1
|
Patrakka J, Hynninen V, Lahtinen M, Hokkanen A, Orelma H, Sun Z, Nonappa. Mechanically Robust Biopolymer Optical Fibers with Enhanced Performance in the Near-Infrared Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42704-42716. [PMID: 39083595 PMCID: PMC11332404 DOI: 10.1021/acsami.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Polymer optical fibers (POFs) are lightweight, fatigue-tolerant, and suitable for local area networks, automobiles, aerospace, smart textiles, supercomputers, and servers. However, commercially available POFs are exclusively fabricated using synthetic polymers derived from nonrenewable resources. Recently, attempts have been made to fabricate biocompatible and biopolymeric optical fibers. However, their limitations in mechanical performance, thermal stability, and optical properties foil practical applications in waveguiding. Here, we report a comprehensive study of the preparation of biopolymer optical fibers with tailored mechanical strength, thermal properties, and their short-distance applications. Specifically, we use alginate as one of the key components with methylcelluloses to promote readily scalable wet spinning at ambient conditions to fabricate 21 combinations of composite fibers. The fibers display high maximum strain (up to 58%), Young's modulus (up to 11 GPa), modulus of toughness (up to 63 MJ/m3), and a high strength (up to 195 MPa), depending on the composition and fabrication conditions. The modulus of toughness is comparable to that of glass optical fibers, while the maximum strain is nearly 15 times higher. The mechanically robust fibers with high thermal stability allow rapid humidity, touch sensing, and complex shapes such as serpentine, coil, or twisted structures without losing their light transmission properties. More importantly, the fibers display enhanced optical performance and sensitivity in the near-infrared (NIR) region, making them suitable for advanced biomedical applications. Our work suggests that biobased materials offer innovative solutions to create short-distance optical fibers from fossil fuel-free resources with novel functionalities.
Collapse
Affiliation(s)
- Jani Patrakka
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Ville Hynninen
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ari Hokkanen
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Hannes Orelma
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Maarintie
13, 02150 Espoo, Finland
| | - Nonappa
- Faculty
of Engineering and Natural Sciences, Tampere
University, Korkeakoulunkatu 6, FI-33720 Tampere, Finland
| |
Collapse
|
2
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Riviello G, Connor B, McBrearty J, Rodriguez G, Hu X. Protein and Polysaccharide-Based Optical Materials for Biomedical Applications. Int J Mol Sci 2024; 25:1861. [PMID: 38339138 PMCID: PMC10855249 DOI: 10.3390/ijms25031861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Recent advances in biomedical research, particularly in optical applications, have sparked a transformative movement towards replacing synthetic polymers with more biocompatible and sustainable alternatives. Most often made from plastics or glass, these materials ignite immune responses from the body, and their production is based on environmentally harsh oil-based processes. Biopolymers, including both polysaccharides and proteins, have emerged as a potential candidate for optical biomaterials due to their inherent biocompatibility, biodegradability, and sustainability, derived from their existence in nature and being recognized by the immune system. Current extraction and fabrication methods for these biomaterials, including thermal drawing, extrusion and printing, mold casting, dry-jet wet spinning, hydrogel formations, and nanoparticles, aim to create optical materials in cost-effective and environmentally friendly manners for a wide range of applications. Present and future applications include optical waveguides and sensors, imaging and diagnostics, optical fibers, and waveguides, as well as ocular implants using biopolymers, which will revolutionize these fields, specifically their uses in the healthcare industry.
Collapse
Affiliation(s)
- Gianna Riviello
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Brendan Connor
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Jake McBrearty
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Gianna Rodriguez
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
4
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Meena Narayana Menon D, Pugliese D, Giardino M, Janner D. Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3899. [PMID: 37297033 PMCID: PMC10253483 DOI: 10.3390/ma16113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens' dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens' shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Davide Janner
- Department of Applied Science and Technology (DISAT) and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (D.M.N.M.); (D.P.); (M.G.)
| |
Collapse
|
6
|
Zhang Y, Lu H, Zhang M, Hou Z, Li S, Wang H, Wu XE, Zhang Y. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. ACS NANO 2023; 17:5905-5912. [PMID: 36892421 DOI: 10.1021/acsnano.2c12855] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer-based optical waveguides with low-loss light guiding performance and good biocompatibility are highly desired for applications in biomedical photonic devices. Herein, we report the preparation of silk optical fiber waveguides through bioinspired in situ mineralizing spinning, which possess excellent mechanical properties and low light loss. Natural silk fibroin was used as the main precursor for the wet spinning of the regenerated silk fibroin (RSF) fibers. Calcium carbonate nanocrystals (CaCO3 NCs) were in situ grown in the RSF network and served as nucleation templates for mineralization during the spinning, leading to the formation of strong and tough fibers. CaCO3 NCs can guide the structure transformation of silk fibroin from random coils to β-sheets, contributing to enhanced mechanical properties. The tensile strength and toughness of the obtained fibers are up to 0.83 ± 0.15 GPa and 181.98 ± 52.42 MJ·m-3, obviously higher than those of natural silkworm silks and even comparable to spider silks. We further investigated the performance of the fibers as optical waveguides and observed a low light loss of 0.46 dB·cm-1, which is much lower than natural silk fibers. We believed that these silk-based fibers with excellent mechanical and light propagation properties are promising for applications in biomedical light imaging and therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing, 100072, China
| | - Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhishan Hou
- Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun-En Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
8
|
Costa A, Encarnação T, Tavares R, Todo Bom T, Mateus A. Bioplastics: Innovation for Green Transition. Polymers (Basel) 2023; 15:517. [PMID: 36771817 PMCID: PMC9920607 DOI: 10.3390/polym15030517] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023] Open
Abstract
Bioplastics are one of the possible alternative solutions to the polymers of petrochemical origins. Bioplastics have several advantages over traditional plastics in terms of low carbon footprint, energy efficiency, biodegradability and versatility. Although they have numerous benefits and are revolutionizing many application fields, they also have several weaknesses, such as brittleness, high-water absorption, low crystallization ability and low thermal degradation temperature. These drawbacks can be a limiting factor that prevents their use in many applications. Nonetheless, reinforcements and plasticizers can be added to bioplastic production as a way to overcome such limitations. Bioplastics materials are not yet studied in depth, but it is with great optimism that their industrial use and market scenarios are increasing; such growth can be a positive driver for more research in this field. National and international investments in the bioplastics industry can also promote the green transition. International projects, such as EcoPlast and Animpol, aim to study and develop new polymeric materials made from alternative sources. One of their biggest problems is their waste management; there is no separation process yet to recycle the nonbiodegradable bioplastics, and they are considered contaminants when mixed with other polymers. Some materials use additives, and their impact on the microplastics they leave after breaking apart is subject to debate. For this reason, it is important to consider their life cycle analysis and assess their environmental viability. These are materials that can possibly be processed in various ways, including conventional processes used for petrochemical ones. Those include injection moulding and extrusion, as well as digital manufacturing. This and the possibility to use these materials in several applications is one of their greatest strengths. All these aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ana Costa
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Telma Encarnação
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- PTScience, Avenida do Atlântico, N° 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal
| | - Rafael Tavares
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| | - Tiago Todo Bom
- Complexo Industrial VANGEST—Edifício 2, Rua de Leiria 210, 2430-527 Marinha Grande, Portugal
| | - Artur Mateus
- CDRSP-IPL, Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal
| |
Collapse
|
9
|
Ko B, Badloe T, Yang Y, Park J, Kim J, Jeong H, Jung C, Rho J. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat Commun 2022; 13:6256. [PMID: 36270995 PMCID: PMC9587293 DOI: 10.1038/s41467-022-32987-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly. PVA is a hydrogel that has attractive swelling properties for use in tunable photonic applications. Here, the authors exploit PVA with nanoimprint lithography to realize multiplexed optical encryption metasurfaces to display, hide, and destroy encrypted information.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeonghoon Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heonyeong Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea. .,National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|
10
|
E HP, Kong JAN, Chen WC, Chen CC, Cheng CH, Liu CY. Biocompatible spider silk-based metal-dielectric fiber optic sugar sensor. BIOMEDICAL OPTICS EXPRESS 2022; 13:4483-4493. [PMID: 36187244 PMCID: PMC9484428 DOI: 10.1364/boe.462573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Various optical components employed in biomedical applications have been fabricated using spider silk because of its superior properties, such as elasticity, tensile strength, biodegradability, and biocompatibility. In this study, a highly sensitive fiber optic sugar sensor is fabricated using metal-nanolayer-coated spider silk. The spider silk, which is directly collected from Nephila pilipes, a giant wood spider, is naturally a protein-based biopolymer with great flexibility, low attenuation, and easy functionalization. The surface of the spider silk-based fiber is coated with a metal nano-layer by using the glancing angle deposition technique. This fiber optic sugar sensor is based on the principle of the change in the refractive indices of sugar solutions. The attained experimental results show that the proposed sugar sensor is highly sensitive in the detection of fructose, sucrose, and glucose concentrations. This work may provide a new way to realize precise and sensitive online sugar measurements for point-of-care diagnostics.
Collapse
Affiliation(s)
- Hsuan-Pei E
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei City 11221, Taiwan
| | | | - Wei-Chun Chen
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30076, Taiwan
| | - Che-Chin Chen
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30076, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yang Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei City 11221, Taiwan
| |
Collapse
|
11
|
Cheng J, Hu CF, Gan CY, Xia XX, Qian ZG. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation. ACS Biomater Sci Eng 2022; 8:3299-3309. [PMID: 35820196 DOI: 10.1021/acsbiomaterials.2c00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider dragline silk is a remarkable protein fiber that is mechanically superior to almost any other natural or synthetic material. As a sustainable supply of natural dragline silk is not feasible, recombinant production of silk fibers with native-like mechanical properties and non-native physiochemical functions is highly desirable for various applications. Here, we report a new strategy for simultaneous functionalization and reinforcement of recombinant spider silk fibers by confined nanoparticle formation. First, a mimic silk protein (N16C) of spider Trichonephila clavipes was recombinantly produced and wet-spun into fibers. Drawing the as-spun fibers in water led to post-drawn fibers more suitable for the templated synthesis of nanoparticles (NPs) with uniform distribution throughout the synthetic fibers. This was exemplified using a chemical precipitation reaction to generate copper sulfide nanoparticle-incorporated fibers. These fibers and the derived fabric displayed a significant photothermal effect as their temperatures could increase to over 40 °C from room temperature within 3 min under near-infrared laser irradiation or simulated sunlight. In addition, the tensile strength and toughness of the nanofunctionalized fibers were greatly enhanced, and the toughness of these synthetic fibers could reach 160.1 ± 21.4 MJ m-3, which even exceeds that of natural spider dragline silk (111.19 ± 30.54 MJ m-3). Furthermore, the confined synthesis of gold NPs via a redox reaction was shown to improve the ultraviolet-protective effect and tensile mechanical properties of synthetic silk fibers. These results suggest that our strategy may have great potential for creating functional and high-performance spider silk fibers and fabrics for wide applications.
Collapse
Affiliation(s)
- Junyan Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chun-Fei Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao-Yi Gan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
12
|
Lin L, Zhong Y, Lin H, Wang C, Yang Z, Wu Q, Zhang D, Zhu W, Zhong Y, Pan Y, Yu J, Zheng H. Spider Silk-Improved Quartz-Enhanced Conductance Spectroscopy for Medical Mask Humidity Sensing. Molecules 2022; 27:4320. [PMID: 35807564 PMCID: PMC9268163 DOI: 10.3390/molecules27134320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Spider silk is one of the hottest biomaterials researched currently, due to its excellent mechanical properties. This work reports a novel humidity sensing platform based on a spider silk-modified quartz tuning fork (SSM-QTF). Since spider silk is a kind of natural moisture-sensitive material, it does not demand additional sensitization. Quartz-enhanced conductance spectroscopy (QECS) was combined with the SSM-QTF to access humidity sensing sensitively. The results indicate that the resonance frequency of the SSM-QTF decreased monotonously with the ambient humidity. The detection sensitivity of the proposed SSM-QTF sensor was 12.7 ppm at 1 min. The SSM-QTF sensor showed good linearity of ~0.99. Using this sensor, we successfully measured the humidity of disposable medical masks for different periods of wearing time. The results showed that even a 20 min wearing time can lead to a >70% humidity in the mask enclosed space. It is suggested that a disposable medical mask should be changed <2 h.
Collapse
Affiliation(s)
- Leqing Lin
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Yu Zhong
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Haoyang Lin
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Chenglong Wang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Zhifei Yang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Qian Wu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China;
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Yongchun Zhong
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Yuwei Pan
- Department of Preventive Treatment of Disease, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510405, China;
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; (L.L.); (Y.Z.); (H.L.); (C.W.); (Z.Y.); (Q.W.); (W.Z.); (Y.Z.)
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China;
| |
Collapse
|
13
|
Wang J, Zhang H, Tang Y, Wen M, Yao B, Yuan S, Zhang W, Lei H. Metal-Nanostructure-Decorated Spider Silk for Highly Sensitive Refractive Index Sensing. ACS Biomater Sci Eng 2022; 8:1060-1066. [PMID: 35212530 DOI: 10.1021/acsbiomaterials.1c01565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly sensitive detection of refractive index (RI) is essential for the analysis of the bio-microenvironment and basic cellular reactions. To achieve this, optic-fiber RI sensors based on localized surface plasmon resonance (LSPR) have been widely used for their flexibility and high sensitivity. However, the current optic-fiber RI sensors are mainly fabricated using glass, which makes them face the challenges in biocompatibility and biosafety. In this work, a RI sensor with high sensitivity is fabricated using metal-nanostructure-decorated spider silk. The spider silk, which is directly dragged from Araneus ventricosus, is natural protein-based biopolymer with low attenuation, good biocompatibility and biodegradability, large RI, great flexibility, and easy functionalization. Hence, the spider silk can be an ideal alternative to glass for sensing in biological environments with a wide RI range. Different kinds of metal nanostructures, such as gold nanorods (GNRs), gold nanobipyramids (GNBP), and Ag@GNRs, are decorated on the surface of the spider silk utilizing the surface viscidity of the silk. By directing a beam of white light into the spider silk, the LSPR of the metal nanostructures was excited and a highly sensitive RI sensing (the highest sensitivity of 1746 nm per refractive index was achieved on the GNBP-decorated spider silk) was obtained. This work may pave a new way to precise and sensitive biosensing and bioanalysis.
Collapse
Affiliation(s)
- Jiale Wang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjie Tang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Mingcong Wen
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Benjun Yao
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Shun Yuan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weina Zhang
- School of Information Engineering, Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Optical Polarization-Based Measurement Methods for Characterization of Self-Assembled Peptides' and Amino Acids' Micro- and Nanostructures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061802. [PMID: 35335166 PMCID: PMC8953639 DOI: 10.3390/molecules27061802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
In recent years, self-assembled peptides’ and amino acids’ (SAPA) micro- and nanostructures have gained much research interest. Here, description of how SAPA architectures can be characterized using polarization-based optical measurement methods is provided. The measurement methods discussed include: polarized Raman spectroscopy, polarized imaging microscopy, birefringence imaging, and fluorescence polarization. An example of linear polarized waveguiding in an amino acid Histidine microstructure is discussed. The implementation of a polarization-based measurement method for monitoring peptide self-assembly processes and for deriving molecular orientation of peptides is also described.
Collapse
|
15
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
16
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
18
|
Hynninen V, Patrakka J, Nonappa. Methylcellulose-Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5137. [PMID: 34576360 PMCID: PMC8465715 DOI: 10.3390/ma14185137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Chemical modification of cellulose offers routes for structurally and functionally diverse biopolymer derivatives for numerous industrial applications. Among cellulose derivatives, cellulose ethers have found extensive use, such as emulsifiers, in food industries and biotechnology. Methylcellulose, one of the simplest cellulose derivatives, has been utilized for biomedical, construction materials and cell culture applications. Its improved water solubility, thermoresponsive gelation, and the ability to act as a matrix for various dopants also offer routes for cellulose-based functional materials. There has been a renewed interest in understanding the structural, mechanical, and optical properties of methylcellulose and its composites. This review focuses on the recent development in optically and mechanically tunable hydrogels derived from methylcellulose and methylcellulose-cellulose nanocrystal composites. We further discuss the application of the gels for preparing highly ductile and strong fibers. Finally, the emerging application of methylcellulose-based fibers as optical fibers and their application potentials are discussed.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| |
Collapse
|
19
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
20
|
Zhang W, Liu P, Yang G, Lei H. Single Polylactic Acid Nanowire for Highly Sensitive and Multifunctional Optical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27983-27990. [PMID: 34110765 DOI: 10.1021/acsami.1c08074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanowire-based optical biosensors with high sensitivity are highly desired for the detection of biological microenvironments and analysis of cellular processes. However, the current nanowire biosensors are mostly fabricated with metal and semiconductor materials, which are not suitable for long-term use in biological environments due to their incompatible and nondegradable properties. Biosensors based on biofriendly materials (e.g., spider silk) often do not have high enough sensitivity due to high losses or micron sizes. Here, polylactic acid (PLA), a polymer with high optical transparency, good biocompatibility, biodegradability, and flexibility, is used to fabricate nanowires using a directly drawing method for the first time. Because of the strong evanescent wave and abundant carboxyl groups on the surface of nanowires, an ultralow concentration sensing of cytochrome c is achieved with a limit of detection of 1.38 × 10-17 M, which is much lower than other detection results using semiconductor/metal-based nanosensors (10-6 to 10-12 M). On this basis, a label-free and real-time monitoring of cell apoptosis is realized. In addition, by doping quantum dots, the functionalized PLA nanowires can also sense a change in pH. These results are suggestive of the potential for PLA nanowires applied in multifunctional biosensing and biodetection, pushing forward the photomedicine field.
Collapse
Affiliation(s)
- Weina Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Pu Liu
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006582. [PMID: 33929771 PMCID: PMC8647870 DOI: 10.1002/adma.202006582] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.
Collapse
Affiliation(s)
- Carlos F. Guimarães
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Alexandra P. Marques
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
22
|
Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner H, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021; 11:100115. [PMID: 34195591 PMCID: PMC8237365 DOI: 10.1016/j.mtbio.2021.100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
Collapse
Affiliation(s)
- O. Burgos-Morales
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Gueye
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - L. Lacombe
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - C. Nowak
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - R. Schmachtenberg
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Hörner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - C. Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| | - H. Mohsenin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - H.J. Wagner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| | - W. Weber
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
23
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
24
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
25
|
Gong Z, Wu T, Chen X, Guo J, Zhang Y, Li Y. Upconversion Nanoparticle Decorated Spider Silks as Single-Cell Thermometers. NANO LETTERS 2021; 21:1469-1476. [PMID: 33476159 DOI: 10.1021/acs.nanolett.0c04644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noninvasive and sensitive thermometry of a single living cell is crucial to the analysis of fundamental cellular processes and applications to cancer diagnosis. Optical fibers decorated with temperature-sensitive nanomaterials have become widely used instruments for biosensing temperature. However, current silica fibers exhibit low compatibility and degradability in biosystems. In this work, we employ spider silks as natural optical fibers to construct biocompatible thermometers. The spider silks were drawn directly from Araneus ventricosus and were decorated with core-shell upconversion nanoparticles (UCNPs) via a photophoretic effect. By measuring the fluorescence spectra of the UCNPs on the spider silks, the membrane temperature of a single breast cancer cell was obtained with absolute and relative sensitivities ranging from 3.3 to 4.5 × 10-3 K-1 and 0.2 to 0.8% K-1, respectively. Additionally, the temperature variation during apoptosis was monitored by the thermometer in real time. This work provides a biocompatible tool for precise biosensing and single-cell analysis.
Collapse
Affiliation(s)
- Zhiyong Gong
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Tianli Wu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xixi Chen
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
26
|
Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. SENSORS 2020; 20:s20143981. [PMID: 32709072 PMCID: PMC7411870 DOI: 10.3390/s20143981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Optical waveguides and integrated optical devices are promising solutions for many applications, such as medical diagnosis, health monitoring and light therapies. Despite the many existing reviews focusing on the materials that these devices are made from, a systematic review that relates these devices to the various materials, fabrication processes, sensing methods and medical applications is still seldom seen. This work is intended to link these multidisciplinary fields, and to provide a comprehensive review of the recent advances of these devices. Firstly, the optical and mechanical properties of optical waveguides based on glass, polymers and heterogeneous materials and fabricated via various processes are thoroughly discussed, together with their applications for medical purposes. Then, the fabrication processes and medical implementations of integrated passive and active optical devices with sensing modules are introduced, which can be used in many medical fields such as drug delivery and cardiovascular healthcare. Thirdly, wearable optical sensing devices based on light sensing methods such as colorimetry, fluorescence and luminescence are discussed. Additionally, the wearable optical devices for light therapies are introduced. The review concludes with a comprehensive summary of these optical devices, in terms of their forms, materials, light sources and applications.
Collapse
|
27
|
Hu F, Lin N, Liu XY. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020; 23:101035. [PMID: 32311584 PMCID: PMC7168770 DOI: 10.1016/j.isci.2020.101035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 11/15/2022] Open
Abstract
Silkworm silk has been considered to be a luxurious textile for more than five thousand years. Native silk fibroin (SF) films have excellent (ca. 90%) optical transparency and exhibit fluorescence under UV light. The silk dyeing process is very important and difficult, and methods such as pigmentary coloration and structural coloration have been tested for coloring silk fabrics. To functionalize silk that exhibits fluorescence, the in vivo and in vitro assembly of functional compounds with SF and the resulting amplification of fluorescence emission are examined. Finally, we discuss the applications of SF materials in basic optical elements, light energy conversion devices, photochemical reactions, sensing, and imaging. This review is expected to provide insight into the interaction between light and silk and to inspire researchers to develop silk materials with a consideration of history, material properties, and future prospects.
Collapse
Affiliation(s)
- Fan Hu
- Institute of Advanced Materials, East China Jiaotong University, No. 808 Shuanggang East Street, Nanchang 330013, China; Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, College of Materials, Xiamen University, Shenzhen Research Institute of Xiamen University, 422 Siming South Road, Xiamen 361005, China.
| | - X Y Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore.
| |
Collapse
|
28
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Tullii G, Donini S, Bossio C, Lodola F, Pasini M, Parisini E, Galeotti F, Antognazza MR. Micro- and Nanopatterned Silk Substrates for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5437-5446. [PMID: 31917532 DOI: 10.1021/acsami.9b18187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major problem of current biomedical implants is the bacterial colonization and subsequent biofilm formation, which seriously affects their functioning and can lead to serious post-surgical complications. Intensive efforts have been directed toward the development of novel technologies that can prevent bacterial colonization while requiring minimal antibiotics doses. To this end, biocompatible materials with intrinsic antifouling capabilities are in high demand. Silk fibroin, widely employed in biotechnology, represents an interesting candidate. Here, we employ a soft-lithography approach to realize micro- and nanostructured silk fibroin substrates, with different geometries. We show that patterned silk film substrates support mammal cells (HEK-293) adhesion and proliferation, and at the same time, they intrinsically display remarkable antifouling properties. We employ Escherichia coli as representative Gram-negative bacteria, and we observe an up to 66% decrease in the number of bacteria that adhere to patterned silk surfaces as compared to control, flat silk samples. The mechanism leading to the inhibition of biofilm formation critically depends on the microstructure geometry, involving both a steric and a hydrophobic effect. We also couple silk fibroin patterned films to a biocompatible, optically responsive organic semiconductor, and we verify that the antifouling properties are very well preserved. The technology described here is of interest for the next generation of biomedical implants, involving the use of materials with enhanced antibacterial capability, easy processability, high biocompatibility, and prompt availability for coupling with photoimaging and photodetection techniques.
Collapse
Affiliation(s)
- G Tullii
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
- Department of Physics , Politecnico di Milano , Piazza L. Da Vinci 32 , 20133 , Milano , Italy
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR) , Via Alfonso Corti 12 , 20133 , Milano , Italy
| | - S Donini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
| | - C Bossio
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
| | - F Lodola
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
| | - M Pasini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR) , Via Alfonso Corti 12 , 20133 , Milano , Italy
| | - E Parisini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
| | - F Galeotti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche (SCITEC-CNR) , Via Alfonso Corti 12 , 20133 , Milano , Italy
| | - M R Antognazza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia , via Pascoli 70/3 , 20133 , Milano , Italy
| |
Collapse
|
30
|
Guo J, Yang C, Dai Q, Kong L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3771. [PMID: 31480393 PMCID: PMC6749420 DOI: 10.3390/s19173771] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human-machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
31
|
Multifunctional Smart Optical Fibers: Materials, Fabrication, and Sensing Applications. PHOTONICS 2019. [DOI: 10.3390/photonics6020048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper presents a review of the development of optical fibers made of multiple materials, particularly including silica glass, soft glass, polymers, hydrogels, biomaterials, Polydimethylsiloxane (PDMS), and Polyperfluoro-Butenylvinyleth (CYTOP). The properties of the materials are discussed according to their various applications. Typical fabrication techniques for specialty optical fibers based on these materials are introduced, which are mainly focused on extrusion, drilling, and stacking methods depending on the materials’ thermal properties. Microstructures render multiple functions of optical fibers and bring more flexibility in fiber design and device fabrication. In particular, micro-structured optical fibers made from different types of materials are reviewed. The sensing capability of optical fibers enables smart monitoring. Widely used techniques to develop fiber sensors, i.e., fiber Bragg grating and interferometry, are discussed in terms of sensing principles and fabrication methods. Lastly, sensing applications in oil/gas, optofluidics, and particularly healthcare monitoring using specialty optical fibers are demonstrated. In comparison with conventional silica-glass single-mode fiber, state-of-the-art specialty optical fibers provide promising prospects in sensing applications due to flexible choices in materials and microstructures.
Collapse
|
32
|
Apter B, Lapshina N, Handelman A, Fainberg BD, Rosenman G. Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801147. [PMID: 30027685 DOI: 10.1002/smll.201801147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Optical waveguiding phenomena found in bioinspired chemically synthesized peptide nanostructures are a new paradigm which can revolutionize emerging fields of precise medicine and health monitoring. A unique combination of their intrinsic biocompatibility with remarkable multifunctional optical properties and developed nanotechnology of large peptide wafers makes them highly promising for new biomedical light therapy tools and implantable optical biochips. This Review highlights a new field of peptide nanophotonics. It covers peptide nanotechnology and the fabrication process of peptide integrated optical circuits, basic studies of linear and nonlinear optical phenomena in biological and bioinspired nanostructures, and their passive and active optical waveguiding. It is shown that the optical properties of this generation of bio-optical materials are governed by fundamental biological processes. Refolding the peptide secondary structure is followed by wideband optical absorption and visible tunable fluorescence. In peptide optical waveguides, such a bio-optical effect leads to switching from passive waveguiding mode in native α-helical phase to an active one in the β-sheet phase. The found active waveguiding effect in β-sheet fiber structures below optical diffraction limit opens an avenue for the future development of new bionanophotonics in ultrathin peptide/protein fibrillar structures toward advanced biomedical nanotechnology.
Collapse
Affiliation(s)
- Boris Apter
- Faculty of Engineering, Holon Institute of Technology, Holon, 5810201, Israel
| | - Nadezda Lapshina
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Handelman
- Faculty of Engineering, Holon Institute of Technology, Holon, 5810201, Israel
| | - Boris D Fainberg
- Faculty of Science, Holon Institute of Technology, Holon, 5810201, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Gil Rosenman
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
33
|
Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. MATERIALS 2018; 11:ma11081283. [PMID: 30044416 PMCID: PMC6117721 DOI: 10.3390/ma11081283] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
Abstract
Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.
Collapse
|
34
|
Shabahang S, Kim S, Yun SH. Light-Guiding Biomaterials for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706635. [PMID: 31435205 PMCID: PMC6703841 DOI: 10.1002/adfm.201706635] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 05/20/2023]
Abstract
Optical techniques used in medical diagnosis, surgery, and therapy require efficient and flexible delivery of light from light sources to target tissues. While this need is currently fulfilled by glass and plastic optical fibers, recent emergence of biointegrated approaches, such as optogenetics and implanted devices, call for novel waveguides with certain biophysical and biocompatible properties and desirable shapes beyond what the conventional optical fibers can offer. To this end, exploratory efforts have begun to harness various transparent biomaterials to develop waveguides that can serve existing applications better and enable new applications in future photomedicine. Here, we review the recent progress in this new area of research for developing biomaterial-based optical waveguides. We begin with a survey of biological light-guiding structures found in plants and animals, a source of inspiration for biomaterial photonics engineering. We describe natural and synthetic polymers and hydrogels that offer appropriate optical properties, biocompatibility, biodegradability, and mechanical flexibility have been exploited for light-guiding applications. Finally, we briefly discuss perspectives on biomedical applications that may benefit from the unique properties and functionalities of light-guiding biomaterials.
Collapse
Affiliation(s)
- Soroush Shabahang
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seonghoon Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital,
Department of Dermatology, Harvard Medical School. 65 Landsdowne Street,
Cambridge, MA 02139, USA
| |
Collapse
|
35
|
Zheng K, Ling S. De Novo Design of Recombinant Spider Silk Proteins for Material Applications. Biotechnol J 2018; 14:e1700753. [PMID: 29781251 DOI: 10.1002/biot.201700753] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Indexed: 01/08/2023]
Abstract
Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies are developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, the authors first introduce the structure-property-function relationship of spider silks. Then, the recent progress in the genetic synthesis of RSSPs is discussed and their related multiscale self-assembly behaviors is summarized. Finally, the authors outline works utilizing multiscale modeling to assist RSSP material design.
Collapse
Affiliation(s)
- Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
36
|
Nilebäck L, Chouhan D, Jansson R, Widhe M, Mandal BB, Hedhammar M. Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31634-31644. [PMID: 28846369 DOI: 10.1021/acsami.7b10874] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.
Collapse
Affiliation(s)
- Linnea Nilebäck
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Ronnie Jansson
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Mona Widhe
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - My Hedhammar
- AlbaNova University Center, School of Biotechnology, KTH Royal Institute of Technology , 106 91 Stockholm, Sweden
| |
Collapse
|