1
|
Shi X, Pu H, Shi LL, He TC, Chen J. Advancing transistor-based point-of-care (POC) biosensors: additive manufacturing technologies and device integration strategies for real-life sensing. NANOSCALE 2025; 17:9804-9833. [PMID: 40171618 DOI: 10.1039/d4nr04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Infectious pathogens pose a significant threat to public health and healthcare systems, making the development of a point-of-care (POC) detection platform for their early identification a key focus in recent decades. Among the numerous biosensors developed over the years, transistor-based biosensors, particularly those incorporating nanomaterials, have emerged as promising candidates for POC detection, given their unique electronic characteristics, compact size, broad dynamic range, and real-time biological detection capabilities with limits of detection (LODs) down to zeptomolar levels. However, the translation of laboratory-based biosensors into practical applications faces two primary challenges: the cost-effective and scalable fabrication of high-quality transistor sensors and functional device integration. This review is structured into two main parts. The first part examines recent advancements in additive manufacturing technologies-namely in screen printing, inkjet printing, aerosol jet printing, and digital light processing-and evaluates their applications in the mass production of transistor-based biosensors. While additive manufacturing offers significant advantages, such as high quality, cost-effectiveness, rapid prototyping, less instrument reliance, less material waste, and adaptability to diverse surfaces, challenges related to uniformity and yield remain to be addressed before these technologies can be widely adopted for large-scale production. The second part focuses on various functional integration strategies to enhance the practical applicability of these biosensors, which is essential for their successful translation from laboratory research to commercialization. Specifically, it provides a comprehensive review of current miniaturized lab-on-a-chip systems, microfluidic manipulation, simultaneous sampling and detection, wearable implementation, and integration with the Internet of Things (IoT).
Collapse
Affiliation(s)
- Xiaoao Shi
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haihui Pu
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Lewis L Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation, Chicago, Illinois 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Bisquert J, Keene ST. Using the Transversal Admittance to Understand Organic Electrochemical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410393. [PMID: 39587828 PMCID: PMC11744701 DOI: 10.1002/advs.202410393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
The transient behavior of organic electrochemical transistors (OECTs) is complex due to mixed ionic-electronic properties that play a central role in bioelectronics and neuromorphic applications. Some works applied impedance spectroscopy in OECTs for understanding transport properties and the frequency-dependent response of devices. The transversal admittance (drain current vs gate voltage) is used for sensing applications. However, a general theory of the transversal admittance, until now, has been incomplete. The derive a model that combines electronic motion along the channel and vertical ion diffusion by insertion from the electrolyte, depending on several features as the chemical capacitance, the diffusion coefficient of ions, and the electronic mobility. Based on transport and charge conservation equations, it is shown that the vertical impedance produces a standard result of diffusion in intercalation systems, while the transversal impedance contains the electronic parameters of hole accumulation and transport along the channel. The spectral shapes of drain and gate currents and the complex admittance spectra are established by reference to equivalent circuit models for the vertical and transversal impedances, that describe well the measurements of a PEDOT:PSS OECT. New insights are provided to the determination of mobility by the ratio between drain and gate currents.
Collapse
Affiliation(s)
- Juan Bisquert
- Instituto de Tecnología Química (Universitat Politècnica de València‐Agencia Estatal Consejo Superior de Investigaciones Científicas)Av. dels TarongersValència46022Spain
| | - Scott T. Keene
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77030USA
| |
Collapse
|
3
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
4
|
Tseng HS, Chen YL, Zhang PY, Hsiao YS. Additive Blending Effects on PEDOT:PSS Composite Films for Wearable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13384-13398. [PMID: 38454789 PMCID: PMC10958448 DOI: 10.1021/acsami.3c14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
Collapse
Affiliation(s)
- Hsueh-Sheng Tseng
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Ying-Lin Chen
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science
and Engineering, National Taiwan University
of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
5
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Song Q, Wang W, Liang J, Chen C, Cao Y, Cai B, Chen B, He R. Fabrication of PEDOT:PSS-based solution gated organic electrochemical transistor array for cancer cells detection. RSC Adv 2023; 13:36416-36423. [PMID: 38099254 PMCID: PMC10719902 DOI: 10.1039/d3ra06800e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Organic electrochemical transistor (OECT) was applied in chemical and biological sensing. In this work, we developed a simple and repeatable method to fabricate OECT array, which had been successfully used to detect cancer cells. PEDPT:PSS conductive film between source and drain electrodes were patterned through photolithography, which can achieve uniform devices with same electrical characterization. When MCF-7 cancer cells are captured on the PEDOT:PSS surface via specifical antibody, the transfer characteristic of OECT shifts to higher gate electrode voltage due to the electrostatic interaction between cancer cells and device. The effective gate voltage shift can reach about 63 mV when the concentration of cancer cells increased to 5000. The shift of effective gate voltage is related to the cancer cell morphology, which is increased in the first 1 h and decreased when the capture time was larger than 1 h. The device of OECT array can increase the sample flux and make the detection result more accurate. It is expected that OECT array will have promising practical applications in single cancer cell detection in the future.
Collapse
Affiliation(s)
- Qingyuan Song
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Weiyi Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Jinjin Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Chaohui Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Bo Cai
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University Wuhan 430056 China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University Wuhan 430056 China
| | - Rongxiang He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Photoelectric Materials and Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| |
Collapse
|
7
|
Nguyen KV, Lee D, Kim Y, Lee WH. Fiber-Type Transistor-Based Chemical and Physical Sensors Using Conjugated Polymers. Polymers (Basel) 2023; 15:4062. [PMID: 37896306 PMCID: PMC10609800 DOI: 10.3390/polym15204062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fiber-type electronics is a crucial field for realizing wearable electronic devices with a wide range of sensing applications. In this paper, we begin by discussing the fabrication of fibers from conjugated polymers. We then explore the utilization of these fibers in the development of field-effect and electrochemical transistors. Finally, we investigate the diverse applications of these fiber-type transistors, encompassing chemical and physical sensors. Our paper aims to offer a comprehensive understanding of the use of conjugated polymers in fiber-type transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Wu F, Yu P, Mao L. New Opportunities of Electrochemistry for Monitoring, Modulating, and Mimicking the Brain Signals. JACS AU 2023; 3:2062-2072. [PMID: 37654584 PMCID: PMC10466370 DOI: 10.1021/jacsau.3c00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
In vivo electrochemistry is a powerful key for unlocking the chemical consequences in neural networks of the brain. The past half-century has witnessed the technology revolutionization in this field along with innovations in electrochemical concepts, principles, methods, and devices. Present applications of electrochemical approaches have extended from measuring neurochemical concentrations to modulating and mimicking brain signals. In this Perspective, newly reported strategies for tackling long-standing challenges of in vivo electrochemical brain monitoring (i.e., basal level measurement, electroactivity dependence, in vivo stability, neuron compatibility, multiplexity, and implantable device fabrication) are highlighted. Moreover, recent progress on neuromodulation tools and neuromorphic devices in electrochemical frameworks is introduced. A glimpse of future opportunities for electrochemistry in brain research is offered at last.
Collapse
Affiliation(s)
- Fei Wu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Fan J, Parr S, Kang S, Gupta M. Point-of-care (POC) SARS-CoV-2 antigen detection using functionalized aerosol jet-printed organic electrochemical transistors (OECTs). NANOSCALE 2023; 15:5476-5485. [PMID: 36852643 DOI: 10.1039/d2nr06485e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The continuous spread of coronavirus disease 2019 (COVID-19) has highlighted the need for simple and reliable diagnostic technologies for point-of-care (POC) virus detection applications. Here, we report a COVID-19 diagnostic platform based on aerosol jet-printed antibody-functionalized organic electrochemical transistors (OECTs) for rapidly identifying severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens. Selective sensing of SARS-CoV-2 spike S1 protein is achieved in phosphate-buffered saline (PBS) with a detectable range of 1 fg mL-1 to 1 μg mL-1. We used the sensors to detect the antigens in unprocessed patient nasopharyngeal swab samples in universal transport medium (UTM) and achieved an overall accuracy of 70%. In addition, these patient sample tests clearly demonstrate that our OECT threshold voltage shift is correlated with the sample SARS-CoV-2 viral load. Hence, we have demonstrated an accurate POC biosensor for detecting SARS-CoV-2 antigens, which holds great promise towards developing on-site and at-home rapid SARS-CoV-2 infection screening and COVID-19 prognosis.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Sheldon Parr
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Seongdae Kang
- Department of Chemical and Materials, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
10
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
AC amplification gain in organic electrochemical transistors for impedance-based single cell sensors. Nat Commun 2022; 13:5423. [PMID: 36109508 PMCID: PMC9477811 DOI: 10.1038/s41467-022-33094-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Research on electrolyte-gated and organic electrochemical transistor (OECT) architectures is motivated by the prospect of a highly biocompatible interface capable of amplifying bioelectronic signals at the site of detection. Despite many demonstrations in these directions, a quantitative model for OECTs as impedance biosensors is still lacking. We overcome this issue by introducing a model experiment where we simulate the detection of a single cell by the impedance sensing of a dielectric microparticle. The highly reproducible experiment allows us to study the impact of transistor geometry and operation conditions on device sensitivity. With the data we rationalize a mathematical model that provides clear guidelines for the optimization of OECTs as single cell sensors, and we verify the quantitative predictions in an in-vitro experiment. In the optimized geometry, the OECT-based impedance sensor allows to record single cell adhesion and detachment transients, showing a maximum gain of 20.2±0.9 dB with respect to a single electrode-based impedance sensor. The authors develop a quantitative description of alternating current amplification gain in organic electrochemical transistors. The findings are applied to achieve detection of single glioblastoma cell adhesion with 20 dB gain compared to microelectrodes.
Collapse
|
12
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
13
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
14
|
Liu H, Yang A, Song J, Wang N, Lam P, Li Y, Law HKW, Yan F. Ultrafast, sensitive, and portable detection of COVID-19 IgG using flexible organic electrochemical transistors. SCIENCE ADVANCES 2021; 7:eabg8387. [PMID: 34524851 PMCID: PMC8443172 DOI: 10.1126/sciadv.abg8387] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The outbreak of COVID-19 and its continued spread have seriously threatened public health. Antibody testing is essential for infection diagnosis, seroepidemiological analysis, and vaccine evaluation. However, convenient, fast, and accurate antibody detection remains a challenge in this protracted battle. Here, we report an ultrafast, low-cost, label-free, and portable SARS-CoV-2 immunoglobulin G (IgG) detection platform based on organic electrochemical transistors (OECTs), which can be remotely controlled by a mobile phone. To enable faster detection, voltage pulses are applied on the gate electrode of the OECT to accelerate binding between the antibody and antigen. By optimizing ion concentrations and pH values of test solutions, we realize specific detection of SARS-CoV-2 IgG in several minutes with a detectable region from 10 fM to 100 nM, which encompasses the range of serum SARS-CoV-2 IgG levels in humans. These portable sensors show promise for use in diagnosis and prognosis of COVID-19.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Anneng Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Naixiang Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Puiyiu Lam
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Yuenling Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, 999077 Kowloon, Hong Kong
- Corresponding author.
| |
Collapse
|
15
|
Peruzzi C, Battistoni S, Montesarchio D, Cocuzza M, Marasso SL, Verna A, Pasquardini L, Verucchi R, Aversa L, Erokhin V, D'Angelo P, Iannotta S. Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Sci Rep 2021; 11:9380. [PMID: 33931690 PMCID: PMC8087810 DOI: 10.1038/s41598-021-88546-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications.
Collapse
Affiliation(s)
- Carlotta Peruzzi
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
- Physics Department and Ph.D. School on Material Science and Technology, University of Parma, Parma, Italy
| | - Silvia Battistoni
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples "Federico II", 80126, Napoli, Italy
| | - Matteo Cocuzza
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
- Chilab - Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, Chivasso, Turin, Italy
| | - Simone Luigi Marasso
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
- Chilab - Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, Chivasso, Turin, Italy
| | - Alessio Verna
- Chilab - Materials and Microsystems Laboratory, DISAT, Politecnico di Torino, Chivasso, Turin, Italy
| | - Laura Pasquardini
- Department of Industrial Engineering, University of Trento, 38123, Trento, Italy
- Indivenire s.r.l., 38123, Trento, Italy
| | - Roberto Verucchi
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Trento Unit, c/o Fondazione Bruno Kessler, Via alla Cascata 56/C, Povo, 38123, Trento, Italy
| | - Lucrezia Aversa
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Trento Unit, c/o Fondazione Bruno Kessler, Via alla Cascata 56/C, Povo, 38123, Trento, Italy
| | - Victor Erokhin
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Pasquale D'Angelo
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Salvatore Iannotta
- IMEM - CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124, Parma, Italy.
| |
Collapse
|
16
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|
17
|
Organic electrochemical transistor for sensing of sialic acid in serum samples. Anal Chim Acta 2020; 1128:231-237. [DOI: 10.1016/j.aca.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
|
18
|
Rapid prototyping of 3D Organic Electrochemical Transistors by composite photocurable resin. Sci Rep 2020; 10:13335. [PMID: 32770035 PMCID: PMC7414134 DOI: 10.1038/s41598-020-70365-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/28/2020] [Indexed: 11/28/2022] Open
Abstract
Rapid Prototyping (RP) promises to induce a revolutionary impact on how the objects can be produced and used in industrial manufacturing as well as in everyday life. Over the time a standard technique as the 3D Stereolithography (SL) has become a fundamental technology for RP and Additive Manufacturing (AM), since it enables the fabrication of the 3D objects from a cost-effective photocurable resin. Efforts to obtain devices more complex than just a mere aesthetic simulacre, have been spent with uncertain results. The multidisciplinary nature of such manufacturing technique furtherly hinders the route to the fabrication of complex devices. A good knowledge of the bases of material science and engineering is required to deal with SL technological, characterization and testing aspects. In this framework, our study aims to reveal a new approach to obtain RP of complex devices, namely Organic Electro-Chemical Transistors (OECTs), by SL technique exploiting a resin composite based on the conductive poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and the photo curable Poly(ethylene glycol) diacrylate (PEGDA). A comprehensive study is presented, starting from the optimization of composite resin and characterization of its electrochemical properties, up to the 3D OECTs printing and testing. Relevant performances in biosensing for dopamine (DA) detection using the 3D OECTs are reported and discussed too.
Collapse
|
19
|
Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, Yue H, Kim J, Luo J, Cui S, Yan F, Shi P. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. eLife 2020; 9:50345. [PMID: 32043970 PMCID: PMC7075691 DOI: 10.7554/elife.50345] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Though neurotransmitters are essential elements in neuronal signal transduction, techniques for in vivo analysis are still limited. Here, we describe an organic electrochemical transistor array (OECT-array) technique for monitoring catecholamine neurotransmitters (CA-NTs) in rat brains. The OECT-array is an active sensor with intrinsic amplification capability, allowing real-time and direct readout of transient CA-NT release with a sensitivity of nanomolar range and a temporal resolution of several milliseconds. The device has a working voltage lower than half of that typically used in a prevalent cyclic voltammetry measurement, and operates continuously in vivo for hours without significant signal drift, which is inaccessible for existing methods. With the OECT-array, we demonstrate simultaneous mapping of evoked dopamine release at multiple striatal brain regions in different physiological scenarios, and reveal a complex cross-talk between the mesolimbic and the nigrostriatal pathways, which is heterogeneously affected by the reciprocal innervation between ventral tegmental area and substantia nigra pars compacta.
Collapse
Affiliation(s)
- Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Naixiang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Kowloon, China
| | - Xudong Lin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Peilin Fang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Haibing Yue
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Junhwi Kim
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Jing Luo
- Department of Rehabilitation, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shaoyang Cui
- Department of Rehabilitation, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Feng Yan
- Department of Applied Physics, Hong Kong Polytechnic University, Kowloon, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, China
| |
Collapse
|
20
|
Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O. Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration. Adv Healthc Mater 2019; 8:e1901321. [PMID: 31714014 DOI: 10.1002/adhm.201901321] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Indexed: 12/21/2022]
Abstract
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4 + ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4 + and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4 + and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.
Collapse
Affiliation(s)
- Scott T. Keene
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Daragh Fogarty
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Ross Cooke
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Carlos D. Casadevall
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Alberto Salleo
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| | - Onur Parlak
- Department of Materials Science and Engineering Stanford University 450 Serra Mall Stanford CA 94305 USA
| |
Collapse
|
21
|
Chou JA, Chung CL, Ho PC, Luo CH, Tsai YH, Wu CK, Kuo CW, Hsiao YS, Yu HH, Chen P. Organic Electrochemical Transistors/SERS-Active Hybrid Biosensors Featuring Gold Nanoparticles Immobilized on Thiol-Functionalized PEDOT Films. Front Chem 2019; 7:281. [PMID: 31106195 PMCID: PMC6498878 DOI: 10.3389/fchem.2019.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/05/2019] [Indexed: 11/17/2022] Open
Abstract
In this study we immobilized gold nanoparticles (AuNPs) onto thiol-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films as bioelectronic interfaces (BEIs) to be integrated into organic electrochemical transistors (OECTs) for effective detection of dopamine (DA) and also as surface-enhanced Raman scattering (SERS)-active substrates for the selective detection of p-cresol (PC) in the presence of multiple interferers. This novel PEDOT-based BEI device platform combined (i) an underlying layer of polystyrenesulfonate-doped PEDOT (PEDOT:PSS), which greatly enhanced the transconductance and sensitivity of OECTs for electrochemical sensing of DA in the presence of other ascorbic acid and uric acid metabolites, as well as amperometric response toward DA with a detection limit (S/N = 3) of 37 nM in the linear range from 50 nM to 100 μM; with (ii) a top interfacial layer of AuNP-immobilized three-dimensional (3D) thiol-functionalized PEDOT, which not only improved the performance of OECTs for detecting DA, due to the signal amplification effect of the AuNPs with high catalytic activity, but also enabled downstream analysis (SERS detection) of PC on the same chip. We demonstrate that PEDOT-based 3D OECT devices decorated with a high-density of AuNPs can display new versatility for the design of next-generation biosensors for point-of-care diagnostics.
Collapse
Affiliation(s)
- Jia-An Chou
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chieh-Lin Chung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Po-Cheng Ho
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hao Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Han Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsiao-hua Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
22
|
Qing X, Wang Y, Zhang Y, Ding X, Zhong W, Wang D, Wang W, Liu Q, Liu K, Li M, Lu Z. Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13105-13113. [PMID: 30896142 DOI: 10.1021/acsami.9b00115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fiber-based organic electrochemical transistors (FECTs) provide a new platform for the realization of an ultrafast and ultrasensitive biosensor, especially for the wearable dopamine (DA)-monitoring device. Here, we presented a fully filament-integrated fabric, it exhibited remarkable mechanical compatibility with the human body, and the minimum sensing unit was an organic electrochemical transistor (OECT) based on PVA- co-PE nanofibers (NFs) and polypyrrole (PPy) nanofiber network. The introduction of NFs notably increased the specific surface area and hydrophilicity of the PA6 filament, resulting in the formation of a large area of intertwined PPy nanofiber network. The electrical performance of PPy nanofiber network-modified fibers improved considerably. For the common FECTs, the typical on/off ratio was up to two orders of magnitude, and the temporal recovery time between on and off states was shortened to 0.34 s. Meanwhile, the device exhibited continuous cycling stability. In addition, the performances of FECT-based dopamine sensors depending on different gate electrodes have also been investigated. The PPy/NFs/PA6 filament-based dopamine sensor was more superior to the gold and platinum (Pt) wires, and the sensor presented long-term sensitivity with a detection region from 1 nM to 1 μM, rapid response time to a set of DA concentrations, remarkable selectivity in the presence of sodium chloride, uric acid, ascorbic acid and glucose, and superior reproducibility. Moreover, it could also be woven into the fabric product. The novel and wearable FECT device shows the potential to become the state-of-the-art DA-monitoring platform.
Collapse
Affiliation(s)
- Xing Qing
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
- Institute for Frontier Materials , Deakin University , Waurn Ponds, Geelong , Victoria 3216 , Australia
| | - Yuedan Wang
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Yang Zhang
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Xincheng Ding
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Weibing Zhong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Wenwen Wang
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Qiongzhen Liu
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Ke Liu
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Mufang Li
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| | - Zhentan Lu
- College of Materials Science and Engineering , Wuhan Textile University , Wuhan 430200 , China
- Hubei Key Laboratory of Advanced Textile Materials & Application , Wuhan 430200 , China
| |
Collapse
|
23
|
Liao J, Si H, Zhang X, Lin S. Functional Sensing Interfaces of PEDOT:PSS Organic Electrochemical Transistors for Chemical and Biological Sensors: A Mini Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E218. [PMID: 30634408 PMCID: PMC6359468 DOI: 10.3390/s19020218] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/29/2018] [Accepted: 01/05/2019] [Indexed: 02/04/2023]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for applications in in vitro and in vivo measurements. OECTs have two important sensing interfaces for signal monitoring: One is the gate electrode surface; the other is the channel surface. This mini review introduced the new developments in chemical and biological detection of the two sensing interfaces. Specific focus was given on the modification technological approaches of the gate or channel surface. In particular, some unique strategies and surface designs aiming to facilitate signal-transduction and amplification were discussed. Several perspectives and current challenges of OECTs development were also briefly summarized.
Collapse
Affiliation(s)
- Jianjun Liao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Hewei Si
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xidong Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Chen L, Fu Y, Wang N, Yang A, Li Y, Wu J, Ju H, Yan F. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18470-18477. [PMID: 29749223 DOI: 10.1021/acsami.8b01987] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.
Collapse
Affiliation(s)
- Lizhen Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Ying Fu
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Naixiang Wang
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Anneng Yang
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Yuanzhe Li
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Feng Yan
- Department of Applied Physics , The Hong Kong Polytechnic University , Kowloon , Hong Kong
| |
Collapse
|
25
|
Fabrication and Use of Organic Electrochemical Transistors for Sensing of Metabolites in Aqueous Media. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|