1
|
Ciobanu RC, Aradoaei M. Techniques and Instruments for Assessing and Reducing Risk of Exposure to Nanomaterials in Construction, Focusing on Fire-Resistant Insulation Panels Containing Nanoclay. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1470. [PMID: 39330628 PMCID: PMC11434603 DOI: 10.3390/nano14181470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The paper explains how nano exposure is assessed in the construction field and focuses on the production of fire-resistant insulation panels with nanoclay. Utilizing the commercial ANSYS CFX® software, a preliminary theoretical simulation was conducted on nano exposure in the workplace, which revealed that particle dispersion is primarily driven by diffusion. Panel post-processing through drilling results in the highest inhalation exposure, followed by mixing and grinding activities. Compared to a state of 'no activity', each activity resulted in an exposure increase by a factor of min. 1000. An overall assessment suggests that the use of nanoparticles in construction materials may not significantly heighten workers' exposure to nanopowders when considering particle concentration alone as opposed to using traditional micro-scale materials. However, the issue persists when it comes to blending powders or performing finishing tasks on panels, with concentration levels being significantly higher for drilling, grinding, and mixing powders at 2.4 times above the standard reference value (40,000 particles/cm3); this is unacceptable, even for brief durations. Examination of dermal contact with gloves and masks worn by workers revealed no nanoparticle penetration. Safety measures were proposed for workers based on decision trees to enhance their safety. Ten categories of protection strategies have been devised to combat the impact of nanoparticles, which are tailored to specific technical situations, but they must be modified for various types of nanoparticles despite potential shared health implications.
Collapse
Affiliation(s)
- Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Mihaela Aradoaei
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
2
|
Stueckle TA, Jensen J, Coyle JP, Derk R, Wagner A, Dinu CZ, Kornberg TG, Friend SA, Dozier A, Agarwal S, Gupta RK, Rojanasakul LW. In vitro inflammation and toxicity assessment of pre- and post-incinerated organomodified nanoclays to macrophages using high-throughput screening approaches. Part Fibre Toxicol 2024; 21:16. [PMID: 38509617 PMCID: PMC10956245 DOI: 10.1186/s12989-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1β release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1β release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.
Collapse
Affiliation(s)
- Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - Jake Jensen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Raymond Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alixandra Wagner
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Cerasela Zoica Dinu
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Tiffany G Kornberg
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alan Dozier
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Sushant Agarwal
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|
3
|
Xie W, Chen Y, Yang H. Layered Clay Minerals in Cancer Therapy: Recent Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300842. [PMID: 37093210 DOI: 10.1002/smll.202300842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cancer is one of the deadliest diseases, and current treatment regimens suffer from limited efficacy, nonspecific toxicity, and chemoresistance. With the advantages of good biocompatibility, large specific surface area, excellent cation exchange capacity, and easy availability, clay minerals have been receiving ever-increasing interests in cancer treatment. They can act as carriers to reduce the toxic side effects of chemotherapeutic drugs, and some of their own properties can kill cancer cells, etc. Compared with other morphologies clays, layered clay minerals (LCM) have attracted more and more attention due to adjustable interlayer spacing, easier ion exchange, and stronger adsorption capacity. In this review, the structure, classification, physicochemical properties, and functionalization methods of LCM are summarized. The state-of-the-art progress of LCM in antitumor therapy is systematically described, with emphasis on the application of montmorillonite, kaolinite, and vermiculite. Furthermore, the property-function relationships of LCM are comprehensively illustrated to reveal the design principles of clay-based antitumor systems. Finally, foreseeable challenges and outlook in this field are discussed.
Collapse
Affiliation(s)
- Weimin Xie
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Paul SK, Xi Y, Sanderson P, Deb AK, Islam MR, Naidu R. Investigation of herbicide sorption-desorption using pristine and organoclays to explore the potential carriers for controlled release formulation. CHEMOSPHERE 2023:139335. [PMID: 37394186 DOI: 10.1016/j.chemosphere.2023.139335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Injudicious application of available commercial herbicide formulations leads to water, air and soil contamination, which adversely affect the environment, ecosystems and living organisms. Controlled release formulation (CRFs) could be an effective way to reduce the problems associated with commercially available herbicides. Organo-montmorillonites are prominent carrier materials for synthesising CRFs of commercial herbicides. Quaternary amine and organosilane functionalised organo-montmorillonite and pristine montmorillonite were used to investigate their potential as suitable carriers for CRFs in herbicide delivery systems. The experiment involved a batch adsorption process with successive dilution method. Results revealed that pristine montmorillonite is not a suitable carrier for CRFs of 2,4-D due to its low adsorption capacity and hydrophilic nature. Conversely, octadecylamine (ODA) and ODA-aminopropyltriethoxysilane (APTES) functionalised montmorillonite has better adsorption capacities. Adsorption of 2,4-D onto both organoclays is higher at pH.3 (232.58% for MMT1 and 161.29% for MMT2) compared to higher pH until pH.7 (49.75% for MMT1 and 68.49% for MMT2). Integrated structural characterisation studies confirmed the presence of 2,4-D on the layered organoclays. The Freundlich adsorption isotherm model fitted best to the experimental data, which revealed an energetically heterogeneous surface of the experimental organoclays, and adsorption which specifically involved chemisorption. The cumulative desorption percentages of adsorbed 2,4-D from MMT1(2,4-D loaded) and MMT2(2,4-D loaded) after seven desorption cycles were 65.53% and 51.45%, respectively. This outcome indicates: firstly, both organoclays are potential carrier materials for CRFs of 2,4-D; secondly, they have the ability to reduce the instantaneous release of 2,4-D immediately after application; and thirdly, eco-toxicity is greatly diminished.
Collapse
Affiliation(s)
- Santosh Kumar Paul
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Agronomy Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur 1701, Bangladesh
| | - Yunfei Xi
- Central Analytical Research Facility (CARF) & School of Chemistry and Physics - Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter Sanderson
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Amal Kanti Deb
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Rashidul Islam
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Darie-Niță RN, Irimia A, Doroftei F, Stefan LM, Iwanczuk A, Trusz A. Bioactive and Physico-Chemical Assessment of Innovative Poly(lactic acid)-Based Biocomposites Containing Sage, Coconut Oil, and Modified Nanoclay. Int J Mol Sci 2023; 24:3646. [PMID: 36835080 PMCID: PMC9962215 DOI: 10.3390/ijms24043646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The bioactivity of the versatile biodegradable biopolymer poly(lactic acid) (PLA) can be obtained by combining it with natural or synthetic compounds. This paper deals with the preparation of bioactive formulations involving the melt processing of PLA loaded with a medicinal plant (sage) and an edible oil (coconut oil), together with an organomodifed montmorillonite nanoclay, and an assessment of the resulting structural, surface, morphological, mechanical, and biological properties of the biocomposites. By modulating the components, the prepared biocomposites show flexibility, both antioxidant and antimicrobial activity, as well as a high degree of cytocompatibility, being capable to induce the cell adherence and proliferation on their surface. Overall, the obtained results suggest that the developed PLA-based biocomposites could potentially be used as bioactive materials in medical applications.
Collapse
Affiliation(s)
| | - Anamaria Irimia
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Andrzej Iwanczuk
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Agnieszka Trusz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Calle Luzuriaga M, Ávila EE, Viloria DA. Porous frameworks from Ecuadorian clays. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This research provides a literature review on several topics as a foundation to comprehend porous materials, their structure, and behavior to explore how they can be derived from clays and nanoclays. In this case, considering the several minerals present in some Ecuadorian clays, which are a potential starting material for the synthesis of porous frameworks, they constitute a solid source of metal atoms such as Silicon or Aluminum. This research presents the evaluation and characterization via XRD and AAS of clay samples collected in the southeast of Ecuador in the provinces of Azuay, Morona Santiago and Zamora Chinchipe, which present diversified soil mineralogy with many chemical and crystallographic features for suitable precursors in nanomaterials design.
Collapse
Affiliation(s)
- María Calle Luzuriaga
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Edward E. Ávila
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| | - Dario Alfredo Viloria
- Universidad de Tecnología Experimental Yachay Tech, Escuela de Ciencias Químicas e Ingenieria, Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP)
| |
Collapse
|
7
|
Maciaszek K, Brown DM, Stone V. An in vitro assessment of the toxicity of two-dimensional synthetic and natural layered silicates. Toxicol In Vitro 2021; 78:105273. [PMID: 34801683 DOI: 10.1016/j.tiv.2021.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Natural Layered Silicates (NLS) and Synthetic Layered Silicates (SLS) are a diverse group of clay minerals that have attracted great interest in various branches of industry. However, despite growing demand for this class of material, their impact on human health has not been fully investigated. Therefore, the aim of this study was to evaluate and compare the potential toxic effects of a wide range of commercially available SLS and NLS of varying physicochemical properties (lithium (Li) or fluoride (F) content and size). Mouse BALB/c monocyte macrophage (J774A.1) and human monocyte-derived macrophages (MDMs) were chosen as in vitro models of alveolar macrophages. Montmorillonite, hectorite, Medium (med) F/High Li and Low F/Med Li particles, were cytotoxic to cells and induced potent pro-inflammatory responses. The remaining particles (No F/Very (V)Low Li, No F/Med Li, No F/Low Li, High F/Med Li and High F/Med Li washed) were non- to relatively low- cytotoxic and inflammogenic, in both type of cells. In an acellular condition none of the tested samples increased reactive oxygen species (ROS), while ROS generation was observed following exposure to sublethal concentrations of Med F/High Li, Low F/Med Li, montmorillonite and hectorite samples, in J774A.1 cells. Based on the results obtained in this study the toxic potency of tested samples was not associated with lithium or fluoride content, but appeared to be dependent on particle size, with the platelets of larger dimension and lower surface area being more potent than the smaller platelet particles with higher surface area. In addition, the increased bioactivity of Med F/High Li and Low F/Med Li was associated with endotoxin contamination. Obtained results demonstrated that layered silicate materials have different toxicological profiles and suggest that toxicological properties of a specific layered silicate should be investigated on an individual basis.
Collapse
Affiliation(s)
| | - David M Brown
- Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK.
| | - Vicki Stone
- Heriot-Watt University, Riccarton Campus, Edinburgh EH14 4AS, UK
| |
Collapse
|
8
|
Peixoto D, Pereira I, Pereira-Silva M, Veiga F, Hamblin MR, Lvov Y, Liu M, Paiva-Santos AC. Emerging role of nanoclays in cancer research, diagnosis, and therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213956] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Kavlak S, Can HK. An emphasis on dynamic mechanical properties of novel stilbene containing copolymer/
organo‐MMT
nanocomposites fabricated via in situ interlamellar copolymerization. J Appl Polym Sci 2021. [DOI: 10.1002/app.51417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Serap Kavlak
- Department of Chemistry, Division of Polymer Chemistry Hacettepe University, Faculty of Science Ankara Turkey
| | - Hatice Kaplan Can
- Department of Chemistry, Division of Polymer Chemistry Hacettepe University, Faculty of Science Ankara Turkey
| |
Collapse
|
10
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Bostan LE, Clarkin CE, Mousa M, Worsley PR, Bader DL, Dawson JI, Evans ND. Synthetic Nanoclay Gels Do Not Cause Skin Irritation in Healthy Human Volunteers. ACS Biomater Sci Eng 2021; 7:2716-2722. [PMID: 33825442 DOI: 10.1021/acsbiomaterials.0c01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic clays are promising biomaterials for delivery of therapeutic molecules in regenerative medicine. However, before their use can be translated into clinical applications, their safety must be assessed in human volunteers. The aim of this study was to test the hypothesis that a synthetic nanoclay (LAPONITE) does not cause irritation to the human skin. To achieve this, a nanoclay gel at two different concentrations (1.5 and 3% w/v) was applied on the forearm of healthy volunteers for 24 h. 1% sodium lauryl sulfate (SLS) and 3% (w/v) polyacrylic acid were used as the positive and negative controls, respectively. The compromise in the skin barrier function was measured by trans-epidermal water loss (TEWL), erythema by spectroscopic measurements, and skin inflammatory biomarkers (IL-1α and IL-1RA) by the enzyme-linked immunosorbent assay. We found that the nanoclay caused no prolonged increase in TEWL, erythema, or induction of inflammatory cytokines. This was in contrast to 1% SLS, a known irritant, which induced significant increases in both skin erythema and TEWL. We conclude that the nanoclay is not an irritant and is thus suitable for therapeutic interventions at the skin surface.
Collapse
Affiliation(s)
- Luciana E Bostan
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Claire E Clarkin
- School of Biological Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, Hampshire, U.K
| | - Mohamed Mousa
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Peter R Worsley
- Faculty of Health Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, U.K
| | - Daniel L Bader
- Faculty of Health Sciences, University of Southampton, Highfield Campus, University Road, Southampton SO17 1BJ, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, Institute for Developmental Sciences, Southampton General Hospital, University of Southampton, Tremona Road, Southampton SO16 6YD, Hampshire, U.K
| |
Collapse
|
12
|
Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv 2020; 18:695-714. [PMID: 33301349 DOI: 10.1080/17425247.2021.1862792] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clay minerals are a class of silicates with chemical inertness, colloid, and thixotropy, which have excellent physicochemical properties, good biocompatibility, low toxicity, and have high application potential in biomedical fields. These inorganic materials have been widely used in pharmaceutical excipients and active substances. In recent years, nanoclay mineral materials have been used as drug vehicles for the delivery of a variety of drugs based on their broad specific surface area, rich porosity, diverse morphology, good adsorption performance, and high ion exchange capacity. AREAS COVERED This review introduces the structures, properties, and applications of various common natural and synthetic nanoclay materials as drug carriers. Natural nanoclays have different morphologies including nanoplates, nanotubes, and nanofibers. Synthetic materials have controllable sizes and flexible structures, where mesoporous silica nanoparticles, laponite, and imogolite are typical ones. These inorganic nanoparticles are often linked to polymers to form multifunctional drug delivery systems for better pharmaceutical performance. EXPERT OPINION The clay nanomaterials have typical properties, including enhanced solubility of insoluble drugs, targeting therapeutic sites, controlled release, and stimulation of responsive drug delivery systems.
Collapse
Affiliation(s)
- Jiani Dong
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Zhu H, Yang H, Ma Y, Lu TJ, Xu F, Genin GM, Lin M. Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000639. [PMID: 32802013 PMCID: PMC7418561 DOI: 10.1002/adfm.202000639] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Indexed: 05/16/2023]
Abstract
Photoresponsive hydrogels (PRHs) are soft materials whose mechanical and chemical properties can be tuned spatially and temporally with relative ease. Both photo-crosslinkable and photodegradable hydrogels find utility in a range of biomedical applications that require tissue-like properties or programmable responses. Progress in engineering with PRHs is facilitated by the development of theoretical tools that enable optimization of their photochemistry, polymer matrices, nanofillers, and architecture. This review brings together models and design principles that enable key applications of PRHs in tissue engineering, drug delivery, and soft robotics, and highlights ongoing challenges in both modeling and application.
Collapse
Affiliation(s)
- Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haiqian Yang
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjing210016P. R. China
- MOE Key Laboratory for Multifunctional Materials and StructuresXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMO63130USA
- NSF Science and Technology Center for Engineering MechanobiologyWashington University in St. LouisSt. LouisMO63130USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
14
|
Di Ianni E, Møller P, Mortensen A, Szarek J, Clausen PA, Saber AT, Vogel U, Jacobsen NR. Organomodified nanoclays induce less inflammation, acute phase response, and genotoxicity than pristine nanoclays in mice lungs. Nanotoxicology 2020; 14:869-892. [PMID: 32536294 DOI: 10.1080/17435390.2020.1771786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Surface modification by different quaternary ammonium compounds (QAC) makes nanoclays more compatible with various polymeric matrices, thereby expanding their potential applications. The growing industrial use of nanoclays could potentially pose a health risk for workers. Here, we assessed how surface modification of nanoclays modulates their pulmonary toxicity. An in vitro screening of the unmodified nanoclay Bentonite (montmorillonite) and four organomodified nanoclays (ONC); coated with various QAC, including benzalkonium chloride (BAC), guided the selection of the materials for the in vivo study. Mice were exposed via a single intratracheal instillation to 18, 54, and 162 µg of unmodified Bentonite or dialkyldimethyl-ammonium-coated ONC (NanofilSE3000), or to 6, 18, and 54 µg of a BAC-coated ONC (Nanofil9), and followed for one, 3, or 28 days. All materials induced dose- and time-dependent responses in the exposed mice. However, all doses of Bentonite induced larger, but reversible, inflammation (BAL neutrophils) and acute phase response (Saa3 gene expression in lung) than the two ONC. Similarly, highest levels of DNA strand breaks were found in BAL cells of mice exposed to Bentonite 1 day post-exposure. A significant increase of DNA strand breaks was detected also for NanofilSE3000, 3 days post-exposure. Only mice exposed to Bentonite showed increased Tgf-β gene expression in lung, biomarker of pro-fibrotic processes and hepatic extravasation, 3 days post-exposure. This study indicates that Bentonite treatment with some QAC changes main physical-chemical properties, including shape and surface area, and may decrease their pulmonary toxicity in exposed mice.
Collapse
Affiliation(s)
- Emilio Di Ianni
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Alicja Mortensen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Józef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Per Axel Clausen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Micro- and Nanotechnology, DTU, Lyngby, Denmark
| | | |
Collapse
|
15
|
Lee EG, Cena L, Kwon J, Afshari A, Park H, Casuccio G, Bunker K, Lersch T, Gall A, Pham H, Wagner A, Agarwal S, Dinu CZ, Gupta R, Friend SA, Stueckle TA. Characterization of aerosolized particles from nanoclay-enabled composites during manipulation processes. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1539-1553. [PMID: 37205161 PMCID: PMC10190203 DOI: 10.1039/c9en01211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight. Zirconium aluminum oxide (P100/P180 grits) and silicon carbide (P120/P320 grits) sandpapers were used to abrade composites in controlled experiments followed by real-time and offline particle analyses. Overall, sanding the virgin polypropylene with zirconium aluminum oxide sandpaper released more particles compared to silicon carbide sandpaper, with the later exhibiting similar or lower concentrations than that of polypropylene. Thus, a further investigation was performed for the samples collected using the zirconium aluminum oxide sandpaper. The 1% 25A, 1% 93A, and 4% 93A composites generated substantially higher particle number concentrations (1.3-2.6 times) and respirable mass concentrations (1.2-2.3 times) relative to the virgin polypropylene, while the 4% 25A composite produced comparable results, regardless of sandpaper type. It was observed that the majority of the inhalable particles were originated from composite materials with a significant number of protrusions of nanoclay (18-59%). These findings indicate that the percent loading and dispersion of nanoclay in the polypropylene modified the mechanical properties and thus, along with sandpaper type, affected the number of particles released during sanding, implicating the cause of potential adverse health effects.
Collapse
Affiliation(s)
- Eun Gyung Lee
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division (HELD), 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | - Jiwoon Kwon
- Korea Occupational Safety and Health Agency, South Korea
| | - Ali Afshari
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division (HELD), 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | | | | - Ashley Gall
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Huy Pham
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Alixandra Wagner
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Sushant Agarwal
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Cerasela Zoica Dinu
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Rakesh Gupta
- Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Sherri A Friend
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division (HELD), 1095 Willowdale Road, Morgantown, WV 26505, USA
| | - Todd A Stueckle
- National Institute for Occupational Safety and Health (NIOSH), Health Effects Laboratory Division (HELD), 1095 Willowdale Road, Morgantown, WV 26505, USA
| |
Collapse
|
16
|
Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, Fraga S, Teixeira JP. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. ENVIRONMENTAL RESEARCH 2020; 184:109297. [PMID: 32155489 DOI: 10.1016/j.envres.2020.109297] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The ceramic industry is an industrial sector of great impact in the global economy that has been benefiting from advances in materials and processing technologies. Ceramic manufacturing has a strong potential for airborne particle formation and emission, namely of ultrafine particles (UFP) and nanoparticles (NP), meaning that workers of those industries are at risk of potential exposure to these particles. At present, little is known on the impact of engineered nanoparticles (ENP) on the environment and human health and no established Occupational Exposure Limits (OEL) or specific regulations to airborne nanoparticles (ANP) exposure exist raising concerns about the possible consequences of such exposure. In this paper, we provide an overview of the current knowledge on occupational exposure to NP in the ceramic industry and their impact on human health. Possible sources and exposure scenarios, a summary of the existing methods for evaluation and monitoring of ANP in the workplace environment and proposed Nano Reference Values (NRV) for different classes of NP are presented. Case studies on occupational exposure to ANP generated at different stages of the ceramic manufacturing process are described. Finally, the toxicological potential of intentional and unintentional ANP that have been identified in the ceramic industry workplace environment is discussed based on the existing evidence from in vitro and in vivo inhalation toxicity studies.
Collapse
Affiliation(s)
- Maria João Bessa
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Fátima Brandão
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain.
| | - João F Gomes
- CERENA, Centro de Recursos Naturais e Ambiente/Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; ISEL - Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal.
| | - Eliseo Monfort
- Institute of Ceramic Technology (ITC), Universitat Jaume I, 12006, Castellón, Spain.
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Studies, Utrecht University, Utrecht, the Netherlands.
| | - Sónia Fraga
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| | - João Paulo Teixeira
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Saúde Ambiental, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
17
|
Stueckle TA, White A, Wagner A, Gupta RK, Rojanasakul Y, Dinu CZ. Impacts of Organomodified Nanoclays and Their Incinerated Byproducts on Bronchial Cell Monolayer Integrity. Chem Res Toxicol 2019; 32:2445-2458. [PMID: 31698904 DOI: 10.1021/acs.chemrestox.9b00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Incorporation of engineered nanomaterials (ENMs) into nanocomposites using advanced manufacturing strategies is set to revolutionize diverse technologies. Of these, organomodified nanoclays (ONCs; i.e., smectite clays with different organic coatings) act as nanofillers in applications ranging from automotive to aerospace and biomedical systems. Recent toxicological evaluations increased awareness that exposure to ONC can occur along their entire life cycle, namely, during synthesis, handling, use, manipulation, and disposal. Compared to other ENMs, however, little information exists describing which physicochemical properties contribute to induced health risk. This study conducted high content screening on bronchial epithelial cell monolayers for coupled high-throughput in vitro assessment strategies aimed to evaluate acute toxicity of a library of ONCs (all of prevalent use) prior to and after simulated disposal by incineration. Coating-, incineration status-, and time-dependent effects were considered to determine changes in the pulmonary monolayer integrity, cell transepithelial resistance, apoptosis, and cell metabolism. Results showed that after exposure to each ONC at its half-maximal inhibitory concentration (IC50) there is a material-induced toxicity effect with pristine nanoclay, for instance, displaying acute loss of monolayer coverage, resistance, and metabolism, coupled with increased number of apoptotic cells. Conversely, the other three ONCs tested displayed little loss of monolayer integrity; however, they exhibited differential coating-dependent increased apoptosis and up to 40-45% initial reduction in cell metabolism. Moreover, incinerated byproducts of ONCs exhibited significant loss of monolayer coverage and integrity, increased necrosis, with little evidence of monolayer re-establishment. These findings indicate that characteristics of organic coating type largely determine the mechanism of cytotoxicity and the ability of the monolayer to recover. Use of high content screening coupled with traditional in vitro assays proves to serve as a rapid pulmonary toxicity assessment tool to help define prevention by targeted physicochemical material properties design strategies.
Collapse
Affiliation(s)
- Todd A Stueckle
- Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | | | | | | | | | | |
Collapse
|
18
|
Park S, Edwards S, Hou S, Boudreau R, Yee R, Jeong KJ. A multi-interpenetrating network (IPN) hydrogel with gelatin and silk fibroin. Biomater Sci 2019; 7:1276-1280. [PMID: 30672521 PMCID: PMC6435401 DOI: 10.1039/c8bm01532e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mechanically strong composite hydrogel was produced based on an interpenetrating network (IPN) between gelatin and silk fibroin. When two layers of the IPN were created, the resulting hydrogel exhibited much improved mechanical properties. This hydrogel is biodegradable and non-cytotoxic and allows for cell adhesion and proliferation on the surface.
Collapse
Affiliation(s)
- Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Connolly M, Zhang Y, Mahri S, Brown DM, Ortuño N, Jordá-Beneyto M, Maciaszek K, Stone V, Fernandes TF, Johnston HJ. The influence of organic modification on the cytotoxicity of clay particles to keratinocytes, hepatocytes and macrophages; an investigation towards the safe use of polymer-clay nanocomposite packaging. Food Chem Toxicol 2019; 126:178-191. [PMID: 30797875 DOI: 10.1016/j.fct.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/27/2023]
Abstract
Organically modified clays can be used as nanofillers in polymer-clay nanocomposites to create bio-based packaging with improved strength and barrier properties. The impact of organic modification on the physico-chemical properties and toxicity of clays has yet to be fully investigated but is essential to ensure their safe use. Two organoclays, named N116_HDTA and N116_TMSA, were prepared using a commercially available sodium bentonite clay and the organic modifiers hexadecyl trimethyl ammonium bromide (HDTA) and octadecyl trimethyl ammonium chloride (TMSA). An in vitro hazard assessment was performed using HaCaT skin cells, C3A liver cells, and J774.1 macrophage-like cells. Organic modification with HDTA and TMSA increased the hazard potential of the organoclays in all cell models, as evidenced by the higher levels of cytotoxicity measured. N116_TMSA caused the greatest loss in viability with IC50 values of 3.2, 3.6 and 6.1 μg/cm2 calculated using J774.1, HaCaT and C3A cell lines, respectively. Cytotoxic effects were dictated by the amount of free or displaced organic modifier present in the exposure suspensions. The parent bentonite clay also caused distinct cytotoxic effects in J774.1 macrophage-like cells with associated TNF-α release. Such information on the hazard profile of organoclays, can feed into risk assessments for these materials.
Collapse
Affiliation(s)
- Mona Connolly
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Yu Zhang
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Sohaib Mahri
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - David M Brown
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Natalia Ortuño
- ITENE - Packaging, Transport. & Logistics Research Institute, C/ Albert Einstein, 1, Parque Tecnológico, 46980 Paterna, Valencia, Spain.
| | - Maria Jordá-Beneyto
- ITENE - Packaging, Transport. & Logistics Research Institute, C/ Albert Einstein, 1, Parque Tecnológico, 46980 Paterna, Valencia, Spain.
| | - Krystyna Maciaszek
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Vicki Stone
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Teresa F Fernandes
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| | - Helinor J Johnston
- Heriot-Watt University, Riccarton Campus, Edinburgh, EH14 4AS, United Kingdom.
| |
Collapse
|
20
|
Bandyopadhyay J, Ray SS. Are nanoclay-containing polymer composites safe for food packaging applications?-An overview. J Appl Polym Sci 2018. [DOI: 10.1002/app.47214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jayita Bandyopadhyay
- DST-CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- DST-CSIR National Centre for Nanostructured Materials; Council for Scientific and Industrial Research; Pretoria 0001 South Africa
- Department of Applied Chemistry; University of Johannesburg; Doornfontein 2028 South Africa
| |
Collapse
|
21
|
Wagner A, White AP, Tang MC, Agarwal S, Stueckle TA, Rojanasakul Y, Gupta RK, Dinu CZ. Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity. Sci Rep 2018; 8:10709. [PMID: 30013129 PMCID: PMC6048035 DOI: 10.1038/s41598-018-28884-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be used in plastics for food packaging applications. Because of the plastics' high stored energy value, such nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon disposal, increased concerns related to nanocomposites' byproducts potential toxicity arise, especially considering that such byproducts could escape disposal filters to cause inhalation hazards. Herein, we investigated the effects that byproducts of a polymer polylactic acid-based nanocomposite containing a functionalized montmorillonite nanoclay (Cloisite 30B) could pose to human lung epithelial cells, used as a model for inhalation exposure. Analysis showed that the byproducts induced toxic responses, including reductions in cellular viability, changes in cellular morphology, and cytoskeletal alterations, however only at high doses of exposure. The degree of dispersion of nanoclays in the polymer matrix appeared to influence the material characteristics, degradation, and ultimately toxicity. With toxicity of the byproduct occurring at high doses, safety protocols should be considered, along with deleterious effects investigations to thus help aid in safer, yet still effective products and disposal strategies.
Collapse
Affiliation(s)
- Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew P White
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Man Chio Tang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Sushant Agarwal
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Todd A Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rakesh K Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
22
|
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Battelli L, Friend S, Orandle M, Wagner A, Dinu CZ, Sierros KA, Agarwal S, Gupta RK, Rojanasakul Y, Porter DW, Rojanasakul L. Short-Term Pulmonary Toxicity Assessment of Pre- and Post-incinerated Organomodified Nanoclay in Mice. ACS NANO 2018; 12:2292-2310. [PMID: 29451776 PMCID: PMC6357971 DOI: 10.1021/acsnano.7b07281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Organomodified nanoclays (ONCs) are increasingly used as filler materials to improve nanocomposite strength, wettability, flammability, and durability. However, pulmonary risks associated with exposure along their chemical lifecycle are unknown. This study's objective was to compare pre- and post-incinerated forms of uncoated and organomodified nanoclays for potential pulmonary inflammation, toxicity, and systemic blood response. Mice were exposed via aspiration to low (30 μg) and high (300 μg) doses of preincinerated uncoated montmorillonite nanoclay (CloisNa), ONC (Clois30B), their respective incinerated forms (I-CloisNa and I-Clois30B), and crystalline silica (CS). Lung and blood tissues were collected at days 1, 7, and 28 to compare toxicity and inflammation indices. Well-dispersed CloisNa caused a robust inflammatory response characterized by neutrophils, macrophages, and particle-laden granulomas. Alternatively, Clois30B, I-Clois30B, and CS high-dose exposures elicited a low grade, persistent inflammatory response. High-dose Clois30B exposure exhibited moderate increases in lung damage markers and a delayed macrophage recruitment cytokine signature peaking at day 7 followed by a fibrotic tissue signature at day 28, similar to CloisNa. I-CloisNa exhibited acute, transient inflammation with quick recovery. Conversely, high-dose I-Clois30B caused a weak initial inflammatory signal but showed comparable pro-inflammatory signaling to CS at day 28. The data demonstrate that ONC pulmonary toxicity and inflammatory potential relies on coating presence and incineration status in that coated and incinerated nanoclay exhibited less inflammation and granuloma formation than pristine montmorillonite. High doses of both pre- and post-incinerated ONC, with different surface morphologies, may harbor potential pulmonary health hazards over long-term occupational exposures.
Collapse
Affiliation(s)
- Todd A. Stueckle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Donna C. Davidson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Ray Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Tiffany G. Kornberg
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lori Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Marlene Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alixandra Wagner
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Konstantinos A. Sierros
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sushant Agarwal
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Rakesh K. Gupta
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dale W. Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Liying Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|