was optimal at a ZOL loading concentration of 50 μmol l-1. In summary, the present research indicated that a new type of porous titanium scaffold integrated with ZOL loaded gelatin NPs inherited a superior biocompatibility and bone regeneration capability. It would be an optimal alternative for the reconstruction of osteoporosis-related defects compared to a traditional porous titanium implant; in other words, the new type of scaffold offers a new effective and practical procedure option for patients suffering from osteoporotic bone defects.
Collapse
Affiliation(s)
- Xiao-Jiang Yang
- Department of Orthopaedic Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China. These four authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li LY, Han ZZ, Zeng RC, Qi WC, Zhai XF, Yang Y, Lou YT, Gu T, Xu D, Duan JZ. Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg-Li-Ca alloy. Bioact Mater 2020; 5:902-916. [PMID: 32637753 PMCID: PMC7329939 DOI: 10.1016/j.bioactmat.2020.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
Biodegradable magnesium alloys are challenging to be implanted in patients with hyperglycemia and diabetes. A hypothesis is suggested that glucose accelerates microbial ingress and in vitro degradation of Mg-Li-Ca implants. Corrosion resistance and mechanical properties was demonstrated using electrochemical, hydrogen evolution and tensile tests. The bacteria from Hank's solution were isolated via 16S rRNA gene analysis. The results revealed that Mg-1Li-1Ca alloy exhibited different responses to Hank's solution with and without glucose. The solution acidity was ascribed to Microbacterium hominis and Enterobacter xiangfangensis, indicating that glucose promoted microbial activity and degradation and deterioration in mechanical property of Mg-1Li-1Ca alloy.
Collapse
Affiliation(s)
- Ling-Yu Li
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhuang-Zhuang Han
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, China
| | - Wei-Chen Qi
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiao-Fan Zhai
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266590, China
| | - Yi Yang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Yun-Tian Lou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Tingyue Gu
- Department of Chemical & Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH, 45701-2979, USA
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
| | - Ji-Zhou Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266590, China
| |
Collapse
|
34
|
Wang Z, Wang X, Pei J, Tian Y, Zhang J, Jiang C, Huang J, Pang Z, Cao Y, Wang X, An S, Wang X, Huang H, Yuan G, Yan Z. Degradation and osteogenic induction of a SrHPO 4-coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model. Biomaterials 2020; 247:119962. [PMID: 32251929 DOI: 10.1016/j.biomaterials.2020.119962] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Magnesium and Mg-based alloys are promising biomaterials for orthopedic implants because of their degradability, osteogenic effects, and biocompatibility. However, the drawbacks of these materials include high hydrogen gas production, unexpected corrosion resistance, and insufficient mechanical strength duration. Surface modification can protect these biomaterials and induce osteogenesis. In this work, a SrHPO4 coating was developed for our patented biodegradable Mg-Nd-Zn-Zr alloy (abbr. JDBM) through a chemical deposition method. The coating was characterized by in vitro immersion, ion release, and cytotoxicity tests, which showed a slower corrosion behavior and excellent cell viability. RNA sequencing of MC3T3E1 cells treated with SrHPO4-coated JDBM ion release test extract showed increased Tlr4, followed by the activation of the downstream PI3K/Akt signaling pathway, causing proliferation and growth of pre-osteoblasts. An intramedullary nail (IMN) was implanted in a femoral fracture rat model. Mechanical test, radiological and histological analysis suggested that SrHPO4-coated JDBM has superior mechanical properties, induces more bone formation, and decreases the degradation rate compared with uncoated JDBM and the administration of TLR4 inhibitor attenuated the new bone formation for fracture healing. SrHPO4 is a promising coating for JDBM implants, particularly for long-bone fractures.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xinyuan Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Innovation Institute for Materials, Shanghai, 200444, China
| | - Yuan Tian
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Zhang
- Shanghai Innovation Medical Technology Co., Ltd, Shanghai, 201306, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junming Huang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiying Pang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiuhui Wang
- Department of Orthopedics Zhoupu Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Senbo An
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Innovation Institute for Materials, Shanghai, 200444, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Innovation Institute for Materials, Shanghai, 200444, China.
| | - Zuoqin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Zhang D, Ni N, Su Y, Miao H, Tang Z, Ji Y, Wang Y, Gao H, Ju Y, Sun N, Sun H, Yuan G, Wang Y, Zhou H, Huang H, Gu P, Fan X. Targeting Local Osteogenic and Ancillary Cells by Mechanobiologically Optimized Magnesium Scaffolds for Orbital Bone Reconstruction in Canines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27889-27904. [PMID: 32130854 DOI: 10.1021/acsami.0c00553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large-sized orbital bone defects have serious consequences that destroy orbital integrity and result in maxillofacial deformities and vision loss. The treatment of orbital bone defects is currently palliative and not reparative, suggesting an urgent demand for biomaterials that regenerate orbital bones. In this study, via alloying, extrusion and surface modification, we developed mechanobiologically optimized magnesium (Mg) scaffolds (Ca-P-coated Mg-Zn-Gd scaffolds, referred to as Ca-P-Mg) for the orthotopic reconstruction of large-sized orbital bone defects. At 6 months after transplanting the scaffolds to a clinically relevant canine large animal model, large-sized defects were successfully bridged by an abundance of new bone with normal mechanical properties that corresponded to gradual degradation of the implants. The osteogenic and ancillary cells, including vascular endothelial cells and trigeminal neurons, played important roles in this process. The scaffolds robustly enhanced bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation. In addition, the increased angiogenesis including increased ratio of the specific endothelial subtype CD31hi endomucinhi (CD31hiEmcnhi) endothelial cells can facilitate osteogenesis. Furthermore, the scaffolds trigger trigeminal neurons via transient receptor potential vanilloid subtype 1 (Trpv1) to produce the neuropeptide calcitonin gene-related peptide (CGRP), which promotes angiogenesis and osteogenesis. Overall, our investigations revealed the efficacy of Ca-P-Mg scaffolds in healing orbital bone defects and warrant further exploration of these scaffolds for clinical applications.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yun Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hongwei Miao
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yongrong Ji
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Na Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Yinchuan Wang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Huifang Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Hua Huang
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 200240 Shanghai, People's Republic of China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, People's Republic of China
| |
Collapse
|
36
|
Rahman M, Dutta NK, Roy Choudhury N. Magnesium Alloys With Tunable Interfaces as Bone Implant Materials. Front Bioeng Biotechnol 2020; 8:564. [PMID: 32587850 PMCID: PMC7297987 DOI: 10.3389/fbioe.2020.00564] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Magnesium (Mg) based biodegradable materials are a new generation orthopedic implant materials that are intended to possess same mechanical properties as that of bone. Mg alloys are considered as promising substitutes to permanent implants due to their biodegradability in the physiological environment. However, rapid corrosion rate is one of the major constraints of using Mg alloys in clinical applications in spite of their excellent biocompatibility. Approaches to overcome the limitations include the selection of adequate alloying elements, proper surface treatment, surface modification with coating to control the degradation rate. This review focuses on current advances on surface engineering of Mg based biomaterials for biomedical applications. The review begins with a description of corrosion mechanism of Mg alloy, the requirement for appropriate surface functionalization/coatings, their structure-property-performance relationship, and suitability for biomedical applications. The control of physico-chemical properties such as wettability, surface morphology, surface chemistry, and surface functional groups of the coating tailored by various approaches forms the pivotal part of the review. Chemical surface treatment offers initial protection from corrosion and inorganic coating like hydroxyapatite (HA) improves the biocompatibility of the substrate. Considering the demand of ideal implant materials, multilayer hybrid coatings on Mg alloy in combination with chemical pretreatment or inorganic HA coating, and protein-based polymer coating could be a promising technique to improve corrosion resistance and promote biocompatibility of Mg-based alloys.
Collapse
Affiliation(s)
| | | | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Zhang L, Jia G, Tang M, Chen C, Niu J, Huang H, Kang B, Pei J, Zeng H, Yuan G. Simultaneous enhancement of anti-corrosion, biocompatibility, and antimicrobial activities by hierarchically-structured brushite/Ag3PO4-coated Mg-based scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110779. [DOI: 10.1016/j.msec.2020.110779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
|
38
|
Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater 2020; 5:680-693. [PMID: 32435721 PMCID: PMC7226632 DOI: 10.1016/j.bioactmat.2020.04.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application. Early angiogenesis is important for scaffold survival. It is necessary to develop a multifunctional surface on titanium scaffold with both osteogenic and angiogenic properties. In this study, a biofunctional magnesium coating is deposited on porous Ti6Al4V scaffold. For osseointegration and osteogenesis analysis, in vitro studies reveal that magnesium-coated Ti6Al4V co-culture with MC3T3-E1 cells can improve cell proliferation, adhesion, extracellular matrix (ECM) mineralization and ALP activity compared with bare Ti6Al4V cocultivation. Additionally, MC3T3-E1 cells cultured with magnesium-coated Ti6Al4V show significantly higher osteogenesis-related genes expression. In vivo studies including fluorochrome labeling, micro-computerized tomography and histological examination of magnesium-coated Ti6Al4V scaffold reveal that new bone regeneration is significantly increased in rabbits after implantation. For angiogenesis studies, magnesium-coated Ti6Al4V improve HUVECs proliferation, adhesion, tube formation, wound-healing and Transwell abilities. HUVECs cultured with magnesium-coated Ti6Al4V display significantly higher angiogenesis-related genes (HIF-1α and VEGF) expression. Microangiography analysis reveal that magnesium-coated Ti6Al4V scaffold can significantly enhance the blood vessel formation. This study enlarges the application scope of magnesium and provides an optional choice to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and angiogenesis for further orthopedic applications.
Collapse
|
39
|
Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
40
|
Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Khoshnava SM, Pagan E, Chen X. Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110812. [PMID: 32279830 DOI: 10.1016/j.msec.2020.110812] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
Magnesium (Mg) alloys present great potential for the development of orthopedic implants, whereas, their high degradation rate and poor antibacterial performance have restricted orthopedic applications. In this work, PLLA/GO-AgNP (poly-L-lactic acid/graphene oxide- silver nanoparticle) with different concentration of GO-AgNPs were deposited on Mg alloy via electrospinning method for enhancement of corrosion resistance and antibacterial performance. The result revealed that incorporation of GO into PLLA fibrous considerably slowed down the degradation rate of Mg alloy substrate and reduced the H2 release rate from the substrate. Also, co-incorporation of GO and AgNPs into PLLA fibrous resulted in substantial escalate in compressive strength after immersion in simulated body fluid (SBF). Antibacterial activity test exhibited that Mg alloy and neat PLLA fibrous presented minimal inhibition area toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In contrast, using PLLA/GO-AgNPs fibrous improved antibacterial performance against both bacteria. Cytocompatibility results indicated that PLLA/GO-AgNPs fibrous with a low amount of GO-AgNPs enhanced cell proliferation and growth while high co-incorporation of GO-AgNPs showed a negative effect on cell proliferation. Taken together, PLLA/1GO-AgNPs fibrous coating shows suitable corrosion resistance, cytocompatibility, and antibacterial function for use in orthopedic applications.
Collapse
Affiliation(s)
- Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Madzlan Aziz
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zhina Hadisi
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Seyed Meysam Khoshnava
- Faculty of Civil Engineering, Universiti Teknologi of Malaysia (UTM), 81310 Skudai, Johor, Malaysia
| | - Erik Pagan
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
41
|
Rapid construction of polyetheretherketone (PEEK) biological implants incorporated with brushite (CaHPO 4·2H 2O) and antibiotics for anti-infection and enhanced osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110782. [PMID: 32279744 DOI: 10.1016/j.msec.2020.110782] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Polyetheretherketone (PEEK) is an ideal implant material for orthopedic and dental application due to its high biocompatibility and mechanical property. However, biological inertness of PEEK hinders the effective clinical applications in treating bone defect, especially in the situation accompanied by bacterial infection. In this study, a layer-by-layer (LBL) deposition method with controlled cycles was developed to rapidly construct brushite (CaHPO4·2H2O) (CaP) layers containing gentamicin sulfate (GS) on PEEK to obtain CaP-and-GS modified PEEK, named as PEEK/CaP-GS. Different PEEK/CaP-GS, like PEEK/CaP-GS*3, PEEK/CaP-GS*6 and PEEK/CaP-GS*9 were conveniently prepared by repeating the LBL cycles to 3, 6 and 9 times, respectively. The morphology, structure and surface property of the fabricated PEEK/CaP-GS were carefully characterized. In vitro antibacterial experiments illustrated that all of the PEEK/CaP-GS samples had excellent and sustained antibacterial property. Cell proliferation experiments revealed the acceptable biocompatibility and cell osteogenic differentiation of PEEK/CaP-GS, especially in PEEK/CaP-GS*6. X-ray, μ-CT, and histological analysis showed that PEEK/CaP-GS exhibited in vivo antibacterial activity and osseointegration ability in the treatment of bone defect with infection. In both the in vitro and the in vivo experiments, PEEK/CaP-GS*6 prepared from the 6 LBL cycles exhibited the best antibacterial and osseointegration ability for bone healing. This work opens new avenue of the facile and effective modification of PEEK with special biological functions for clinical application, especially for the implants requiring excellent antibacterial and osseointegration ability.
Collapse
|
42
|
Zhang H, Shen X, Wang J, Huang N, Luo R, Zhang B, Wang Y. Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomater Sci Eng 2019; 5:6541-6556. [PMID: 33417806 DOI: 10.1021/acsbiomaterials.9b01459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Magnesium alloys have potential application in cardiovascular stents and orthopedic implants. However, the rapid corrosion rate of magnesium limits their clinical application. In order to improve the corrosion resistance and biocompatibility of the substrate, a protective coating is constructed by alternate immersing of MgZnMn alloy in epigallocatechin gallate (EGCG) and polyethyleneimine (PEI) solution. The conventional method is immersing magnesium alloy into a conversion solution by simple one-step immersion. In the present work, the EGCG/PEI coating is prepared by a novel alternate immersion method. The number of alternate immersions resulted in a different density of phenolic hydroxyl groups and amino groups on the surface. The corrosion resistance and bonding strength of the coating also varied with alternating immersion times. As the corrosion resistance and density of the functional groups varies, endothelial cells (ECs), smooth muscle cells (SMCs), osteoblasts, and macrophages showed a different growth state on EGCG/PEI coatings. In summary, this EGCG/PEI coating addressed the rapid corrosion rate of the magnesium alloy and can adjust its function by controlling the number of alternate immersions. The EGCG/PEI coating exhibited multifunctions: improved corrosion resistance, good compatibility with ECs and osteoblasts, and inhibition of SMC growth and inflammation, and the effective groups on the coating make it possible for further modification by grafting biomolecules. This is an effective method for preparing a multifunctional platform on biomedical magnesium alloys.
Collapse
Affiliation(s)
- Hao Zhang
- Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Xiaolong Shen
- Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Jin Wang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Nan Huang
- School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
43
|
Darwesh OM, Ali SS, Matter IA, Elsamahy T, Mahmoud YA. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol 2019; 630:481-502. [PMID: 31931999 DOI: 10.1016/bs.mie.2019.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes as specific natural biocatalysts are present in all living organisms and they play a key role in the biochemical reactions inside, as outside the cell. Despite the wide range of environmental, medical, agricultural, and food applications, the high cost, non-reusability, and limited stability of soluble (non-immobilized) enzymes are considered barriers to their commercial application. Immobilization techniques are an effective strategy for solving problems associated with free enzymes in terms of improving the efficiency and stability of catalytic enzymes, as well as enhancing their separation and reusability in continuous industrial applications. Out of different supporting materials, magnetic nanoparticles are considered as the future trend for enzyme immobilization due to their exceptional properties regarding stabilization, easy recovery and reuse. Some recent techniques of enzyme immobilization on magnetic nanoparticles will be detailed hereafter in the chapter.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ibrahim A Matter
- Agriculture Microbiology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yehia A Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
44
|
A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials 2019; 219:119372. [DOI: 10.1016/j.biomaterials.2019.119372] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
|
45
|
Zhu Y, Sheng Y, Zheng L, Qin L, Ngai T. Poly(l-lactic acid) (PLLA) Coatings with Controllable Hierarchical Porous Structures on Magnesium Substrate: An Evaluation of Corrosion Behavior and Cytocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:3843-3853. [DOI: 10.1021/acsabm.9b00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Yuan Z, Wei P, Huang Y, Zhang W, Chen F, Zhang X, Mao J, Chen D, Cai Q, Yang X. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta Biomater 2019; 85:294-309. [PMID: 30553873 DOI: 10.1016/j.actbio.2018.12.017] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20 wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9 ± 5.6% and 325.7 ± 20.2 mg/cm3, respectively, which were much higher than the values 8.1 ± 2.5% (BV/TV) and 124 ± 35.8 mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Collapse
Affiliation(s)
- Zuoying Yuan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengfei Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxin Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Fuyu Chen
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xu Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jianping Mao
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
47
|
Li M, Wan P, Wang W, Yang K, Zhang Y, Han Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci Rep 2019; 9:933. [PMID: 30700724 PMCID: PMC6353919 DOI: 10.1038/s41598-018-37091-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023] Open
Abstract
Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as peri-prosthetic osteolysis. In this study, our objective was to study the role of zoledronic acid (ZA), as a highly potent and nitrogen-containing bisphosphonate, in promoting osteogenesis and inhibiting osteoclastogenesis properties of magnesium (Mg)-based implants. ZA was chemically associated with calcium phosphate (CaP) deposited on magnesium-strontium (Mg-Sr) alloy, which was confirmed by the morphological observation, phase composition and drug releasing via SEM, XRD spectrum and High Performance Liquid Chromatography (HPLC), respectively. The in vitro performances indicated that ZA-CaP bilayer coating Mg-Sr alloy could enhance the proliferation and the osteogenic differentiation as well as the mineralization of pre-osteoblasts, however, induce the apoptosis and inhibit the osteoclast differentiation. We further investigated the possible molecular mechanisms by using Quantitative real-time PCR (qRT-PCR) and Western Blotting, and the results showed that ZA-CaP bilayer coating Mg-Sr alloy could regulate the osteogenesis and osteoclastogenesis through the Estrogen Receptor α (ERα) and NF-κB signaling pathway. Moreover, ZA-CaP bilayer coating Mg-Sr alloy could regulate the cross talk of osteoblast-osteoclast and increase the ratio of OPG: RANKL in the co-culture system through OPG/RANKL/RANK signaling pathway, which promoting the balance of bone remodeling process. Therefore, these promising results suggest the potential clinical applications of ZA pretreated Mg-Sr alloys for bone defect repairs and periprosthetical osteolysis due to the excessive differentitation and maturation of osteoclasts.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Peng Wan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Weidan Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
48
|
The design strategy of intelligent biomedical magnesium with controlled-release platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:254-263. [PMID: 30678910 DOI: 10.1016/j.msec.2018.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022]
Abstract
Magnesium has a very promising adhibition in biomedical field for its excellent mechanical and biodegradable properties, however, the intelligent applications of biomedical magnesium developed difficultly due to its characteristic degradation. A intelligent biomedical magnesium was constructed on magnesium (Mg) surface by incorporating polydopamine (PD) and mechanized hollow mesoporous silica nanoparticles (HMSs) as smart delivery platform nanocontainers. The supramolecular nanovalves of mechanized HMSs consisted of alginate/chitosan multilayers by self-assembly, which are capable of entrapping rhodamine 6G in the mesopores and can release the cargo under the chemical environment of alkali or Mg iron stimuli that correspond to the degradation of biomedical Mg. The alkali/Mg2+ dual stimuli-responsive release property of the HMSs endows the biodegradable Mg with controlled release potential. The well-designed smart delivery nanocontainers were combined with polydopamine deposited on Mg for excellent adhesion properties and positively charged amino group of PD. Furthermore, when the biomedical Mg with these mechanized HMSs was degraded in the simulated body environment, the alkali/Mg2+-triggered release of cargos from this smart delivery platform could bring a more functional application.
Collapse
|
49
|
|
50
|
Raghava Reddy K, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|