1
|
Tien EP, Cao G, Chen Y, Clark N, Tillotson E, Ngo DT, Carter JH, Thompson SP, Tang CC, Allen CS, Yang S, Schröder M, Haigh SJ. Electron beam and thermal stabilities of MFM-300(M) metal-organic frameworks. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:24165-24174. [PMID: 39301275 PMCID: PMC11409654 DOI: 10.1039/d4ta03302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/30/2024] [Indexed: 09/22/2024]
Abstract
This work reports the thermal and electron beam stabilities of a series of isostructural metal-organic frameworks (MOFs) of type MFM-300(M) (M = Al, Ga, In, Cr). MFM-300(Cr) was most stable under the electron beam, having an unusually high critical electron fluence of 1111 e- Å-2 while the Group 13 element MOFs were found to be less stable. Within Group 13, MFM-300(Al) had the highest critical electron fluence of 330 e- Å-2, compared to 189 e- Å-2 and 147 e- Å-2 for the Ga and In MOFs, respectively. For all four MOFs, electron beam-induced structural degradation was independent of crystal size and was highly anisotropic, although both the length and width of the channels decreased during electron beam irradiation. Notably, MFM-300(Cr) was found to retain crystallinity while shrinking up to 10%. Thermal stability was studied using in situ synchrotron X-ray diffraction at elevated temperature, which revealed critical temperatures for crystal degradation to be 605, 570, 490 and 480 °C for Al, Cr, Ga, and In, respectively. The pore channel diameters contracted by ≈0.5% on desorption of solvent species, but thermal degradation at higher temperatures was isotropic. The observed electron stabilities were found to scale with the relative inertness of the cations and correlate well to the measured lifetime of the materials when used as photocatalysts.
Collapse
Affiliation(s)
- Eu-Pin Tien
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Guanhai Cao
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nick Clark
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Evan Tillotson
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Duc-The Ngo
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Joseph H Carter
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen P Thompson
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Chiu C Tang
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Christopher S Allen
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd Didcot Oxfordshire OX11 0DE UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sarah J Haigh
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
2
|
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024; 24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
Abstract
Artificial olfaction, also known as an electronic nose, is a gas identification device that replicates the human olfactory organ. This system integrates sensor arrays to detect gases, data acquisition for signal processing, and data analysis for precise identification, enabling it to assess gases both qualitatively and quantitatively in complex settings. This article provides a brief overview of the research progress in electronic nose technology, which is divided into three main elements, focusing on gas-sensitive materials, electronic nose applications, and data analysis methods. Furthermore, the review explores both traditional MOS materials and the newer porous materials like MOFs for gas sensors, summarizing the applications of electronic noses across diverse fields including disease diagnosis, environmental monitoring, food safety, and agricultural production. Additionally, it covers electronic nose pattern recognition and signal drift suppression algorithms. Ultimately, the summary identifies challenges faced by current systems and offers innovative solutions for future advancements. Overall, this endeavor forges a solid foundation and establishes a conceptual framework for ongoing research in the field.
Collapse
Affiliation(s)
- Zhenyu Zhai
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Yaqian Liu
- Inner Mongolia Institute of Metrology Testing and Research, Hohhot 010020, China
| | - Congju Li
- College of Textiles, Donghua University, Shanghai 201620, China;
| | - Defa Wang
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| | - Hai Wu
- National Institute of Metrology of China, Beijing 100029, China; (Z.Z.); (D.W.)
| |
Collapse
|
3
|
Duan P, Wang H, Zhou H, Zhang S, Meng X, Duan Q, Jin K, Sun J. MOF-derived xPd-NPs@ZnO porous nanocomposites for ultrasensitive ppb-level gas detection with photoexcitation: Design, diverse-scenario characterization, and mechanism. J Colloid Interface Sci 2024; 660:974-988. [PMID: 38286057 DOI: 10.1016/j.jcis.2024.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/25/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Metal-organic frameworks (MOFs) have been regarded as a potential candidate with great application prospects in the field of gas sensing. Although plenty of previous efforts have been made to improve the sensitivity of MOF-based nanocomposites, it is still a great challenge to realize ultrafast and high selectivity to typical flammable gases in a wide range. Herein, porous xPd-NPs@ZnO were prepared by optimized heat treatment, which maintained the controllable morphology and high specific surface area of 471.08 m2g-1. The coupling effects of photoexcitation and thermal excitation on the gas-sensing properties of nanocomposites were systematically studied. An ultrafast high response of 88.37 % towards 200 ppm H2 was realized within 1.2 s by 5.0Pd-NPs@ZnO under UV photoexcitation. All xPd-NPs@ZnO exhibited favorable linearity over an extremely wide range (0.2-4000 ppm H2) of experimental tests, indicating the great potential in quantitative detection. The photoexcited carriers enabled the nanocomposites a considerable response at lower operating temperatures, which made diverse applications of the sensors. The mechanisms of high sensing performances and the photoexcitation enhancement were systematically explained by DFT calculations. This work provides a solid experimental foundation and theoretical basis for the design of controllable porous materials and novel photoexcited gas detection.
Collapse
Affiliation(s)
- Peiyu Duan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Haowen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Hongmin Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Songlin Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiangdong Meng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Qiangling Duan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kaiqiang Jin
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Jinhua Sun
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| |
Collapse
|
4
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
5
|
Wang T, Ma X, Chen F, An H, Chen K, Gao J. Construction of Hollow Ultrasmall Co 3O 4 Nanoparticles Immobilized in BN for CO 2 Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324784 DOI: 10.1021/acs.langmuir.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rational design and fabrication of metal-organic framework-derived metal oxide (MO) materials featuring a hollow structure and active support can significantly enhance their catalytic activity for specific reactions. Herein, a series of Co3O4 nanoparticles (NPs) immobilized in boron nitride (denoted as Co3O4@BN) with highly open and precisely controllable structures were constructed by an in situ self-assembly method combined with a controlled annealing process. The obtained Co3O4@BN not only possesses a hollow structure but also shows highly dispersed Co3O4 NPs and high loadings of up to 34.3 wt %. Owing to the ultrafine particle size and high dispersity, the optimized Co3O4@BN exhibits high catalytic activity for the cycloaddition of CO2 to epoxides under mild conditions (i.e., 100 °C and CO2 balloon), resulting in at least 4.5 times higher yields (99%) of styrene carbonate than that of Co3O4 synthesized by the pristine ZIF-67. This strategy sheds light on the rational design of hollow MO materials for various advanced applications.
Collapse
Affiliation(s)
- Tingting Wang
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaomin Ma
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengfeng Chen
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, China
| | - Hong An
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kai Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junkuo Gao
- Lab of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
6
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
7
|
Aqeel T, Galstyan V, Comini E, Bumajdad A. Efficient one-pot synthesis of antimony-containing mesoporous tin dioxide nanostructures for gas-sensing applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
|
8
|
Shi T, Hussain S, Ge C, Liu G, Wang M, Qiao G. ZIF-X (8, 67) based nanostructures for gas-sensing applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
ZIF-8 and ZIF-67 are the most investigated zeolitic imidazolate frameworks (ZIFs) materials that have aroused enormous scientific interests in numerous areas of application including electrochemistry, gas storage, separation, and sensors by reason of their fascinating structural properties. Recently, there is a rapidly growing demand for chemical gas sensors for the detection of various analytes in widespread applications including environmental pollution monitoring, clinical analysis, wastewater analysis, industrial applications, food quality, consumer products, and automobiles. In general, the key to the development of superior gas sensors is exploring innovative sensing materials. ZIF-X (8, 67) based nanostructures have demonstrated great potential as ideal sensing materials for high-performance sensing applications. In this review, the general properties and applications of ZIF-X (8, 67) including gas storage and gas adsorption are first summarized, and then the recent progress of ZIF-X (8, 67) based nanostructures for gas-sensing applications and the structure-property correlations are summarized and analyzed.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Shahid Hussain
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Chuanxin Ge
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guiwu Liu
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Mingsong Wang
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guanjun Qiao
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
- State Key Laboratory for Mechanical Behavior of Materials , Xi’an Jiaotong University , Xi’an 710049 , China
| |
Collapse
|
9
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta 2022; 246:123527. [DOI: 10.1016/j.talanta.2022.123527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
11
|
Zhan M, Ge C, Hussain S, Alkorbi AS, Alsaiari R, Alhemiary NA, Qiao G, Liu G. Enhanced NO 2 gas-sensing performance by core-shell SnO 2/ZIF-8 nanospheres. CHEMOSPHERE 2022; 291:132842. [PMID: 34767849 DOI: 10.1016/j.chemosphere.2021.132842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Timely detection of harmful, poisonous and air pollutant gases is of vital importance to the protection of human beings from exposure to rigorous gases. The development of gas-sensing devices based on sphere-like porous SnO2/ZIF-8 nanocomposites is required to overcome this challenge. Nanostructures with high surface area, more porosity and hollow interior provide plenty of active cites for high responses in metal oxide gas sensors. The engineered gas sensors have excellent sensing sensitivity (164), rapid response and recovery times (60, 45 s), and favorable selectivity for NO2 gases under 300 °C. Consequently, NO2 gas sensors based on core-shell SnO2/ZIF-8 nanospheres are regarded viable capacity industrial applicants.
Collapse
Affiliation(s)
- Mengmeng Zhan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ali S Alkorbi
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Raiedhah Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Nabil A Alhemiary
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
12
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
13
|
Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO 2. MATERIALS 2021; 14:ma14205921. [PMID: 34683516 PMCID: PMC8540906 DOI: 10.3390/ma14205921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0–3 mol%) onto nanostructured SnO2 and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO2. The addition of Pd can either boost or deteriorate the sensing performance, depending on its loading and operating temperature. The sensor performance is optimal at Pd loadings of less than 0.2 mol% and operating temperatures of 200–262.5 °C, where acetone conversion is around 50%.
Collapse
|
14
|
Garg N, Deep A, Sharma AL. Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Wang G, Yang S, Cao L, Jin P, Zeng X, Zhang X, Wei J. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed.
Collapse
|
17
|
Cheng P, Wang Y, Wang C, Ma J, Xu L, Lv C, Sun Y. Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In 2O 3. NANOTECHNOLOGY 2021; 32:305503. [PMID: 33794509 DOI: 10.1088/1361-6528/abf453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Elaborating the sensitization effects of different noble metals on In2O3has great significance in providing an optimum method to improve ethanol sensing performance. In this study, long-range ordered mesoporous In2O3has been fabricated through replicating the structure of SBA-15. Different noble metals (Au, Ag, Pt and Pd) with the same doping amount (1 at%) have been introduced by anin situdoping routine. The results of the gas sensing investigation indicate that the gas responses towards ethanol can be obviously increased by doping different noble metals. In particular, the best sensing performance towards ethanol detection can be achieved through Pd doping, and the sensors based on Pd-doped In2O3not only possess the highest response (39.0-100 ppm ethanol) but also have the shortest response and recovery times at the optimal operating temperature of 250 °C. The sensing mechanism of noble metal doped materials can be attributed to the synergetic effect combining 'catalysis' and 'electronic and chemical sensitization' of noble metals. In particular, the chemical state of the noble metal also has a great influence on the gas sensing mechanism. A detailed explanation of the enhancement of gas sensing performance through noble metal doping is presented in the gas sensing mechanism part of the manuscript.
Collapse
Affiliation(s)
- Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Yinglin Wang
- Institute of Complex Systems, Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Chen Wang
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Jian Ma
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Luping Xu
- School of Aerospace Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Chao Lv
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yanfeng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
18
|
Zhao Y, Wang S, Zhai X, Shao L, Bai X, Liu Y, Wang T, Li Y, Zhang L, Fan F, Meng F, Zhang X, Fu Y. Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior N-Propanol Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9206-9215. [PMID: 33557516 DOI: 10.1021/acsami.0c21583] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bimetallic organic frameworks (Bi-MOFs) have been recognized as one of the most ideal precursors to construct metal oxide semiconductor (MOS) composites, owing to their high surface area, various chemical structures, and easy removal of the sacrificial MOF scaffolds through calcination. Herein, we synthesized Zn/Ni Bi-MOF for the first time via a facile ion exchange postsynthetic strategy, formed a three-dimensional framework consisting of infinite one-dimensional chains that is unattainable through the direct solvothermal approach, and then transformed the Zn/Ni Bi-MOF into a unique ZnO/NiO heterostructure through calcination. Notably, the obtained sensor based on a ZnO/NiO heterostructure exhibits an ultrahigh response of 280.2 toward 500 ppm n-propanol at 275 °C (17.2-fold enhancement compared with that of ZnO), remarkable selectivity, and a limit of detection of 200 ppb with a notable response (2.51), which outperforms state-of-the-art n-propanol sensors. The enhanced n-propanol sensing properties may be attributed to the synergistic effects of several points including the heterojunction at the interface between the NiO and ZnO nanoparticles, especially a one-dimensional chain MOF template structure as well as the chemical sensitization effect of NiO. This work provides a promising strategy for the development of a novel Bi-MOF-derived MOS heterostructure or homostructure with well-defined morphology and composition that can be applied to the fields of gas sensing, energy storage, and catalysis.
Collapse
Affiliation(s)
- Yuming Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
20
|
Yang S, Sun J, Xu L, Zhou Q, Chen X, Zhu S, Dong B, Lu G, Song H. Au@ZnO functionalized three–dimensional macroporous WO3: A application of selective H2S gas sensor for exhaled breath biomarker detection. SENSORS AND ACTUATORS B: CHEMICAL 2020; 324:128725. [DOI: 10.1016/j.snb.2020.128725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
|
21
|
Rong Q, Li K, Wang C, Zhang Y, Chen M, Zhu Z, Zhang J, Liu Q. Enhanced performance of an acetone gas sensor based on Ag-LaFeO 3 molecular imprinted polymers and carbon nanotubes composite. NANOTECHNOLOGY 2020; 31:405701. [PMID: 32187585 DOI: 10.1088/1361-6528/ab80f9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High performance acetone gas sensors were fabricated with molecular imprinted polymers of Ag-LaFeO3 (ALFOMMIPs) and multi walled carbon nanotubes (CNTs) composite using the microwave assisted sol-gel method. The crystalline structure, functional groups, grain size and surface appearance of the synthesized materials were analyzed via different characterization techniques and the gas responses of the samples were examined. The detailed acetone gas sensing tests and analysis revealed that the CNTs and ALFOMIPs nanocomposite (CNT/ALFOMIP) sample possessed a higher response than that of the ALFOMIPs sample. Where 0.75 wt% CNTs were added into the ALFOMIPs (0.75% CNT/ALFOMIP nanocomposite) sensor, an excellent gas sensing performance was exhibited. The response of this sensor was up to 59 for 5 ppm acetone vapors and the response and recovery times were 58 and 33 s at low working temperature of 86 °C, respectively. In addition, it had the best selectivity only to acetone vapors due to the use of the molecular imprinting technique.
Collapse
Affiliation(s)
- Qian Rong
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/nano Materials & Technology, Yunnan University, Kunming 650091 People's Republic of China. These authors contribute equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gao Z, Wang T, Li X, Li Q, Zhang X, Cao T, Li Y, Zhang L, Guo L, Fu Y. Pd-Decorated PdO Hollow Shells: A H 2-Sensing System in Which Catalyst Nanoparticle and Semiconductor Support are Interconvertible. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42971-42981. [PMID: 32865972 DOI: 10.1021/acsami.0c13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a simple strategy to fabricate high-performance hydrogen sensors with long-term stability remains quite challenging. Here, we report the H2-sensing performance of Pd-decorated PdO hollow shells (Pd/PdO HSs). In this novel system, the catalyst nanoparticles (Pd NPs) and semiconductor support (PdO) are interconvertible, which is different from traditional hydrogen-sensing systems such as Pd/TiO2 and Pd/ZnO. This Pd/PdO system exhibits multiple unique properties. First, well-distributed Pd NPs with controllable density can be decorated on PdO support through a one-step NaBH4 treatment during which PdO is partially reduced into Pd. Second, the decorated Pd NPs are physically inlaid in the PdO support, which not only prevents the agglomeration or detachment of Pd NPs but also enhances the electron transfer between Pd NPs and PdO. Third, Pd/PdO HSs can be reoxidized into PdO HSs once their sensing performance degrades, which repeatedly manipulates Pd/PdO HSs under the initial reduction process, leading to the reactivation of the sensing performance. With all these advantages, Pd/PdO HSs demonstrate a detection limit lower than 1 ppm, a response/recovery time to 1% H2 of 5 s/32 s at room temperature, and a repeatable reactivation ability. The strategy presented here is convenient and time saving and has no need to prefunctionalize the PdO surface for the decoration of catalyst NPs. Moreover, the unique reactivation ability of Pd/PdO system opens a new strategy toward extending the lifetime of H2 sensors.
Collapse
Affiliation(s)
- Zhimin Gao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Xuefei Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Qian Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Tianlong Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| | - Lei Guo
- Texas A&M Institute of Biosciences & Technology, Houston, Texas 77030, United States
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110189, P. R. China
| |
Collapse
|
23
|
Liu D, Li H, Song L, Zhu X, Qin Y, Zu H, He J, Yang Z, Wang F. Modulating electrical and photoelectrical properties of one-step electrospun one-dimensional SnO 2 arrays. NANOTECHNOLOGY 2020; 31:335202. [PMID: 32344383 DOI: 10.1088/1361-6528/ab8dee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-dimensional nanostructured SnO2 has attracted intense research interest due to its advantageous properties, including a large surface-to-volume ratio, high optical transparency and typical n-type properties. However, how to fabricate high-performance and multifunctional electronic devices based on 1D nanostructured SnO2 via low-cost and efficient preparation techniques is still a huge challenge. In this work, a low-cost, one-step electrospun technology was employed to synthesize the SnO2 nanofiber (NF) and nanotube (NT) arrays. The electrical and photoelectrical parameters of SnO2 NTs-based devices were effectively controlled through simple changes to the amount of Sn in the precursor solution. The optimal 0.2 SnO2 NTs-based field effect transistors (FETs) with 0.2 g SnCl2*4H2O per 5 ml in the precursor solution exhibit a high saturation current (∼9 × 10-5 A) and a large on/off ratio exceeding 2.4 × 106. Additionally, 0.2 SnO2 NTs-based FET also exhibit a narrowband deep-UV photodetectivity (240-320 nm), including an ultra-high photocurrent of 307 μA, a high photosensitivity of 2003, responsibility of 214 A W-1 and detectivity of 2.19 × 1013 Jones. Furthermore, the SnO2 NTs-based transparent photodetectors were as well be integrated with fluorine-doped tin oxide glass and demonstrated a high optical transparency and photosensitivity (∼199). All these results elucidate the significant advantages of these electrospun SnO2 NTs for next-generation multifunctional electronics and transparent photonics.
Collapse
Affiliation(s)
- Di Liu
- College of Physics and State Key Laboratory of Bio Fibers and Eco Textiles, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker. J Colloid Interface Sci 2020; 569:358-365. [DOI: 10.1016/j.jcis.2020.02.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
|
25
|
Yuvaraja S, Surya SG, Chernikova V, Vijjapu MT, Shekhah O, Bhatt PM, Chandra S, Eddaoudi M, Salama KN. Realization of an Ultrasensitive and Highly Selective OFET NO 2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18748-18760. [PMID: 32281789 DOI: 10.1021/acsami.0c00803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valeriya Chernikova
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Suman Chandra
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Cho HJ, Kim ID, Jung SM. Multifunctional Inorganic Nanomaterial Aerogel Assembled into fSWNT Hydrogel Platform for Ultraselective NO 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10637-10647. [PMID: 32045199 DOI: 10.1021/acsami.9b21174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Facile fabrication of multifunctional porous inorganic aerogels remains an outstanding challenge despite the considerable demand for extensive applications. Here, we present the production of a multifunctional porous inorganic nanomaterial aerogel by controllable surface chemistry of a functionalized SWNT (fSWNT) hydrogel platform for the first time. The versatile functional inorganic nanoparticles can be incorporated uniformly on the porous 3D fSWNT hydrogel platform through a facile dip coating method at ambient conditions. The morphology of the multifunctional inorganic aerogel is manipulated by designing the fSWNT hydrogel platform for different requirements of applications. In particular, Pt-SnO2@fSWNT aerogels exhibit high porosity and uniformly distributed ultrafine Pt and SnO2 on the fSWNT platform with controllable particle size (1.5-3.5 nm), which result in significantly high surface area (393 m2 g-1). The ultrafine Pt-SnO2@fSWNT aerogels exhibit highly sensitive (14.77% at 5 ppm) and selective NO2 sensing performance even at room temperature due to the increased active surface area and controllable porous structure of the ultrafine aerogel, which can provide fast transport and penetration of a target gas into the sensing layers. The newly designed multifunctional inorganic aerogel with ultrahigh surface area and high open porosity is a prospective materials platform of high performance gas sensors, which could be also broadly expanded to widespread applications including catalysis and energy storages.
Collapse
Affiliation(s)
- Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Mi Jung
- Environmental Fate & Exposure Research Group, Korea Institute of Toxicology (KIT), Jinju, Gyeongsangnam-do 52834, Republic of Korea
| |
Collapse
|
27
|
Yang T, Zhan L, Huang CZ. Recent insights into functionalized electrospun nanofibrous films for chemo-/bio-sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115813] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
|
29
|
Liu M, Cui F, Ma Q, Xu L, Zhang J, Zhang R, Cui T. Janus coordination polymer derived PdO/ZnO nanoribbons for efficient 4-nitrophenol reduction. NEW J CHEM 2020. [DOI: 10.1039/c9nj05647e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic coordination polymers–Zn(MAA)2/Pd(ii) nanoribbons are prepared by employing two terminal units with distinct hard–soft properties of the smallest semi-rigid methacrylate anion to combine with two different metal ions.
Collapse
Affiliation(s)
- Mufei Liu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
- College of Chemical Engineering
| | - Fang Cui
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Qinghai Ma
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Linxu Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Jiajia Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Ruliang Zhang
- School of Materials Science and Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Tieyu Cui
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
30
|
André L, Desbois N, Gros CP, Brandès S. Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Trans 2020; 49:15161-15170. [DOI: 10.1039/d0dt02511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Overview of the use of porous materials for gas sensing to analyze the exhaled breath of patients for disease identification.
Collapse
Affiliation(s)
- Laurie André
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Claude P. Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- ICMUB
- UMR CNRS 6302
- Université Bourgogne Franche-Comté
- 21078 Dijon cedex
| |
Collapse
|
31
|
Zhou X, Xue Z, Chen X, Huang C, Bai W, Lu Z, Wang T. Nanomaterial-based gas sensors used for breath diagnosis. J Mater Chem B 2020; 8:3231-3248. [DOI: 10.1039/c9tb02518a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gas-sensing applications commonly use nanomaterials (NMs) because of their unique physicochemical properties, including a high surface-to-volume ratio, enormous number of active sites, controllable morphology, and potential for miniaturisation.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Chuanhui Huang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Wanqiao Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| | - Zhili Lu
- Key Laboratory of Materials Processing and Mold
- Ministry of Education
- Zhengzhou Universit
- P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- China
| |
Collapse
|
32
|
Ye H, Shi C, Li J, Tian L, Zeng M, Wang H, Li Q. New Alternating Current Noise Analytics Enables High Discrimination in Gas Sensing. Anal Chem 2019; 92:824-829. [PMID: 31820624 DOI: 10.1021/acs.analchem.9b03312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Feature analysis has been increasingly considered as an important way to enhance the discrimination performance of gas sensors. In this work, a new analytical method based on alternating current noise spectrum is developed to discriminate chemically and structurally similar gases with remarkable performance. Compared with the conventional analytics based on the maximum, integral, and time of response, the noise spectrum of electrical response introduces a new informative feature to discriminate chemical gases. In experiment, three chemically and structurally similar gases, mesitylene, toluene, and o-xylene, are tested on ZnO thin film gas sensors. The result indicated that the noise analytics assisted by the support vector machine algorithm discriminated these similar gases with 94.2% in precision, about 20% higher than those obtained by conventional methods. Such a new alternating current noise analytics is very promising for application in sensors for high discrimination precision.
Collapse
Affiliation(s)
- Huixian Ye
- Department of Electrical and Computer Engineering , George Mason University , Fairfax , Virginia 22030 , United States.,Bright Dream Robotics , Foshan , Guangdong 528300 , China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Chen Shi
- Department of Electrical and Computer Engineering , George Mason University , Fairfax , Virginia 22030 , United States
| | - Jiang Li
- Bright Dream Robotics , Foshan , Guangdong 528300 , China
| | - Li Tian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Min Zeng
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
| | - Hui Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Qiliang Li
- Department of Electrical and Computer Engineering , George Mason University , Fairfax , Virginia 22030 , United States
| |
Collapse
|
33
|
Shingange K, Swart H, Mhlongo GH. Ultrafast Detection of Low Acetone Concentration Displayed by Au-Loaded LaFeO 3 Nanobelts owing to Synergetic Effects of Porous 1D Morphology and Catalytic Activity of Au Nanoparticles. ACS OMEGA 2019; 4:19018-19029. [PMID: 31763524 PMCID: PMC6868597 DOI: 10.1021/acsomega.9b01989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/16/2019] [Indexed: 05/26/2023]
Abstract
Herein, we report on one-dimensional porous Au-modified LaFeO3 nanobelts (NBs) with high surface area, which were synthesized through the electrospinning method. The incorporation and coverage of Au nanoparticles (NPs) on the surface of the LaFeO3 NBs was achieved by adjusting the HAuCl amount in the precursor solution. Successful incorporation of Au NPs was examined by X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The gas-sensing performance of both the pure and Au/LaFeO3 NB-based sensors was tested toward 2.5-40 ppm of acetone at working temperatures in the range from room temperature to 180 °C. The gas-sensing findings revealed that Au/LaFeO3 NB-based sensor with the Au concentration of 0.3 wt % displayed improved response of 125-40 ppm of acetone and rapid response and recovery times of 26 and 20 s, respectively, at an optimal working temperature of 100 °C. Furthermore, all sensors demonstrated an excellent response toward acetone and remarkable selectivity against NO2, NH3, CH4, and CO. Hence, the Au/LaFeO3-NB-based sensor is a promising candidate for sensitive, ultrafast, and selective acetone detections at low concentrations. The gas-sensing mechanism of the Au/LaFeO3 sensors is explained in consideration of the catalytic activity of the Au NPs, which served as direct adsorption sites for oxygen and acetone.
Collapse
Affiliation(s)
- Katekani Shingange
- DST/CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Department
of Physics, University of Free State, Bloemfontein 9300, South Africa
| | - Hendrik Swart
- Department
of Physics, University of Free State, Bloemfontein 9300, South Africa
| | - Gugu H. Mhlongo
- DST/CSIR
National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Department
of Physics, University of Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
34
|
Koo W, Kim S, Jang J, Kim D, Kim I. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900250. [PMID: 31728270 PMCID: PMC6839632 DOI: 10.1002/advs.201900250] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Indexed: 05/22/2023]
Abstract
Conductive porous materials having a high surface reactivity offer great promise for a broad range of applications. However, a general and scalable synthesis of such materials remains challenging. In this work, the facile synthesis of catalytic metal nanoparticles (NPs) embedded in 2D metal-organic frameworks (MOFs) is reported as highly active and conductive porous materials. After the assembly of 2D conductive MOFs (C-MOFs), i.e., Cu3(hexahydroxytriphenylene)2 [Cu3(HHTP)2], Pd or Pt NPs are functionalized within the cavities of C-MOFs by infiltration of metal ions and subsequent reduction. The unique structure of Cu3(HHTP)2 with a cavity size of 2 nm confines the bulk growth of metal NPs, resulting in ultra-small (≈2 nm) and well-dispersed metal NPs loaded in 2D C-MOFs. The Pd or Pt NPs-loaded Cu3(HHTP)2 exhibits remarkably improved NO2 sensing performance at room temperature due to the high reactivity of catalytic metal NPs and the high porosity of C-MOFs. The catalytic effect of Pd and Pt NPs on NO2 sensing of Cu3(HHTP)2, in terms of reaction rate kinetics and activation energy, is demonstrated.
Collapse
Affiliation(s)
- Won‐Tae Koo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sang‐Joon Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Present address:
Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ji‐Soo Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Dong‐Ha Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Il‐Doo Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
35
|
Liu M, Cai N, Chan V, Yu F. Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning: A Mini-Review. NANOMATERIALS 2019; 9:nano9091306. [PMID: 31547339 PMCID: PMC6781049 DOI: 10.3390/nano9091306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Metal organic frameworks (MOFs) have been exploited for various applications in science and engineering due to the possibility of forming different mesoscopic frameworks and pore structures. To date, further development of MOFs for practical applications in areas such as energy storage and conversion have encountered tremendous challenge owing to the unitary porous structure (almost filled entirely with micropores) and conventional morphology (e.g., sphere, polyhedron, and rod shape). More recently, one-dimensional (1D) MOFs/nanofibers composites emerged as a new molecular system with highly engineered novel structures for tailored applications. In this mini-review, the recent progress in the development of MOFs-based 1D nanofibers via electrospinning will be elaborated. In particular, the promising applications and underlying molecular mechanism of electrospun MOF-derived carbon nanofibers are primarily focused and analyzed here. This review is instrumental in providing certain guiding principles for the preparation and structural analysis of MOFs/electrospun nanofibers (M-NFs) composites and electrospun MOF-derived nanomaterials.
Collapse
Affiliation(s)
- Mingming Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Ning Cai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE.
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
36
|
|
37
|
Xu L, Li J, Dong Y, Xue J, Gu Y, Zeng H, Song J. Self-template Synthesis of Metal Halide Perovskite Nanotubes as Functional Cavities for Tailored Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21100-21108. [PMID: 31095367 DOI: 10.1021/acsami.9b04761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intriguing optoelectronic features of low-dimensional perovskites drive researchers to develop novel nanostructures for exploring new photophysical properties and meeting the requirements of future practical applications. Here, we report the facile and universal synthesis of metal halide perovskite nanotubes (NTs) in a micro alkylammonium emulsion system for the first time. The [PbBr6]4--based NTs with a diameter of 300 nm and length of 100 μm were synthesized through the reaction of PbBr2 and long-chain bromide in advance, which can be controllably converted into general metal halide perovskite APbBr3 (A = Cs, FA, MA) with preserved tubular morphology by introducing the Cs+, MA+, and FA+ cations. Importantly, the NTs can readily couple with other nanofillers exhibiting tunable and novel optoelectronic properties demonstrated by the photodetectors. The device performance can be significantly improved and broadened to infrared photoresponse through the introduction of Au nanocrystal (NC) plasma and PbS NCs, respectively. These results demonstrate that the metal halide perovskite NTs are expected to enrich the diversity of nanostructures and have a huge potential in the fabrication of integrated, light-manipulated, and miniaturized electronic and photonic devices.
Collapse
Affiliation(s)
- Leimeng Xu
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Jianhai Li
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Yuhui Dong
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Jie Xue
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Yu Gu
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Haibo Zeng
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| | - Jizhong Song
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
- MIIT Key Laboratory of Advanced Display Materials and Devices , Institute of Optoelectronics & Nanomaterials , Nanjing 210094 , China
| |
Collapse
|
38
|
Teng L, Liu Y, Ikram M, Liu Z, Ullah M, Ma L, Zhang X, Wu H, Li L, Shi K. One-step synthesis of palladium oxide-functionalized tin dioxide nanotubes: Characterization and high nitrogen dioxide gas sensing performance at room temperature. J Colloid Interface Sci 2019; 537:79-90. [DOI: 10.1016/j.jcis.2018.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 10/28/2022]
|
39
|
Zhang YH, Li YL, Gong FL, Xie KF, Zhang HL, Fang SM. Double-platelet Pd@ZnO microcrystals for NO2 chemical sensors: their facile synthesis and DFT investigation. Phys Chem Chem Phys 2019; 21:22039-22047. [DOI: 10.1039/c9cp04242c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and evolution processes of double-platelet, single-platelet and spherical ZnO microcrystallines are investigated.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Yu-Liang Li
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Fei-Long Gong
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Ke-Fei Xie
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Key Laboratory of Special Function Materials and Structure Design (MOE)
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
| | - Shao-Ming Fang
- College of Materials and Chemical Engineering
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
40
|
Majhi SM, Lee HJ, Choi HN, Cho HY, Kim JS, Lee CR, Yu YT. Construction of novel hybrid PdO–ZnO p–n heterojunction nanostructures as a high-response sensor for acetaldehyde gas. CrystEngComm 2019. [DOI: 10.1039/c9ce00710e] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and unique approach to design PdO@ZnO p–n heterojunction nanostructures (NSs) as a highly sensitive and selective acetaldehyde gas sensor.
Collapse
Affiliation(s)
- Sanjit Manohar Majhi
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Hu-Jun Lee
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Ha-Nui Choi
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Ha-Young Cho
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Jin-Soo Kim
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Cheul-Ro Lee
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| | - Yeon-Tae Yu
- Division of Advanced Materials Engineering and Research Center for Advanced Materials Development
- College of Engineering
- Chonbuk National University
- Jeonju
- South Korea
| |
Collapse
|
41
|
Zhang X, Kang X, Cui W, Zhang Q, Zheng Z, Cui X. Floral and lamellar europium( iii)-based metal–organic frameworks as high sensitivity luminescence sensors for acetone. NEW J CHEM 2019. [DOI: 10.1039/c9nj00889f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Floral Eu-BDC and lamellar Eu-BTC as high sensitivity luminescence sensor for acetone.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
- School of Materials Science and Engineering
| | - Xiaoli Kang
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
| | - Wen Cui
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
| | - Qing Zhang
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
| | - Zhou Zheng
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
| | - Xudong Cui
- Sichuan Research Center of New Materials of Institute of Chemical Materials
- China Academy of Engineering Physics
- Chengdu 610200
- China
| |
Collapse
|
42
|
Xie Z, Chen W, Chen X, Zhou X, Hu W, Shu X. Platinum on 2-aminoethanethiol functionalized MIL-101 as a catalyst for alkene hydrosilylation. RSC Adv 2019; 9:20314-20322. [PMID: 35514732 PMCID: PMC9065458 DOI: 10.1039/c9ra01408j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/16/2019] [Indexed: 11/24/2022] Open
Abstract
Hydrosilylation is one of the largest-scale applications for homogeneous catalysis and is widely used to enable the commercial manufacture of silicon products. In this paper, a bifunctional heterogeneous catalyst, Ptδ+/AET-MIL-101 (AET = 2-aminoethanethiol) with a partially positively charged Ptδ+ electronic structure is reported, which was successfully prepared using post-synthesis modification with AET and a platinum precursor. The catalysts were characterized using X-ray diffraction (XRD), nitrogen (N2) adsorption–desorption, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) techniques which showed that the synergy of AET-MIL-101 provides a good dispersion of Ptδ+ in the channels, which can efficiently catalyze the hydrosilylation reaction with almost complete conversion and produce a unique adduct. In addition, the synthetic heterogeneous catalyst Ptδ+/AET-MIL-101 achieves reasonable use of Pt in terms of number cycles and atomic utilization efficiency, indicating the potential to achieve a green hydrosilylation industry. Ptδ+ was uniformly dispersed in AET-MIL-101 as a highly efficient catalyst for a catalytic hydrosilylation reaction.![]()
Collapse
Affiliation(s)
- Zhikai Xie
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| | - Weiwen Chen
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| | - Xiuying Chen
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| | - Xinhua Zhou
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| | - Wenbin Hu
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering
- Zhongkai University of Agriculture and Engineering
- Guangzhou 510225
- China
| |
Collapse
|
43
|
Zhang T, Tang X, Zhang J, Zhou T, Wang H, Wu C, Xia X, Xie C, Zeng D. Metal-Organic Framework-Assisted Construction of TiO 2/Co 3O 4 Highly Ordered Necklace-like Heterostructures for Enhanced Ethanol Vapor Sensing Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14577-14585. [PMID: 30423250 DOI: 10.1021/acs.langmuir.8b02620] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we report a metal-organic framework (MOF)-assisted strategy to synthesize necklace-like TiO2/Co3O4 nanofibers with highly ordered heterostructures via a facile approach including electrospinning and subsequent calcination. Polycrystalline TiO2 nanofibers and Co3O4 nanocages are consummately interconnected to form a highly ordered heterogeneous nanostructure, which can be of benefit for precisely accommodating the interface resistance of the p-n heterojunctions and the future realization of improved material performance. The ethanol-gas-sensing investigation showed that TiO2/Co3O4 nanofiber sensors exhibited a strong ethanol response ( Rair/ Rgas -1 = 16.7 @ 150 ppm) and a low operating temperature of 150 °C. The sensing enhancement mechanism of the TiO2/Co3O4 nanofibers is related to the formation of heterojunctions at interfaces and the high catalytic activity of MOF-derived Co3O4. Furthermore, this versatile method is a promising approach to constructing ordered heterostructures and extending the MOF-based heterogeneous materials toward wide applications.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , P. R. China
| | - Xing Tang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Jian Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Research School of Engineering, College of Engineering and Computer Science , The Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Tingting Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Hao Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Congyi Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Xianping Xia
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Changsheng Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Dawen Zeng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials , Hubei University , Wuhan 430062 , P. R. China
| |
Collapse
|
44
|
Zhou T, Liu X, Zhang R, Wang Y, Zhang T. NiO/NiCo 2O 4 Truncated Nanocages with PdO Catalyst Functionalization as Sensing Layers for Acetone Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37242-37250. [PMID: 30296379 DOI: 10.1021/acsami.8b12981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Achieving a novel structural construction and adopting appropriate catalyst materials are key to overcoming inherent limitations of gas sensors in terms of designing sensing layers. This work introduces NiO/NiCo2O4 truncated nanocages functionalized with PdO nanoparticles, which were proved to possess the ability of effective acetone detection. The device realized an enhanced acetone-sensing sensitivity, together with excellent selectivity and long-term stability. The sensing performance is far better than sensors based on NiO/NiCo2O4 solid nanocubes and NiO/NiCo2O4 truncated nanocages without PdO decorating, which is related to cooperative effects of the high specific surface area and efficient catalytic activity. The results provide promising metal-organic frameworks (MOFs)-derived material with the optimization of catalytic performance, demonstrating the remarkable potential for acetone sensors.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China
| | - Xiupeng Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China
| | - Rui Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China
| | - Yubing Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China
| | - Tong Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China
| |
Collapse
|
45
|
Wang T, Zhang S, Yu Q, Wang S, Sun P, Lu H, Liu F, Yan X, Lu G. Novel Self-Assembly Route Assisted Ultra-Fast Trace Volatile Organic Compounds Gas Sensing Based on Three-Dimensional Opal Microspheres Composites for Diabetes Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32913-32921. [PMID: 30176721 DOI: 10.1021/acsami.8b13010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of ultra-fast response semiconductor gas sensors for high-accuracy detection of trace volatile organic compounds in human exhaled breath still remains a challenge. Herein, we propose a novel self-assembly synthesis concept for preparing intricate three-dimensional (3D) opal porous (OP) SnO2-ZnO hollow microspheres (HM), by employing sulfonated polystyrene (S-PS) spheres template-assisted ultrasonic spray pyrolysis. The high gas accessibility of the unique opal hollow structures resulted in the existence of 3D interconnection and bimodal (mesoscale and macroscale) pores, and the n-n heterojunction-induced change in oxygen adsorption. The 3D OP SnO2-ZnO HM sensor exhibited high response and ultra-fast dynamic process (response time ∼4 s and recovery time ∼17 s) to 1.8 ppm acetone under highly humid ambient condition (98% relative humidity), and it could rapidly identify the states of the exhaled breath of healthy people and simulated diabetics. In addition, the rational structure design of the 3D OP SnO2 HM enables the ultra-fast detection (within 1 s) of ethanol in simulation drunk driving testing. Our results obtained in this work provided not only a facile self-assembly approach to fabricate metal oxides with 3D OP HM structures but also a new methodology for achieving noninvasive real-time exhaled breath detection.
Collapse
Affiliation(s)
- Tianshuang Wang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Sufang Zhang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Qi Yu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Siping Wang
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Huiying Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Gas Sensors, College of Electronic Science and Engineering , Jilin University , 2699 Qianjin Street , Changchun 130012 , Jilin Province , People's Republic of China
| |
Collapse
|
46
|
Imran M, Motta N, Shafiei M. Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2128-2170. [PMID: 30202686 PMCID: PMC6122236 DOI: 10.3762/bjnano.9.202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/23/2018] [Indexed: 05/24/2023]
Abstract
Electrospun one-dimensional (1D) nanostructures are rapidly emerging as key enabling components in gas sensing due to their unique electrical, optical, magnetic, thermal, mechanical and chemical properties. 1D nanostructures have found applications in numerous areas, including healthcare, energy storage, biotechnology, environmental monitoring, and defence/security. Their enhanced specific surface area, superior mechanical properties, nanoporosity and improved surface characteristics (in particular, uniformity and stability) have made them important active materials for gas sensing applications. Such highly sensitive and selective elements can be embedded in sensor nodes for internet-of-things applications or in mobile systems for continuous monitoring of air pollutants and greenhouse gases as well as for monitoring the well-being and health in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of materials used as an active sensing layer, including polymers, metal oxide semiconductors, graphene, and their composites or their functionalized forms. The material properties of these electrospun fibers and their sensing performance toward different analytes are explained in detail and correlated to the benefits and limitations for every approach.
Collapse
Affiliation(s)
- Muhammad Imran
- Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nunzio Motta
- Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Mahnaz Shafiei
- Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
47
|
Jeong YJ, Koo WT, Jang JS, Kim DH, Cho HJ, Kim ID. Chitosan-templated Pt nanocatalyst loaded mesoporous SnO 2 nanofibers: a superior chemiresistor toward acetone molecules. NANOSCALE 2018; 10:13713-13721. [PMID: 29989640 DOI: 10.1039/c8nr03242d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we introduce a chitosan-Pt complex (CS-Pt) as an effective template for catalytic Pt sensitization and creation of abundant mesopores in SnO2 nanofibers (NFs). The Pt particles encapsulated by the CS exhibit ultrasmall size (∼2.6 nm) and high dispersion characteristics due to repulsion between CS molecules. By combining CS-Pt with electrospinning, mesoporous SnO2 NFs uniformly functionalized with the Pt catalyst (CS-Pt@SnO2 NFs) are synthesized. Particularly, numerous mesopores with diameters of ∼20 nm form through the decomposition of CS, while a small SnO2 grain size (14.32 nm) is achieved by the pinning effect of CS. It is observed that CS-Pt@SnO2 NFs exhibit outstanding response (Rair/Rgas = 141.92 at 5 ppm), excellent selectivity, stability, and fast response (12 s)/recovery (44 s) speed toward 1 ppm of acetone at 350 °C and high humidity (90% RH). In addition, by applying an exponential fitting tool to experimental response values toward 0.1-5 ppm of acetone, it is estimated that CS-Pt@SnO2 NFs can detect 5 ppb of acetone with a notable response (Rair/Rgas = 2.9). Furthermore, the sensor array based on CS-Pt@SnO2 NFs, CS-driven SnO2 NFs, polyol-Pt loaded SnO2 NFs, and dense SnO2 NFs obviously classifies simulated diabetic breath and healthy human breath by using a pattern recognition tool. These results clearly demonstrate that mesoporous SnO2 NFs, particularly functionalized with CS-Pt templated nanocatalysts, open up a new class of sensing layers offering high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yong Jin Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Liu H, Wei D, Yan Y, Li A, Chuai X, Lu G, Wang Y. Silver Nanowire Templating Synthesis of Mesoporous SnO
2
Nanotubes: An Effective Gas Sensor for Methanol with a Rapid Response and Recovery. ChemistrySelect 2018. [DOI: 10.1002/slct.201801663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Huali Liu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Dongdong Wei
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Ang Li
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| | - Xiaohong Chuai
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Geyu Lu
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University Changchun 130012, P. R. China
| | - Yu Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University Changchun 130012, P. R. China
| |
Collapse
|
49
|
Cheong JY, Koo WT, Kim C, Jung JW, Kim ID. Feasible Defect Engineering by Employing Metal Organic Framework Templates into One-Dimensional Metal Oxides for Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20540-20549. [PMID: 29862803 DOI: 10.1021/acsami.8b04968] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Facile synthesis of rationally designed nanostructured electrode materials with high reversible capacity is highly critical to meet ever-increasing demands for lithium-ion batteries. In this work, we employed defect engineering by incorporating metal organic framework (MOF) templates into one-dimensional nanostructures by simple electrospinning and subsequent calcination. The introduction of Co-based zeolite imidazole frameworks (ZIF-67) resulted in abundant oxygen vacancies, which induce not only more active sites for Li storage but also enhanced electrical conductivity. Moreover, abundant mesoporous sites are formed by the decomposition of ZIF-67, which are present both inside and outside the resultant SnO2-Co3O4 nanofibers (NFs). Attributed to the creation of vacancy sites along with the synergistic effects of SnO2 and Co3O4, SnO2-Co3O4 NFs exhibit an excellent reversible capacity for 300 cycles (1287 mA h g-1 at a current density of 500 mA g-1) along with superior rate capabilities and improved initial Coulombic efficiency compared with pristine SnO2 NFs. This is an early report on utilizing MOF structures as the defect formation platform into one-dimensional nanostructures, which is expected to result in superior electrochemical performances required for advanced electrodes.
Collapse
Affiliation(s)
- Jun Young Cheong
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Chanhoon Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Ji-Won Jung
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
50
|
Kim MH, Jang JS, Koo WT, Choi SJ, Kim SJ, Kim DH, Kim ID. Bimodally Porous WO 3 Microbelts Functionalized with Pt Catalysts for Selective H 2S Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20643-20651. [PMID: 29847914 DOI: 10.1021/acsami.8b00588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bimodally meso- (2-50 nm) and macroporous (>50 nm) WO3 microbelts (MBs) functionalized with sub-3 nm Pt catalysts were fabricated via the electrospinning technique followed by subsequent calcination. Importantly, apoferritin (Apo), tea saponin and polystyrene colloid spheres (750 nm) dispersed in an electrospinning solution acted as forming agents for producing meso- and macropores on WO3 MBs during calcination. Particularly, mesopores provide not only numerous reaction sites for effective chemical reactions, but also facilitate gas diffusion into the interior of the WO3 MBs, dominated by Knudsen diffusion. The macropores further accelerate gas permeability in the interior and on the exterior of the WO3 MBs. In addition, Pt nanoparticles with mean diameters of 2.27 nm were synthesized by using biological protein cages, such as Apo, to further enhance the gas sensing performance. Bimodally porous WO3 MBs functionalized by Pt catalysts showed remarkably high hydrogen sulfide (H2S) response ( Rair/ Rgas = 61 @ 1 ppm) and superior selectivity to H2S against other interfering gases, such as acetone (CH3COCH3), ethanol (C2H5OH), ammonia (NH3), and carbon monoxide (CO). These results demonstrate a high potential for the feasibility of catalyst-loaded meso- and macroporous WO3 MBs as new sensing platforms for the possibility of real-time diagnosis of halitosis.
Collapse
Affiliation(s)
- Min-Hyeok Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Seon-Jin Choi
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Sang-Joon Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| |
Collapse
|