1
|
Elhassan MM, Mahmoud AM, Hegazy MA, Mowaka S, Bell JG. New trends in potentiometric sensors: From design to clinical and biomedical applications. Talanta 2025; 287:127623. [PMID: 39893726 DOI: 10.1016/j.talanta.2025.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Potentiometry, a well-established electrochemical technique, provides a powerful and versatile method for the sensitive and selective measurement of a variety of analytes by measuring the potential difference between two electrodes, allowing for a direct and rapid readout of ion concentrations. This makes it a valuable tool in a variety of applications including industry, agriculture, forensics, medical, environmental assessment, and pharmaceutical drug analysis, therefore it has received significant attention from the scientific community. Their broad implementation in sensing applications arises through their many benefits, including ease of design, fabrication, and modification; rapid response time; high selectivity; suitability for use with colored and/or turbid solutions; and potential for integration into embedded systems interfaces. Owing to these advantages and diverse applicability, sustained research and development in the field has resulted in the emergence of several notable trends in the field. 3D printing is the most recent technique used in potentiometry which offers many benefits such as improved flexibility and precision in the manufacturing of ion-selective electrodes and rapid prototyping decreases the time needed during optimization of important electrochemical parameters. Additionally, paper-based sensors are cost-effective and versatile platforms for in-field (point-of-care, POC) analysis, permitting rapid determination of a variety of analytes. One of the most interesting applications of potentiometry are wearable sensors which allow for the continuous monitoring of biomarkers, electrolytes and even pharmaceuticals, especially those with a narrow therapeutic index. Herein this review, we discuss several recent trends in potentiometric sensors since 2010, including 3D printing, paper-based devices, and other emerging techniques and the translation of potentiometric systems to wearable devices for the determination of ionic species or pharmaceuticals in biological fluids paving the way to various clinical and biomedical uses.
Collapse
Affiliation(s)
- Manar M Elhassan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Shereen Mowaka
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, 11837, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
2
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
3
|
Teekayupak K, Preechakasedkit P, Chuaypen N, Dissayabutra T, Lieberzeit PA, Chailapakul O, Ruecha N, Citterio D. Polymeric hydrogel integrated paper-based potentiometric ion-sensing device for the determination of sodium ions in human urine. Analyst 2025; 150:841-850. [PMID: 39865863 DOI: 10.1039/d4an01505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A paper-based potentiometric sensor integrated with a polymeric hydrogel has been developed for sodium ion (Na+) determination in human urine. The construction of an all-solid-state ion selective electrode (s-ISE) and an all-solid-state reference electrode (s-RE) on a photo paper substrate was achieved using an inkjet printing method. For s-ISE fabrication, carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) were printed on the substrate as a nanocomposite solid contact. A polymeric hydrogel containing lithium acetate (CH3COOLi) was then prepared and used as an intermediate layer to improve the adhesion between the ion selective membrane (ISM) and the AuNP/CNT solid contact, leading to enhanced detection sensitivity. The printed s-RE consisted of a pseudo silver/silver chloride electrode (p-Ag/AgCl) coated with a polymeric hydrogel containing KCl to improve the potential stability of the sensor. Under the optimal conditions, the hydrogel-integrated paper-based potentiometric sensor provided a response toward Na+ over a linear range of 10-7 M to 1 M with a near Nernstian slope of 56.42 ± 0.68 mV per decade. This sensor exhibited fast response, good sensitivity, and reasonable selectivity for Na+ measurement. Furthermore, the developed sensor was effectively applied for the detection of Na+ in urine samples with high accuracy. The presented work can be considered as a good addition to the growing field of potentiometric analytical platforms suitable for large-scale production using inkjet printing technology.
Collapse
Affiliation(s)
- Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Natthaya Chuaypen
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thasinas Dissayabutra
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peter A Lieberzeit
- Department of Physical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
4
|
Ren Y, Zhang F, Yan Z, Chen PY. Wearable bioelectronics based on emerging nanomaterials for telehealth applications. DEVICE 2025; 3:100676. [PMID: 40206603 PMCID: PMC11981230 DOI: 10.1016/j.device.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Nanomaterial-driven, soft wearable bioelectronics are transforming telemedicine by offering skin comfort, biocompatibility, and the capability for continuous remote monitoring of physiological signals. The devices, enabled by advanced zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanomaterials, have achieved new levels in electrical stability and reliability, allowing them to perform effectively even under dynamic physical conditions. Despite their promise, significant challenges remain in the fabrication, integration, and practical deployment of nanoscale materials and devices. Critical challenges include ensuring the durability and stability of nanomaterial-based bioelectronics for extended wear and developing efficient integration strategies to support multifunctional sensing modalities. Telemedicine has revolutionized healthcare by enabling remote health monitoring. The integration of nanomaterials within wearable devices is a central factor driving this breakthrough, as these materials enhance sensor sensitivity, durability, and multifunctionality. These wearable sensors leverage various operating principles tailored to specific applications, such as intraocular pressure monitoring, electrophysiological signal recording, and biochemical marker tracking.
Collapse
Affiliation(s)
- Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Fathy MA, Bühlmann P. Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies. BIOSENSORS 2025; 15:51. [PMID: 39852102 PMCID: PMC11764208 DOI: 10.3390/bios15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors. Nanomaterials play a pivotal role, offering unique properties, such as high conductivity and surface-to-volume ratios. This article provides a review of recent advancements in wearable potentiometric sensors utilizing various solid contacts, with a particular emphasis on nanomaterials. These sensors are employed for precise ion concentration determinations, notably sodium, potassium, calcium, magnesium, ammonium, and chloride, in human biological fluids. This review highlights two primary applications, that is, (1) the enhancement of athletic performance by continuous monitoring of ion levels in sweat to gauge the athlete's health status, and (2) the facilitation of clinical diagnosis and preventive healthcare by monitoring the health status of patients, in particular to detect early signs of dehydration, fatigue, and muscle spasms.
Collapse
Affiliation(s)
- Mahmoud Abdelwahab Fathy
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Toor A, Goodrich P, Anthony TL, Beckstoffer C, Jegan H, Silver WL, Arias AC. Printed Potentiometric Ammonium Sensors for Agriculture Applications. ACS OMEGA 2024; 9:47453-47460. [PMID: 39651077 PMCID: PMC11618443 DOI: 10.1021/acsomega.4c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024]
Abstract
Ammonium (NH4 +) concentration is critical to both nutrient availability and nitrogen (N) loss in soil ecosystems but can be highly variable across spatial and temporal scales. For this reason, effectively informing agricultural practices such as fertilizer management and understanding of mechanisms of soil N loss require sensor technologies to monitor ammonium concentrations in real time. Our work investigates the performance of fully printed ammonium ion-selective sensors used in diverse soil environments. Ammonium sensors consisting of a printed ammonium ion-selective electrode and a printed Ag/AgCl reference were fabricated and characterized in aqueous solutions and three different soil types (sand, peat, and clay) under the range of ion concentrations likely to be present in soil (0.01-100 mM). The response of ammonium sensors was further evaluated under variable gravimetric moisture content in the soil to reflect their reliability under field conditions. Ammonium sensors demonstrated a sensitivity of 53.6 ± 5.1 mV/decade when tested in aqueous solution, and a sensitivity of 55.7 ± 11 mV/dec, 57.5 ± 4.1 mV/dec, and 43.7 ± 4 mV/dec was measured in sand, clay, and peat soils, respectively.
Collapse
Affiliation(s)
- Anju Toor
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California 94720-1770, United States
| | - Payton Goodrich
- Department
of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California 94720-1770, United States
| | - Tyler L. Anthony
- Department
of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California 94720-1770, United States
| | - Claire Beckstoffer
- Department
of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California 94720-1770, United States
| | - Haeshini Jegan
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Whendee L. Silver
- Department
of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California 94720-1770, United States
| | - Ana Claudia Arias
- Department
of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California 94720-1770, United States
| |
Collapse
|
7
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
8
|
Shen T, Wang X, Ni J, Ma L, Zhang L, Wang C, Huang G. Pinecone derived hierarchical carbon nanostructure as a transducer in a solid-state ion-selective electrode for in vivo analysis of calcium ion. Anal Chim Acta 2024; 1305:342590. [PMID: 38677844 DOI: 10.1016/j.aca.2024.342590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Monitoring extracellular calcium ion (Ca2+) chemical signals in neurons is crucial for tracking physiological and pathological changes associated with brain diseases in live animals. Potentiometry based solid-state ion-selective electrodes (ISEs) with the assist of functional carbon nanomaterials as ideal solid-contact layer could realize the potential response for in vitro and in vivo analysis. Herein, we employ a kind of biomass derived porous carbon as a transducing layer to prompt efficient ion to electron transduction while stabilizes the potential drift. The eco-friendly porous carbon after activation (APB) displays a high specific area with inherit macropores, micropores, and large specific capacitance. When employed as transducer in ISEs, a stable potential response, minimized potential drift can be obtained. Benefiting from these excellent properties, a solid-state Ca2+ selective carbon fiber electrodes (CFEs) with a sandwich structure is constructed and employed for real time sensing of Ca2+ under electrical stimulation. This study presents a new approach to develop sustainable and versatile transducers in solid-state ISEs, a crucial way for in vivo sensing.
Collapse
Affiliation(s)
- Tongjun Shen
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Ximin Wang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China; CNOOC Tianjin Chemical Research and Design Institute Co. Ltd., Tianjin, 300131, China
| | - Jiping Ni
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China; College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ling Ma
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Lifu Zhang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunxia Wang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Guoyong Huang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
| |
Collapse
|
9
|
Kim M, Dong XIN, Spindler BD, Bühlmann P, Stein A. Functionalizing Carbon Substrates with a Covalently Attached Cobalt Redox Buffer for Calibration-Free Solid-Contact Ion-Selective Electrodes. Anal Chem 2024; 96:7558-7565. [PMID: 38696396 DOI: 10.1021/acs.analchem.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
With a view to potentiometric sensing with minimal calibration requirements and high long-term stability, colloid-imprinted mesoporous (CIM) carbon was functionalized by the covalent attachment of a cobalt redox buffer and used as a new solid contact for ion-selective electrodes (ISEs). The CIM carbon surface was first modified by electroless grafting of a terpyridine ligand (Tpy-ph) using diazonium chemistry, followed by stepwise binding of Co(II) and an additional Tpy ligand to the grafted ligand, forming a bis(terpyridine) Co(II) complex, CIM-ph-Tpy-Co(II)-Tpy. Half a molar equivalent of ferrocenium tetrakis(3-chlorophenyl)borate was then used to partially oxidize the Co(II) complex. Electrodes prepared with this surface-attached CIM-ph-Tpy-Co(III/II)-Tpy redox buffer as a solid contact were tested as K+ sensors in combination with valinomycin as the ionophore and Dow 3140 silicone or plasticized poly(vinyl chloride) (PVC) as the matrixes for the ion-selective membrane (ISM). This solid contact is characterized by a redox capacitance of 3.26 F/g, ensuring a well-defined interfacial potential that underpins the transduction mechanism. By use of a redox couple as an internal reference element to control the phase boundary potential at the interface of the ISM and the CIM carbon solid contact, solid-contact ion-selective electrodes (SC-ISEs) with a standard deviation of E° as low as 0.3 mV for plasticized PVC ISMs and 3.5 mV for Dow 3140 silicone ISMs were obtained. Over 100 h, these SC-ISEs exhibit an emf drift of 20 μV/h for plasticized PVC ISMs and 62 μV/h for silicone ISMs. The differences in long-term stability and reproducibility between electrodes with ISMs comprising either a plasticized PVC or silicone matrix offer valuable insights into the effect of the polymeric matrix on sensor performance.
Collapse
Affiliation(s)
- Minog Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Xin I N Dong
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Bao H, Ye J, Zhang Y. A Multichannel Screen-Printed Carbon Electrode Based on Fluorinated Poly(3-octylthiophene-2,5-diyl) and Purified Mesoporous Carbon Black Simultaneously Detects Na +, K +, Ca 2+, and NO 2. ACS OMEGA 2024; 9:18238-18248. [PMID: 38680364 PMCID: PMC11044230 DOI: 10.1021/acsomega.3c10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Preparation of nanocomposites based on fluorinated poly(3-octylthiophene-2,5-diyl) (POTF) and purified mesoporous carbon black (PMCB) as the solid-contact layer of a screen-printed carbon electrode (SPCE) is proposed. POTF is used as a dispersant for PMCB. The obtained nanocomposites possess unique characteristics including high conductivity, capacitance, and stability. The SPCE based on POTF and PMCB is characterized by electrochemical impedance spectroscopy and chronopotentiometry, demonstrating simultaneous detection of Na+, K+, Ca2+, and NO2- ions with detection limits of 10-6.5, 10-6.4, 10-6.7, and 10-6.3 M, respectively. Water layer and anti-interference tests revealed that the electrode has high hydrophobicity, and the static contact angle is >140°. The electrode shows excellent selectivity, repeatability, reproducibility, and stability and is not easily affected by light, O2, or CO2.
Collapse
Affiliation(s)
- Hui Bao
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jin Ye
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Academy
of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yuan Zhang
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
11
|
Wang Y, Wang Z, Sun H, Lyu T, Ma X, Guo J, Tian Y. Multi-Functional Nano-Doped Hollow Fiber from Microfluidics for Sensors and Micromotors. BIOSENSORS 2024; 14:186. [PMID: 38667179 PMCID: PMC11048216 DOI: 10.3390/bios14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic method to fabricate nano-doped hollow fiber, which not only makes the preparation process continuous, controllable, and efficient, but also improves the dispersion uniformity of nanoparticles. Hydrogel hollow fiber doped with carbon nanotubes is fabricated and exhibits superior electrical conductivity (15.8 S m-1), strong flexibility (342.9%), and versatility as wearable sensors for monitoring human motions and collecting physiological electrical signals. Furthermore, we incorporate iron tetroxide nanoparticles into fibers to create magnetic-driven micromotors, which provide trajectory-controlled motion and the ability to move through narrow channels due to their small size. In addition, manganese dioxide nanoparticles are embedded into the fiber walls to create self-propelled micromotors. When placed in a hydrogen peroxide environment, the micromotors can reach a top speed of 615 μm s-1 and navigate hard-to-reach areas. Our nano-doped hollow fiber offers a broad range of applications in wearable electronics and self-propelled machines and creates promising opportunities for sensors and actuators.
Collapse
Affiliation(s)
- Yanpeng Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.W.); (Z.W.); (H.S.); (T.L.)
| | - Zhaoyang Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.W.); (Z.W.); (H.S.); (T.L.)
| | - Haotian Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.W.); (Z.W.); (H.S.); (T.L.)
| | - Tong Lyu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.W.); (Z.W.); (H.S.); (T.L.)
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; (Y.W.); (Z.W.); (H.S.); (T.L.)
- Foshan Graduate School of Innovation, Northeastern University, Foshan 528300, China
| |
Collapse
|
12
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
13
|
Tian H, Ma J, Li Y, Xiao X, Zhang M, Wang H, Zhu N, Hou C, Ulstrup J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens Bioelectron 2024; 246:115890. [PMID: 38048721 DOI: 10.1016/j.bios.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
14
|
Spindler BD, Graf KI, Dong XIN, Kim M, Chen XV, Bühlmann P, Stein A. Influence of the Composition of Plasticizer-Free Silicone-Based Ion-Selective Membranes on Signal Stability in Aqueous and Blood Plasma Samples. Anal Chem 2023; 95:12419-12426. [PMID: 37552138 DOI: 10.1021/acs.analchem.3c02074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) in direct long-term contact with physiological samples must be biocompatible and resistant to biofouling, but most wearable SC-ISEs proposed to date contain plasticized poly(vinyl chloride) (PVC) membranes, which have poor biocompatibility. Silicones are a promising alternative to plasticized PVC because of their excellent biocompatibility, but little work has been done to study the relationship between silicone composition and ISE performance. To address this, we prepared and tested K+ SC-ISEs with colloid-imprinted mesoporous (CIM) carbon as the solid contact and three different condensation-cured silicones: a custom silicone prepared in-house (Silicone 1), a commercial silicone (Dow 3140, Silicone 2), and a commercial fluorosilicone (Dow 730, Fluorosilicone 1). SC-ISEs prepared with each of these polymers and the ionophore valinomycin and added ionic sites exhibited Nernstian responses, excellent selectivities, and signal drifts as low as 3 μV/h in 1 mM KCl solution. All ISEs maintained Nernstian response slopes and had only very slightly worsened selectivities after 41 h exposure to porcine plasma (log KK,Na values of -4.56, -4.58, and -4.49, to -4.04, -4.00, and -3.90 for Silicone 1, Silicone 2, and Fluorosilicone 1, respectively), confirming that these sensors retain the high selectivity that makes them suitable for use in physiological samples. When immersed in porcine plasma, the SC-ISEs exhibited emf drifts that were still fairly low but notably larger than when measurements were performed in pure water. Interestingly, despite the very similar structures of these matrix polymers, SC-ISEs prepared with Silicone 2 showed lower drift in porcine blood plasma (-55 μV/h, over 41 h) compared to Silicone 1 (-495 μV/h) or Fluorosilicone 1 (-297 μV/h).
Collapse
Affiliation(s)
- Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Katerina I Graf
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Xin I N Dong
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Minog Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Xin V Chen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
15
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
16
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
17
|
Yang M, Ye Z, Ren Y, Farhat M, Chen PY. Recent Advances in Nanomaterials Used for Wearable Electronics. MICROMACHINES 2023; 14:603. [PMID: 36985010 PMCID: PMC10053072 DOI: 10.3390/mi14030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, thriving Internet of Things (IoT) technology has had a profound impact on people's lifestyles through extensive information interaction between humans and intelligent devices. One promising application of IoT is the continuous, real-time monitoring and analysis of body or environmental information by devices worn on or implanted inside the body. This research area, commonly referred to as wearable electronics or wearables, represents a new and rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic functions that must be flexible and stretchable. Various novel materials have been proposed in recent years to meet the technical challenges posed by this field, which exhibit significant potential for use in different wearable applications. This article reviews recent progress in the development of emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates, conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of nanomaterial-based wearable electronics and provide an outlook on future research directions in this field.
Collapse
Affiliation(s)
- Minye Yang
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Zhilu Ye
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yichong Ren
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mohamed Farhat
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
18
|
Tian W, Cao H, Zhang Y, Na Z, Hui Y, Jin Z, Lang MF, Li Y, Sun J. Novel Flexible Ag/AgCl Quasi-Reference Electrode with Fishbone Nanowire Structure for Remarkable Potential Stability, Long-Term Reliability, and Noninvasive Electrocardiography. Anal Chem 2023; 95:2413-2419. [PMID: 36633558 DOI: 10.1021/acs.analchem.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The roadblocks for the planar silver/silver chloride (Ag/AgCl) quasi-reference electrode (qRE) development are the potential stability and long-term reliability as potentiometric sensors. Although there is a significant amount of work on potentiometric screen-printed and inkjet-printed sensors, none of the REs has comparable performance to that of the conventional glass RE and knowledge on reliable planar Ag/AgCl qREs is still limited. Here, a novel fishbone-structured flexible Ag/AgCl qRE (Fishbone-Ag/AgCl qRE) was developed and its stability and long-term reliability were significantly improved. The stability of the Fishbone-Ag/AgCl qRE was comparable to that of a commercial glass Ag/AgCl RE. In a long-term stability test, the Fishbone-Ag/AgCl qRE could continuously and stably operate for more than 4 h. Shelf-life testing revealed a 6 month life span. The conductivity and diameter of the nanowires in the fishbone structure of the Ag/AgCl qRE had important influences on electrochemical properties. The conductivity of the qRE influenced the charge-transfer rate in the electrode so that it affected the potential stability. Thicker diameter and slight chlorination on the surface of the AgNWs resulted in enhanced long-term reliability of the qRE. The capabilities of this new nanostructured material were applied in vivo for noninvasive monitoring of electrocardiogram. The discovery is elementary and substantially informs improved nanostructure RE design for testing and commercial medical device applications.
Collapse
Affiliation(s)
- Wenshuai Tian
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Houyong Cao
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Yu Zhang
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Zhaolin Na
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Yu Hui
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China
| | - Zhengmu Jin
- Dalian Ofei Electronics CO.,LTD., Dalian 116021, China
| | - Ming-Fei Lang
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China.,Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning 116622, China
| | - Yanzhao Li
- Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jing Sun
- College of Chemical and Environmental Engineering, Institute of Microanalysis, Dalian University, Dalian, Liaoning 116622, China.,Dalian Key Laboratory of Oligosaccharide Recombination and Recombinant Protein Modification, Dalian University, Dalian, Liaoning 116622, China
| |
Collapse
|
19
|
Wu J, Sato Y, Guo Y. Microelectronic fibers for multiplexed sweat sensing. Anal Bioanal Chem 2023:10.1007/s00216-022-04510-9. [PMID: 36622394 PMCID: PMC9838444 DOI: 10.1007/s00216-022-04510-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023]
Abstract
Wearable bioelectronics are gaining extraordinary attention due to their capabilities to achieve continuous monitoring of human health status. However, mainstream manufacturing technologies, including photolithography and printing technology, limit current wearable bioelectronics on 2D planar structures with little surface area in contact with the body. It thus limits the amount of physiological information that current wearable bioelectronics could obtain. Furthermore, they need to be firmly attached to the body, affecting the wearing comfort. In this study, we leveraged the versatile thermal drawing process and developed a flexible microelectronic fiber with bioanalytical functions that could be woven into textiles as a new form of wearable bioelectronics. Within a single strand of fiber, we successfully integrated all-in-one multiplexed electrochemical sensing capabilities, with the sweat as the primary object. Adopting the laser micromachining technique, we developed biosensing functions on the longitudinal surface of the fiber with two sensing electrodes for Na+ and uric acid (UA), respectively, together with a pseudo reference electrode (p-RE). We carefully characterized the all-in-one multiplexed sensing performance of the fiber and demonstrated its successful application in sweat sensing based on its textile forms. The results show significant potential for application in wearable textiles for monitoring key health signals of humans.
Collapse
Affiliation(s)
- Jingxuan Wu
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Yuichi Sato
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845 Japan
| | - Yuanyuan Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, 980-0845 Japan ,Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-8579 Japan ,Graduate School of Medicine, Tohoku University, Sendai, 980-8575 Japan
| |
Collapse
|
20
|
Zhang Y, Tang Y, Liang R, Zhong L, Xu J, Lu H, Xu X, Han T, Bao Y, Ma Y, Gan S, Niu L. Carbon-Based Transducers for Solid-Contact Calcium Ion-Selective Electrodes: Mesopore and Nitrogen-Doping Effects. MEMBRANES 2022; 12:903. [PMID: 36135922 PMCID: PMC9505166 DOI: 10.3390/membranes12090903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec-1 ranging from 10 μM to 0.1 M with a detection limit of 3.2 μM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions.
Collapse
Affiliation(s)
| | | | | | - Lijie Zhong
- Correspondence: Correspondence: (L.Z.); (L.N.)
| | | | | | | | | | | | | | | | - Li Niu
- Correspondence: Correspondence: (L.Z.); (L.N.)
| |
Collapse
|
21
|
Nishimoto R, Sato Y, Wu J, Saizaki T, Kubo M, Wang M, Abe H, Richard I, Yoshinobu T, Sorin F, Guo Y. Thermally Drawn CNT-Based Hybrid Nanocomposite Fiber for Electrochemical Sensing. BIOSENSORS 2022; 12:559. [PMID: 35892456 PMCID: PMC9394265 DOI: 10.3390/bios12080559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, bioelectronic devices are evolving from rigid to flexible materials and substrates, among which thermally-drawn-fiber-based bioelectronics represent promising technologies thanks to their inherent flexibility and seamless integration of multi-functionalities. However, electrochemical sensing within fibers remains a poorly explored area, as it imposes new demands for material properties-both the electrochemical sensitivity and the thermomechanical compatibility with the fiber drawing process. Here, we designed and fabricated microelectrode fibers made of carbon nanotube (CNT)-based hybrid nanocomposites and further evaluated their detailed electrochemical sensing performances. Carbon-black-impregnated polyethylene (CB-CPE) was chosen as the base material, into which CNT was loaded homogeneously in a concentration range of 3.8 to 10 wt%. First, electrical impedance characterization of CNT nanocomposites showed a remarkable decrease of the resistance with the increase in CNT loading ratio, suggesting that CNTs notably increased the effective electrical current pathways inside the composites. In addition, the proof-of-principle performance of fiber-based microelectrodes was characterized for the detection of ferrocenemethanol (FcMeOH) and dopamine (DA), exhibiting an ultra-high sensitivity. Additionally, we further examined the long-term stability of such composite-based electrode in exposure to the aqueous environment, mimicking the in vivo or in vitro settings. Later, we functionalized the surface of the microelectrode fiber with ion-sensitive membranes (ISM) for the selective sensing of Na+ ions. The miniature fiber-based electrochemical sensor developed here holds great potential for standalone point-of-care sensing applications. In the future, taking full advantage of the thermal drawing process, the electrical, optical, chemical, and electrochemical modalities can be all integrated together within a thin strand of fiber. This single fiber can be useful for fundamental multi-mechanistic studies for biological applications and the weaved fibers can be further applied for daily health monitoring as functional textiles.
Collapse
Affiliation(s)
- Rino Nishimoto
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Yuichi Sato
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai 980-0845, Japan;
| | - Jingxuan Wu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Tomoki Saizaki
- School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.S.); (M.K.)
| | - Mahiro Kubo
- School of Engineering, Tohoku University, Sendai 980-8579, Japan; (T.S.); (M.K.)
| | - Mengyun Wang
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
| | - Inès Richard
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (I.R.); (F.S.)
| | - Tatsuo Yoshinobu
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan; (R.N.); (J.W.); (M.W.); (H.A.); (T.Y.)
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Fabien Sorin
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; (I.R.); (F.S.)
| | - Yuanyuan Guo
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai 980-0845, Japan;
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
22
|
Wearable Microfluidic Sensor for the Simultaneous and Continuous Monitoring of Local Sweat Rates and Electrolyte Concentrations. MICROMACHINES 2022; 13:mi13040575. [PMID: 35457880 PMCID: PMC9032168 DOI: 10.3390/mi13040575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Temperature elevation due to global warming increases the risks of dehydration, which can induce heat-related illness. Proper rehydration with appropriate amounts of water and electrolytes is essential to aid body fluid homeostasis. Wearable sweat sensors which can monitor both the sweat rate and sweat electrolyte concentration may be an effective tool for determining appropriate rehydration. Here, we developed a novel potentially wearable sensor that can monitor both the local sweat rate and sweat electrolyte concentration continuously. The new device includes a system with a short microfluidic pathway that guides the sweat appearing on the skin to a small space in the device to form a quantifiable droplet. The sweat rate is assessed from the time for the droplet to appear and droplet volume, while an integrated electric sensor detects the sodium chloride concentration in each sweat droplet. We demonstrated that this new device could record both the flow rates of artificial sweat and its sodium chloride concentration in ranges of human sweating with an accuracy within ±10%. This is equivalent to the accuracy of commercially available sweat rate meters and sweat ion sensors. The present study provides a new perspective for the design of wearable sensors that can continuously monitor sweat rates and sweat electrolyte concentrations for potential application to a healthcare device.
Collapse
|
23
|
Ozer T, Henry CS. Microfluidic-based ion-selective thermoplastic electrode array for point-of-care detection of potassium and sodium ions. Mikrochim Acta 2022; 189:152. [PMID: 35322308 DOI: 10.1007/s00604-022-05264-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
A microfluidic paper-based thermoplastic electrode (TPE) array has been developed for point-of-care detection of Na+ and K+ ions using a custom-made portable potentiometer. TPEs were fabricated using polystyrene as the binder and two different types of graphite to compare the electrode performance. The newly designed TPE array embedded in a polymethyl methacrylate chip consists of two working electrodes modified with carbon black nanomaterial and an ion-selective membrane, and an all-solid-state reference electrode modified with Ag/AgCl ink and poly(butyl methacrylate-co-methyl methacrylate) membrane via drop-casting. Ion-selective membrane compositions and conditioning steps were optimized. Under optimized conditions, ion-selective TPEs demonstrated fast response time (4 s) and good stability. The TPE array demonstrated a Nernstian behavior for K+ with a sensitivity of 59.2 ± 0.2 mV decade-1 and near-Nernstian response for Na+ with a sensitivity of 54.0 ± 1.1 mV decade-1 in the range 10-1 - 10-4 M and 1 - 10-3 M, respectively. The detection limits were 1 × 10-5 M and 1 × 10-4 M for K+ and Na+, respectively. In addition, a K+ and Na+ selective microfluidic paper-based analytical device (µPAD) was applied to artificial serum analysis and found in good agreement with average recoveries of 101.3% and 99.7%, respectively, suggesting that the developed ISE array is suitable for detection of sodium and potassium in complex matrix.
Collapse
Affiliation(s)
- Tugba Ozer
- Faculty of Chemical-Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
24
|
Jiang T, Yin B, Liu X, Yang L, Pang H, Song J, Wu S. Porous carbon-based robust, durable, and flexible electrochemical device for K + detection in sweat. Analyst 2022; 147:1144-1151. [PMID: 35180282 DOI: 10.1039/d1an02322e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ion sensors are attracting attention for real-time ion monitoring in biological fluids, which requires the development of sensitive, stable, flexible, robust and durable ion-selective electrodes (ISEs) and reference electrodes (REs). In this paper, a highly robust and durable ion sensor was prepared by coating polymer membranes on porous carbon electrodes. A high sensitivity of 58.6 mV per decade with a rapid response time of 0.8 s, and a negligible potential drift less than 1.4 mV h-1 were obtained simultaneously. In addition, after six washing cycles, the K+ ion sensors still have an average sensitivity of 53.2 mV per decade. Importantly, the polymer membrane permeated and packed the porous structure tightly, and thus the ion sensors presented outstanding robustness and durability. The Nernst slope of the K+ ion response fluctuated from 60.2 to 57.9 mV per decade between 0° and 60° bending angles. Repeated bending for 8000 cycles did not result in the delamination of the sensing and reference membranes or reduction of the sensitivity (57.4 mV per decade). Furthermore, five kinds of flexible reference electrodes (LEC, bare Ag, bare Ag/AgCl, PVB + NaCl on Ag/AgCl, PVC/agarose + NaCl on Ag/AgCl) were fabricated and evaluated in terms of the sensitivity for Cl- and long-term stability. Finally, the flexible K+ ion sensor was integrated with microfluidic channels and connected to a portable electrochemical workstation to realize the real-time analysis of human sweat.
Collapse
Affiliation(s)
- Tingting Jiang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Bing Yin
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Xiaobo Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Lihui Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Hongyu Pang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Jie Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
25
|
Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochim Acta 2022; 189:122. [PMID: 35218439 DOI: 10.1007/s00604-022-05233-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.
Collapse
|
26
|
Faheem A, Cinti S. Non-invasive electrochemistry-driven metals tracing in human biofluids. Biosens Bioelectron 2021; 200:113904. [PMID: 34959184 DOI: 10.1016/j.bios.2021.113904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Wearable analytical devices represent the future for fast, de-centralized, and human-centered health monitoring. Electrochemistry-based platforms have been highlighted as the role model for future developments amid diverse strategies and transduction technologies. Among the various relevant analytes to be real-time and non-invasively monitored in bodily fluids, we review the latest wearable achievements towards determining essential and toxic metals. On-skin measurements represent an excellent possibility for humankind: real-time monitoring, digital/fast communication with specialists, quick interventions, removing barriers in developing countries. In this review, we discuss the achievements over the last 5 years in non-invasive electrochemical platforms, providing a comprehensive table for quick visualizing the diverse sensing/technological advances. In the final section, challenges and future perspectives about wearables are deeply discussed.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli "Federico II", 80055, Naples, Italy.
| |
Collapse
|
27
|
Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021; 235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.
Collapse
Affiliation(s)
- Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marzieh Geranpayehvaghei
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
28
|
Mazzaracchio V, Serani A, Fiore L, Moscone D, Arduini F. All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Choudhury S, Roy S, Bhattacharya G, Fishlock S, Deshmukh S, Bhowmick S, McLaughlign J, Roy SS. Potentiometric ion-selective sensors based on UV-ozone irradiated laser-induced graphene electrode. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Wang F, Liu Y, Zhang M, Zhang F, He P. Home Detection Technique for Na + and K + in Urine Using a Self-Calibrated all-Solid-State Ion-Selective Electrode Array Based on Polystyrene-Au Ion-Sensing Nanocomposites. Anal Chem 2021; 93:8318-8325. [PMID: 34096282 DOI: 10.1021/acs.analchem.1c01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An all-solid-state ion-selective electrode (ASS-ISE) array that is portable and easily miniaturized can meet the needs of home sensing devices for long-term health monitoring. However, their stability and accuracy are affected by the multistep modification required for ASS-ISE manufacturing and the complex background signal of real samples. In this study, a four-channel ISE array with the integration of a calibration channel has been developed based on polystyrene-Au (PS-Au) ion-sensing nanocomposites (PS-Au ISE array) for the home detection of Na+ and K+. The nanocomposites combine target recognition function and ion-electron transduction function and could be modified on the channel surface by direct drop-casting, thus simplifying the preparation process and then improving the stability. Meanwhile, the integrated calibration channel could automatically deduct complex background signals in real sample analysis and thus improve the accuracy. As a result, the proposed self-calibrated PS-Au ISE array showed a near Nernstian behavior for Na+ and K+ in the range of 1 × 10-2 M-1 × 10-4 M, and the detection limits were 6.8 × 10-5 M and 5.5 × 10-5 M in artificial urine. The linear equations can be obtained according to the slopes and intercepts of Na+ and K+, and thus, the concentration of the target ions can be directly read out by combining this PS-Au ISE array with the smart electronic device. Furthermore, the detection results of Na+ and K+ in human urine agreed well with those obtained by ICP-AES, suggesting that this proposed self-calibrated PS-Au ISE array is very suitable for home smart sensing devices, facilitating the health monitoring.
Collapse
Affiliation(s)
- Fan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Yujing Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Mengdi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
31
|
Dębosz M, Kozma J, Porada R, Wieczorek M, Paluch J, Gyurcsányi RE, Migdalski J, Kościelniak P. 3D-printed manifold integrating solid contact ion-selective electrodes for multiplexed ion concentration measurements in urine. Talanta 2021; 232:122491. [PMID: 34074448 DOI: 10.1016/j.talanta.2021.122491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/26/2023]
Abstract
Urinalysis is a simple and non-invasive approach for the diagnosis and monitoring of various health disorders. While urinalysis is predominantly confined to clinical laboratories the non-invasive sample collection makes it applicable in wide range of settings outside of central laboratory confinements. In this respect, 3D printed devices integrating sensors for measuring multiple parameters may be one of the most viable approaches to ensure cost-effectiveness for widespread use. Here we evaluated such a system for the multiplexed determination of sodium, potassium and calcium ions in urine samples with ion-selective electrodes based on state of the art octadecylamine-functionalized multi-walled carbon nanotube (OD-MWCNT) solid contacts. The electrodes were tested in the clinically relevant concentration range, i.e. ca. 10-4 - 10-1 mol L-1 and were proven to have Nernstian responses under flow injection conditions. The applicability of the 3D printed flow manifold was investigated through the analysis of synthetic samples and two certified reference materials. The obtained results confirm the suitability of the proposed system for multiplexed ion analysis in urine.
Collapse
Affiliation(s)
- Marek Dębosz
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland.
| | - József Kozma
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Radosław Porada
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Marcin Wieczorek
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Justyna Paluch
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| | - Róbert E Gyurcsányi
- Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, BME "Lendület" Chemical Nanosensors Research Group, Szt. Gellért Tér 4, H-1111, Budapest, Hungary
| | - Jan Migdalski
- AGH-University of Science and Technology in Cracow, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, Kraków, Poland
| | - Paweł Kościelniak
- Jagiellonian University in Krakow, Faculty of Chemistry, Department of Analytical Chemistry, Ul. Gronostajowa 2, Krakow, Poland
| |
Collapse
|
32
|
Mugo SM, Lu W, Wood M, Lemieux S. Wearable microneedle dual electrochemical sensor for simultaneous pH and cortisol detection in sweat. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Weihao Lu
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Marika Wood
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Stephane Lemieux
- Department of Decision Sciences MacEwan University Edmonton Canada
| |
Collapse
|
33
|
Two-Dimensional Disposable Graphene Sensor to Detect Na + Ions. NANOMATERIALS 2021; 11:nano11030787. [PMID: 33808672 PMCID: PMC8003527 DOI: 10.3390/nano11030787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
The monitoring of Na+ ions distributed in the body has been indirectly calculated by the detection of Na+ ions in urine. We fabricated a two–dimensional (2D) Na+ ion sensor using a graphene ion–sensitive field–effect transistor (G–ISFET) and used fluorinated graphene as a reference electrode (FG–RE). We integrated G–ISFET and FG on a printed circuit board (PCB) designed in the form of a secure digital (SD) card to fabricate a disposable Na+ ion sensor. The sensitivity of the PCB tip to Na+ ions was determined to be −55.4 mV/dec. The sensor exhibited good linearity despite the presence of interfering ions in the buffer solution. We expanded the evaluation of the PCB tip to real human patient urine samples. The PCB tip exhibited a sensitivity of −0.36 mV/mM and linearly detected Na+ ions in human patient urine without any dilution process. We expect that G–ISFET with FG–RE can be used to realize a disposable Na+ ion sensor by serving as an alternative to Ag/AgCl reference electrodes.
Collapse
|
34
|
Kim DS, Jeong JM, Park HJ, Kim YK, Lee KG, Choi BG. Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application. NANO-MICRO LETTERS 2021; 13:87. [PMID: 34138339 PMCID: PMC8006523 DOI: 10.1007/s40820-021-00617-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Ultrathin and defect-free graphene ink is prepared through a high-throughput fluid dynamics process, resulting in a high exfoliation yield (53.5%) and a high concentration (47.5 mg mL-1). A screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and good mechanical flexibility. An electrochemical sodium ion sensor based on graphene ink exhibits an excellent potentiometric sensing performance in a mechanically bent state. Real-time monitoring of sodium ion concentration in sweat is demonstrated. Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices. However, the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions. In this study, a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process. A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL-1 for graphene ink. The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and maintains high conductivity under mechanical bending, compressing, and fatigue tests. Based on the as-prepared graphene ink, a printed electrochemical sodium ion (Na+) sensor that shows high potentiometric sensing performance was fabricated. Further, by integrating a wireless electronic module, a prototype Na+-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer. The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost, reproducible, and large-scale printing of flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Dong Seok Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Jae-Min Jeong
- Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Hong Jun Park
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Yeong Kyun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Kyoung G Lee
- Center for Nano Bio Development, National Nanofab Center, Daejeon, 34141, Republic of Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea.
| |
Collapse
|
35
|
Li G, Wen D. Wearable biochemical sensors for human health monitoring: sensing materials and manufacturing technologies. J Mater Chem B 2021; 8:3423-3436. [PMID: 32022089 DOI: 10.1039/c9tb02474c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable biochemical sensors are of great interest nowadays due to their powerful potential in personalized medicine and continuous monitoring of human health. Thus, a great deal of effort has been put into the development of such sensors to enable real-time and non-invasive quantification of various chemical constituents in the human body such as sweat, saliva, and tears. Owing to the advances in materials science and mechanical engineering, wearable biochemical sensors have been developed to probe various biomarkers and have been subsequently considered as wearable electronic devices for practical applications. In this review, we present a broad overview on the recent advances in electrochemical wearable sensors towards various organic components and ions closely linked to human health. With an emphasis on materials and manufacturing technologies of the sensing electrodes, the research status is summarized, and the challenges and opportunities in this growing field are prospected.
Collapse
Affiliation(s)
- Guanglei Li
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, P. R. China.
| | | |
Collapse
|
36
|
Xuan X, Hui X, Yoon H, Yoon S, Park JY. A rime ice-inspired bismuth-based flexible sensor for zinc ion detection in human perspiration. Mikrochim Acta 2021; 188:97. [PMID: 33620589 DOI: 10.1007/s00604-021-04752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A nature-inspired special structure of bismuth is newly presented as Zn ion sensing layer for high-performance electrochemical heavy metal detection sensor applications. The rime ice-like bismuth (RIBi) has been synthesized using an easy ex situ electrodeposition method on the surface of a flexible graphene-based electrode. The flexible graphene-based electrode was fabricated via simple laser-writing and substrate-transfer techniques. The Zn ion sensing performance of the proposed heavy metal sensor was evaluated by square wave anodic stripping voltammetry after investigating the effects of several parameters, such as preconcentration potential, preconcentration time, and pH of acetate buffer. The proposed RIBi-based heavy metal sensor demonstrated a good linear relationship between concentration and current in the range 100-1600 ppb Zn ions with an acceptable sensitivity of 106 nA/ppb·cm2. The result met the requirements in terms of common human perspiration levels (the average Zn ion concentration in perspiration is 800 ppb). In addition, the heavy metal sensor response to Zn ions was successfully performed in human perspiration samples as well, and the results were consistent with those measured by atomic absorption spectroscopy. Besides, the fabricated Zn ion sensor exhibited excellent selectivity, repeatability, and flexibility. Finally, a PANI-LIG-based pH sensor (measurement range: pH 4-7) was also integrated with the Zn ion sensor to form a single chip hybrid sensor. These results may provide a great possibility for the use of the proposed flexible sensor to realize wearable perspiration-based healthcare systems. Graphical abstract.
Collapse
Affiliation(s)
- Xing Xuan
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Xue Hui
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Hyosang Yoon
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Sanghyuk Yoon
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Peng B, Zhao F, Ping J, Ying Y. Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002681. [PMID: 32893485 DOI: 10.1002/smll.202002681] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Wearable sensors have gained much attention due to their potential in personal health monitoring in a timely, cost-effective, easy-operating, and noninvasive way. In recent studies, nanomaterials have been employed in wearable sensors to improve the sensing performance in view of their excellent properties. Here, focus is mainly on the nanomaterial-enabled wearable sensors and their latest advances in personal health monitoring. Different kinds of nanomaterials used in wearable sensors, such as metal nanoparticles, carbon nanomaterials, metallic nanomaterials, hybrid nanocomposites, and bio-nanomaterials, are reviewed. Then, the progress of nanomaterial-based wearable sensors in personal health monitoring, including the detection of ions and molecules in body fluids and exhaled breath, physiological signals, and emotion parameters, is discussed. Furthermore, the future challenges and opportunities of nanomaterial-enabled wearable sensors are discussed.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fengnian Zhao
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
38
|
Xu J, Zhang Z, Gan S, Gao H, Kong H, Song Z, Ge X, Bao Y, Niu L. Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat. ACS Sens 2020; 5:2834-2842. [PMID: 32854495 DOI: 10.1021/acssensors.0c00960] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wearable potentiometric ion sensors are attracting attention for real-time ion monitoring in biological fluids. One of the key challenges lies in keeping the analytical performances under a stretchable state. Herein, we report a highly stretchable fiber-based ion-selective electrode (ISE) prepared by coating an ion-selective membrane (ISM) on a stretchable gold fiber electrode. The fiber ISE ensures high stretchability up to 200% strain with only 2.1% increase in resistance of the fiber electrode. Owing to a strong attachment between the ISM and gold fiber electrode substrate, the ISE discloses favorable stability and potential repeatability. The Nernst slope of the ion response fluctuates from 59.2 to 57.4 mV/dec between 0 and 200% strain. Minor fluctuation of the intercept (E0) (±4.97 mV) also results. The ISE can endure 1000 cycles at the maximum stretch. Sodium, chloride, and pH fiber sensors were fabricated and integrated into a hairband for real-time analysis of human sweat. The result displays a high accuracy compared with ex situ analysis. The integrated sensors were calibrated before and just after on-body measurements, and they offer reliable results for sweat analysis.
Collapse
Affiliation(s)
- Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Han Gao
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huijun Kong
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhongqian Song
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaoming Ge
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
39
|
Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. SENSORS 2020; 20:s20143927. [PMID: 32679666 PMCID: PMC7412463 DOI: 10.3390/s20143927] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
To demonstrate the wearable flexible/stretchable health-monitoring sensor, it is necessary to develop advanced functional materials and fabrication technologies. Among the various developed materials and fabrication processes for wearable sensors, carbon-based materials and textile-based configurations are considered as promising approaches due to their outstanding characteristics such as high conductivity, lightweight, high mechanical properties, wearability, and biocompatibility. Despite these advantages, in order to realize practical wearable applications, electrical and mechanical performances such as sensitivity, stability, and long-term use are still not satisfied. Accordingly, in this review, we describe recent advances in process technologies to fabricate advanced carbon-based materials and textile-based sensors, followed by their applications such as human activity and electrophysiological sensors. Furthermore, we discuss the remaining challenges for both carbon- and textile-based wearable sensors and then suggest effective strategies to realize the wearable sensors in health monitoring.
Collapse
|
40
|
Lim HR, Kim YS, Kwon S, Mahmood M, Kwon YT, Lee Y, Lee SM, Yeo WH. Wireless, Flexible, Ion-Selective Electrode System for Selective and Repeatable Detection of Sodium. SENSORS 2020; 20:s20113297. [PMID: 32531954 PMCID: PMC7309126 DOI: 10.3390/s20113297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Wireless, flexible, ion-selective electrodes (ISEs) are of great interest in the development of wearable health monitors and clinical systems. Existing film-based electrochemical sensors, however, still have practical limitations due to poor electrical contact and material–interfacial leakage. Here, we introduce a wireless, flexible film-based system with a highly selective, stable, and reliable sodium sensor. A flexible and hydrophobic composite with carbon black and soft elastomer serves as an ion-to-electron transducer offering cost efficiency, design simplicity, and long-term stability. The sensor package demonstrates repeatable analysis of selective sodium detection in saliva with good sensitivity (56.1 mV/decade), stability (0.53 mV/h), and selectivity coefficient of sodium against potassium (−3.0). The film ISEs have an additional membrane coating that provides reinforced stability for the sensor upon mechanical bending. Collectively, the comprehensive study of materials, surface chemistry, and sensor design in this work shows the potential of the wireless flexible sensor system for low-profile wearable applications.
Collapse
Affiliation(s)
- Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Yun-Soung Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Musa Mahmood
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
| | - Yongkuk Lee
- Department of Biomedical Engineering, Wichita State University, Wichita, KS 67260, USA;
| | - Soon Min Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (H.-R.L.); (Y.-S.K.); (S.K.); (M.M.); (Y.-T.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Neural Engineering Center, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710; Fax: +1-404-894-1658
| |
Collapse
|
41
|
Sun J, Li Y, Liu G, Chen S, Zhang Y, Chen C, Chu F, Song Y. Fabricating High-Resolution Metal Pattern with Inkjet Printed Water-Soluble Sacrificial Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22108-22114. [PMID: 32320207 DOI: 10.1021/acsami.0c01138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The metal pattern plays a crucial role in various optoelectronic devices. However, fabrication of high-resolution metal patterns has serious problems including complicated techniques and high cost. Herein, an inkjet printed water-soluble sacrificial layer was proposed to fabricate a high-resolution metal pattern. The water-soluble sacrificial layer was inkjet printed on a polyethylene glycol terephthalate (PET) surface, and then the printed surface was deposited with a metal layer by evaporating deposition. When the deposited surface was rinsed by water, the metal layer deposited on the water-soluble sacrificial layer could be removed. Various high-resolution metal patterns were prepared, which could be used in electroluminescent displays, strain sensors, and 3D switches. This facile method could be a promising approach for fabricating high-resolution metal patterns.
Collapse
Affiliation(s)
- Jiazhen Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yang Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Guangping Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuoran Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fuqiang Chu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Key Laboratory of Pulp, Paper, Printing & Packaging of China National Light Industry, Key Laboratory of Green Printing & Packaging Materials and Technology in Universities of Shandong Province, School of Light Industry Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Mugo SM, Alberkant J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal Bioanal Chem 2020; 412:1825-1833. [PMID: 32002581 DOI: 10.1007/s00216-020-02430-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/15/2020] [Indexed: 11/27/2022]
Abstract
A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, β-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| | - Jonathan Alberkant
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
43
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
44
|
Chung M, Fortunato G, Radacsi N. Wearable flexible sweat sensors for healthcare monitoring: a review. J R Soc Interface 2019; 16:20190217. [PMID: 31594525 PMCID: PMC6833321 DOI: 10.1098/rsif.2019.0217] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/13/2019] [Indexed: 01/03/2023] Open
Abstract
The state-of-the-art in wearable flexible sensors (WFSs) for sweat analyte detection was investigated. Recent advances show the development of integrated, mechanically flexible and multiplexed sensor systems with on-site circuitry for signal processing and wireless data transmission. When compared with single-analyte sensors, such devices provide an opportunity to more accurately analyse analytes that are dependent on other parameters (such as sweat rate and pH) by improving calibration from in situ real-time analysis, while maintaining a lightweight and wearable design. Important health conditions can be monitored and on-demand regulating drugs can be delivered using integrated wearable systems but require correlation verification between sweat and blood measurements using in vivo validation tests before any clinical application can be considered. Improvements are necessary for device sensitivity, accuracy and repeatability to provide more reliable and personalized continuous measurements. With rapid recent development, it can be concluded that non-invasive WFSs for sweat analysis have only skimmed the surface of their health monitoring potential and further significant advancement is sure to be made in the medical field.
Collapse
Affiliation(s)
- Michael Chung
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Norbert Radacsi
- The School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| |
Collapse
|
45
|
Liu Y, Liu Y, Meng Z, Qin Y, Jiang D, Xi K, Wang P. Thiol-functionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. Talanta 2019; 208:120374. [PMID: 31816715 DOI: 10.1016/j.talanta.2019.120374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023]
Abstract
Thiol-functionalized reduced graphene oxide (TRGO) as a novel ion-to-electron transducing layer is firstly employed to develop durable solid-contact ion-selective electrodes (SC-ISEs) in this work. The performance of the sensors is evaluated by determining K+ and NO3- as an example of cation and anion. The covalent linkage of TRGO at golden electrode surface generates a stable transducing layer. No water films are observed in the proposed TRGO-based potassium (K+-TRGO-ISEs) and nitrate (NO3--TRGO-ISEs) selective SC-ISEs. The resultant electrodes exhibit Nernstian responses (60.0 ± 0.4 mV/decade for K+-TRGO-ISEs and -60.0 ± 0.5 mV/decade for NO3--TRGO-ISEs), low detection limits (2.5 × 10-6 M for K+-TRGO-ISEs and 4.0 × 10-6 M for NO3--TRGO-ISEs) and good selectivity behavior. More importantly, the TRGO-based SC-ISEs display a much longer lifetime of 2 weeks than that of reduced graphene oxide-based SC-ISEs in continuous flowing solutions using a longer peristaltic pump. These improvements push TRGO a general and reliable transducer for the development of durable SC-ISEs.
Collapse
Affiliation(s)
- Yueling Liu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Yunzhong Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Zhen Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yu Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
46
|
Criscuolo F, Taurino I, Dam VA, Catthoor F, Zevenbergen M, Carrara S, De Micheli G. Fast Procedures for the Electrodeposition of Platinum Nanostructures on Miniaturized Electrodes for Improved Ion Sensing. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2260. [PMID: 31100795 PMCID: PMC6567323 DOI: 10.3390/s19102260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Nanostructured materials have attracted considerable interest over the last few decades to enhance sensing capabilities thanks to their unique properties and large surface area. In particular, noble metal nanostructures offer several advantages including high stability, non-toxicity and excellent electrochemical behaviour. However, in recent years the great expansion of point-of-care (POC) and wearable systems and the attempt to perform measurements in tiny spaces have also risen the need of increasing sensors miniaturization. Fast constant potential electrodeposition techniques have been proven to be an efficient way to obtain conformal platinum and gold nanostructured layers on macro-electrodes. However, this technique is not effective on micro-electrodes. In this paper, we investigate an alternative one-step deposition technique of platinum nanoflowers on micro-electrodes by linear sweep voltammetry (LSV). The effective deposition of platinum nanoflowers with similar properties to the ones deposited on macro-electrodes is confirmed by morphological analysis and by the similar roughness factor (~200) and capacitance (~18 μ F/mm 2 ). The electrochemical behaviour of the nanostructured layer is then tested in an solid-contact (SC) L i + -selective micro-electrode and compared to the case of macro-electrodes. The sensor offers Nernstian calibration with same response time (~15 s) and a one-order of magnitude smaller limit of detection (LOD) ( 2.6 × 10 - 6 ) with respect to the macro-ion-selective sensors (ISE). Finally, sensor reversibility and stability in both wet and dry conditions is proven.
Collapse
Affiliation(s)
- Francesca Criscuolo
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Irene Taurino
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Van Anh Dam
- Holst Centre, Interuniversity Microelectronics Centre (IMEC), 5656 AE Eindhoven, The Netherlands.
| | - Francky Catthoor
- Department ESAT, Interuniversity Microelectronics Centre (IMEC), 3001 Leuven, Belgium.
| | - Marcel Zevenbergen
- Holst Centre, Interuniversity Microelectronics Centre (IMEC), 5656 AE Eindhoven, The Netherlands.
| | - Sandro Carrara
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Giovanni De Micheli
- Laboratory of Integrated Systems, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
47
|
Kim JS, Kim JH, Cho Y, Shim TS. Agarose/Spherical Activated Carbon Composite Gels for Recyclable and Shape-Configurable Electrodes. Polymers (Basel) 2019; 11:polym11050875. [PMID: 31091674 PMCID: PMC6572220 DOI: 10.3390/polym11050875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Soft electrodes have been known as a key component in the engineering of flexible, wearable, and implantable energy-saving or powering devices. As environmental issues are emerging, the increase of electronic wastes due to the short replacement cycle of electronic products has become problematic. To address this issue, development of eco-friendly and recyclable materials is important, but has not yet been fully investigated. In this study, we demonstrated hydrogel-based electrode materials composed of agarose and spherical activated carbon (agar/SAC) that are easy to shape and recycle. Versatile engineering processes were applied thanks to the reversible gelation of the agarose matrix which enables the design of soft electrodes into various shapes such as thin films with structural hierarchy, microfibers, and even three-dimensional structures. The reversible sol–gel transition characteristics of the agar matrix enables the retrieval of materials and subsequent re-configuration into different shapes and structures. The electrical properties of the agar/SAC composite gels were controlled by gel compositions and ionic strength in the gel matrix. Finally, the composite gel was cut and re-contacted, forming conformal contact to show immediate restoration of the conductivity.
Collapse
Affiliation(s)
- Jong Sik Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Chemical Engineering, Ajou University, Suwon 16499, Korea.
| | - Younghyun Cho
- Department of Energy Systems, Soonchunhyang University, Asan 31583, Korea.
| | - Tae Soup Shim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.
- Department of Chemical Engineering, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
48
|
Zea M, Moya A, Fritsch M, Ramon E, Villa R, Gabriel G. Enhanced Performance Stability of Iridium Oxide-Based pH Sensors Fabricated on Rough Inkjet-Printed Platinum. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15160-15169. [PMID: 30848584 DOI: 10.1021/acsami.9b03085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Today, electrochemical sensors are used for a broad range of applications. A fundamental challenge is still the achievement of long-term sensor stability by ensuring good adhesion between the deposited sensing layer and the substrate material, e.g., a metal electrode. Until now, the most applied strategy to overcome this problem is to increase the surface roughness of the metal layer by mechanical etching or by electroplating of additional material layers, which both imply an increase in manufacturing steps and thus the final cost of the overall device. Alternatively, to overcome these adhesion problems, we propose the direct printing of a novel platinum nanoparticle ink, which is compatible with low-cost additive digital inkjet and with flexible low-cost substrates. This water-based platinum ink has two unique features: it leads to highly rough surfaces, which promotes the adhesion of deposited sensing material, and it is a highly low-temperature curing ink, compatible with polymeric substrates that cannot withstand high temperatures. Based on this concept, we report about a long-term stable and highly sensitive solid-state pH sensor functionalized by anodic electrodeposited iridium oxide on a rough nanostructured platinum printed layer. The sensors showed an excellent reproducibility with a linear super-Nernstian response (71.3 ± 0.3 mV/pH unit) in a wide pH range (pH 2-11). Long-term stability tests for over 1 year of application demonstrate an excellent mechanical sensor layer stability, which is correlated to the distinct roughness of the printed platinum layer. This novel approach is useful to simplify the fabrication process and with that the sensor costs.
Collapse
Affiliation(s)
- Miguel Zea
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
- Ph.D. in Electrical and Telecommunication Engineering , Universitat Autonoma de Barcelona (UAB) , Bellaterra , Barcelona , Spain
| | - Ana Moya
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Madrid , Spain
| | - Marco Fritsch
- Fraunhofer IKTS Institute , Winterbergstrasse 28 , 01277 Dresden , Germany
| | - Eloi Ramon
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Madrid , Spain
| | - Gemma Gabriel
- Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Madrid , Spain
| |
Collapse
|
49
|
E Amr AEG, Al-Omar MA, H Kamel A, A Elsayed E. Single-Piece Solid Contact Cu 2+-Selective Electrodes Based on a Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Molecules 2019; 24:molecules24050920. [PMID: 30845715 PMCID: PMC6429070 DOI: 10.3390/molecules24050920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, a facile route leading to good single-walled carbon nanotubes (SWCNT) dispersion or poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) based single-piece nanocomposite membrane is proposed for trace determination of Cu2+ ions. The single-piece solid contact Cu2+-selective electrodes were prepared after drop casting the membrane mixture on the glassy-carbon substrates. The prepared potentiometric sensors revealed a Nernstian response slope of 27.8 ± 0.3 and 28.1 ± 0.4 mV/decade over the linearity range 1.0 × 10-3 to 2.0 × 10-9 and 1.0 × 10-3 to 1.0 × 10-9 M with detection limits of 5.4 × 10-10 and 5.0 × 10-10 M for sensors based on SWCNTs and PEDOT/PSS, respectively. Excellent long-term potential stability and high hydrophobicity of the nanocomposite membrane are recorded for the prepared sensors due to the inherent high capacitance of SWCNT used as a solid contact material. The sensors exhibited high selectivity for Cu2+ ions at pH 4.5 over other common ions. The sensors were applied for Cu2+ assessment in tap water and different tea samples. The proposed sensors were robust, reliable and considered as appealing sensors for copper (II) detection in different complex matrices.
Collapse
Affiliation(s)
- Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
50
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|