1
|
Li S, Lin Y, Mo C, Bi J, Liu C, Lu Y, Jia B, Xu S, Liu Z. Application of metal-organic framework materials in regenerative medicine. J Mater Chem B 2024; 12:8543-8576. [PMID: 39136436 DOI: 10.1039/d4tb00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In the past few decades, scaffolds manufactured from composite or hybrid biomaterials of natural or synthetic origin have made great strides in enhancing wound healing and repairing fractures and pathological bone loss. However, the prevailing use of such scaffolds in tissue engineering is accompanied by numerous constraints, including low mechanical stability, poor biological activity, and impaired cell proliferation and differentiation. The performance of scaffolds in wound and bone tissue engineering may be enhanced by some modifications in the synthesis of nanoscale metal-organic framework (nano-MOF) scaffolds. Nano-MOFs have attracted researchers' attention in recent years due to their distinctive features, which include tenability, biocompatibility, good mechanical stability, and ultrahigh surface area. The biological properties of scaffolds are enhanced and tissue regeneration is facilitated by the introduction of nano-MOFs. Moreover, the physicochemical characteristics, drug loading, and ion release capacities of the scaffolds are improved by the nanoscale structure and topological features of nano-MOFs, which also control stem cell differentiation, proliferation, and attachment. This review provides further comprehensive detail about the most recent uses of nano-MOFs in tissue engineering. The distinct characteristics of nano-MOFs are explored in enhancing tissue repair, wound healing, osteoinduction, and bone conductivity. Significant attributes include high antibacterial activity, substantial drug-loading capacity, and the ability to regulate drug release. Finally, this discussion addresses the obstacles, clinical impediments, and considerations encountered in the application of these nanomaterials to diverse scaffolds, tissue-mimicking structures, dressings, fillers, and implants for bone tissue repair and wound healing.
Collapse
Affiliation(s)
- Siwei Li
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yu Lu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
3
|
Uysal I, Tezcaner A, Evis Z. Methods to improve antibacterial properties of PEEK: A review. Biomed Mater 2024; 19:022004. [PMID: 38364280 DOI: 10.1088/1748-605x/ad2a3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
As a thermoplastic and bioinert polymer, polyether ether ketone (PEEK) serves as spine implants, femoral stems, cranial implants, and joint arthroplasty implants due to its mechanical properties resembling the cortical bone, chemical stability, and radiolucency. Although there are standards and antibiotic treatments for infection control during and after surgery, the infection risk is lowered but can not be eliminated. The antibacterial properties of PEEK implants should be improved to provide better infection control. This review includes the strategies for enhancing the antibacterial properties of PEEK in four categories: immobilization of functional materials and functional groups, forming nanocomposites, changing surface topography, and coating with antibacterial material. The measuring methods of antibacterial properties of the current studies of PEEK are explained in detail under quantitative, qualitative, andin vivomethods. The mechanisms of bacterial inhibition by reactive oxygen species generation, contact killing, trap killing, and limited bacterial adhesion on hydrophobic surfaces are explained with corresponding antibacterial compounds or techniques. The prospective analysis of the current studies is done, and dual systems combining osteogenic and antibacterial agents immobilized on the surface of PEEK are found the promising solution for a better implant design.
Collapse
Affiliation(s)
- Idil Uysal
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, 06800 Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
4
|
Lu SC, Chien HW, Yu SH, Chen WC, Chen HH. Dual-Coating of Fluorinated Polydimethylsiloxane/Fluorinated SiO 2 Nanoparticles for Superhydrophobic and High-Efficiency Bacteriostatic Surface. Chemphyschem 2024; 25:e202300388. [PMID: 37991234 DOI: 10.1002/cphc.202300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
A simple two-step spray method is used to prepare superhydrophobic and bacteriostatic surfaces, involving dual-coating with polydimethylsiloxane-normal-fluorine (PDMS-NF) or branched-fluorine (PDMS-BF) in combination with fluorinated silica nanoparticles (FSiO2 -NPs) using a spray technique. This approach has the potential to create surfaces with both water-repellent and antimicrobial properties, which could be useful in a variety of applications. It is noteworthy that the dual-coating on cotton fabric exhibited an impressive dual-scale roughness and achieved superhydrophobicity with a water contact angle of 158° and a hysteresis of less than 3°. Additionally, the coating was subjected to an ultra-high concentration of bacteria (109 CFU/mL) and was still able to inhibit more than 80 % of attachment, demonstrating its effectiveness as a bacteriostatic surface.
Collapse
Affiliation(s)
- Shao-Chen Lu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
| | - Shih-Hsien Yu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807618, Taiwan
| | - Hsiu-Hui Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| |
Collapse
|
5
|
An J, Shi X, Zhang J, Qi L, Xue W, Nie X, Yun Z, Zhang P, Liu Q. Dual aldehyde cross-linked hyaluronic acid hydrogels loaded with PRP and NGF biofunctionalized PEEK interfaces to enhance osteogenesis and vascularization. Mater Today Bio 2024; 24:100928. [PMID: 38179432 PMCID: PMC10765491 DOI: 10.1016/j.mtbio.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Polyetheretherketone (PEEK) material has become a potential bone replacement material due to its elastic modulus, which is close to that of human bone, and stable chemical properties. However, its biological inertness has hindered its clinical application. To improve the biological inertia of PEEK material, a hyaluronic acid (HA) hydrogel coating loaded with platelet-rich plasma (PRP) and nerve growth factor (NGF) was constructed on the surface of PEEK material in this study. After the hybrid hydrogel coating was constructed, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), degradation tests, and enzyme-linked immunosorbent assays (ELISAs) were used to evaluate its characteristics and biological properties. The osteogenic and angiogenic potentials were also investigated in vitro and in vivo. Our results showed that the HA hydrogel loaded with RPP and NGF on the PEEK surface degraded slowly and could sustainably release various growth factors, including NGF. The results of in vitro tests showed that the hybrid hydrogel on the surface of PEEK effectively promoted osteogenesis and angiogenesis. The in vivo experiment also confirmed that the PEEK surface hydrogel could promote osseointegration of the implant and the integration of new bone and neovascularization. Our results suggest that the cross-linked hyaluronic acid hydrogel loaded with PRP and NGF can significantly improve the biological inertia of PEEK material, endowing PEEK material with good osteogenic and angiogenic ability.
Collapse
Affiliation(s)
- Junyan An
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
- The Third Hospital of Jilin University, Department of Neurosurgery, Changchun, 130031, China
| | - Xiaotong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- The First Hospital of Jilin University, Department of Orthopedics, Changchun, 130021, China
| | - Jun Zhang
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Le Qi
- The Yunlong Orthopedic Hospital of Baotou, Department of Orthopedics, Baotou, 014010, China
| | - Wu Xue
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Xinyu Nie
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Zhihe Yun
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qinyi Liu
- The Second Hospital of Jilin University, Department of Orthopedics, Changchun, 130041, China
| |
Collapse
|
6
|
Xue Y, Zhang L, Liu F, Kong L, Ma D, Han Y. Fluoride releasing photothermal responsive TiO 2 matrices for antibiosis, biosealing and bone regeneration. J Control Release 2023; 363:657-669. [PMID: 37832724 DOI: 10.1016/j.jconrel.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Peri-implantitis induced by infection leads to gingival recession, alveolar resorption and eventual dental implant failure. So, antibiosis and biosealing of abutments as well as osseointegration of roots need to be projected seriously during the whole service lifespan of dental implants. In this work, a multipurpose photothermal therapy strategy based on Si/P/F doped TiO2 matrix is proposed to address the above issues. This TiO2 matrix not only has outstanding photothermal response, but also triggers the release of F ions under near-infrared (NIR) light irradiation. Local hyperthermia assisted with the released F ions reduces adenosine triphosphate (ATP) synthesis of staphylococcus aureus (S. aureus), increases bacterial membrane permeability, and induces abundant of reactive oxygen species, resulting in the oxidation of cellular components and eventual death of bacteria. Furthermore, the synergic action of mild photothermal stimulation and Si/P/F ions of TiO2 matrix up-regulates gingival epithelial cells behavior (e.g., hemidesmosome formation) and osteoblasts response in vitro. In an infected model, this TiO2 matrix obviously eliminates bacteria, reduces inflammatory response, improves epithelial sealing and osseointegration, and reduces alveolar resorption by regulating NIR irradiation.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an 710038, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an 710038, China
| | - Dayan Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
Ma M, Zhao M, Ji R, Guo Y, Li D, Zeng S. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants. ACS OMEGA 2023; 8:39269-39278. [PMID: 37901550 PMCID: PMC10601048 DOI: 10.1021/acsomega.3c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The prevention of aseptic loosening and peri-implantitis is crucial for the success of dental implant surgery. In this study, different doses of Ag-implanted TiN/Ag nanomultilayers were prepared on the sandblasting with large grit and acid etching (SLA)-Ti surface using a multiarc ion-plating system and an ion-implantation system, respectively. The physical and chemical properties of the samples were assessed using various techniques, including scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, inductively coupled plasma atomic emission spectrometry, and water contact angle measurements. In addition, the applicability and biosafety of the SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were determined via biocompatibility testing in vivo and in vitro. The results demonstrated that the physical and chemical properties of SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were different to some extent. However, compared with SLA-Ti, silver-loaded TiN/Ag-modified SLA-Ti surfaces (SLA/1 × 1018-Ag) with enhanced bacteriostatis, osteogenesis, and biocompatibility have great potential for dental applications.
Collapse
Affiliation(s)
- Ming Ma
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Mengli Zhao
- School
of Electronic Engineering, Chaohu University, Anhui 238024, China
| | - Ruotong Ji
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Yi Guo
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Dejun Li
- College
of Physics and Materials Science, Tianjin
Normal University, Tianjin 300387, China
| | - Sujuan Zeng
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| |
Collapse
|
8
|
Zhang Z, Zhang X, Zheng Z, Xin J, Han S, Qi J, Zhang T, Wang Y, Zhang S. Latest advances: Improving the anti-inflammatory and immunomodulatory properties of PEEK materials. Mater Today Bio 2023; 22:100748. [PMID: 37600350 PMCID: PMC10432209 DOI: 10.1016/j.mtbio.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
Excellent biocompatibility, mechanical properties, chemical stability, and elastic modulus close to bone tissue make polyetheretherketone (PEEK) a promising orthopedic implant material. However, biological inertness has hindered the clinical applications of PEEK. The immune responses and inflammatory reactions after implantation would interfere with the osteogenic process. Eventually, the proliferation of fibrous tissue and the formation of fibrous capsules would result in a loose connection between PEEK and bone, leading to implantation failure. Previous studies focused on improving the osteogenic properties and antibacterial ability of PEEK with various modification techniques. However, few studies have been conducted on the immunomodulatory capacity of PEEK. New clinical applications and advances in processing technology, research, and reports on the immunomodulatory capacity of PEEK have received increasing attention in recent years. Researchers have designed numerous modification techniques, including drug delivery systems, surface chemical modifications, and surface porous treatments, to modulate the post-implantation immune response to address the regulatory factors of the mechanism. These studies provide essential ideas and technical preconditions for the development and research of the next generation of PEEK biological implant materials. This paper summarizes the mechanism by which the immune response after PEEK implantation leads to fibrous capsule formation; it also focuses on modification techniques to improve the anti-inflammatory and immunomodulatory abilities of PEEK. We also discuss the limitations of the existing modification techniques and present the corresponding future perspectives.
Collapse
Affiliation(s)
- Zilin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jinwei Qi
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Tianhui Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spine Surgery, Center of Orthopedics, First Hospital of Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| |
Collapse
|
9
|
Dua R, Sharufa O, Terry J, Dunn W, Khurana I, Vadivel J, Zhang Y, Donahue HJ. Surface modification of Polyether-ether-ketone for enhanced cell response: a chemical etching approach. Front Bioeng Biotechnol 2023; 11:1202499. [PMID: 37744253 PMCID: PMC10517429 DOI: 10.3389/fbioe.2023.1202499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Polyether-ether-ketone (PEEK) is increasingly becoming popular in medicine because of its excellent mechanical strength, dimensional stability, and chemical resistance properties. However, PEEK being bioinert, has weak bone osseointegration properties, limiting its clinical applications. In this study, a porous PEEK structure was developed using a chemical etching method with 98 wt% sulfuric acids and three post-treatments were performed to improve bone cell adhesion and proliferation. Four groups of PEEK samples were prepared for the study: Control (untreated; Group 1); Etched with sulfuric acid and washed with distilled water (Group 2); Etched with sulfuric acid and washed with acetone and distilled water (Group 3); and Etched with sulfuric acid and washed with 4 wt% sodium hydroxide and distilled water (Group 4). Surface characterization of the different groups was evaluated for surface topology, porosity, roughness, and wettability using various techniques, including scanning electron microscopy, profilometer, and goniometer. Further chemical characterization was done using Energy-dispersive X-ray spectroscopy to analyze the elements on the surface of each group. Bone cell studies were conducted using cell toxicity and alkaline phosphatase activity (ALP) assays. The SEM analysis of the different groups revealed porous structures in the treatment groups, while the control group showed a flat topology. There was no statistically significant difference between the pore size within the treated groups. This was further confirmed by the roughness values measured with the profilometer. We found a statistically significant increase in the roughness from 7.22 × 10-3 μm for the control group to the roughness range of 0.1 µm for the treated groups (Groups 2-4). EDX analysis revealed the presence of a 0.1% weight concentration of sodium on the surface of Group 4, while sulfur weight percentage concentration was 1.1%, 0.1%, and 1.4% in groups 2, 3, and 4, respectively, indicating different surface chemistry on the surface due to different post-treatments. Cell toxicity decreased, and ALP activity increased in groups 3 and 4 over 7 days compared with the control group. It is demonstrated that the surface modification of PEEK using a chemical etching method with post-processing with either acetone or sodium hydroxide provides a nano-porous structure with improved properties, leading to enhanced osteoblastic cell differentiation and osteogenic potential.
Collapse
Affiliation(s)
- Rupak Dua
- American Dental Association Science and Research Institute (ADASRI), Gaithersburg, MD, United States
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Onessa Sharufa
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Joi Terry
- Department of Biology, Hampton University, Hampton, VA, United States
| | - William Dunn
- The New Horizons Governor’s School for Science and Technology, Hampton, VA, United States
| | - Indu Khurana
- Department of Economics and Business, Hampden-Sydney College, Hampden-Sydney, VA, United States
| | - Jagasivamani Vadivel
- Department of Chemical Engineering, Hampton University, Hampton, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J. Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
10
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
11
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Hu X, Wang T, Li F, Mao X. Surface modifications of biomaterials in different applied fields. RSC Adv 2023; 13:20495-20511. [PMID: 37435384 PMCID: PMC10331796 DOI: 10.1039/d3ra02248j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Biomaterial implantation into the human body plays a key role in the medical field and biological applications. Increasing the life expectancy of biomaterial implants, reducing the rejection reaction inside the human body and reducing the risk of infection are the problems in this field that need to be solved urgently. The surface modification of biomaterials can change the original physical, chemical and biological properties and improve the function of materials. This review focuses on the application of surface modification techniques in various fields of biomaterials reported in the past few years. The surface modification techniques include film and coating synthesis, covalent grafting, self-assembled monolayers (SAMs), plasma surface modification and other strategies. First, a brief introduction to these surface modification techniques for biomaterials is given. Subsequently, the review focuses on how these techniques change the properties of biomaterials, and evaluates the effects of modification on the cytocompatibility, antibacterial, antifouling and surface hydrophobic properties of biomaterials. In addition, the implications for the design of biomaterials with different functions are discussed. Finally, based on this review, it is expected that the biomaterials have development prospects in the medical field.
Collapse
Affiliation(s)
- Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
13
|
Wei Z, Zhang Z, Zhu W, Weng X. Polyetheretherketone development in bone tissue engineering and orthopedic surgery. Front Bioeng Biotechnol 2023; 11:1207277. [PMID: 37456732 PMCID: PMC10345210 DOI: 10.3389/fbioe.2023.1207277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Polyetheretherketone (PEEK) has been widely used in the medical field as an implant material, especially in bone tissue engineering and orthopedic surgery, in recent years. This material exhibits superior stability at high temperatures and is biosecured without harmful reactions. However, the chemical and biological inertness of PEEK still limits its applications. Recently, many approaches have been applied to improve its performance, including the modulation of physical morphology, chemical composition and antimicrobial agents, which advanced the osteointegration as well as antibacterial properties of PEEK materials. Based on the evolution of PEEK biomedical devices, many studies on the use of PEEK implants in spine surgery, joint surgery and trauma repair have been performed in the past few years, in most of which PEEK implants show better outcomes than traditional metal implants. This paper summarizes recent studies on the modification and application of biomedical PEEK materials, which provides further research directions for PEEK implants.
Collapse
Affiliation(s)
- Zhanqi Wei
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Zhu
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Surface Treatments of PEEK for Osseointegration to Bone. Biomolecules 2023; 13:biom13030464. [PMID: 36979399 PMCID: PMC10046336 DOI: 10.3390/biom13030464] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. However, PEEK has a highly hydrophobic and bioinert surface that attenuates the differentiation and proliferation of osteoblasts and leads to implant failure. Several improvements have been made to the osseointegration potential of PEEK, which can be classified into three main categories: (1) surface functionalization with bioactive agents by physical or chemical means; (2) incorporation of bioactive materials either as surface coatings or as composites; and (3) construction of three-dimensionally porous structures on its surfaces. The physical treatments, such as plasma treatments of various elements, accelerated neutron beams, or conventional techniques like sandblasting and laser or ultraviolet radiation, change the micro-geometry of the implant surface. The chemical treatments change the surface composition of PEEK and should be titrated at the time of exposure. The implant surface can be incorporated with a bioactive material that should be selected following the desired use, loading condition, and antimicrobial load around the implant. For optimal results, a combination of the methods above is utilized to compensate for the limitations of individual methods. This review summarizes these methods and their combinations for optimizing the surface of PEEK for utilization as an implanted biomaterial.
Collapse
|
15
|
Cheng X, Yang X, Liu C, Li Y, Zhang Y, Wang J, Zhang X, Jian X. Stabilization of Apatite Coatings on PPENK Surfaces by Mechanical Interlocking to Promote Bioactivity and Osseointegration In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:697-710. [PMID: 36571180 DOI: 10.1021/acsami.2c20633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Apatite coatings with high stability can effectively improve the surface bioactivity and osteogenic activity of implant materials. In clinical practice, the ability of apatite coatings to bond with the substrate is critical to the effect of implants. Here, we propose a strategy to construct a three-dimensional (3D) nanoporous structure on the surface of a poly(phthalazinone ether nitrile ketone) (PPENK) substrate and introduce a polydopamine (PDA) coating with grafted phosphonate groups to enhance the overall deposition of a bone-like apatite coating in the 3D nanoporous structure during mineralization. This method leads to a mechanical interlocking between the apatite coating and the substrate, which increases the stability of the apatite coating. The apatite coating confers a better bioactive surface to PPENK and also promotes osteogenic differentiation and adhesion of MC3T3-E1 osteoblasts in vitro. The samples are then implanted into rat femurs to characterize in vivo osseointegration. Micro-CT data and histological staining of tissue sections reveal that PPENK with a stable apatite coating induces less fibrous capsule formation and no inflammatory response and promotes osteogenic differentiation and bone-bonding strength. This enhances the long-term use of PPENK implant materials and shows great potential for clinical application as orthopedic implants.
Collapse
Affiliation(s)
- Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chengde Liu
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| |
Collapse
|
16
|
Senra MR, Marques MDFV, Monteiro SN. Poly (Ether-Ether-Ketone) for Biomedical Applications: From Enhancing Bioactivity to Reinforced-Bioactive Composites-An Overview. Polymers (Basel) 2023; 15:373. [PMID: 36679253 PMCID: PMC9861117 DOI: 10.3390/polym15020373] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/13/2023] Open
Abstract
The global orthopedic market is forecasted to reach US$79.5 billion by the end of this decade. Factors driving the increase in this market are population aging, sports injury, road traffic accidents, and overweight, which justify a growing demand for orthopedic implants. Therefore, it is of utmost importance to develop bone implants with superior mechanical and biological properties to face the demand and improve patients' quality of life. Today, metallic implants still hold a dominant position in the global orthopedic implant market, mainly due to their superior mechanical resistance. However, their performance might be jeopardized due to the possible release of metallic debris, leading to cytotoxic effects and inflammatory responses in the body. Poly (ether-ether-ketone) (PEEK) is a biocompatible, high-performance polymer and one of the most prominent candidates to be used in manufacturing bone implants due to its similarity to the mechanical properties of bone. Unfortunately, the bioinert nature of PEEK culminates in its diminished osseointegration. Notwithstanding, PEEK's bioactivity can be improved through surface modification techniques and by the development of bioactive composites. This paper overviews the advantages of using PEEK for manufacturing implants and addresses the most common strategies to improve the bioactivity of PEEK in order to promote enhanced biomechanical performance.
Collapse
Affiliation(s)
- Mônica Rufino Senra
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoleculas Professor Eloisa Mano, Universidade Federal do Rio de Janeiro, Horácio Macedo Av., 2.030, Bloco J, Cidade Universitária, Rio de Janeiro CEP 21941-598, RJ, Brazil
| | - Sergio Neves Monteiro
- Department of Materials Science, Military Institute of Engineering, IME, Praça General Tibúrcio, 80, Urca, Rio de Janeiro CEP 22290-270, RJ, Brazil
| |
Collapse
|
17
|
Xin H, Shi Q, Ning X, Chen Y, Jia X, Zhang Z, Zhu S, Li Y, Liu F, Kong L. Biomimetic Mineralized Fiber Bundle-Inspired Scaffolding Surface on Polyetheretherketone Implants Promotes Osseointegration. Macromol Biosci 2023; 23:e2200436. [PMID: 36617598 DOI: 10.1002/mabi.202200436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/11/2022] [Indexed: 01/10/2023]
Abstract
The stress shielding effect caused by traditional metal implants is circumvented by using polyetheretherketone (PEEK), due to its excellent mechanical properties; however, the biologically inert nature of PEEK limits its application. Endowing PEEK with biological activity to promote osseointegration would increase its applicability for bone replacement implants. A biomimetic study is performed, inspired by mineralized collagen fiber bundles that contact bone marrow mesenchymal stem cells (BMMSCs) on the native trabecular bone surface. The PEEK surface (P) is first sulfonated with sulfuric acid to form a porous network structure (sP). The surface is then encapsulated with amorphous hydroxyapatite (HA) by magnetron sputtering to form a biomimetic scaffold that resembles mineralized collagen fiber bundles (sPHA). Amorphous HA simulates the composition of osteogenic regions in vivo and exhibits strong biological activity. In vitro results show that more favorable cell adhesion and osteogenic differentiation can be attained with the novelsurface of sPHA than with SP. The results of in vivo experiments show that sPHA exhibits osteoinductive and osteoconductive activity and facilitates bone formation and osseointegration. Therefore, the surface modification strategy can significantly improve the biological activity of PEEK, facilitate effective osseointegration, and inspire further bionic modification of other inert polymers similar to PEEK.
Collapse
Affiliation(s)
- He Xin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianwen Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaona Ning
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuelian Jia
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Simin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.,College of Life Sciences, Northwest University, Xi'an, 710032, China
| | - Yunpeng Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment. Bioact Mater 2022; 24:236-250. [PMID: 36606257 PMCID: PMC9803906 DOI: 10.1016/j.bioactmat.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Carbon fiber reinforced polyetheretherketone (CFRPEEK) possesses a similar elastic modulus to that of human cortical bone and is considered as a promising candidate to replace metallic implants. However, the bioinertness and deficiency of antibacterial activities impede its application in orthopedic and dentistry. In this work, titanium plasma immersion ion implantation (Ti-PIII) is applied to modify CFRPEEK, achieving unique multi-hierarchical nanostructures and active sites on the surface. Then, hybrid polydopamine (PDA)@ZnO-EDN1 nanoparticles (NPs) are introduced to construct versatile surfaces with improved osteogenic and angiogenic properties and excellent antibacterial properties. Our study established that the modified CFRPEEK presented favorable stability and cytocompatibility. Compared with bare CFRPEEK, improved osteogenic differentiation of rat mesenchymal stem cells (BMSCs) and vascularization of human umbilical vein endothelial cells (HUVECs) are found on the functionalized surface due to the zinc ions and EDN1 releasing. In vitro bacteriostasis assay confirms that hybrid PDA@ZnO NPs on the functionalized surface provided an effective antibacterial effect. Moreover, the rat infected model corroborates the enhanced antibiosis and osteointegration of the functionalized CFRPEEK. Our findings indicate that the multilevel nanostructured PDA@ZnO-EDN1 coated CFRPEEK with enhanced antibacterial, angiogenic, and osteogenic capacity has great potential as an orthopedic/dental implant material for clinical application.
Collapse
|
19
|
Pidhatika B, Widyaya VT, Nalam PC, Swasono YA, Ardhani R. Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers (Basel) 2022; 14:polym14245526. [PMID: 36559893 PMCID: PMC9787615 DOI: 10.3390/polym14245526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
This comprehensive review focuses on polyetheretherketone (PEEK), a synthetic thermoplastic polymer, for applications in dentistry. As a high-performance polymer, PEEK is intrinsically robust yet biocompatible, making it an ideal substitute for titanium-the current gold standard in dentistry. PEEK, however, is also inert due to its low surface energy and brings challenges when employed in dentistry. Inert PEEK often falls short of achieving a few critical requirements of clinical dental materials, such as adhesiveness, osseoconductivity, antibacterial properties, and resistance to tribocorrosion. This study aims to review these properties and explore the various surface modification strategies that enhance the performance of PEEK. Literatures searches were conducted on Google Scholar, Research Gate, and PubMed databases using PEEK, polyetheretherketone, osseointegration of PEEK, PEEK in dentistry, tribology of PEEK, surface modifications, dental applications, bonding strength, surface topography, adhesive in dentistry, and dental implant as keywords. Literature on the topics of surface modification to increase adhesiveness, tribology, and osseointegration of PEEK were included in the review. The unavailability of full texts was considered when excluding literature. Surface modifications via chemical strategies (such as sulfonation, plasma treatment, UV treatment, surface coating, surface polymerization, etc.) and/or physical approaches (such as sandblasting, laser treatment, accelerated neutral atom beam, layer-by-layer assembly, particle leaching, etc.) discussed in the literature are summarized and compared. Further, approaches such as the incorporation of bioactive materials, e.g., osteogenic agents, antibacterial agents, etc., to enhance the abovementioned desired properties are explored. This review presents surface modification as a critical and essential approach to enhance the biological performance of PEEK in dentistry by retaining its mechanical robustness.
Collapse
Affiliation(s)
- Bidhari Pidhatika
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
- Collaborative Research Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic Indonesia and Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Vania Tanda Widyaya
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Prathima C. Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, NY 14260-1900, USA
| | - Yogi Angga Swasono
- Research Center for Polymer Technology, National Research and Innovation Agency, Republic of Indonesia PRTPL BRIN Indonesia, Serpong, Tangerang Selatan 15314, Indonesia
| | - Retno Ardhani
- Department of Dental Biomedical Science, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta No. 1, Sekip Utara, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|
20
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
21
|
Kang J, Tian Y, Zheng J, Lu D, Cai K, Wang L, Li D. Functional design and biomechanical evaluation of 3D printing PEEK flexible implant for chest wall reconstruction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107105. [PMID: 36108412 DOI: 10.1016/j.cmpb.2022.107105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Rigid reconstruction of chest wall defect seriously affects the postoperative respiratory owing to neglecting the functional role of natural costal cartilage. In the study, a 3D printing PEEK flexible implant was developed to restore the deformation capability during breathing motion. MATERIALS AND METHODS Bionic spring structures in different region of implant were designed by taking into consideration of the anatomical morphology and materials properties of costal cartilage. The biomechanical properties of the rigid and flexible implants under the chest compression were compared through the finite element analysis. Two kinds of chest wall implant samples were fabricated with fused deposition modeling (FDM) technology to evaluate experimentally the mechanical behaviors. Finally, the restoration ability of respiratory function from the flexible implant was investigated in vivo. RESULTS The flexible implant exhibited the similar stiffness to the natural thorax and satisfied the strength demand in the chest compression. The maximal impact force of flexible implant reached to 536 N. The fatigue failure of complete flexible implant was revealed from the initiation and propagation of interlaminar crack to the fracture in a zigzag manner. Animal experiments validated that the parameters characterizing respiratory could be recovered to the preoperative and normal state. CONCLUSIONS In the study, the flexible implant provided these advantages for perfect replication of thoracic shape, reliable safety, and great deformation capability to response respiratory movement, which given a superior treatment for chest wall reconstruction.
Collapse
Affiliation(s)
- Jianfeng Kang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Jihua Laboratory, Foshan, Guangdong, China
| | - Yucong Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Jibao Zheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Di Lu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Guangdong Xi'an Jiaotong University Academy, Guangdong, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| |
Collapse
|
22
|
Zhang S, Long J, Chen L, Zhang J, Fan Y, Shi J, Huang Y. Treatment methods toward improving the anti-infection ability of poly(etheretherketone) implants for medical applications. Colloids Surf B Biointerfaces 2022; 218:112769. [PMID: 35994991 DOI: 10.1016/j.colsurfb.2022.112769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Due to its favorable chemical stability, biocompatibility, and mechanical properties, Poly(etheretherketone) (PEEK) is a promising material for repairing bone and dental hard tissue defects. However, there are critical disadvantages: PEEK is biologically and chemically inert, which influences osseointegration of implants and bonding strength of prostheses, and its mechanical properties still cannot meet the requirements for some medical applications. Furthermore, bacterial infections and inflammatory reactions often accompany bone defects caused by trauma or inflammation or teeth loss caused by periodontitis. Previous studies mainly focused on enhancing PEEK's bioactivity and mechanical performance, but PEEK also lacks effective anti-infection ability. Thus, it is necessary to improve its anti-infection ability, and this is considered in this paper from two aspects. The first is to inhibit the attachment and growth of bacteria on the material, and the second is to endow the material with immunoregulatory ability, which means mobilizing the host immune system to protect tissue from inflammation. In this review, we analyze and discuss the existing treatment methods to improve the antibacterial and immunomodulatory abilities of PEEK addressing their limitations, relevant future challenges, and required research efforts.
Collapse
Affiliation(s)
- Shuqi Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiazhen Long
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Lin Chen
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jie Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yunjian Fan
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Jiayu Shi
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| | - Yuanjin Huang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulvard, Guangzhou 510280, China.
| |
Collapse
|
23
|
Li W, Zhang Y, Ding J, Zhang S, Hu T, Li S, An X, Ren Y, Fu Q, Jiang X, Li X. Temperature-triggered fluorocopolymer aggregate coating switching from antibacterial to antifouling and superhydrophobic hemostasis. Colloids Surf B Biointerfaces 2022; 215:112496. [PMID: 35427845 DOI: 10.1016/j.colsurfb.2022.112496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
The multifunction antibacterial hemostatic materials can reduce blood loss, infection and wound complications, which probably decrease morbidity and health care costs. However, the contradictory relationship between antibacterial ability and biocompatibility, and the unnecessary blood loss restricts the practical application of hydrophilic cationic antibacterial hemostatic materials. Herein, a multifunctional temperature-triggered antibacterial hemostatic fluorocopolymer aggregate coating was developed. After self-assembly and quaternization process, the quaternized poly(N,N-dimethylaminoethylmethacrylate)-b-poly(1H,1H,2H,2H-heptadecafluorodecyl acrylate) block copolymers (PDMA-b-PFOEMA) aggregate coating consisting of fluoropolymer and quaternary ammonium salt were built. The synergistic effect on fluorinated block with low surface energy and quaternary ammonium salt block with bactericide activity severs the way of initial bacterial attachment and proliferation, while the migration of fluorinated block greatly promotes the biocompatibility and anti-adhesion performance in response to the switch from room temperature to physiological temperature. Furthermore, the fluorocopolymer aggregate coating with hydrophobic properties possessed the property of rapid coagulation, low blood loss, minor secondary bleeding and least bacteria infiltration. The multifunctional temperature-triggered fluorocopolymer aggregate coating with antifouling, antibacterial and hemostatic properties may have a great potential in the biomedical application.
Collapse
Affiliation(s)
- Wenting Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Yufu Zhang
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Jiyuan Ding
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Shuo Zhang
- Shandong Boda Medical Products Co., LTD, East end of Dandang Road, Shan County Economic Development Zone, Shan County 274300, PR China
| | - Tingyong Hu
- Guangxi Wuyi Pipe Industry Co. Ltd., Wuzhou 543000, PR China
| | - Sen Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Xiaoyan An
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Yufang Ren
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China
| | - Qingwei Fu
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China
| | - Xuchuan Jiang
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan 250022, PR China
| | - Xue Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336 Nan Xinzhuang west road, Jinan 250022, PR China.
| |
Collapse
|
24
|
Wang Y, Zhang S, Nie B, Qu X, Yue B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front Bioeng Biotechnol 2022; 10:895288. [PMID: 35646862 PMCID: PMC9136111 DOI: 10.3389/fbioe.2022.895288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Due to excellent mechanical properties and similar elastic modulus compared with human cortical bone, polyetheretherketone (PEEK) has become one of the most promising orthopedic implant materials. However, implant-associated infections (IAIs) remain a challenging issue since PEEK is bio-inert. In order to fabricate an antibacterial bio-functional surface, modifications of PEEK had been widely investigated. This review summarizes the modification strategies to biofunctionalize PEEK for antibacterial. We will begin with reviewing different approaches, such as surface-coating modifications and controlled release of antimicrobials. Furthermore, blending modifications and 3D printing technology were discussed. Finally, we compare the effects among different approaches. We aimed to provide an in-depth understanding of the antibacterial modification and optimize the design of the PEEK orthopedic implant.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin’en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Bing Yue,
| |
Collapse
|
25
|
Yu D, Lei X, Zhu H. Modification of polyetheretherketone (PEEK) physical features to improve osteointegration. J Zhejiang Univ Sci B 2022; 23:189-203. [PMID: 35261215 DOI: 10.1631/jzus.b2100622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties, radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology, stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale have positive effects on cell-substrate interactions. More investigations are necessary to reach consensus on the optimal design of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored, though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyue Lei
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
26
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
27
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zhao H, Wang X, Zhang W, Wang L, Zhu C, Huang Y, Chen R, Chen X, Wang M, Pan G, Shi Q, Zhou X. Bioclickable Mussel-Derived Peptides With Immunoregulation for Osseointegration of PEEK. Front Bioeng Biotechnol 2021; 9:780609. [PMID: 34900969 PMCID: PMC8652040 DOI: 10.3389/fbioe.2021.780609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Polyether ether ketone (PEEK)–based biomaterials have been widely used in the field of spine and joint surgery. However, lack of biological activity limits their further clinical application. In this study, we synthesized a bioclickable mussel-derived peptide Azide-DOPA4 as a PEEK surface coating modifier and further combined bone morphogenetic protein 2 functional peptides (BMP2p) with a dibenzylcyclooctyne (DBCO) motif through bio-orthogonal reactions to obtain DOPA4@BMP2p-PEEK. As expected, more BMP2p can be conjugated on PEEK after Azide-DOPA4 coating. The surface roughness and hydrophilicity of DOPA4@BMP2p-PEEK were obviously increased. Then, we optimized the osteogenic capacity of PEEK substrates. In vitro, compared with the BMP2p-coating PEEK material, DOPA4@BMP2p-PEEK showed significantly higher osteogenic induction capability of rat bone marrow mesenchymal stem cells. In vivo, we constructed a rat calvarial bone defect model and implanted PEEK materials with a differently modified surface. Micro-computed tomography scanning displayed that the DOPA4@BMP2p-PEEK implant group had significantly higher new bone volume and bone mineral density than the BMP2p-PEEK group. Histological staining of hard tissue further confirmed that the DOPA4@BMP2p-PEEK group revealed a better osseointegrative effect than the BMP2p-PEEK group. More importantly, we also found that DOPA4@BMP2p coating has a synergistic effect with induced Foxp3+ regulatory T (iTreg) cells to promote osteogenesis. In summary, with an easy-to-perform, two-step surface bioengineering approach, the DOPA4@BMP2p-PEEK material reported here displayed excellent biocompatibility and osteogenic functions. It will, moreover, offer insights to engineering surfaces of orthopedic implants.
Collapse
Affiliation(s)
- Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xiaokang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Wen Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Lin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Can Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Rongrong Chen
- Department of Pediatrics, The Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| | - Xichao Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, Suzhou, China
| |
Collapse
|
30
|
Xiao T, Fan L, Liu R, Huang X, Wang S, Xiao L, Pang Y, Li D, Liu J, Min Y. Fabrication of Dexamethasone-Loaded Dual-Metal-Organic Frameworks on Polyetheretherketone Implants with Bacteriostasis and Angiogenesis Properties for Promoting Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50836-50850. [PMID: 34689546 DOI: 10.1021/acsami.1c18088] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface. The PEEK surface with the multifunctional coating provides superior hydrophilicity and favorable stability and forms an alkaline microenvironment when Mg2+, Zn2+, 2,5-dihydroxyterephthalic acid, and DEX are released due to the coating degradation. In vitro results showed that the multifunctional coating has strong antibacterial ability against both Escherichia coli and Staphylococcus aureus; it also improves human umbilical vein endothelial cell angiogenic ability and enhances rat bone marrow mesenchymal stem cell osteogenic differentiation activity. Furthermore, the in vivo rat subcutaneous infection model, chicken chorioallantoic membrane model, and rat femoral drilling model verify that the PEEK implant coated with the multifunctional coating has strong antibacterial and angiogenic ability and promotes the formation of new bone around the implant with a stronger bone-implant interface. Our findings indicate that DEX loaded on the Zn-Mg-MOF74 coating-modified PEEK implant with bacteriostasis, angiogenesis, and osteogenesis properties has great clinical application potential as bone graft materials.
Collapse
Affiliation(s)
- Tianhua Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rongtao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihuan Wang
- Child Developmental & Behavioral Center, Third Affiliated Hospital of Sun Yat-sen University, No.600, Tianhe Road, Guangzhou 510630, China
| | - Liangang Xiao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyu Pang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Da Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
31
|
Effect of Extreme Ultraviolet (EUV) Radiation and EUV Induced, N 2 and O 2 Based Plasmas on a PEEK Surface's Physico-Chemical Properties and MG63 Cell Adhesion. Int J Mol Sci 2021; 22:ijms22168455. [PMID: 34445159 PMCID: PMC8395134 DOI: 10.3390/ijms22168455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Polyetheretherketone (PEEK), due to its excellent mechanical and physico-chemical parameters, is an attractive substitute for hard tissues in orthopedic applications. However, PEEK is hydrophobic and lacks surface-active functional groups promoting cell adhesion. Therefore, the PEEK surface must be modified in order to improve its cytocompatibility. In this work, extreme ultraviolet (EUV) radiation and two low-temperature, EUV induced, oxygen and nitrogen plasmas were used for surface modification of polyetheretherketone. Polymer samples were irradiated with 100, 150, and 200 pulses at a 10 Hz repetition rate. The physical and chemical properties of EUV and plasma modified PEEK surfaces, such as changes of the surface topography, chemical composition, and wettability, were examined using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and goniometry. The human osteoblast-like MG63 cells were used for the analysis of cell viability and cell adhesion on all modified PEEK surfaces. EUV radiation and two types of plasma treatment led to significant changes in surface topography of PEEK, increasing surface roughness and formation of conical structures. Additionally, significant changes in the chemical composition were found and were manifested with the appearance of new functional groups, incorporation of nitrogen atoms up to ~12.3 at.% (when modified in the presence of nitrogen), and doubling the oxygen content up to ~25.7 at.% (when modified in the presence of oxygen), compared to non-modified PEEK. All chemically and physically changed surfaces demonstrated cyto-compatible and non-cytotoxic properties, an enhancement of MG63 cell adhesion was also observed.
Collapse
|
32
|
He M, Huang Y, Xu H, Feng G, Liu L, Li Y, Sun D, Zhang L. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomater 2021; 129:18-32. [PMID: 34020056 DOI: 10.1016/j.actbio.2021.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Polyetheretherketone (PEEK) is a popular thermoplastic material widely used in engineering applications due to its favorable mechanical properties and stability at high temperatures. With the first implantable grade PEEK being commercialized in 1990s, the use of PEEK has since grown exponentially in the biomedical field and has rapidly transformed a large section of the medical devices landscape. Nowadays, PEEK is a standard biomaterial used across a wide range of implant applications, however, its bioinertness remains a limitation for bone repair applications. The increasing demand for enhanced treatment efficacy/improved patient quality of life, calls for next-generation implants that can offer fast bone integration as well as other desirable therapeutic functions. As such, modification of PEEK implants has progressively shifted from offering desirable mechanical properties, enhancing bioactivity/fast osteointegration, to more recently, tackling post-surgery bacterial infection/biofilm formation, modulation of inflammation and management of bone cancers. Such progress is also accompanied by the evolution of the PEEK manufacturing technologies, to meet the ever increasing demand for more patient specific devices. However, no review has comprehensively covered the recently engaged application areas to date. This paper provides an up-to-date review on the development of PEEK-based biomedical devices in the past 10 years, with particularly focus on modifying PEEK for multi-modal therapeutics. The aim is to provide the peers with a timely update, which may guide and inspire the research and development of next generation PEEK-based healthcare products. STATEMENT OF SIGNIFICANCE: Significant progress has been made in PEEK processing and modification techniques in the past decades, which greatly contributed to its wide applications in the biomedical field. Despite the high volume of published literature on PEEK implant related research, there is a lack of review on its emerging applications in multi-modal therapeutics, which involve bone regeneration, anti-bacteria/anti-inflammation, and cancer inhibition, etc. This timely review covers the state-of-the-art in these exciting areas and provides the important guidance for next generation PEEK based biomedical device research and development.
Collapse
|
33
|
AlOtaibi NM, Dunne M, Ayoub AF, Naudi KB. A novel surgical model for the preclinical assessment of the osseointegration of dental implants: a surgical protocol and pilot study results. J Transl Med 2021; 19:276. [PMID: 34183031 PMCID: PMC8240288 DOI: 10.1186/s12967-021-02944-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dental implants are considered the gold standard replacement for missing natural teeth. The successful clinical performance of dental implants is due to their ability to osseointegrate with the surrounding bone. Most dental implants are manufactured from Titanium and it alloys. Titanium does however have some shortcomings so alternative materials are frequently being investigated. Effective preclinical studies are essential to transfer the innovations from the benchtop to the patients. Many preclinical studies are carried out in the extra-oral bones of small animal models to assess the osseointegration of the newly developed materials. This does not simulate the oral environment where the dental implants are subjected to several factors that influence osseointegration; therefore, they can have limited clinical value. AIM This study aimed to develop an appropriate in-vivo model for dental implant research that mimic the clinical setting. The study evaluated the applicability of the new model and investigated the impact of the surgical procedure on animal welfare. MATERIALS AND METHODS The model was developed in male New Zealand white rabbits. The implants were inserted in the extraction sockets of the secondary incisors in the maxilla. The model allows a split-mouth comparative analysis. The implants' osseointegration was assessed clinically, radiographically using micro-computed tomography (µ-CT), and histologically. A randomised, controlled split-mouth design was conducted in 6 rabbits. A total of twelve implants were inserted. In each rabbit, two implants; one experimental implant on one side, and one control implant on the other side were applied. Screw-shaped implants were used with a length of 8 mm and a diameter of 2 mm. RESULTS All the rabbits tolerated the surgical procedure well. The osseointegration was confirmed clinically, histologically and radiographically. Quantitative assessment of bone volume and mineral density was measured in the peri-implant bone tissues. The findings suggest that the new preclinical model is excellent, facilitating a comprehensive evaluation of osseointegration of dental implants in translational research pertaining to the human application. CONCLUSION The presented model proved to be safe, reproducible and required basic surgical skills to perform.
Collapse
Affiliation(s)
- Noura M AlOtaibi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
- Oral and Maxillofacial Surgery, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Michael Dunne
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashraf F Ayoub
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
| | - Kurt B Naudi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK.
| |
Collapse
|
34
|
Graphene Oxide-Modified Polyetheretherketone with Excellent Antibacterial Properties and Biocompatibility for Implant Abutment. Macromol Res 2021. [DOI: 10.1007/s13233-021-9042-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Kligman S, Ren Z, Chung CH, Perillo MA, Chang YC, Koo H, Zheng Z, Li C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J Clin Med 2021; 10:1641. [PMID: 33921531 PMCID: PMC8070594 DOI: 10.3390/jcm10081641] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant's surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.
Collapse
Affiliation(s)
- Stefanie Kligman
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhi Ren
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Michael Angelo Perillo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hyun Koo
- Biofilm Research Laboratories, Department of Orthodontics, Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (Z.R.); (H.K.)
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (C.-H.C.); (M.A.P.)
| |
Collapse
|
36
|
Sun Y, Liu X, Tan J, Lv D, Song W, Su R, Li L, Liu X, Ouyang L, Liao Y. Strontium ranelate incorporated 3D porous sulfonated PEEK simulating MC3T3-E1 cell differentiation. Regen Biomater 2021; 8:rbaa043. [PMID: 33732489 PMCID: PMC7947580 DOI: 10.1093/rb/rbaa043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has been used as an implant material because it has similar mechanical properties to natural bone. However, inferior osseointegration and bioinertness hamper the clinical application of PEEK. In this study, the surfaces of sulfonated three-dimensional (3D) PEEK porous structures were loaded with different concentrations of strontium ranelate, a compound commonly used in the treatment or prevention of osteoporosis by promoting bone formation and inhibiting bone resorption. Field-emission scanning electron microscopy was used to characterize the topography of the structures, elemental carbon, oxygen and strontium contents were measured by X-ray photoelectron spectroscopy, and surface zeta potentials and water-contact angle were also measured. The results indicated that strontium ranelate was successfully loaded onto the 3D porous structures. In vitro cellular results showed that strontium ranelate-treated sulfonated PEEK (SP-SR) strengthened the adhesion of MC3T3-E1 cells. The activity of alkaline phosphatase, collagen secretion and extracellular matrix mineralization deposition of MC3T3-E1 cells were also improved on the surface of SP-SR. These results indicate that SP-SR could serve a new implant candidate for surgical treatment.
Collapse
Affiliation(s)
- Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Wengang Song
- Graduate School of Beihua University, Beihua University, Fengman District Jilin 132013, China
| | - Rui Su
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Changning District, Shanghai 200050, China
| | - Liping Ouyang
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
37
|
Gu X, Sun X, Sun Y, Wang J, Liu Y, Yu K, Wang Y, Zhou Y. Bioinspired Modifications of PEEK Implants for Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 8:631616. [PMID: 33511108 PMCID: PMC7835420 DOI: 10.3389/fbioe.2020.631616] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, polyetheretherketone (PEEK) has been increasingly employed as an implant material in clinical applications. Although PEEK is biocompatible, chemically stable, and radiolucent and has an elastic modulus similar to that of natural bone, it suffers from poor integration with surrounding bone tissue after implantation. To improve the bioactivity of PEEK, numerous strategies for functionalizing the PEEK surface and changing the PEEK structure have been proposed. Inspired by the components, structure, and function of bone tissue, this review discusses strategies to enhance the biocompatibility of PEEK implants and provides direction for fabricating multifunctional implants in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
38
|
Abstract
Synthesis of semifluorinated polymers containing fluorous groups on the backbone or as side chains is an increasingly popular field of research.
Collapse
Affiliation(s)
- Joseph A. Jaye
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
39
|
Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021; 50:5435-5467. [DOI: 10.1039/d0cs00258e] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
40
|
Construction of tantalum/poly(ether imide) coatings on magnesium implants with both corrosion protection and osseointegration properties. Bioact Mater 2020; 6:1189-1200. [PMID: 33163700 PMCID: PMC7595939 DOI: 10.1016/j.bioactmat.2020.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Poly(ether imide) (PEI) has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium (Mg), a potential candidate of biodegradable orthopedic implant material. However, its innate hydrophobic property causes insufficient osteoblast affinity and a lack of osseointegration. Herein, we modify the physical and chemical properties of a PEI-coated Mg implant. A plasma immersion ion implantation technique is combined with direct current (DC) magnetron sputtering to introduce biologically compatible tantalum (Ta) onto the surface of the PEI coating. The PEI-coating layer is not damaged during this process owing to the extremely short processing time (30 s), retaining its high corrosion protection property and adhesion stability. The Ta-implanted layer (roughly 10-nm-thick) on the topmost PEI surface generates long-term surface hydrophilicity and favorable surface conditions for pre-osteoblasts to adhere, proliferate, and differentiate. Furthermore, in a rabbit femur study, the Ta/PEI-coated Mg implant demonstrates significantly enhanced bone tissue affinity and osseointegration capability. These results indicate that Ta/PEI-coated Mg is promising for achieving early mechanical fixation and long-term success in biodegradable orthopedic implant applications. PEI coating with subsequent Ta ion implantation was prepared on WE43 Mg alloy implant. The corrosion resistance of Mg alloy implant was improved by Ta embedded PEI coating. The wettability of PEI coating layer was enhanced by embedded Ta on its top-surface. Ta embedded PEI coating significantly improved in vitro and in vivo responses. Ta embedded PEI-coated Mg is highly suitable as a biodegradable orthopedic implant material.
Collapse
|
41
|
Guo S, Liu N, Liu K, Li Y, Zhang W, Zhu B, Gu B, Wen N. Effects of carbon and nitrogen plasma immersion ion implantation on bioactivity of zirconia. RSC Adv 2020; 10:35917-35929. [PMID: 35517098 PMCID: PMC9056952 DOI: 10.1039/d0ra05853j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/06/2020] [Indexed: 01/11/2023] Open
Abstract
Zirconia is considered the most promising alternative material to titanium implants. However, zirconia is a biologically inert material and its surface modification is essential to obtain efficient osseointegration. Plasma immersion ion implantation (PIII) is a controllable and flexible approach that constructs functional groups on the surface of biomaterials and enhances osteogenic ability of host osteoclast cells. Zirconia disks were randomly divided into 4 groups (n = 50/group): (1) Blank, (2) C60N0, (3) C60N6, and (4) C60N18. Carbon and nitrogen plasma immersion ion implantation on zirconia (C and N2-PIII) surface modification was completed with the corresponding parameters. When zirconia was modified by carbon and nitrogen plasma implantation, a new chemical structure was formed on the material surface while the surface roughness of the material remained unaltered. The nitrogen-containing functional groups with high potential were introduced but the bulk crystal structure of zirconia was not changed, indicating that the stability of zirconia was not affected. In vitro data showed that zirconia with high surface potential promoted adhesion, proliferation, and osteogenic differentiation of BMSCs. C60N6 was found to be superior to the other groups. Our results demonstrate that a zirconia surface modified by C and N2-PIII can introduce desirable nitrogen functional groups and create a suitable extracellular environment to promote BMSCs biological activity. Taken together, these results suggest that C and N2-PIII modified zirconia is a promising material for use in the field of medical implantation. Zirconia is considered the most promising alternative material to titanium implants.![]()
Collapse
Affiliation(s)
- Shuqin Guo
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital 28 Fuxing Road, Haidian District Beijing 100853 China + (86) 010 66937947.,Department of Stomatology, Beijing Railway Construction Hospital, China Railway Construction Corporation 40 Fuxing Road, Haidian District Beijing 100855 China
| | - Na Liu
- Department of Stomatology, Hainan Hospital, Chinese PLA General Hospital Sanya 572013 Hainan Province China
| | - Ke Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Ying Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital 28 Fuxing Road, Haidian District Beijing 100853 China + (86) 010 66937947
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Biao Zhu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital 28 Fuxing Road, Haidian District Beijing 100853 China + (86) 010 66937947
| | - Bin Gu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital 28 Fuxing Road, Haidian District Beijing 100853 China + (86) 010 66937947
| | - Ning Wen
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital 28 Fuxing Road, Haidian District Beijing 100853 China + (86) 010 66937947
| |
Collapse
|
42
|
Huo S, Meng X, Zhang S, Yue B, Zhao Y, Long T, Nie B, Wang Y. Hydrofluoric acid and nitric acid cotreatment for biofunctionalization of polyetheretherketone in M2 macrophage polarization and osteogenesis. J Biomed Mater Res A 2020; 109:879-892. [PMID: 32780520 DOI: 10.1002/jbm.a.37079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Due to its excellent mechanical and low-friction properties, polyetheretherketone (PEEK) has been widely investigated for use in orthopedic applications over the past decade. However, the bioinertness and poor osteogenic properties of PEEK have hampered its clinical application. In this study, the surface of PEEK was modified by co-treatment with hydrofluoric acid and nitric acid (AFN). The microstructures of the modified PEEK surfaces were investigated using scanning electron microscopy. The water contact angles of the surfaces were also measured. To evaluate their cytocompatibility, PEEK samples were used as substrates to culture rat bone mesenchymal stem cells, and cell adhesion, viability, and expression of specific marker genes were measured. Treatment of PEEK with AFN (PEEK-AFN) was found to enable better osteoblast adhesion, spreading, and proliferation; the activity of alkaline phosphatase (an early osteogenic differentiation marker) was also found to be enhanced post-treatment. Furthermore, PEEK-AFN was able to modulate macrophage polarization and down regulated the expression of proinflammatory factors via inhibiting the NF-κB pathway. Thus, treatment of PEEK with AFN could promote M2 polarization of the macrophages and stimulate the differentiation of osteoblasts. These results provide valuable information that could facilitate the use of PEEK-based composites as bone implant materials.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xiangchao Meng
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Yaochao Zhao
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Teng Long
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
43
|
Yu W, Zhang H, A L, Yang S, Zhang J, Wang H, Zhou Z, Zhou Y, Zhao J, Jiang Z. Enhanced bioactivity and osteogenic property of carbon fiber reinforced polyetheretherketone composites modified with amino groups. Colloids Surf B Biointerfaces 2020; 193:111098. [PMID: 32498001 DOI: 10.1016/j.colsurfb.2020.111098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Polyetheretherketone (PEEK) is considered as a potential dental and orthopedic implant material owing to its favorable thermal and chemical stability, biocompatibility and mechanical properties. However, the inherent bio-inert and inferior osseointegration of PEEK have hampered its clinical application. In addition, carbon fiber is widely used as a filler to reinforce polymers for sturdy composites owing to its high strength, modulus, etc. In the study, carbon fiber reinforced PEEK (CPEEK) composites were fabricated and modified with amino groups by plasma-enhanced chemical vapor deposition surface modification technique. The surface characterization of composites was evaluated by FE-SEM, EDS, AFM, Water contact angle, XPS and FTIR, which revealed that amino groups were successfully incorporated on the modified CPEEK surface and significantly increased the hydrophilicity. In vitro study, cell adhesion, proliferation, ALP activity, ECM mineralization, real-time PCR analysis, and ELISA analysis showed the adhesion, proliferation and osteogenic differentiation of MG-63 cells on the amino group-modified CPEEK surface were higher than the CPEEK, equal to or better than pure titanium. Hence, the results indicated that the amino group-modified CPEEK possessed enhanced bioactivity and osteogenic property, which may be a potential candidate material for dental implants.
Collapse
Affiliation(s)
- Wanqi Yu
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lan A
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Shihui Yang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jingjie Zhang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Hanchi Wang
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, China.
| | - Zhenhua Jiang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
44
|
Dong T, Duan C, Wang S, Gao X, Yang Q, Yang W, Deng Y. Multifunctional Surface with Enhanced Angiogenesis for Improving Long-Term Osteogenic Fixation of Poly(ether ether ketone) Implants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14971-14982. [PMID: 32159330 DOI: 10.1021/acsami.0c02304] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(ether ether ketone) (PEEK) is a biocompatible polymer, but the lack of angiogenesis makes the long-term osteogenic fixation of PEEK implants challenging, which has hampered their wider application in orthopedics. Herein, we develop a multifunctional micro-/nanostructured surface presenting hydroxyapatite (HA) nanoflowers and nickel hydroxide (Ni(OH)2) nanoparticles on PEEK implants (sPEEK-Ni-HA) to tackle the problem. The results show that the reasonable release of Ni2+ from sPEEK-Ni-HA significantly facilitates the migration, tube formation, and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs). In addition to angiogenesis, the sPEEK-Ni-HA displays enhanced cytocompatibility and osteogenicity in terms of cell proliferation, spreading, alkaline phosphatase activity, matrix mineralization, and osteogenesis-related gene secretion, exceeding pure and other multifunctional sPEEK samples. Importantly, in vivo evaluations employing a rabbit femoral condyle implantation model confirm that such dual decoration of Ni elements and HA nanoflowers boosts bone remodeling/osseointegration, which dramatically promotes the in vivo osteogenic fixation of implants. Therefore, this work not only sheds light on the significance of angiogenesis on the osteogenic fixation of an implant but also presents a facile strategy to empower bioinert PEEK with a well-orchestrated feature of angiogenesis and osteogenesis.
Collapse
Affiliation(s)
| | - Chunyan Duan
- School of Basic Medical Science, Southwest Medical University, Luzhou 64600, China
| | - Song Wang
- Department of Spine Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 64600, China
| | | | | | | | - Yi Deng
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Schroepfer M, Junghans F, Voigt D, Meyer M, Breier A, Schulze-Tanzil G, Prade I. Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading. ACS OMEGA 2020; 5:5498-5507. [PMID: 32201842 PMCID: PMC7081643 DOI: 10.1021/acsomega.0c00126] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein- but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility.
Collapse
Affiliation(s)
- Michaela Schroepfer
- Research
Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany
| | - Frauke Junghans
- Research
Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany
| | - Diana Voigt
- Research
Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany
| | - Michael Meyer
- Research
Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany
| | - Anette Breier
- Leibniz
Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Gundula Schulze-Tanzil
- Institute
of Anatomy and Cell Biology, Paracelsus
Medical University, Nathan
Str. 1, 90419 Nuremberg, Germany
| | - Ina Prade
- Research
Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany
| |
Collapse
|
46
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
47
|
Gao A, Liao Q, Xie L, Wang G, Zhang W, Wu Y, Li P, Guan M, Pan H, Tong L, Chu PK, Wang H. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration. Biomaterials 2019; 230:119642. [PMID: 31787332 DOI: 10.1016/j.biomaterials.2019.119642] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
The adverse macrophage-mediated immune response elicited by the surface of polyetheretherketone (PEEK) is responsible for the formation of fibrous encapsulation and resulting inferior osseointegration of PEEK implants in the dental and orthopedic fields. Therefore, endowing the PEEK surface with immunomodulatory ability is an appealing strategy to enhance implant-bone integration. Herein, a reliable and cost-effective method to construct adherent films with tunable nanoporous structures on PEEK is described. The functionalized surface not only suppresses the acute inflammatory response of macrophages, but also provides a favorable milieu for osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Whole genome expression analysis reveals that the suppression effect arises from synergistic inhibition of focal adhesion, Toll-like receptor, and NOD-like receptor signaling pathways, as well as the attenuating loop through the JAK-STAT and TNF signaling pathways in macrophages. Further in vivo studies confirm that the functionalized surface induces less fibrous capsule formation and an improved bone regeneration. The nanoporous films fabricated on PEEK harmonize the early macrophage-mediated inflammatory response and subsequent hBMSCs-centered osteogenic functions consequently yielding superior osseointegration.
Collapse
Affiliation(s)
- Ang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Qing Liao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuzheng Wu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Plasma treatment of polyether-ether-ketone: A means of obtaining desirable biomedical characteristics. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Jung HD, Jang TS, Lee JE, Park SJ, Son Y, Park SH. Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process. Biofabrication 2019; 11:045014. [PMID: 31365916 DOI: 10.1088/1758-5090/ab376b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyetheretherketone (PEEK), one of the potential alternatives to metallic materials for implants, necessarily involves high temperature process conditions to be three-dimensionally (3D) printed. We developed a 3D printing setup equipped with thermally stabilized modules of the printing nozzle and building chamber, by which the PEEK implants could be successfully manufactured. Under optimized printing conditions, the maximal mechanical strength of the 3D printed sample attained over 80% of the original bulk property of PEEK. To enhance the interfacial biocompatibility, the as-printed implants were postprocessed with titanium (Ti) sputtering. The Ti-coated surfaces were evaluated through characterization studies of x-ray diffraction spectra, microscopic topographies, and wetting properties. For the in vitro tests, preosteoblasts were cultured on the developed PEEK-Ti structures and evaluated in terms of cell adhesion, proliferation, and osteogenic differentiation. In addition, the bone regeneration capability of the PEEK-Ti implants was confirmed by animal experiments using a rabbit tibia defect model for a period of 12 weeks. In the overall in vitro and in vivo tests, we confirmed the superior bioactivities of the Ti-modified and 3D printed interface by comparisons between the samples of machined and printed samples with or without Ti coating. Taken together, the comprehensive manufacturing approaches that involve 3D printing and biocompatible postprocessing are expected to have universal applicability in a wide range of bone tissue engineering.
Collapse
Affiliation(s)
- Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Zhu Y, Cao Z, Peng Y, Hu L, Guney T, Tang B. Facile Surface Modification Method for Synergistically Enhancing the Biocompatibility and Bioactivity of Poly(ether ether ketone) That Induced Osteodifferentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27503-27511. [PMID: 31291088 DOI: 10.1021/acsami.9b03030] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Poly(ether ether ketone) (PEEK) is a promising material in biomedical engineering due to its suitable mechanical properties and excellent chemical resistance and biocompatibility. However, the biological inertness of PEEK limits its applications. In this study, we developed a facile approach of immersion to generate a biocompatible and bioactive PEEK that induced osteodifferentiation. First, micropores on the surface of PEEK were introduced by concentrated sulfuric acid and subsequent water immersion, followed by the hydrothermal treatment to reduce residual sulfuric acid. Subsequently, the sulfonated PEEK surface was activated by the oxygen plasma treatment and then coated with a poly(dopamine) (PDA) layer by immersion into the dopamine solution. Finally, the tripeptide Arg-Gly-Asp (RGD) was integrated onto the PDA-coated surface of PEEK by immersion into the RGD peptide solution. The surface characteristics (physical chemistry and biological properties) and the ability to form bonelike apatite were systematically investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, the Archimedes' fluid saturation method, ellipsometry, a quartz crystal microbalance with dissipation monitoring, cell proliferation, real-time reverse transcription polymerase chain reaction analysis, alizarin red staining, immunocytochemistry staining, and simulated body fluid immersion. Collectively, the modified PEEK showed a significantly improved ability to promote cell proliferation, osteogenic differentiation, and bonelike apatite formation in vitro as compared to the PEEK control. These results demonstrate that combined facile surface modifications for PEEK enhance its bioactivity and biocompatibility, and induce osteodifferentiation. This study presents a strategy for broadening the use of PEEK in the application of orthopedic implants and could be industrially scalable in future.
Collapse
Affiliation(s)
- Yuchen Zhu
- Comprehensive Pneumology Centre/Institute of Lung Biology and Disease , Helmholtz Zentrum München , Munich 81377 , Germany
| | | | | | - Liqiu Hu
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, Jinan University Second College of Medicine , The First Affiliated Hospital of Southern University of Science and Technology , Shenzhen 518020 , China
| | - Tankut Guney
- Comprehensive Pneumology Centre/Institute of Lung Biology and Disease , Helmholtz Zentrum München , Munich 81377 , Germany
| | | |
Collapse
|