1
|
Thiberville L, Faivre V, Sizun C, Dehouck MP, Landry C, Baati R, Tsapis N. Cyclodextrin-based formulations for delivering broad-spectrum nerve agent antidote to the central nervous system: stability, physicochemical characterization and application in a human blood-brain barrier model. Int J Pharm 2025; 674:125505. [PMID: 40132767 DOI: 10.1016/j.ijpharm.2025.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Nerve agents, such as VX and sarin, represent a significant threat to global security due to their devastating neurotoxic effects and potential for misuse. The therapeutic inefficacy of current countermeasures underscores the urgent need for more effective alternatives. In this context, recent advances have identified JDS364.HCl, an uncharged hybrid antidote, as a promising candidate. However, its instability in aqueous solution remains a significant challenge. To address this, cyclodextrin-based formulations were developed using two EMA-approved cyclodextrins: HP-β-CD and SBE-β-CD. These formulations significantly improved JDS364.HCl stability for over two months at room temperature. Interaction studies revealed a 1:1 stoichiometry for both cyclodextrin complexes, with JDS364.HCl: SBE-β-CD exhibiting a 100-fold higher affinity constant, attributed to additional electrostatic interactions with SBE-β-CD sidechains. While SBE-β-CD provided superior plasma stability compared to HP-β-CD, the high binding affinity of JDS364.HCl: SBE-β-CD complexes hindered the molecule's release and reduced its ability to cross the BBB, as observed in a human BBB model. Nonetheless, the results for both cyclodextrins are encouraging, as they enhance JDS364.HCl's stability in plasma while allowing its passage across the BBB. Notably, JDS364.HCl demonstrated superior BBB permeability compared to marketed antidotes such as 2-PAM. These findings highlight the potential of cyclodextrins to improve the efficacy of JDS364.HCl as a nerve agent antidote.
Collapse
Affiliation(s)
- Léa Thiberville
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Ecole de Chimie Polymères et Matériaux, Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé UMR CNRS 7515, 67087 Strasbourg, France
| | - Vincent Faivre
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Christina Sizun
- CNRS, Université Paris-Saclay, Institut de Chimie des Substances Naturelles, 91900 Gif-sur-Yvette, France
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Christophe Landry
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Rachid Baati
- Ecole de Chimie Polymères et Matériaux, Université de Strasbourg, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé UMR CNRS 7515, 67087 Strasbourg, France.
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
2
|
Feng K, Zhang JA, Shen WT, Leng T, Zhou Z, Yu Y, Gao W, Zhang L. Recent Development of Nanoparticle Platforms for Organophosphate Nerve Agent Detoxification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2124-2140. [PMID: 39862147 PMCID: PMC11803738 DOI: 10.1021/acs.langmuir.4c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Poisoning by organophosphate (OP) nerve agents remains a pressing global threat due to their extensive use in chemical warfare agents and pesticides, potentially causing high morbidity and mortality worldwide. This urgent need for effective countermeasures has driven considerable interest in innovative detoxification approaches. Among these, nanoparticle technology stands out for its multifunctional potential and wide-ranging applications. This review highlights recent advancements in nanoparticle platforms developed for OP detoxification, focusing on five main types: inorganic nanoparticles, lipid-based nanoparticles, polymer-based nanoparticles, metal-organic framework nanoparticles, and cellular nanoparticles. For each platform, we discuss representative examples that illustrate how structural and functional properties enhance their effectiveness as nanocarriers, nanocatalysts, or nanoscavengers, ultimately enabling safe and efficient OP detoxification. This review aims to stimulate further technological innovation in OP-detoxifying nanoparticles and encourage broader development of detoxification strategies.
Collapse
Affiliation(s)
- Kailin Feng
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Tianle Leng
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Zhidong Zhou
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department
of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell
Collaboratory, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Zhang Z, Lin S, Yu X, Jing J, Zhang Y, Chen L, Han J, Meng Z, Chen J, Meng Q. HI-6-Loaded Vehicle of Liposomes Mediated by an Amphiphilic Pillar[5]arene against Paraoxon Poisoning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50474-50483. [PMID: 39287334 DOI: 10.1021/acsami.4c11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Organophosphate (OP) intoxication has become a severe common health matter all over the world. For the treatment of acute OP poisoning, the effective intracerebral delivery of acetylcholinesterase reactivators is crucial. Here, an amphiphilic hydrazide-pillar[5]arene (HP5A-6C), which could be readily integrated into liposomal bilayers' zwitterionic disaturated phosphatidylcholine (DSPC), was synthesized. A T7 peptide-containing guest (G) was attached on the surface via a noncovalent interaction to make mixed liposomes a particularly appealing candidate for brain-targeting delivery. Such coassembly could remain stable at room temperature for up to 6 weeks, and safety evaluations initially verified its fine biological compatibility. The hydrophilic interiors of T7/HP5A-6C@DSPC could further load HI-6 with 89.70% encapsulation efficiency. Support for brain-targeting potency came from imaging results. Notably, intravenous injection of HI-6-loaded vesicles exhibited a remarkable therapeutic effect on paraoxon (POX)-poisoned mice, effectively alleviating seizures and brain damage and significantly increasing the improving survival rate to 60% over the course of 7 days.
Collapse
Affiliation(s)
- Ziliang Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Shujie Lin
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xiang Yu
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jie Jing
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yahan Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Longming Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jiaqi Han
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Junyi Chen
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
4
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
5
|
Voros C, Dias J, Timperley CM, Nachon F, Brown RCD, Baati R. The risk associated with organophosphorus nerve agents: from their discovery to their unavoidable threat, current medical countermeasures and perspectives. Chem Biol Interact 2024; 395:110973. [PMID: 38574837 DOI: 10.1016/j.cbi.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.
Collapse
Affiliation(s)
- Camille Voros
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France.
| | - José Dias
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Dstl, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, F-91220 Brétigny-sur-Orge, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Rachid Baati
- Ecole de Chimie Polymère et Matériaux ECPM, Université de Strasbourg, ICPEES UMR CNRS 7515, 25 rue Becquerel, F-67087, Strasbourg, France; OPGS Pharmaceuticals, Paris BioTech Santé, 24 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
| |
Collapse
|
6
|
Tressler CM, Wadsworth B, Carriero S, Dillman N, Crawford R, Hahm TH, Glunde K, Cadieux CL. Characterization of Humanized Mouse Model of Organophosphate Poisoning and Detection of Countermeasures via MALDI-MSI. Int J Mol Sci 2024; 25:5624. [PMID: 38891812 PMCID: PMC11172367 DOI: 10.3390/ijms25115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.
Collapse
Affiliation(s)
- Caitlin M. Tressler
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Wadsworth
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Samantha Carriero
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Natalie Dillman
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Crawford
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-Hun Hahm
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kristine Glunde
- The Johns Hopkins University Applied Imaging Mass Spectrometry Core and Service Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C. Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| |
Collapse
|
7
|
Pirollo KF, Moghe M, Guan M, Rait AS, Wang A, Kim SS, Chang EH, Harford JB. A Pralidoxime Nanocomplex Formulation Targeting Transferrin Receptors for Reactivation of Brain Acetylcholinesterase After Exposure of Mice to an Anticholinesterase Organophosphate. Int J Nanomedicine 2024; 19:307-326. [PMID: 38229703 PMCID: PMC10790653 DOI: 10.2147/ijn.s443498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
Introduction Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.
Collapse
Affiliation(s)
- Kathleen F Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Antonina S Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Aibing Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD, 20854, USA
| | - Esther H Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Joe B Harford
- SynerGene Therapeutics, Inc., Potomac, MD, 20854, USA
| |
Collapse
|
8
|
Prchalova E, Kohoutova Z, Knittelova K, Malinak D, Musilek K. Strategies for enhanced bioavailability of oxime reactivators in the central nervous system. Arch Toxicol 2023; 97:2839-2860. [PMID: 37642747 DOI: 10.1007/s00204-023-03587-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Oxime reactivators of acetylcholinesterase are commonly used to treat highly toxic organophosphate poisoning. They are effective nucleophiles that can restore the catalytic activity of acetylcholinesterase; however, their main limitation is the difficulty in crossing the blood-brain barrier (BBB) because of their strongly hydrophilic nature. Various approaches to overcome this limitation and enhance the bioavailability of oxime reactivators in the CNS have been evaluated; these include structural modifications, conjugation with molecules that have transporters in the BBB, bypassing the BBB through intranasal delivery, and inhibition of BBB efflux transporters. A promising approach is the use of nanoparticles (NPs) as the delivery systems. Studies using mesoporous silica nanomaterials, poly (L-lysine)-graft-poly(ethylene oxide) NPs, metallic organic frameworks, poly(lactic-co-glycolic acid) NPs, human serum albumin NPs, liposomes, solid lipid NPs, and cucurbiturils, have shown promising results. Some NPs are considered as nanoreactors for organophosphate detoxification; these combine bioscavengers with encapsulated oximes. This study provides an overview and critical discussion of the strategies used to enhance the bioavailability of oxime reactivators in the central nervous system.
Collapse
Affiliation(s)
- Eliska Prchalova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zuzana Kohoutova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - David Malinak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
9
|
Zou S, Wang Q, He Q, Liu G, Song J, Li J, Wang F, Huang Y, Hu Y, Zhou D, Lv Y, Zhu Y, Wang B, Zhang L. Brain-targeted nanoreactors prevent the development of organophosphate-induced delayed neurological damage. J Nanobiotechnology 2023; 21:256. [PMID: 37550745 PMCID: PMC10405429 DOI: 10.1186/s12951-023-02039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Organophosphate (OP)-induced delayed neurological damage is attributed to permanent neuropathological lesions caused by irreversible OP-neurocyte interactions, without potent brain-targeted etiological antidotes to date. The development of alternative therapies to achieve intracerebral OP detoxification is urgently needed. METHODS We designed a brain-targeted nanoreactor by integrating enzyme immobilization and biomimetic membrane camouflaging protocols with careful characterization, and then examined its blood-brain barrier (BBB) permeability both in vitro and in vivo. Subsequently, the oxidative stress parameters, neuroinflammatory factors, apoptotic proteins and histopathological changes were measured and neurobehavioral tests were performed. RESULTS The well-characterized nanoreactors exerted favourable BBB penetration capability both in vitro and in vivo, significantly inhibiting OP-induced intracerebral damage. At the cellular and tissue levels, nanoreactors obviously blocked oxidative stress, cellular apoptosis, inflammatory reactions and brain histopathological damage. Furthermore, nanoreactors radically prevented the occurrence of OP-induced delayed cognitive deficits and psychiatric abnormality. CONCLUSION The nanoreactors significantly prevented the development of OP-induced delayed neurological damage, suggesting a potential brain-targeted etiological strategy to attenuate OP-related delayed neurological and neurobehavioral disorders.
Collapse
Affiliation(s)
- Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Qian He
- The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Jie Li
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Fan Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yichao Huang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yanan Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Dayuan Zhou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yongfei Lv
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China
| | - Yuanjie Zhu
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Centre, Naval Medical University, Shanghai, 200052, China.
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Centre, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Won S, An J, Song H, Im S, You G, Lee S, Koo KI, Hwang CH. Transnasal targeted delivery of therapeutics in central nervous system diseases: a narrative review. Front Neurosci 2023; 17:1137096. [PMID: 37292158 PMCID: PMC10246499 DOI: 10.3389/fnins.2023.1137096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023] Open
Abstract
Currently, neurointervention, surgery, medication, and central nervous system (CNS) stimulation are the main treatments used in CNS diseases. These approaches are used to overcome the blood brain barrier (BBB), but they have limitations that necessitate the development of targeted delivery methods. Thus, recent research has focused on spatiotemporally direct and indirect targeted delivery methods because they decrease the effect on nontarget cells, thus minimizing side effects and increasing the patient's quality of life. Methods that enable therapeutics to be directly passed through the BBB to facilitate delivery to target cells include the use of nanomedicine (nanoparticles and extracellular vesicles), and magnetic field-mediated delivery. Nanoparticles are divided into organic, inorganic types depending on their outer shell composition. Extracellular vesicles consist of apoptotic bodies, microvesicles, and exosomes. Magnetic field-mediated delivery methods include magnetic field-mediated passive/actively-assisted navigation, magnetotactic bacteria, magnetic resonance navigation, and magnetic nanobots-in developmental chronological order of when they were developed. Indirect methods increase the BBB permeability, allowing therapeutics to reach the CNS, and include chemical delivery and mechanical delivery (focused ultrasound and LASER therapy). Chemical methods (chemical permeation enhancers) include mannitol, a prevalent BBB permeabilizer, and other chemicals-bradykinin and 1-O-pentylglycerol-to resolve the limitations of mannitol. Focused ultrasound is in either high intensity or low intensity. LASER therapies includes three types: laser interstitial therapy, photodynamic therapy, and photobiomodulation therapy. The combination of direct and indirect methods is not as common as their individual use but represents an area for further research in the field. This review aims to analyze the advantages and disadvantages of these methods, describe the combined use of direct and indirect deliveries, and provide the future prospects of each targeted delivery method. We conclude that the most promising method is the nose-to-CNS delivery of hybrid nanomedicine, multiple combination of organic, inorganic nanoparticles and exosomes, via magnetic resonance navigation following preconditioning treatment with photobiomodulation therapy or focused ultrasound in low intensity as a strategy for differentiating this review from others on targeted CNS delivery; however, additional studies are needed to demonstrate the application of this approach in more complex in vivo pathways.
Collapse
Affiliation(s)
- Seoyeon Won
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongyeon An
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hwayoung Song
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geunho You
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seungho Lee
- College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyo-in Koo
- Major of Biomedical Engineering, Department of Electrical, Electronic, and Computer Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Hospital, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Zhao D, Liu J, Zhou Y, Zhang L, Zhong Y, Yang Y, Zhao B, Yang M, Wang Y. Penetrating the Blood-Brain Barrier for Targeted Treatment of Neurotoxicant Poisoning by Nanosustained-Released 2-PAM@VB1-MIL-101-NH 2(Fe). ACS APPLIED MATERIALS & INTERFACES 2023; 15:12631-12642. [PMID: 36867458 DOI: 10.1021/acsami.2c18929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is very important to establish a sustained-release pralidoxime chloride (2-PAM) drug system with brain targeting function for the treatment of neurotoxicant poisoning. Herein, Vitamin B1 (VB1), also known as thiamine, which can specifically bind to the thiamine transporter on the surface of the blood-brain barrier, was incorporated onto the surface of MIL-101-NH2(Fe) nanoparticles with a size of ∼100 nm. Pralidoxime chloride was further loaded within the interior of the above resulted composite by soaking, and a resulting composite drug (denoted as 2-PAM@VB1-MIL-101-NH2(Fe)) with a loading capacity of 14.8% (wt) was obtained. The results showed that the drug release rate of the composite drug was increased in PBS solution with the increase of pH (2-7.4) and a maximum drug release rate of 77.5% at pH 4. Experiments on the treatment of poisoning by gavage with the nerve agent sarin in mice combined with atropine revealed that sustained release of 2-PAM from the composite drug was achieved for more than 72 h. Sustained and stable reactivation of poisoned acetylcholinesterase (AChE) was observed with an enzyme reactivation rate of 42.7% in the ocular blood samples at 72 h. By using both zebrafish brain and mouse brain as models, we found that the composite drug could effectively cross the blood-brain barrier and restore the AChE activity in the brain of poisoned mice. The composite drug is expected to be a stable therapeutic drug with brain targeting and prolonged drug release properties for nerve agent intoxication in the middle and late stages of treatment.
Collapse
Affiliation(s)
- Dianfa Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baoquan Zhao
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Mengru Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
13
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharov AV, Amerhanova SK, Voloshina AD, Zueva IV, Petrov KA, Zakharova LY. Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics 2022; 14:pharmaceutics14122846. [PMID: 36559339 PMCID: PMC9781263 DOI: 10.3390/pharmaceutics14122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.
Collapse
|
14
|
Transdermal Delivery of 2-PAM as a Tool to Increase the Effectiveness of Traditional Treatment of Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms232314992. [PMID: 36499322 PMCID: PMC9735786 DOI: 10.3390/ijms232314992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
For the first time, the efficacy of post-exposure treatment of organophosphate (OP) poisoning was increased by transdermal delivery of acetylcholinesterase (AChE) reactivator pyridine-2-aldoxime methochloride (2-PAM) as a preventive countermeasure. By selecting the optimal ratio of components, classical transfersomes (based on soybean phosphatidylcholine and Tween 20) and modified transfersomes (based on soybean phosphatidylcholine, Tween 20 and pyrrolidinium cationic surfactants with different hydrocarbon tail lengths) were obtained for 2-PAM encapsulation. Transfersomes modified with tetradecylpyrrolidinium bromide showed the best results in encapsulation efficiency and sustained release of 2-PAM from vesicles. Using Franz cells, it was found that the incorporation of surfactants into PC liposomes results in a more prolonged release of 2-PAM through the rat skin. Transfersomes containing 2-PAM, after exhaustive physical and chemical characterization, were embedded in a gel based on Carbopol® 940. A significantly high degree of erythrocyte AChE reactivation (23 ± 7%) was shown for 2-PAM in unmodified transfersomes in vivo. Preliminary transdermal administration of 2-PAM 24 h before emergency post-exposure treatment of OP poisoning leads to an increase in the survival rate of rats from 55% to 90%.
Collapse
|
15
|
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, Sinyashin OG. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022; 14:pharmaceutics14091950. [PMID: 36145698 PMCID: PMC9506492 DOI: 10.3390/pharmaceutics14091950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.
Collapse
|
16
|
Pashirova T, Shaihutdinova Z, Mansurova M, Kazakova R, Shambazova D, Bogdanov A, Tatarinov D, Daudé D, Jacquet P, Chabrière E, Masson P. Enzyme Nanoreactor for In Vivo Detoxification of Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19241-19252. [PMID: 35440137 DOI: 10.1021/acsami.2c03210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A nanoreactor containing an evolved mutant of Saccharolobus solfataricus phosphotriesterase (L72C/Y97F/Y99F/W263V/I280T) as a catalytic bioscavenger was made for detoxification of organophosphates. This nanoreactor intended for treatment of organophosphate poisoning was studied against paraoxon (POX). Nanoreactors were low polydispersity polymersomes containing a high concentration of enzyme (20 μM). The polyethylene glycol-polypropylene sulfide membrane allowed for penetration of POX and exit of hydrolysis products. In vitro simulations under second order conditions showed that 1 μM enzyme inactivates 5 μM POX in less than 10 s. LD50-shift experiments of POX-challenged mice through intraperitoneal (i.p.) and subcutaneous (s.c.) injections showed that intravenous administration of nanoreactors (1.6 nmol enzyme) protected against 7 × LD50 i.p. in prophylaxis and 3.3 × LD50 i.p. in post-exposure treatment. For mice s.c.-challenged, LD50 shifts were more pronounced: 16.6 × LD50 in prophylaxis and 9.8 × LD50 in post-exposure treatment. Rotarod tests showed that transitory impaired neuromuscular functions of challenged mice were restored the day of experiments. No deterioration was observed in the following days and weeks. The high therapeutic index provided by prophylactic administration of enzyme nanoreactors suggests that no other drugs are needed for protection against acute POX toxicity. For post-exposure treatment, co-administration of classical drugs would certainly have beneficial effects against transient incapacitation.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Milana Mansurova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Renata Kazakova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Dinara Shambazova
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan 420088, Russian Federation
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Aix Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, Kremlevskaya Str., 18, Kazan 420111, Russian Federation
| |
Collapse
|
17
|
Countermeasures in organophosphorus intoxication: pitfalls and prospects. Trends Pharmacol Sci 2022; 43:593-606. [DOI: 10.1016/j.tips.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022]
|
18
|
Ye Z, Gastfriend BD, Umlauf BJ, Lynn DM, Shusta EV. Antibody-Targeted Liposomes for Enhanced Targeting of the Blood-Brain Barrier. Pharm Res 2022; 39:1523-1534. [PMID: 35169958 DOI: 10.1007/s11095-022-03186-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) hinders therapeutic delivery to the central nervous system (CNS), thereby impeding the development of therapies for brain injury and disease. Receptor-mediated transcytosis (RMT) systems are a promising way to shuttle a targeted therapeutic into the brain. Here, we developed and evaluated an RMT antibody-targeted liposomal system. A previously identified antibody, scFv46.1, that binds to the human and murine BBB and can pass through the murine BBB by transcytosis after intravenous injection was used to decorate the surface of liposomes. Using an in vitro BBB model, we demonstrated the cellular uptake of scFv46.1-modified liposomes (46.1-Lipo). Next, the biodistribution and brain uptake capacity of 46.1-targeted liposomes were assessed after intravenous administration. Our results showed that 46.1-Lipo can lead to increased brain accumulation through targeting of the brain vasculature. Initial rate pharmacokinetic experiments and biodistribution analyses indicated that 46.1-Lipo loaded with pralidoxime exhibited a 10-fold increase in brain accumulation compared with a mock-targeted liposomal group, and this increased accumulation was brain-specific. These studies indicate the potential of this 46.1-Lipo system as a synthetic vehicle for the targeted transport of therapeutic molecules into the CNS.
Collapse
Affiliation(s)
- Zhou Ye
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Benjamin J Umlauf
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.,Department of Neurosurgery, Dell Medical School and the Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, TX, USA
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. .,Department of Neurological Surgery, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Zhao D, Liu J, Zhang L, Zhou Y, Zhong Y, Yang Y, Huang C, Wang Y. Loading and Sustained Release of Pralidoxime Chloride from Swellable MIL-88B(Fe) and Its Therapeutic Performance on Mice Poisoned by Neurotoxic Agents. Inorg Chem 2021; 61:1512-1520. [PMID: 34969248 DOI: 10.1021/acs.inorgchem.1c03227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maintaining a long-term continuous and stable reactivator blood concentration to treat organophosphorus nerve agent poisoning using acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) is very important yet difficult. Because the flexible framework of MIL-88B(Fe) nanoparticles (NPs) can swell in polar solvents, pralidoxime chloride (2-PAM) was loaded in MIL-88B(Fe) NPs (size: ca. 500 nm) by stirring and incubation in deionized water to obtain 2-PAM@MIL-88B(Fe), which had a maximum drug loading capacity of 12.6 wt %. The as-prepared composite was characterized by IR, powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM), ζ-potential, Brunauer-Emmett-Teller (BET), and thermogravimetry/differential thermal analysis (TG/DTA). The results showed that under constant conditions, the maximum drug release rates of 2-PAM@MIL-88B(Fe) in absolute ethanol, phosphate-buffered saline (PBS) solution (pH = 7.4), and PBS solution (pH = 4) at 150 h were 51.7, 80.6, and 67.1%, respectively. This was because the composite showed different swelling behaviors in different solvents. In PBS solution with pH = 2, the 2-PAM@MIL-88B(Fe) framework collapsed after 53 h and released 100% of 2-PAM. For mice after intragastric poisoning with sarin (a neurotoxic agent), an atropine-assisted 2-PAM@MIL-88B(Fe) treatment experiment revealed that 2-PAM@MIL-88B(Fe) continuously released 2-PAM for more than 72 h so that poisoned AChE was continuously and steadily reactivated. The reactivation rate of AChE was 56.7% after 72 h. This composite is expected to provide a prolonged, stable therapeutic drug for the mid- and late-stage treatment of neurotoxic agent poisoning.
Collapse
Affiliation(s)
- Dianfa Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Sciences PLA China, Beijing 100850, P. R. China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, Institute of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Sciences PLA China, Beijing 100850, P. R. China
| |
Collapse
|
20
|
Gaynanova G, Vasileva L, Kashapov R, Kuznetsova D, Kushnazarova R, Tyryshkina A, Vasilieva E, Petrov K, Zakharova L, Sinyashin O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021; 26:6786. [PMID: 34833877 PMCID: PMC8624506 DOI: 10.3390/molecules26226786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
This review focuses on key topics in the field of drug delivery related to the design of nanocarriers answering the biomedicine criteria, including biocompatibility, biodegradability, low toxicity, and the ability to overcome biological barriers. For these reasons, much attention is paid to the amphiphile-based carriers composed of natural building blocks, lipids, and their structural analogues and synthetic surfactants that are capable of self-assembly with the formation of a variety of supramolecular aggregates. The latter are dynamic structures that can be used as nanocontainers for hydrophobic drugs to increase their solubility and bioavailability. In this section, biodegradable cationic surfactants bearing cleavable fragments are discussed, with ester- and carbamate-containing analogs, as well as amino acid derivatives received special attention. Drug delivery through the biological barriers is a challenging task, which is highlighted by the example of transdermal method of drug administration. In this paper, nonionic surfactants are primarily discussed, including their application for the fabrication of nanocarriers, their surfactant-skin interactions, the mechanisms of modulating their permeability, and the factors controlling drug encapsulation, release, and targeted delivery. Different types of nanocarriers are covered, including niosomes, transfersomes, invasomes and chitosomes, with their morphological specificity, beneficial characteristics and limitations discussed.
Collapse
Affiliation(s)
- Gulnara Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russia; (L.V.); (R.K.); (D.K.); (R.K.); (A.T.); (E.V.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7:e07994. [PMID: 34632135 PMCID: PMC8488847 DOI: 10.1016/j.heliyon.2021.e07994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Advancements in both material science and bionanotechnology are transforming the health care sector. To this end, nanoparticles are increasingly used to improve diagnosis, monitoring, and therapy. Huge research is being carried out to improve the design, efficiency, and performance of these nanoparticles. Nanoparticles are also considered as a major area of research and development to meet the essential requirements for use in nanomedicine where safety, compatibility, biodegradability, biodistribution, stability, and effectiveness are requirements towards the desired application. In this regard, lipids have been used in pharmaceuticals and medical formulations for a long time. The present work focuses on the use of lipid nanostructures to combat brain tumors. In addition, this review summarizes the literature pertaining to solid lipid nanoparticles (SLN) and nanostructured lipid carriers (LNC), methods of preparation and characterization, developments achieved to overcome blood brain barrier (BBB), and modifications used to increase their effectiveness.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman 11931, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Fedaa Al-Adaileh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Suma Al-Taher
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
22
|
Bennion BJ, Malfatti MA, Be NA, Enright HA, Hok S, Cadieux CL, Carpenter TS, Lao V, Kuhn EA, McNerney MW, Lightstone FC, Nguyen TH, Valdez CA. Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach. Sci Rep 2021; 11:15567. [PMID: 34330964 PMCID: PMC8324913 DOI: 10.1038/s41598-021-94963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.
Collapse
Affiliation(s)
- Brian J Bennion
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Michael A Malfatti
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Nicholas A Be
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Heather A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Saphon Hok
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - C Linn Cadieux
- United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, 21010, USA
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Edward A Kuhn
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - M Windy McNerney
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Affiliation: Mental Illness Research, Education and Clinical Center, Veterans Affairs, Palo Alto, CA, 94304, USA
- Affiliation: Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tuan H Nguyen
- Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Carlos A Valdez
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
- Forensic Science Center, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| |
Collapse
|
23
|
Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 547] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
Affiliation(s)
| | - Axel H Meyer
- DMPK and Bioanalytical Research, AbbVie Deutschland GmbH & Co KG, Ludwigshafen, Germany
| | - Robert D Bell
- Rare Disease Research Unit, Worldwide Research, Development and Medicine, Pfizer, Cambridge, MA, USA
| | - Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Choi SK. Nanomaterial-Enabled Sensors and Therapeutic Platforms for Reactive Organophosphates. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:224. [PMID: 33467113 PMCID: PMC7830340 DOI: 10.3390/nano11010224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Unintended exposure to harmful reactive organophosphates (OP), which comprise a group of nerve agents and agricultural pesticides, continues to pose a serious threat to human health and ecosystems due to their toxicity and prolonged stability. This underscores an unmet need for developing technologies that will allow sensitive OP detection, rapid decontamination and effective treatment of OP intoxication. Here, this article aims to review the status and prospect of emerging nanotechnologies and multifunctional nanomaterials that have shown considerable potential in advancing detection methods and treatment modalities. It begins with a brief introduction to OP types and their biochemical basis of toxicity followed by nanomaterial applications in two topical areas of primary interest. One topic relates to nanomaterial-based sensors which are applicable for OP detection and quantitative analysis by electrochemical, fluorescent, luminescent and spectrophotometric methods. The other topic is directed on nanotherapeutic platforms developed as OP remedies, which comprise nanocarriers for antidote drug delivery and nanoscavengers for OP inactivation and decontamination. In summary, this article addresses OP-responsive nanomaterials, their design concepts and growing impact on advancing our capability in the development of OP sensors, decontaminants and therapies.
Collapse
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Alozi M, Rawas-Qalaji M. Treating organophosphates poisoning: management challenges and potential solutions. Crit Rev Toxicol 2020; 50:764-779. [DOI: 10.1080/10408444.2020.1837069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria Alozi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
26
|
Buzyurova DN, Pashirova TN, Zueva IV, Burilova EA, Shaihutdinova ZM, Rizvanov IK, Babaev VM, Petrov KA, Souto EB. Surface modification of pralidoxime chloride-loaded solid lipid nanoparticles for enhanced brain reactivation of organophosphorus-inhibited AChE: Pharmacokinetics in rat. Toxicology 2020; 444:152578. [DOI: 10.1016/j.tox.2020.152578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/22/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
27
|
Zhang Y, He J, Shen L, Wang T, Yang J, Li Y, Wang Y, Quan D. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds. J Control Release 2020; 329:1117-1128. [PMID: 33096123 DOI: 10.1016/j.jconrel.2020.10.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Effective intracerebral delivery acetylcholinesterase (AChE) reactivator is key for the acute organophosphorus (OPs) poison treatment. However, the blood-brain barrier (BBB) restricts the transport of these drugs from blood into the brain. Herein, we developed transferrin receptor (TfR) aptamer-functionalized liposomes (Apt-LP) that could deliver AChE reactivator (obidoxime) across the BBB to act against paraoxon (POX) poisoning. The aptamer had strong affinity for TfR and was modified with 3'-inverted deoxythymidine (dT) to improve serum stability. The uptake of Apt-LP by bEnd.3 cells was significantly higher than that of non-targeting liposomes. The ability of Apt-LP to penetrate intact BBB was confirmed in in vitro BBB mice model and in vivo biodistribution studies. Treatment of POX-poisoned mice with Apt-LP-LuH-6 reactivated 18% of the brain AChE activity and prevented brain damage to some extent. Taken together, these results showed that Apt-LP may be used as a promising brain-targeted drug delivery system against OPs toxicity.
Collapse
Affiliation(s)
- Yadan Zhang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Junlin He
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Liao Shen
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Tao Wang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Jun Yang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Yao Li
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China
| | - Yongan Wang
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China.
| | - Dongqin Quan
- Academy of Military Medical Science, Institutes of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Counter Measures, Beijing 100850, China.
| |
Collapse
|
28
|
Gambino A, Burnett JC, Koide K. Methyl Scanning and Revised Binding Mode of 2-Pralidoxime, an Antidote for Nerve Agent Poisoning. ACS Med Chem Lett 2020; 11:1893-1898. [PMID: 33062170 DOI: 10.1021/acsmedchemlett.9b00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
Organophosphorus nerve agents (OPNAs) inhibit acetylcholinesterase (AChE) and, despite the Chemical Weapons Convention arms control treaty, continue to represent a threat to both military personnel and civilians. 2-Pralidoxime (2-PAM) is currently the only therapeutic countermeasure approved by the United States Food and Drug Administration for treating OPNA poisoning. However, 2-PAM is not centrally active due to its hydrophilicity and resulting poor blood-brain barrier permeability; hence, these deficiencies warrant the development of more hydrophobic analogs. Specifically, gaps exist in previously published structure activity relationship (SAR) studies for 2-PAM, thereby making it difficult to rationally design novel analogs that are concomitantly more permeable and more efficacious. In this study, we methodically performed a methyl scan on the core pyridinium of 2-PAM to identify ring positions that could tolerate both additional steric bulk and hydrophobicity. Subsequently, SAR-guided molecular docking was used to rationalize hydropathically feasible binding modes for 2-PAM and the reported derivatives. Overall, the data presented herein provide new insights that may facilitate the rational design of more efficacious 2-PAM analogs.
Collapse
Affiliation(s)
- Adriana Gambino
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
29
|
Ma R, Xu M, Liu C, Shi G, Deng J, Zhou T. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42119-42128. [PMID: 32805836 DOI: 10.1021/acsami.0c11834] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, by rationally designing the stimulus response of graphene quantum dot (GQD)-sensitized terbium/guanine monophosphate (Tb/GMP) infinite coordination polymer (ICP) nanoparticles, we have constructed a smartphone-based colorimetric assay with ratiometric fluorescence, which could be applied for the detection of acetylcholinesterase (AChE) and organophosphorus pesticides (OPs) directly. First, GQDs with abundant functional groups were chosen as the guest, which not only could be used as one of the signal readouts but also served as the antenna ligand to further sensitize the fluorescence of the host Tb/GMP. Upon being excited at 330 nm, the green fluorescence of the Tb/GMP host is highly enhanced, while the blue fluorescence of GQDs is suppressed due to the confinement of the ICP host. With the presence of thiocholine (TCh), an enzymatic product hydrolyzed from acetylthiocholine (ATCh) by AChE, the competitive coordination of Tb3+ between GMP and TCh results in the collapse of the ICP network and thereby the release of GQDs into the solution; thus, the fluorescence of Tb/GMP turns off and the fluorescence of GQDs turns on. The dual-responsive ratiometric fluorescent intensity change leads to the corresponding green-to-blue fluorescent color change obviously, which constitutes a novel mechanism for the colorimetric analysis of AChE. Moreover, when OPs are subsequently introduced, the activity of AChE is blocked, thus preventing the stimulus response of GQD@Tb/GMP ICP nanoparticles, leading to the fluorescent color change from greenish-blue to green, which could also be employed for OP detection. Benefitting from the high sensitivity, good reliability, and the obvious color changes, the method demonstrated here is a promising candidate to realize smartphone-based point-of-use applications, which is of great importance for timely clinical diagnosis and treatment of OPs related to health issues with AChE as an exposure biomarker in less industrialized countries, in remote settings, or even in home care services.
Collapse
Affiliation(s)
- Ruixue Ma
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Miao Xu
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Chang Liu
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
30
|
Wong PT, Tang S, Cannon J, Yang K, Harrison R, Ruge M, O'Konek JJ, Choi SK. Shielded α-Nucleophile Nanoreactor for Topical Decontamination of Reactive Organophosphate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33500-33515. [PMID: 32603588 DOI: 10.1021/acsami.0c08946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we describe a nanoscale reactor strategy with a topical application in the therapeutic decontamination of reactive organophosphates (OPs) as chemical threat agents. It involves functionalization of poly(amidoamine) dendrimer through a combination of its partial PEG shielding and exhaustive conjugation with an OP-reactive α-nucleophile moiety at its peripheral branches. We prepared a 16-member library composed of two α-nucleophile classes (oxime, hydroxamic acid), each varying in its reactor valency (43-176 reactive units per nanoparticle), and linker framework for α-nucleophile tethering. Their mechanism for OP inactivation occurred via nucleophilic catalysis as verified against P-O and P-S bonded OPs including paraoxon-ethyl (POX), malaoxon, and omethoate by 1H NMR spectroscopy. Screening their reactivity for POX inactivation was performed under pH- and temperature-controlled conditions, which resulted in identifying 13 conjugates, each showing shorter POX half-life up to 2 times as compared to a reference Dekon 139 at pH 10.5, 37 °C. Of these, 10 conjugates were further confirmed for greater efficacy in POX decontamination experiments performed in two skin models, porcine skin and an artificial human microtissue. Finally, a few lead conjugates were selected and demonstrated for their biocompatibility in vitro as evident with lack of skin absorption, no inhibition of acetylcholinesterase (AChE), and no cytotoxicity in human neuroblastoma cells. In summary, this study presents a novel nanoreactor library, its screening methods, and identification of potent lead conjugates with potential for therapeutic OP decontamination.
Collapse
|
31
|
Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, Buzyurova DN, Babaev VM, Voloshina AD, Lukashenko SS, Rizvanov IK, Petrov KA, Zakharova LY, Sinyashin OG. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm 2020; 587:119640. [PMID: 32673770 DOI: 10.1016/j.ijpharm.2020.119640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Hydroxyethyl bearing gemini surfactants, alkanediyl-α,ω-bis(N-hexadecyl-N-2-hydroxyethyl-N-methylammonium bromide), 16-s-16(OH), were used to augment phosphatidylcholine based liposomes to achieve higher stability and enhanced cellular uptake and penetration. The developed liposomes were loaded with rhodamine B, doxorubicin hydrochloride, pralidoxime chloride to investigate release properties, cytotoxicity in vitro, as well as ability to cross the blood-brain barrier. At molar ratio of 35:1 (lipid:surfactant) the formulation was found to be of low toxicity, stable for two months, and able to deliver rhodamine B beyond the blood-brain barrier in rats. In vivo, pharmacokinetics of free and formulated 2-PAM in plasma and brain were evaluated, liposomal 2-PAM was found to reactivate 27% of brain acetylcholinesterase, which is, to our knowledge, the first example of such high degree of reactivation after intravenous administration of liposomal drug.
Collapse
Affiliation(s)
- Rais V Pavlov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Gulnara A Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Darya A Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Leysan A Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Daina N Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Ildar Kh Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
32
|
Zorbaz T, Mišetić P, Probst N, Žunec S, Zandona A, Mendaš G, Micek V, Maček Hrvat N, Katalinić M, Braïki A, Jean L, Renard PY, Gabelica Marković V, Kovarik Z. Pharmacokinetic Evaluation of Brain Penetrating Morpholine-3-hydroxy-2-pyridine Oxime as an Antidote for Nerve Agent Poisoning. ACS Chem Neurosci 2020; 11:1072-1084. [PMID: 32105443 DOI: 10.1021/acschemneuro.0c00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in the treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. For numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five lipophilic 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators with a potential to be centrally active. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes, noncytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines, and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated from both the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Finally, the preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.
Collapse
Affiliation(s)
- Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Petra Mišetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Nicolas Probst
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| | - Anissa Braïki
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Ludovic Jean
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Vesna Gabelica Marković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
33
|
Sucupira Oil-Loaded Nanostructured Lipid Carriers (NLC): Lipid Screening, Factorial Design, Release Profile, and Cytotoxicity. Molecules 2020; 25:molecules25030685. [PMID: 32041134 PMCID: PMC7038118 DOI: 10.3390/molecules25030685] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Essential oils are odorant liquid oily products consisting of a complex mixture of volatile compounds obtained from a plant raw material. They have been increasingly proven to act as potential natural agents in the treatment of several human conditions, including diabetes mellitus (DM). DM is a metabolic disorder characterized by chronic hyperglycemia closely related to carbohydrate, protein and fat metabolism disturbances. In order to explore novel approaches for the management of DM our group proposes the encapsulation of sucupira essential oil, obtained from the fruits of the Brazilian plants of the genus Pterodon, in nanostructured lipid carriers (NLCs), a second generation of lipid nanoparticles which act as new controlled drug delivery system (DDS). Encapsulation was performed by hot high-pressure homogenization (HPH) technique and the samples were then analyzed by dynamic light scattering (DLS) for mean average size and polydispersity index (PI) and by electrophoretic light scattering (ELS) for zeta potential (ZP), immediately after production and after 24 h of storage at 4 °C. An optimal sucupira-loaded NLC was found to consist of 0.5% (m/V) sucupira oil, 4.5% (m/V) of Kollivax® GMS II and 1.425% (m/V) of TPGS (formulation no. 6) characterized by a mean particle size ranging from 148.1 ± 0.9815 nm (0 h) to 159.3 ± 9.539 nm (at 24 h), a PI from 0.274 ± 0.029 (0 h) to 0.305 ± 0.028 (24 h) and a ZP from −0.00236 ± 0.147 mV (at 0 h) to 0.125 ± 0.162 (at 24 h). The encapsulation efficiency and loading capacity were 99.98% and 9.6%, respectively. The optimized formulation followed a modified release profile fitting the first order kinetics, over a period of 8 h. In vitro cytotoxicity studies were performed against Caco-2 cell lines, for which the cell viability above 90% confirmed the non-cytotoxic profile of both blank and sucupira oil-loaded NLC.
Collapse
|
34
|
Parvaz S, Taheri-Ledari R, Esmaeili MS, Rabbani M, Maleki A. A brief survey on the advanced brain drug administration by nanoscale carriers: With a particular focus on AChE reactivators. Life Sci 2019; 240:117099. [PMID: 31760098 DOI: 10.1016/j.lfs.2019.117099] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Obviously, delivery of the medications to the brain is more difficult than other tissues due to the existence of a strong obstacle, which is called blood-brain barrier (BBB). Because of the lipophilic nature of this barrier, it would be a complex (and in many cases impossible) process to cross the medications with hydrophilic behavior from BBB and deliver them to the brain. Thus, novel intricate drug-carriers in nano scales have been recently developed and suitably applied for this purpose. One of the most important categories of these hydrophilic medications, are reactivators for acetyl cholinesterase (AChE) enzyme that facilitates the breakdown of acetylcholine (as a neurotransmitter). The AChE function is inhibited by organophosphorus (OP) nerve agents that are extremely used in military conflicts. In this review, the abilities of the nanosized drug delivery systems to perform as suitable vehicles for AChE reactivators are comprehensively discussed.
Collapse
Affiliation(s)
- Sina Parvaz
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Taheri-Ledari
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
35
|
Semenov VE, Zueva IV, Lushchekina SV, Lenina OA, Gubaidullina LM, Saifina LF, Shulaeva MM, Kayumova RM, Saifina AF, Gubaidullin AT, Kondrashova SA, Latypov SK, Masson P, Petrov KA. 6-Methyluracil derivatives as peripheral site ligand-hydroxamic acid conjugates: Reactivation for paraoxon-inhibited acetylcholinesterase. Eur J Med Chem 2019; 185:111787. [PMID: 31675511 DOI: 10.1016/j.ejmech.2019.111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
New uncharged conjugates of 6-methyluracil derivatives with imidazole-2-aldoxime and 1,2,4-triazole-3-hydroxamic acid units were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. Using paraoxon (POX) as a model organophosphate, it was shown that 6-methyluracil derivatives linked with hydroxamic acid are able to reactivate POX-inhibited human acetylcholinesterase (AChE) in vitro. The reactivating efficacy of one compound (5b) is lower than that of pyridinium-2-aldoxime (2-PAM). Meanwhile, unlike 2-PAM, in vivo study showed that the lead compound 5b is able: (1) to reactivate POX-inhibited AChE in the brain; (2) to decrease death of neurons and, (3) to prevent memory impairment in rat model of POX-induced neurodegeneration.
Collapse
Affiliation(s)
- Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation.
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Sofya V Lushchekina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Kosygina str., 4, Moscow, 119334, Russian Federation
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Lilya M Gubaidullina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Lilya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Marina M Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Ramilya M Kayumova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Alina F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Svetlana A Kondrashova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Shamil K Latypov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya str., 18, Kazan, 420008, Russian Federation
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
36
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
37
|
Pashirova TN, Zhukova NA, Lukashenko SS, Valeeva FG, Burilova EA, Sapunova AS, Voloshina AD, Mirgorodskaya AB, Zakharova LY, Sinyashin OG, Mamedov VA. Multi-targeted approach by 2-benzimidazolylquinoxalines-loaded cationic arginine liposomes against сervical cancer cells in vitro. Colloids Surf B Biointerfaces 2019; 178:317-328. [PMID: 30884347 DOI: 10.1016/j.colsurfb.2019.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
Multi-targeted approaches for inhibition of сervical cancer cells in vitro were developed by implementing two different strategies and drug combination for creation of new therapeutic target agents and for nanotechnological-enhancement of intracellular delivery. New 2-benzimidazolylquinoxalines derivatives were synthesized and characterized by combining two different pharmacophores - benzimidazole and quinoxaline rings directly bonded in their structures. Spectrophotometric technique for determination of content of compounds in various media was developed to evaluate their solubility in water and micellar solutions of surfactants. The bioavailability of poorly water-soluble 2-benzimidazolylquinoxalines was improved by PEGylated liposomes as antitumor drug delivery carriers. 2-benzimidazolylquinoxalines-loaded PEGylated liposomes, with size close to 100 nm and negative zeta potential ranging from -13 mV to -27 mV, were time-stable at room temperature. The design of liposomal formulations for improving cellular uptake and in vitro antitumor efficacy was performed by modification of liposome surface with the new arginine surfactant. The cell viability of 2-benzimidazolylquinoxalines-loaded arginine liposomes on human cancer M-Hela cells was 16% at the concentration 0.15 mg/ml. Moreover, these liposomes showed a lower toxicity (40%) against normal human Gang liver cells both at the lowest and highest tested concentrations.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation.
| | - Nataliya A Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Anastasia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alla B Mirgorodskaya
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Lucia Y Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx St., 68, Kazan, 420015, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Vakhid A Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
38
|
Xie H, Li L, Sun Y, Wang Y, Gao S, Tian Y, Ma X, Guo C, Bo F, Zhang L. An Available Strategy for Nasal Brain Transport of Nanocomposite Based on PAMAM Dendrimers via In Situ Gel. NANOMATERIALS 2019; 9:nano9020147. [PMID: 30682799 PMCID: PMC6409925 DOI: 10.3390/nano9020147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers are efficient drug carriers. The presence of a physiological pathway for nasal brain transport provides a potential path for direct brain-targeted delivery of dendrimer nanocomposites. In this study, we synthesized PAMAM dendrimer composites with a nanoscale size; the particle size of PAE (Paeonol)/mPEG (the heterofunctional PEG polymer with a methoxy)-PAMAM G5.NHAc and mPEG-PAMAM G5.NH₂-FITC were 72.41 ± 11.58 nm and 96.51 ± 7.77 nm, and the zeta potential of PAE/mPEG-PAMAM G5.NHAc and mPEG-PAMAM G5.NH₂-FITC were + 0.57 ± 0.11 mv and + 9.60 ± 0.41 mv, respectively. The EE% and DL% of PAE in PAE/mPEG-PAMAM G5.NHAc were 53.77% and 13.92%, respectively. PAE/mPEG-PAMAM G5.NHAc/DGG ionic-sensitive in situ gel was prepared, the viscosity of solution and gel state were 112 ± 3.2 mPa and 1403 ± 38.5 mPa, respectively. The in vitro goat mucoadhesive strength of the gel was 4763.36 ± 85.39 dyne/cm². In situ gel system was proven to be a non-Newtonian pseudo-plastic fluid with shear thinning, thixotropy and yield stress. The optimal model of PAE released from PAE/mPEG-PAMAM G5.NHAc and PAE/mPEG-PAMAM G5.NHAc/DGG were the Higuchi equation and the Korsmeyer-Peppas equation, respectively. The cytotoxicity of the nanocomposites showed a concentration-dependence, and the cell viabilities of PAE/mPEG-PAMAM G5.NHAc were both higher than 95% between 0.0001 μM and 10 μM. mPEG-PAMAM G5.NH₂-FITC was efficiently taken up by cells and exhibited strong fluorescence in the cytoplasm and nucleus. Significant accumulation of nanocomposites was observed in the brain after administration of the in situ gel group, and maximum accumulation was reached at 12 h. A small amount of accumulation was observed in the nanocomposite solution group only at 2 h. Therefore, the direct nasal brain transport efficiency of PAMAM dendrimer nanocomposites can be significantly improved after combining with in situ gel. PAMAM dendrimer nanocomposite/DGG is a potential drug delivery system for nasal brain transport.
Collapse
Affiliation(s)
- Huichao Xie
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yue Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuzhen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shuang Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuan Tian
- College of Graduate, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xuemei Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chengcheng Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Fumin Bo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Li Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
39
|
Mirgorodskaya AB, Kushnazarova RA, Nikitina AV, Semina II, Nizameev IR, Kadirov MK, Khutoryanskiy VV, Zakharova LY, Sinyashin OG. Polyelectrolyte nanocontainers: Controlled binding and release of indomethacin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Pashirova TN, Braïki A, Zueva IV, Petrov KA, Babaev VM, Burilova EA, Samarkina DA, Rizvanov IK, Souto EB, Jean L, Renard PY, Masson P, Zakharova LY, Sinyashin OG. Combination delivery of two oxime-loaded lipid nanoparticles: Time-dependent additive action for prolonged rat brain protection. J Control Release 2018; 290:102-111. [PMID: 30308259 DOI: 10.1016/j.jconrel.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
A novel approach for brain protection against poisoning by organophosphorus agents is developed based on the combination treatment of dual delivery of two oximes. Pralidoxime chloride (2-PAM) and a novel reactivator, 6-(5-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentyl)-3-hydroxy picolinaldehyde oxime (3-HPA), have been loaded in solid-lipid nanoparticles (SLNs) to offer distinct release profile and systemic half-life for both oximes. To increase the therapeutic time window of both oximes, SLNs with two different compartments were designed to load each respective drug. Oxime-loaded SLNs of hydrodynamic diameter between 100 and 160 nm and negative zeta potential (-30 to -25 mV) were stable for a period of 10 months at 4 °C. SLNs displayed longer circulation time in the bloodstream compared to free 3-HPA and free 2-PAM. Oxime-loaded SLNs were suitable for intravenous (iv) administration. Paraoxon-poisoned rats (0.8 × LD50) were treated with 3-HPA-loaded SLNs and 2-PAM+3-HPA-loaded SLNs at the dose of 3-HPA and 2-PAM of 5 mg/kg. Brain AChE reactivation up to 30% was slowly achieved in 5 h after administration of 3-HPA-SLNs. For combination therapy with two oximes, a time-dependent additivity and increased reactivation up to 35% were observed.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia.
| | - Anissa Braïki
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Darya A Samarkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Ildar Kh Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ludovic Jean
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| |
Collapse
|
41
|
Pashirova TN, Zueva IV, Petrov KA, Lukashenko SS, Nizameev IR, Kulik NV, Voloshina AD, Almasy L, Kadirov MK, Masson P, Souto EB, Zakharova LY, Sinyashin OG. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf B Biointerfaces 2018; 171:358-367. [PMID: 30059851 DOI: 10.1016/j.colsurfb.2018.07.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
New mixed cationic liposomes based on L-α-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against gram-positive bacteria Staphylococcus aureus (MIC=7.8 μg mL-1) and Bacillus cereus (MIC=7.8 μg mL-1), low hemolytic activities against human red blood cells (less than 10%) were achieved. Conditions for preparation of cationic vesicles and mixed liposomes with excellent colloidal stability at room temperature were determined. The intranasal administration of rhodamine B-loaded cationic liposomes was shown to increase bioavailability into the brain in comparison to the intravenous injection. The cholinesterase reactivator, 2-PAM, was used as model drug for the loading in cationic liposomes. 2-PAM-loaded cationic liposomes displayed high encapsulation efficiency (∼ 90%) and hydrodynamic diameter close to 100 nm. Intranasally administered 2-PAM-loaded cationic liposomes were effective against paraoxon-induced acetylcholinesterase inhibition in the brain. 2-PAM-loaded liposomes reactivated 12 ± 1% of brain acetylcholinesterase. This promising result opens the possibility to use marketed positively charged oximes in medical countermeasures against organophosphorus poisoning for reactivation of central acetylcholinesterase by implementing a non-invasive approach, via the "nose-brain" pathway.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia.
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan, 420008, Russia
| | - Svetlana S Lukashenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan National Research Technological University, Karl Marx St., 68, 420015, Kazan, Russia
| | - Natalya V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Aleksandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Laszlo Almasy
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia; Kazan National Research Technological University, Karl Marx St., 68, 420015, Kazan, Russia
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya St., 18, Kazan, 420008, Russia
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan, 420088, Russia
| |
Collapse
|
42
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
43
|
Vilela SMF, Salcedo-Abraira P, Colinet I, Salles F, de Koning MC, Joosen MJA, Serre C, Horcajada P. Nanometric MIL-125-NH₂ Metal-Organic Framework as a Potential Nerve Agent Antidote Carrier. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E321. [PMID: 29023426 PMCID: PMC5666486 DOI: 10.3390/nano7100321] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/03/2022]
Abstract
The three-dimensional (3D) microporous titanium aminoterephthalate MIL-125-NH₂ (MIL: Material of Institut Lavoisier) was successfully isolated as monodispersed nanoparticles, which are compatible with intravenous administration, by using a simple, safe and low-cost synthetic approach (100 °C/32 h under atmospheric pressure) so that for the first time it could be considered for encapsulation and the release of drugs. The nerve agent antidote 2-[(hydroxyimino)methyl]-1-methyl-pyridinium chloride (2-PAM or pralidoxime) was effectively encapsulated into the pores of MIL-125-NH₂ as a result of the interactions between 2-PAM and the pore walls being mediated by π-stacking and hydrogen bonds, as deduced from infrared spectroscopy and Monte Carlo simulation studies. Finally, colloidal solutions of MIL-125-NH₂ nanoparticles exhibited remarkable stability in different organic media, aqueous solutions at different pH and under relevant physiological conditions over time (24 h). 2-PAM was rapidly released from the pores of MIL-125-NH₂ in vitro.
Collapse
Affiliation(s)
- Sérgio M F Vilela
- APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain.
| | - Pablo Salcedo-Abraira
- APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain.
| | - Isabelle Colinet
- Institut Lavoisier de Versailles, Université de Versailles St Quentin, UMR CNRS 8180, 45 Avenue des Etats-Unis, University Paris Saclay, 78035 Versailles, France.
| | - Fabrice Salles
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS UM, Université Montpellier, Place E. Bataillon, 34095 Montpellier CEDEX 05, France.
| | | | | | - Christian Serre
- Institut Lavoisier de Versailles, Université de Versailles St Quentin, UMR CNRS 8180, 45 Avenue des Etats-Unis, University Paris Saclay, 78035 Versailles, France.
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, FRE CNRS 2000, PSL Research University, Paris 75005, France.
| | - Patricia Horcajada
- APMU, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain.
- Institut Lavoisier de Versailles, Université de Versailles St Quentin, UMR CNRS 8180, 45 Avenue des Etats-Unis, University Paris Saclay, 78035 Versailles, France.
| |
Collapse
|
44
|
Teixeira MC, Carbone C, Souto EB. Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res 2017; 68:1-11. [PMID: 28778472 DOI: 10.1016/j.plipres.2017.07.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 01/03/2023]
Abstract
Solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC) and hybrid nanoparticles, have gained increasing interest as drug delivery systems because of their potential to load and release drugs from the Biopharmaceutical classification system (BCS) of class II (low solubility and high permeability) and of class IV (low solubility and low permeability). Lipid properties (e.g. high solubilizing potential, biocompatibility, biotolerability, biodegradability and distinct route of absorption) contribute for the improvement of the bioavailability of these drugs for a set of administration routes. Their interest continues to grow, as translated by the number of patents being field worldwide. This paper discusses the recent advances on the use of SLN, NLC and lipid-polymer hybrid nanoparticles for the loading of lipophilic, poorly water-soluble and poorly permeable drugs, being developed for oral, topical, parenteral and ocular administration, also discussing the industrial applications of these systems. A review of the patents filled between 2014 and 2017, concerning the original inventions of lipid nanocarriers, is also provided.
Collapse
Affiliation(s)
- M C Teixeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - C Carbone
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Laboratory of Drug Delivery Technology, Dept. of Drug Sciences, University of Catania, Catania, Italy
| | - E B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|