1
|
Kim TT, Malu D, He D, Hu Y, Kim J. Development of Bioorthogonally Degradable Tough Hydrogels Using Enamine N-Oxide Based Crosslinkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414692. [PMID: 40018818 PMCID: PMC11962699 DOI: 10.1002/adma.202414692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/20/2025] [Indexed: 03/01/2025]
Abstract
Inducibly degradable polymers present new opportunities to integrate tough hydrogels into a wide range of biomaterials. Rapid and inducible degradation enables fast transition in material properties without sacrificing material integrity prior to removal. In pursuit of bioorthogonal chemical modalities that will enable inducible polymer degradation in biologically relevant environments, enamine N-oxide crosslinkers are developed for double network acrylamide-based polymer/alginate hydrogels. Bioorthogonal dissociation initiated by the application of aqueous diboron solution through several delivery mechanisms effectively lead to polymer degradation. Their degradation by aqueous B2(OH)4 solution results in a fracture energy half-life of <10 min. The biocompatibility of the degradable hydrogels and B2(OH)4 reagent is assessed, and the removability of strongly adhered tough hydrogels on mice skin is evaluated. Thermoresponsive PNiPAAm/Alg hydrogels are fabricated and application of the hydrogels as a chemically inducible degradable intraoral wound dressing is demonstrated. It is demonstrated through in vivo maximum tolerated dose studies that diboron solution administered to mice by oral gavage is well tolerated. Successful integration of enamine N-oxides within the tough double network hydrogels as chemically degradable motifs demonstrates the applicability of enamine N-oxides in the realm of polymer chemistry and highlights the importance of chemically induced bioorthogonal dissociation reactions for materials science.
Collapse
Affiliation(s)
- Thomas T. Kim
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA30332USA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Deep Malu
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Dongjing He
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Justin Kim
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA30332USA
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
2
|
Yang K, Bo H, Ma D, Peng M, Liu Q, Heng Z, Gu Z, Liu X, Chen S. pH and glucose dual-responsive phenylboronic acid hydrogels for smart insulin delivery. SOFT MATTER 2024; 20:8855-8865. [PMID: 39474819 DOI: 10.1039/d4sm01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Phenylboronic acid (PBA) is a widely exploited glucose-sensitive element for constructing glucose-responsive hydrogels to enable smart insulin delivery. However, its relatively high intrinsic pKa affects its binding with glucose under physiological conditions and thus limits its application. Herein, we developed a series of boronate-containing PLP-PBA polymers by conjugating glucose-sensitive 3-aminophenylboronic acid (3-PBA) onto the backbone of a metabolite-derived, pH-responsive poly-L-lysine isophthalamide (PLP) polymer with a pKa value of 4.4 at various substitution degrees. Dual-responsive LME-(PLP-PBA) hydrogels were further synthesized by crosslinking the PLP-PBA polymers with L-lysine methyl ester (LME). The rheological properties and swelling ratio of the hydrogel could be manipulated by the PBA grafting degree and crosslinking ratio. With the increase of pH and glucose concentration, the pore size of the hydrogel enhanced, thus promoting the release of loaded insulin. Under physiological conditions, the hydrogel with optimal formulation could establish acute pH-responsive and glucose-responsive insulin release. The development of this dual-responsive hydrogel suggests a strategy to overcome the high pKa problem associated with PBA and provide a promising delivery system for smart insulin delivery.
Collapse
Affiliation(s)
- Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Hou Bo
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| | - Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
3
|
Ying R, Wang W, Chen R, Zhou R, Mao X. Intestinal-Target and Glucose-Responsive Smart Hydrogel toward Oral Delivery System of Drug with Improved Insulin Utilization. Biomacromolecules 2024; 25:7446-7458. [PMID: 39413303 DOI: 10.1021/acs.biomac.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
An intelligent insulin delivery system targeting intestinal absorption and glucose responsiveness can enhance the bioavailability through oral insulin therapy, offering promising diabetes treatment. In this paper, a glucose and pH dual-response polymer hydrogel using carboxymethyl agarose modified with 3-amino-phenylboronic acid and l-valine (CPL) was developed as an insulin delivery carrier, exhibiting excellent biocompatibility and effective insulin encapsulation. The insulin encapsulated in the hydrogel (Ins-CPL) was released in a controlled manner in response to the in vivo stimulation of blood glucose and pH levels with higher levels of intracellular uptake and utilization of insulin in the intestinal environment simultaneously. Notably, the Ins-CPL hydrogel effectively regulated blood sugar in diabetic rats over a long period by simulating endogenous insulin, responding to changes in plasma pH and glucose levels, and overcoming the intestinal epithelium barrier. This indicates a significant boost in oral insulin bioavailability and broadens its application prospects.
Collapse
Affiliation(s)
- Rui Ying
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Wei Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Rui Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Ruoyu Zhou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
4
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
5
|
Leng Y, Britten CN, Tarannum F, Foley K, Billings C, Liu Y, Walters KB. Stimuli-Responsive Phosphate Hydrogel: A Study on Swelling Behavior, Mechanical Properties, and Application in Expansion Microscopy. ACS OMEGA 2024; 9:37687-37701. [PMID: 39281925 PMCID: PMC11391540 DOI: 10.1021/acsomega.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Phosphorus-based stimuli-responsive hydrogels have potential in a wide range of applications due to their ionizable phosphorus groups, biocompatibility, and tunable swelling capacity utilizing hydrogel design parameters and external stimuli. In this study, poly(2-methacryloyloxyethyl phosphate) (PMOEP) hydrogels were synthesized via aqueous activators regenerated by electron transfer atomic transfer radical polymerization using ascorbic acid as the reducing agent. Swelling and deswelling behaviors of PMOEP hydrogels were examined in different salt solutions, pH conditions, and temperatures. The degree of swelling in salt solutions followed CaCl2 < MgCl2 < KCl < NaCl with a decrease in swelling rate at higher concentrations until reaching a saturation point. In water, the degree of swelling increased significantly around neutral pH and remained constant at basic pH values. The effects of polymerization conditions, including pH, temperature (30, 40, 50 °C), and MOEP concentration (40, 50, 60% v/v MOEP/H2O), on the hydrogel swelling behavior in various salt solutions were also investigated. PMOEP hydrogels showed a decrease in the degree of swelling as the pH was increased above the native pH of the monomer solution. Scanning electron microscopy and energy-dispersive spectroscopy were utilized to examine the microstructure and chemical composition of the dried hydrogel after salt solution swelling. Cytotoxicity testing using rat bone marrow stem cells confirmed the biocompatibility of the PMOEP hydrogels. A unique feature of this effort was evaluation of these phosphate hydrogels for use in expansion microscopy where a significant twofold enhancement in cellular expansion capacity was showcased utilizing 4T1 mouse breast cancer cells. This comprehensive study provides valuable insights into the stimuli-responsive behavior and expansion characteristics of phosphate hydrogels, highlighting their potential in diverse biomedical applications.
Collapse
Affiliation(s)
- Yokly Leng
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Collin N Britten
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Fatema Tarannum
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kayla Foley
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Christopher Billings
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yingtao Liu
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Keisha B Walters
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
7
|
Saharan R, Kaur J, Dhankhar S, Garg N, Chauhan S, Beniwal S, Sharma H. Hydrogel-based Drug Delivery System in Diabetes Management. Pharm Nanotechnol 2024; 12:289-299. [PMID: 37818559 DOI: 10.2174/0122117385266276230928064235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics. OBJECTIVES Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms. METHODS The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar). RESULTS Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases. CONCLUSION The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.
Collapse
Affiliation(s)
- Renu Saharan
- Department of Pharmaceutical sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (Haryana), India
| | - Jaspreet Kaur
- Department of Pharmaceutical sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (Haryana), India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamunanagar, Haryana, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Suresh Beniwal
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamunanagar, Haryana, India
| | - Himanshu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
8
|
Maity B, Moorthy H, Govindaraju T. Glucose-Responsive Self-Regulated Injectable Silk Fibroin Hydrogel for Controlled Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49953-49963. [PMID: 37847862 DOI: 10.1021/acsami.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Stimuli-responsive drug delivery systems are gaining importance in personalized medicine to deliver therapeutic doses in response to disease-specific stimulation. Pancreas-mimicking glucose-responsive insulin delivery systems offer improved therapeutic outcomes in the treatment of type 1 and advanced stage of type 2 diabetic conditions. Herein, we present a glucose-responsive smart hydrogel platform based on phenylboronic acid-functionalized natural silk fibroin protein for regulated insulin delivery. The modified protein was synergistically self-assembled and cross-linked through β-sheet and phenylboronate ester formation. The dynamic nature of the bonding confers smooth injectability through the needle. The cross-linked hydrogel structures firmly hold the glucose-sensing element and insulin in its pores and contribute to long-term sensing and drug storage. Under hyperglycemic conditions, the hydrogen peroxide generated from the sensing element induces hydrogel matrix degradation by oxidative cleavage, enabling insulin release. In vivo studies in a type 1 diabetic Wistar rat model revealed that the controlled insulin release from the hydrogel restored diabetic glucose level to physiological conditions for 36 h. This work establishes the functional modification of silk fibroin into a glucose-responsive hydrogel platform for regulated and functional insulin delivery application.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
9
|
Yang S, Yang JF, Gong X, Weiss MA, Strano MS. Rational Design and Efficacy of Glucose-Responsive Insulin Therapeutics and Insulin Delivery Systems by Computation Using Connected Human and Rodent Models. Adv Healthc Mater 2023; 12:e2300587. [PMID: 37319398 PMCID: PMC10592437 DOI: 10.1002/adhm.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Glucose-responsive insulins (GRIs) use plasma glucose levels in a diabetic patient to activate a specifically designed insulin analogue to a more potent state in real time. Alternatively, some GRI concepts use glucose-mediated release or injection of insulin into the bloodstream. GRIs hold promise to exhibit much improved pharmacological control of the plasma glucose concentration, particularly for the problem of therapeutically induced hypoglycemia. Several innovative GRI schemes are introduced into the literature, but there remains a dearth of quantitative analysis to aid the development and optimization of these constructs into effective therapeutics. This work evaluates several classes of GRIs that are proposed using a pharmacokinetic model as previously described, PAMERAH, simulating the glucoregulatory system of humans and rodents. GRI concepts are grouped into three mechanistic classes: 1) intrinsic GRIs, 2) glucose-responsive particles, and 3) glucose-responsive devices. Each class is analyzed for optimal designs that maintain glucose levels within the euglycemic range. These derived GRI parameter spaces are then compared between rodents and humans, providing the differences in clinical translation success for each candidate. This work demonstrates a computational framework to evaluate the potential clinical translatability of existing glucose-responsive systems, providing a useful approach for future GRI development.
Collapse
Affiliation(s)
- Sungyun Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University of Medicine, Indianapolis, IN, 46202, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Ali A, Saroj S, Saha S, Gupta SK, Rakshit T, Pal S. Glucose-Responsive Chitosan Nanoparticle/Poly(vinyl alcohol) Hydrogels for Sustained Insulin Release In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37368956 DOI: 10.1021/acsami.3c05031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Stimuli-responsive hydrogels (HGs) with a controlled drug release profile are the current challenge for advanced therapeutic applications. Specifically, antidiabetic drug-loaded glucose-responsive HGs are being investigated for closed-loop insulin delivery in insulin-dependent diabetes patients. In this direction, new design principles must be exploited to create inexpensive, naturally occurring, biocompatible glucose-responsive HG materials for the future. In this work, we developed chitosan nanoparticle/poly(vinyl alcohol) (PVA) hybrid HGs (CPHGs) for controlled insulin delivery for diabetes management. In this design, PVA and chitosan nanoparticles (CNPs) are cross-linked with a glucose-responsive formylphenylboronic acid (FPBA)-based cross-linker in situ. Leveraging the structural diversity of FPBA and its pinacol ester-based cross-linkers, we fabricate six CPHGs (CPHG1-6) with more than 80% water content. Using dynamic rheological measurements, we demonstrate elastic solid-like properties of CPHG1-6, which are dramatically reduced under low-pH and high-glucose environments. An in vitro drug release assay reveals size-dependent glucose-responsive drug release from the CPHGs under physiological conditions. It is important to note that the CPHGs show appreciable self-healing and noncytotoxic properties. Promisingly, we observe a significantly slower insulin release profile from the CPHG matrix in the type-1 diabetes (T1D) rat model. We are actively pursuing scaling up of CPHGs and the in vivo safety studies for clinical trial in the near future.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Sunita Saha
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
| | - Sanjay Kumar Gupta
- Department of Pharmacology, Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari 490042, CG, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, UP, India
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology-Bhilai, Raipur 492015, CG, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology-Bhilai Raipur 492015, CG, India
| |
Collapse
|
12
|
Qin J, Dong B, Wang W, Cao L. Self-regulating bioinspired supramolecular photonic hydrogels based on chemical reaction networks for monitoring activities of enzymes and biofuels. J Colloid Interface Sci 2023; 649:344-354. [PMID: 37352565 DOI: 10.1016/j.jcis.2023.06.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Inspired by the way many living organisms utilize chemical/biological reactions to regulate their skin and respond to stimuli in the external environment, we have developed a self-regulating hydrogel design by incorporating chemical reaction networks (CRNs) into biomimetic photonic crystal hydrogels. In this hydrogel system, we used host-guest supramolecular non-covalent bonds between beta-cyclodextrin (β-CD) and ferrocene (Fc) as partial crosslinkers and designed a CRN involving enzyme-fuel couples of horseradish peroxidase (HRP)/H2O2 and glucose oxidase (GOD)/d-glucose, by which the responsive hydrogel was transformed into a glucose-driven self-regulating hydrogel. Due to the biomimetic structural color in the hydrogel, the progress of the chemical reaction was accompanied by a change in the color of the hydrogel. Based on this principle, the designed supramolecular photonic hydrogel (SPH) can not only achieve naked-eye detection of H2O2 and glucose concentrations with the assistance of a smartphone but also monitor the reactions of HRP and GOD enzymes and determine their activity parameters. The sensitivity and stability of the sensor have been proven. In addition, due to the reversibility of the chemical reaction network, the sensor can be reused, thus having the potential to serve as a low-cost point-of-care sensor. The SPH was ultimately used to detect glucose in human plasma and H2O2 in liver tumor tissue. The results are comparable with commercial assay kits. By redesigning the chemical reaction network in the hydrogel, it is expected to be used for detecting other enzymes or fuels.
Collapse
Affiliation(s)
- Junjie Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Aramco Research Center-Boston, Aramco Services Company, Cambridge, MA 02139, United States
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
13
|
Saha K, Ghosh A, Bhattacharya T, Ghosh S, Dey S, Chattopadhyay D. Ameliorative effects of clindamycin - nanoceria conjugate: A ROS responsive smart drug delivery system for diabetic wound healing study. J Trace Elem Med Biol 2023; 75:127107. [PMID: 36427436 DOI: 10.1016/j.jtemb.2022.127107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Increased incidence of antibiotic-resistant species calls for development of new types of nano-medicine that can be used for healing of bacteria-caused wounds, such as diabetic foot ulcer. As diabetic patients have inefficient defense mechanism against reactive oxygen species (ROS) produced in our body as a by-product of oxygen reduction, the process of wound healing takes longer epithelialisation period. Ceria nanoparticles (CNPs) are well-known for their antibacterial and ROS-scavenging nature. Yet till now no significant effort has been made to conjugate ceria nanoparticles with drugs to treat diabetic wounds. METHODS In this experiment, CNPs were synthesized in-house and clindamycin hydrochloride was loaded onto it by physical adsorption method for reactive oxygen species responsive drug delivery. Various physico-chemical characterisations such as Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Energy dispersive X-ray, Thermogravimetric study etc. were performed to affirm the formation of both nanoceria along with drug encapsulated nanoceria. RESULTS Both of these as-prepared formulations inhibited the growth of Gram-positive as well as Gram-negative bacteria confirmed by Disk diffusion study; exhibiting their antibacterial effect. In-vitro drug release study was carried out in physiological environment both in absence and presence of hydrogen peroxide solution to test the reactive ROS-responsiveness of the drug loaded nanocomposites. It also exhibited faster wound healing in diabetes-induced rats. Therefore, it could successfully lower the amount of serum glucose level, inflammation cytokines, hepatotoxic and oxidative stress markers in diabetic rats as confirmed by various ex vivo tests conducted. CONCLUSION Thus, drug loaded ceria nanoparticles have the potential to heal diabetic wounds successfully and can be considered to be useful for the fabrication of appropriate medicated suppositories beneficial for diabetic foot ulcer treatment in future.
Collapse
Affiliation(s)
- Kasturi Saha
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India.
| | - Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Shatabdi Ghosh
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India; Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta, JD-2, Sector-III, Saltlake City, Kolkata 700098, India.
| |
Collapse
|
14
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|
15
|
Hua Y, Chang T, Jiang K, Wang J, Cui X, Cheng M, Yan F, Song B, Wang Y. ROS-sensitive calcipotriol nano-micelles prepared by methoxypolyethylene glycol (mPEG) - modified polymer for the treatment of psoriasis. Drug Deliv 2022; 29:1903-1913. [PMID: 35748409 PMCID: PMC9246247 DOI: 10.1080/10717544.2022.2086944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress due to excessive reactive oxygen species (ROS) production in the skin microenvironment is one of the main mechanisms in psoriasis pathogenesis. A nano drug delivery system based on ROS-responsive release can enhance drug release at the target site. In this study, a ROS-sensitive material methoxypolyethylene glycol-thioether-thiol (mPEG-SS) was synthesized using mPEG as the parent structure with sulfide structural modification. An mPEG-SS-calcipotriol (mPEG-SS-CPT, PSC) nano-micelle percutaneous delivery system was prepared by encapsulating CPT. A small animal imaging system was used to study PSC’s the ROS-sensitive drug release process. It is shown that endogenous ROS mainly affects PSC and releases drugs. Finally, the therapeutic effect of PSC on psoriasis was explored by animal experiments. Ultimately, it ameliorates imiquimod-induced psoriasis-like inflammation. Overall, PSC is an effective ROS-sensitive transdermal drug delivery system that is expected to provide a new strategy for treating psoriasis.
Collapse
Affiliation(s)
- Yulin Hua
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Tiantian Chang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Kun Jiang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jinhong Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xiaodong Cui
- Basic Medical School, Weifang Medical University, Weifang, China
| | - Min Cheng
- Basic Medical School, Weifang Medical University, Weifang, China
| | - Fang Yan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Bo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuzhen Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
17
|
Miki R, Yamaki T, Uchida M, Natsume H. Hydrogen peroxide-responsive micellar transition from spherical to worm-like in cetyltrimethylammonium bromide/3-fluorophenylboronic acid/fructose system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Mohanty AR, Ravikumar A, Peppas NA. Recent Advances in Glucose Responsive Insulin Delivery Systems: Novel Hydrogels and Future Applications. Regen Biomater 2022; 9:rbac056. [PMID: 36072265 PMCID: PMC9438743 DOI: 10.1093/rb/rbac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Over the past several decades, there have been major advancements in the field of glucose sensing and insulin delivery for the treatment of type I diabetes mellitus. The introduction of closed-loop insulin delivery systems that deliver insulin in response to specific levels of glucose in the blood has shifted significantly the research in this field. These systems consist of encapsulated glucose-sensitive components such as glucose oxidase or phenylboronic acid in hydrogels, microgels or nanoparticles. Since our previous evaluation of these systems in a contribution in 2004, new systems have been developed. Important improvements in key issues, such as consistent insulin delivery over an extended period of time have been addressed. In this contribution, we discuss recent advancements over the last 5 years and present persisting issues in these technologies that must be overcome in order for these systems to be applicable in patients.
Collapse
Affiliation(s)
- Avha R Mohanty
- The University of Texas at Austin McKetta Department of Chemical Engineering, , Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
| | - Akhila Ravikumar
- The University of Texas at Austin Department of Biomedical Engineering, , Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
| | - Nicholas A Peppas
- The University of Texas at Austin McKetta Department of Chemical Engineering, , Austin, TX, 78712, USA
- The University of Texas at Austin Department of Biomedical Engineering, , Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- The University of Texas at Austin Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, , Austin, TX, 78712, USA
- The University of Texas at Austin Department of Surgery and Perioperative Care, Dell Medical School, , Austin, TX, 78712, USA
- The University of Texas at Austin Department of Pediatrics, Dell Medical School, , Austin, TX, 78712, USA
| |
Collapse
|
19
|
Enzyme-Responsive Hydrogels as Potential Drug Delivery Systems-State of Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23084421. [PMID: 35457239 PMCID: PMC9031066 DOI: 10.3390/ijms23084421] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Fast advances in polymer science have provided new hydrogels for applications in drug delivery. Among modern drug formulations, polymeric type stimuli-responsive hydrogels (SRHs), also called smart hydrogels, deserve special attention as they revealed to be a promising tool useful for a variety of pharmaceutical and biomedical applications. In fact, the basic feature of these systems is the ability to change their mechanical properties, swelling ability, hydrophilicity, or bioactive molecules permeability, which are influenced by various stimuli, particularly enzymes. Indeed, among a great number of SHRs, enzyme-responsive hydrogels (ERHs) gain much interest as they possess several potential biomedical applications (e.g., in controlled release, drug delivery, etc.). Such a new type of SHRs directly respond to many different enzymes even under mild conditions. Therefore, they show either reversible or irreversible enzyme-induced changes both in chemical and physical properties. This article reviews the state-of-the art in ERHs designed for controlled drug delivery systems (DDSs). Principal enzymes used for biomedical hydrogel preparation were presented and different ERHs were further characterized focusing mainly on glucose oxidase-, β-galactosidase- and metalloproteinases-based catalyzed reactions. Additionally, strategies employed to produce ERHs were described. The current state of knowledge and the discussion were made on successful applications and prospects for further development of effective methods used to obtain ERH as DDSs.
Collapse
|
20
|
Li D, Shi S, Zhao D, Rong Y, Zhou Y, Ding J, He C, Chen X. Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels. ACS Biomater Sci Eng 2022; 8:626-637. [PMID: 35090109 DOI: 10.1021/acsbiomaterials.1c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polypeptide-based injectable hydrogels have attracted the attention of biomedical researchers due to their unique biocompatibility and biodegradability, tunable residue chirality, and secondary conformation of polypeptide chains. In the present study, four types of poly(ethylene glycol)-block-poly(glutamic acid)s with different topological structures and residue chirality of polypeptide segments were developed, which were grafted with tyramine side groups for further cross-linking. The results demonstrated that the covalent conjugation between the tyramine groups in the presence of horseradish peroxidase and hydrogen peroxide could form porous hydrogels rapidly. Additionally, the gelation time and mechanical strength of the hydrogels were measured. All the polymer precursors and hydrogels exhibited good cytocompatibility in vitro. Further assessment of the enzymatic degradability of the hydrogels and copolymers in vitro revealed that the degradation rate was influenced by the adjustment of polymer topology or residue chirality of polypeptide copolymers. Subsequently, the effect of copolymer topology and polypeptide chirality on in vivo biodegradability and biocompatibility was assessed. This study will provide insights into the relationship between copolymer structures and hydrogel properties and benefit future polypeptide-based hydrogel studies in biomedical applications.
Collapse
Affiliation(s)
- Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Shun Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065 Sichuan, P. R. China
| | - Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China
| | - Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China
| |
Collapse
|
21
|
Glucose sensitive konjac glucomannan/concanavalin A nanoparticles as oral insulin delivery system. Int J Biol Macromol 2022; 202:296-308. [PMID: 35038475 DOI: 10.1016/j.ijbiomac.2022.01.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 01/08/2022] [Indexed: 12/18/2022]
Abstract
Compared with injection, oral drug delivery is a better mode of administration because of its security, low pain and simplicity. Insulin is the first choice for clinical treatment of type 1 diabetes, but, because insulin inability to resist gastrointestinal (GI) digestion results in poor oral bioavailability of insulin. Herein, we developed a targeted oral delivery system for diabetes. ConA-INS-KGM nanoparticles were prepared, loaded with insulin, fabricated from konjac glucomannan (KGM) and concanavalin A (ConA) through a crosslinking method, as an insulin oral delivery system in response to different blood glucose levels. The size of nanoparticles was characterized by TEM, which showed that these nanoparticles were formed spherical particles with a diameter of about 500 nm. In vitro release of insulin from these nanoparticles was studied, which indicated that insulin release is reversible at different glucose concentrations. In vivo tests demonstrated that they are safe and have high biocompatibility. Using the nanoparticles to treat diabetic mice, we found that they can control blood sugar levels for 6 h, retaining their glucose-sensitive properties during this time. Therefore, these nanoparticles have significant potential as glucose-responsive systems for diabetes and show great applications in biomedical fields.
Collapse
|
22
|
Ali A, Nouseen S, Saroj S, Shegane M, Majumder P, Puri A, Rakshit T, Manna D, Pal S. Repurposing Pinacol Esters of Boronic Acids for Tuning Viscoelastic Properties of Glucose-responsive Polymer Hydrogels: Effects on Insulin Release Kinetics. J Mater Chem B 2022; 10:7591-7599. [DOI: 10.1039/d2tb00603k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the era of the diabetes pandemic, Injectable hydrogels (HGs) capable of releasing the desired amount of insulin under hyperglycemic conditions will significantly advance smart insulin development. Several smart boronic...
Collapse
|
23
|
|
24
|
Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M. Insulin Transdermal Delivery System for Diabetes Treatment Using a Biocompatible Ionic Liquid-Based Microemulsion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42461-42472. [PMID: 34460218 DOI: 10.1021/acsami.1c11533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
Collapse
Affiliation(s)
- Md Rafiqul Islam
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shihab Uddin
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Raihan Chowdhury
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Centre, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Jain M, Ravoo BJ. Fuel-Driven and Enzyme-Regulated Redox-Responsive Supramolecular Hydrogels. Angew Chem Int Ed Engl 2021; 60:21062-21068. [PMID: 34252251 PMCID: PMC8518796 DOI: 10.1002/anie.202107917] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 12/01/2022]
Abstract
Chemical reaction networks (CRN) embedded in hydrogels can transform responsive materials into complex self-regulating materials that generate feedback to counter the effect of external stimuli. This study presents hydrogels containing the β-cyclodextrin (CD) and ferrocene (Fc) host-guest pair as supramolecular crosslinks where redox-responsive behavior is driven by the enzyme-fuel couples horse radish peroxidase (HRP)-H2 O2 and glucose oxidase (GOx)-d-glucose. The hydrogel can be tuned from a responsive to a self-regulating supramolecular system by varying the concentration of added reduction fuel d-glucose. The onset of self-regulating behavior is due to formation of oxidation fuel in the hydrogel by a cofactor intermediate GOx[FADH2 ]. UV/Vis spectroscopy, rheology, and kinetic modeling were employed to understand the emergence of out-of-equilibrium behavior and reveal the programmable negative feedback response of the hydrogel, including the adaptation of its elastic modulus and its potential as a glucose sensor.
Collapse
Affiliation(s)
- Mehak Jain
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
26
|
Wang C, Hong H, Chen M, Ding Z, Rui Y, Qi J, Li Z, Liu Z. A Cationic Micelle as In Vivo Catalyst for Tumor‐Localized Cleavage Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunhong Wang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Hanyu Hong
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Mengqi Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Zexuan Ding
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Yuchen Rui
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Jianyuan Qi
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Department of Polymer Science & Engineering College of Chemistry and Molecular Engineering Center for Soft Matter Science and Engineering Peking University Beijing 100871 China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Radiation Chemistry Key Laboratory of Fundamental Science Beijing National Laboratory for Molecular Sciences China
- Peking University-Tsinghua University Center for Life Sciences Beijing 100871 China
| |
Collapse
|
27
|
Jain M, Ravoo BJ. Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehak Jain
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch Chemisches Institut und Center for Soft Nanoscience Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Deutschland
| |
Collapse
|
28
|
Wang C, Hong H, Chen M, Ding Z, Rui Y, Qi J, Li ZC, Liu Z. A Cationic Micelle as In Vivo Catalyst for Tumor-Localized Cleavage Chemistry. Angew Chem Int Ed Engl 2021; 60:19750-19758. [PMID: 34046980 DOI: 10.1002/anie.202106526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 12/20/2022]
Abstract
The emerging strategies of accelerating the cleavage reaction in tumors through locally enriching the reactants is promising. Yet, the applications are limited due to the lack of the tumor-selectivity for most of the reactants. Here we explored an alternative approach to leverage the rate constant by locally inducing an in vivo catalyst. We found that the desilylation-induced cleavage chemistry could be catalyzed in vivo by cationic micelles, and accelerated over 1400-fold under physiological condition. This micelle-catalyzed controlled release platform is demonstrated by the release of a 6-hydroxyl-quinoline-2-benzothiazole derivative (HQB) in two cancer cell lines and a NIR dye in mouse tumor xenografts. Through intravenous injection of a pH-sensitive polymer micelles, we successfully applied this strategy to a prodrug activation of hydroxyl camptothecin (OH-CPT) in tumors. Its "decaging" efficiency is 42-fold to that without cationic micelles-mediated catalysis. This micelle-catalyzed desilylation strategy unveils the potential that micelle may act beyond a carrier but a catalyst for local perturbing or activation.
Collapse
Affiliation(s)
- Chunhong Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Hanyu Hong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Mengqi Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Zexuan Ding
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Yuchen Rui
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Jianyuan Qi
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, China.,Peking University-Tsinghua University Center for Life Sciences, Beijing, 100871, China
| |
Collapse
|
29
|
Su T, Cheng F, Pu Y, Cao J, Lin S, Zhu G, He B. Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 411:128561. [PMID: 37304676 PMCID: PMC10254784 DOI: 10.1016/j.cej.2021.128561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer has been one of the major healthcare burdens, which demands innovative therapeutic strategies to improve the treatment outcomes. Combination therapy hold great potential to leverage multiple synergistic pathways to improve cancer treatment. Cancer cells often exhibit an increased generation of reactive oxygen species (ROS) and antioxidant species compared with normal cells, and the levels of these species can be further elevated by common therapeutic modalities such as photodynamic therapy (PDT) or chemotherapy. Taking advantage that cancer cells are vulnerable to further oxidative stress, we aim to design a drug delivery system by simultaneously increasing the cellular ROS level, reducing antioxidative capacity, and inducing anticancer chemotherapy in cancer cells. Here, we designed a star-shape polymer, PEG(-b-PCL-Ce6)-b-PBEMA, based on the Passerini three-component reaction, which can both enhance ROS generation during PDT and decrease the GSH level in cancer cells. The polycaprolactone conjugated with photosensitizer Ce6 served as hydrophobic segments to promote micelle formation, and Ce6 was used for PDT. The H2O2-labile group of arylboronic esters pendent on the third segment was designed for H2O2-induced quinone methide (QM) release for GSH depletion. We thoroughly investigated the spectral properties of blank micelle during its assembling process, ROS generation, and H2O2-induced QM release in vitro. Moreover, this polymeric micelle could successfully load hydrophobic anticancer drug Doxorubicin (DOX) and efficiently deliver DOX into cancer cells. The triple combination of ROS generation, GSH elimination, and chemotherapy dramatically improved antitumor efficiency relative to each of them alone in vitro and in vivo.
Collapse
Affiliation(s)
- Ting Su
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy, The Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA 23298, USA
| | - Furong Cheng
- Center for Translational Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy, The Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA 23298, USA
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy, The Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA 23298, USA
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
31
|
Song X, Ma J, Long T, Xu X, Zhao S, Liu H. Mechanochemical Cellular Membrane Internalization of Nanohydrogels: A Large-Scale Mesoscopic Simulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:123-134. [PMID: 33307670 DOI: 10.1021/acsami.0c16688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
By combining large-scale dissipative particle dynamics and steered molecular dynamics simulations, we investigate the mechanochemical cellular internalization pathways of homogeneous and heterogeneous nanohydrogels and demonstrate that membrane internalization is determined by the crosslink density and encapsulation ability of nanohydrogels. The homogeneous nanohydrogels with a high crosslink density and low encapsulation ability behave as soft nanoparticles partially wrapped by the membrane, while those with a low crosslink density and high encapsulation ability permeate into the membrane. Regardless of the crosslink density, the homogeneous nanohydrogels undergo typical dual morphological deformations. The local lipid nanodomains are identified at the contacting region between the membrane and nanohydrogels because of different diffusion behaviors between lipid and receptor molecules during the internalization process. The yolk@shell heterogeneous nanohydrogels present a different mechanochemical cellular internalization pathway. The yolk with strong affinity is directly in contact with the membrane, resulting in partial membrane wrapping, and the contacting area is much reduced when compared to homogenous nanohydrogels, leading to a smaller lipid nanodomain and thus avoiding related cellular toxicity. Our findings provide a critical mechanism understanding of the biological pathways of nanohydrogels and may guide the molecular design of the hydrogel-based materials for controlled release drug delivery, tissue engineering, and cell culture.
Collapse
Affiliation(s)
- Xianyu Song
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Jule Ma
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ting Long
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
32
|
Liu Y, Liu Y, Zang J, Abdullah AAI, Li Y, Dong H. Design Strategies and Applications of ROS-Responsive Phenylborate Ester-Based Nanomedicine. ACS Biomater Sci Eng 2020; 6:6510-6527. [PMID: 33320631 DOI: 10.1021/acsbiomaterials.0c01190] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS)-responsive nanomedicine has been extensively developed to improve the therapeutic effects while reducing the systemic toxicity. ROS, as important biological metabolites and signaling molecules, are known to overexpress in most of tumors and inflammations. Among various ROS-sensitive moieties, phenylborate ester (PBAE) with easy modifiable structure and excellent biocompatibility, represents one of the most ROS-sensitive structures. To harness it as a switch, the past several years had witnessed a booming of ROS-sensitive PBAE-based nanomedicine for various medical purposes. Much of the efforts were devoted to exploiting the potential in the management of antitumor and anti-inflammation. This review first summarizes the design strategies of PBAE in the construction of nanomedicine, with PBAE acting as not only the ROS-responsive unit, but also the roles of hydrophobic backbone or bridging segment in the macromolecular structures. The ROS-responsive mechanisms are then briefly discussed. Afterward, we focus on the introduction of the state-of-the-art research on ROS-responsive PBAE-based nanomedicine for antitumor and anti-inflammation applications. The conclusion and future perspectives of ROS-responsive nanomedicine are also provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Yiqiong Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Jie Zang
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | | | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair, and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital. The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China
| |
Collapse
|
33
|
Martin JR, Patil P, Yu F, Gupta MK, Duvall CL. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials 2020; 263:120377. [PMID: 32947094 DOI: 10.1016/j.biomaterials.2020.120377] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels crosslinked with enzyme-cleavable peptides are promising biodegradable vehicles for therapeutic cell delivery. However, peptide synthesis at the level required for bulk biomaterial manufacturing is costly, and fabrication of hydrogels from scalable, low-cost synthetic precursors while supporting cell-specific degradation remains a challenge. Reactive oxygen species (ROS) are cell-generated signaling molecules that can also be used as a trigger to mediate specific in vivo degradation of biomaterials. Here, PEG-based hydrogels crosslinked with ROS-degradable poly(thioketal) (PTK) polymers were successfully synthesized via thiol-maleimide chemistry and employed as a cell-degradable, antioxidative stem cell delivery platform. PTK hydrogels were mechanically robust and underwent ROS-mediated, dose-dependent degradation in vitro, while promoting robust cellular infiltration, tissue regeneration, and bioresorption in vivo. Moreover, these ROS-sensitive materials successfully encapsulated mesenchymal stem cells (MSCs) and maintained over 40% more viable cells than gold-standard hydrogels crosslinked with enzymatically-degradable peptides. The higher cellular survival in PTK-based gels was associated with the antioxidative function of the ROS-sensitive crosslinker, which scavenged free radicals and protected encapsulated MSCs from cytotoxic doses of ROS. Improved MSC viability was also observed in vivo as MSCs delivered within injectable PTK hydrogels maintained significantly more viability over 11 days compared against cells delivered within gels crosslinked with either a PEG-only control polymer or a gold-standard enzymatically-degradable peptide. Together, this study establishes a new paradigm for scalable creation and application of cell-degradable hydrogels, particularly for cell delivery applications.
Collapse
Affiliation(s)
- John R Martin
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Prarthana Patil
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Fang Yu
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA
| | - Mukesh K Gupta
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| | - Craig L Duvall
- Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, PMB 351631, Nashville, TN, 37235-1631, USA.
| |
Collapse
|
34
|
Chai Z, Dong H, Sun X, Fan Y, Wang Y, Huang F. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice. Int J Biol Macromol 2020; 159:640-647. [DOI: 10.1016/j.ijbiomac.2020.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022]
|
35
|
Effect of poly(ethylene glycol)-derived crosslinkers on the properties of thermosensitive hydrogels. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00831-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Shen D, Yu H, Wang L, Khan A, Haq F, Chen X, Huang Q, Teng L. Recent progress in design and preparation of glucose-responsive insulin delivery systems. J Control Release 2020; 321:236-258. [DOI: 10.1016/j.jconrel.2020.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
|
37
|
Wang Y, Fan Y, Zhang M, Zhou W, Chai Z, Wang H, Sun C, Huang F. Glycopolypeptide Nanocarriers Based on Dynamic Covalent Bonds for Glucose Dual-Responsiveness and Self-Regulated Release of Insulin in Diabetic Rats. Biomacromolecules 2020; 21:1507-1515. [DOI: 10.1021/acs.biomac.0c00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yanxia Wang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Yiting Fan
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Minghao Zhang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Wen Zhou
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Zhihua Chai
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Hao Wang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Chunfeng Sun
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
38
|
Liu X, Li C, Lv J, Huang F, An Y, Shi L, Ma R. Glucose and H2O2 Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:1598-1606. [DOI: 10.1021/acsabm.9b01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Juan Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center1 of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TG, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 2020; 317:216-231. [DOI: 10.1016/j.jconrel.2019.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
|
40
|
Zhuang Y, Yang X, Li Y, Chen Y, Peng X, Yu L, Ding J. Sustained Release Strategy Designed for Lixisenatide Delivery to Synchronously Treat Diabetes and Associated Complications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29604-29618. [PMID: 31361112 DOI: 10.1021/acsami.9b10346] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diabetes and its complications have become a global challenge of public health. Herein, we aimed to develop a long-acting delivery system of lixisenatide (Lixi), a glucose-dependent antidiabetic peptide, based on an injectable hydrogel for the synchronous treatment of type 2 diabetes mellitus (T2DM) and associated complications. Two triblock copolymers, poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) and poly(d,l-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(d,l-lactic acid-co-glycolic acid) possessing temperature-induced sol-gel transitions, were synthesized by us. Compared to the two single-component hydrogels, their 1/1 mixture hydrogel not only maintained the temperature-induced gelation but also exhibited a steadier degradation profile in vivo. Both in vitro and in vivo release studies demonstrated that the mixture hydrogel provided the sustained release of Lixi for up to 9 days, which was attributed to balanced electrostatic interactions between the positive charges in the peptide and the negative charges in the polymer carrier. The hypoglycemic efficacy of Lixi delivered from the mixture hydrogel after a single subcutaneous injection into diabetic db/db mice was comparable to that of twice-daily administrations of Lixi solution for up to 9 days. Furthermore, three successive administrations of the abovementioned gel system within a month significantly increased the plasma insulin level, lowered glycosylated hemoglobin, and improved the pancreatic function of the animals. These results were superior or equivalent to those of twice-daily injections of Lixi solution for 30 days, but the number of injections was markedly reduced from 60 to 3. Finally, an improvement in hyperlipidemia, augmentation of nerve fiber density, and enhancement of motor nerve conduction velocity in the gel formulation-treated db/db mice indicated that the sustained delivery of Lixi arrested and even ameliorated diabetic complications. These findings suggested that the Lixi-loaded mixture hydrogel has great potential for the treatment of T2DM with significant improvements in the health and quality of life of patients.
Collapse
Affiliation(s)
- Yaping Zhuang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yamin Li
- Department of Orthopaedic Surgery , Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaochun Peng
- Department of Orthopaedic Surgery , Shanghai Jiaotong University Affiliated Sixth People's Hospital , Shanghai 200233 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
41
|
Thakur N, Sharma B, Bishnoi S, Jain S, Nayak D, Sarma TK. Biocompatible Fe3+ and Ca2+ Dual Cross-Linked G-Quadruplex Hydrogels as Effective Drug Delivery System for pH-Responsive Sustained Zero-Order Release of Doxorubicin. ACS APPLIED BIO MATERIALS 2019; 2:3300-3311. [PMID: 35030772 DOI: 10.1021/acsabm.9b00334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Neha Thakur
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Bhagwati Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Suman Bishnoi
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Siddarth Jain
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Tridib K. Sarma
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
42
|
Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019; 20:2441-2463. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in biological metabolism and intercellular signaling. However, ROS level is dramatically elevated due to abnormal metabolism during multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. By taking advantage of the discrepancy of ROS levels between normal and diseased tissues, a variety of ROS-sensitive moieties or linkers have been developed to design ROS-responsive systems for the site-specific delivery of drugs and genes. In this review, we summarized the ROS-responsive chemical structures, mechanisms, and delivery systems, focusing on their current advances for precise drug/gene delivery. In particular, ROS-responsive nanocarriers, prodrugs, and supramolecular hydrogels are summarized in terms of their application for drug/gene delivery, and common strategies to elevate or diminish cellular ROS concentrations, as well as the recent development of ROS-related imaging probes were also discussed.
Collapse
Affiliation(s)
- Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Shanzhou Duan
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Yong Liu
- Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| |
Collapse
|
43
|
Li C, Liu X, Liu Y, Huang F, Wu G, Liu Y, Zhang Z, Ding Y, Lv J, Ma R, An Y, Shi L. Glucose and H 2O 2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. NANOSCALE 2019; 11:9163-9175. [PMID: 31038150 DOI: 10.1039/c9nr01554j] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diabetes is a chronic metabolic disorder disease characterized by high blood glucose levels and has become one of the most serious threats to human health. In recent decades, a number of insulin delivery systems, including bulk gels, nanogels, and polymeric micelles, have been developed for the treatment of diabetes. Herein, a kind of glucose and H2O2 dual-responsive polymeric nanogel was designed for enhanced glucose-responsive insulin delivery. The polymeric nanogels composed of poly(ethylene glycol) and poly(cyclic phenylboronic ester) (glucose and H2O2 dual-sensitive groups) were synthesized by a one-pot thiol-ene click chemistry approach. The nanogels displayed glucose-responsive release of insulin and the release rate could be promoted by the incorporation of glucose oxidase (GOx), which generated H2O2 at high glucose levels and H2O2 further oxidizes and hydrolyzes the phenylboronic ester group. The nanogels have characteristics of long blood circulation time, a fast response to glucose, and excellent biocompatibility. Moreover, subcutaneous delivery of insulin to diabetic mice with the insulin/GOx-loaded nanogels presented an effective hypoglycemic effect compared to that of injection of insulin or insulin-loaded nanogels. This kind of nanogel would be a promising candidate for the delivery of insulin in the future.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shen Y, Xu Z, Li L, Yuan W, Luo M, Xie X. Fabrication of glucose-responsive and biodegradable copolymer membrane for controlled release of insulin at physiological pH. NEW J CHEM 2019. [DOI: 10.1039/c9nj00729f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A PCL-b-PPBDEMA copolymer membrane can be used as an intelligent carrier to achieve the controlled release of insulin by adjusting the glucose concentration.
Collapse
Affiliation(s)
- Yi Shen
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| | - Zhangting Xu
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| | - Lulin Li
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| | - Weizhong Yuan
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| | - Ming Luo
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| | - Xiaoyun Xie
- Department of Geriatrics
- Tongji Hospital
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
| |
Collapse
|
45
|
Zhang Y, He P, Liu X, Yang H, Zhang H, Xiao C, Chen X. A PEGylated alternating copolymer with oxidation-sensitive phenylboronic ester pendants for anticancer drug delivery. Biomater Sci 2019; 7:3898-3905. [DOI: 10.1039/c9bm00884e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An oxidation sensitive PEGylated alternating copolymer was designed for doxorubicin delivery with improved anticancer efficacy and low toxicity in vivo.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Pan He
- School of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun 130022
- P. R. China
| | - Xinming Liu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Huailin Yang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Hongyu Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
46
|
Hong SH, Larocque K, Jaunky DB, Piekny A, Oh JK. Dual disassembly and biological evaluation of enzyme/oxidation-responsive polyester-based nanoparticulates for tumor-targeting delivery. Colloids Surf B Biointerfaces 2018; 172:608-617. [DOI: 10.1016/j.colsurfb.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
|
47
|
Ghorbani M, Hamishehkar H. Redox-responsive smart nanogels for intracellular targeting of therapeutic agents: applications and recent advances. J Drug Target 2018; 27:408-422. [PMID: 30124074 DOI: 10.1080/1061186x.2018.1514041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
48
|
Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection. Biomaterials 2018; 177:98-112. [DOI: 10.1016/j.biomaterials.2018.05.044] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 01/25/2023]
|
49
|
Men Y, Peng S, Yang P, Jiang Q, Zhang Y, Shen B, Dong P, Pang Z, Yang W. Biodegradable Zwitterionic Nanogels with Long Circulation for Antitumor Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23509-23521. [PMID: 29947223 DOI: 10.1021/acsami.8b03943] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Zwitterionic nanocarriers have emerged as a new class of biocompatible nanomaterials with outstanding stealth capability in blood circulation. In this work, a novel biodegradable zwitterionic nanogel based on poly(sulfobetaine methacrylate) (PSBMA) was developed for reduction-responsive drug delivery to tumors. PSBMA nanogels were facilely fabricated by one-step reflux precipitation polymerization with the advantage of being surfactant-free and time-saving. The disulfide bond not only endowed the nanogels degradability in a reduction environment but also be modified with a fluorescent group after partial reduction. In vitro release experiments disclosed that doxorubicin (DOX)-loaded PSBMA nanogels could hold the drugs firmly in physiological conditions (only 7% release in 24 h) and release the drugs rapidly and sufficiently in 10 mM glutathione (85% in 8 h). More interestingly, PSBMA nanogels displayed long circulation in blood after intravenous injection, and small change was found in half-life of nanogels between the first (34.1 h) and the second injection (30.5 h), indicating that there was no accelerated blood clearance phenomenon for these nanogels. Meanwhile, no obvious immunogenic response was detected after PSBMA nanogels were injected into BALB/c mice. Furthermore, PSBMA nanogels showed a high accumulation of 9.5 and 10.7% of injected dose per gram of tissue in tumors at 24 and 48 h post intravenous injection, respectively. With outstanding long circulation time, high tumor accumulation, and sufficient drug release in a reduction environment, DOX-loaded PSBMA nanogels demonstrated the strongest tumor growth inhibition effect among all of the treatment groups in human hypopharyngeal carcinoma-bearing mouse models. Therefore, our study provided a facile drug delivery platform based on biodegradable zwitterionic nanogels and may have great potential in tumor drug delivery.
Collapse
Affiliation(s)
- Yongzhi Men
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Shaojun Peng
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Peng Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| | - Yanhui Zhang
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Bin Shen
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Pin Dong
- Shanghai General Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200080 , P. R. China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 201203 , P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
50
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|