1
|
Shukla N, Das R, Rodriguez CYC, Mukhanova E, Soldatov A, Bathla A, Kumari I, Hauserao N, Belbekhouche S. Optimizing near-infrared-activated gold nanostructures for targeted combination cancer therapy. Colloids Surf B Biointerfaces 2025; 253:114687. [PMID: 40367714 DOI: 10.1016/j.colsurfb.2025.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 05/16/2025]
Abstract
The application of near-infrared (NIR)-activated gold nanostructures, particularly gold nanostars (AuNSs) and gold nanorods (AuNRs), has emerged as a promising strategy in targeted combination cancer therapy (Figure 1). These nanostructures leverage their unique localized surface plasmon resonance (LSPR) properties, which enable effective absorption and conversion of NIR light into heat, facilitating photothermal therapy (PTT) to selectively destroy cancer cells. Recent advancements in the synthesis and functionalization of AuNSs and AuNRs have enhanced their biocompatibility, stability, and therapeutic efficacy. This review highlights the mechanisms by which these gold nanostructures can be optimized for synergistic effects when combined with other therapeutic modalities such as chemotherapy and photodynamic therapy (PDT). We discuss the importance of surface modifications that improve tumor targeting and retention, as well as the potential to overcome limitations associated with conventional therapies. The integration of AuNSs and AuNRs into multi-faceted treatment regimens represents a significant step forward in the development of effective cancer therapies, aiming to maximize therapeutic outcomes while minimizing side effects.
Collapse
Affiliation(s)
- Nutan Shukla
- The Smart Materials Research Institute, Southern Federal University, Rostov-On-Don 344090, Russia.
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | | | - Elizaveta Mukhanova
- The Smart Materials Research Institute, Southern Federal University, Rostov-On-Don 344090, Russia
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, Rostov-On-Don 344090, Russia
| | - Aadil Bathla
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris-Saclay, Paris 91190, France
| | - Indu Kumari
- Department of Applied Sciences, CT Group of Institutions, Shahpur, Jalandhar, Punjab 144020, India
| | - Nitin Hauserao
- PI Industries Ltd., Udaisagar road, Udaipur, Rajasthan 313001, India
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est , UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
2
|
Khoshnood A, Farhadian N, Abnous K, Matin MM, Ziaee N, Iranpour S. Polyethyleneimine/gold nanorods conjugated with carbon quantum dots and hyaluronic acid for chemo-photothermal therapy of breast cancer. J Mater Chem B 2025; 13:4893-4909. [PMID: 40176547 DOI: 10.1039/d4tb02234c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The aim of this study was to develop a stable polyethyleneimine/gold nanorod composite conjugated with a carbon quantum dot (CQD) and hyaluronic acid (HA) complex (CQD-HA-PEI@GNRs) for applications in chemotherapy and photothermal therapy. GNRs were synthesized using a seed-mediated growth method, and the amount of seed solution was optimized to obtain GNRs with an optimal aspect ratio and a strong peak in the near-infrared (NIR) region. The surface of the GNRs was then modified with polyethylene imine (PEI). In parallel, CQDs were synthesized through a hydrothermal method and subsequently conjugated with HA to act as an active targeting ligand. The resulting CQD-HA complex was loaded onto the surface of the PEI@GNR composite. Finally, the anticancer drug doxorubicin (DOX) was effectively loaded onto this innovative complex. The cytotoxicity of the final complex was evaluated on different cell lines in the presence and absence of laser irradiation. Furthermore, the efficacy of the formulation was investigated in BALB/c mice bearing breast cancer tumors. Characterization results confirmed the successful formation of GNRs with a length of 40 nm, exhibiting a strong peak at 813 nm in the NIR region. The zeta potential value of the GNRs was -25.62 mV, which increased to +40.59 mV after the surface modification with PEI. CQDs were synthesized and successfully conjugated with HA. DOX encapsulation efficiency was 92.8%, with appropriate drug release profiles in the presence of laser irradiation. The final complex showed appropriate cytotoxicity toward 4T1 and MCF7 breast cancer cell lines. In vivo analysis of the CQD-HA-PEI@GNR-DOX complex combined with laser treatment demonstrated significant tumor growth inhibition in comparison to the control group. Finally, this novel complex was proposed as an alternative for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Khoshnood
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ziaee
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sonia Iranpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Qian J, Aldai AJM, Xu W, Wang T, Zhao K, Wang Y, Fan J, Suo A. Hyaluronan-decorated CuO 2-doxorubicin nanodot clusters for targetedly sensitizing cuproptosis in breast cancer via a three-pronged strategy. Carbohydr Polym 2025; 352:123201. [PMID: 39843046 DOI: 10.1016/j.carbpol.2024.123201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
Cuproptosis shows great prospects in cancer treatments. However, insufficient intracellular copper amount, low-level redox homeostasis, and hypoxic tumor microenvironment severely restrict cuproptosis efficacy. Herein, hydrazided hyaluronan-templated decorated CuO2-doxorubicin (CuDT) nanodot clusters (NCs) are developed for efficient doxorubicin (DOX)-sensitized cuproptosis therapy in breast cancer via a three-pronged strategy. The CuDT NCs with an average size of 56.2 nm are fabricated from 3,3'-dithiobis(propionohydrazide)-conjugated hyaluronan, Cu2+, and DOX through a one-pot mineralization process. The CuDT nanoparticles exhibit pH-responsive H2O2, Cu2+, and DOX release profiles and catalytic activity. Upon entrance into tumor cells, CuO2-based exogenous H2O2 supply and DOX-augmented endogenous H2O2 generation jointly elevate intracellular H2O2 level, which can further be transformed into hydroxyl radicals and O2 through Fenton-like reaction to achieve oxidative stress amplification and hypoxia relief, respectively. Moreover, the CuDT NCs can efficiently deplete intracellular overexpressed glutathione via Cu2+/Cu+ cycle and abundant disulfide bonds, further enhancing cellular oxidative stress. These results demonstrate that the novel CuDT NCs achieve DOX-sensitized cuproptosis in breast cancer cells through elevating copper level, amplifying oxidative stress and alleviating hypoxia, thus displaying prominent in vivo antitumor efficacy. Such a three-pronged strategy of targetedly boosting cuproptosis in cancer cells represents a novel approach for antitumor treatments.
Collapse
Affiliation(s)
- Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Taibing Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunkun Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaping Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingjing Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
He X, Sheng X, Yao X, Wang Y, Zhang L, Wang H, Yuan L. The anti-biofilm effect of α-amylase/glycopolymer-decorated gold nanorods. Colloids Surf B Biointerfaces 2025; 246:114393. [PMID: 39579496 DOI: 10.1016/j.colsurfb.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The continuous evolution of bacteria and the formation of biofilm have exacerbated resistance issues, highlighting the urgent need for new antibacterial materials. In this study, L-fucose was polymerized to synthesize thiolated poly(2-(L-fucose) ethyl methacrylate) (PFEMA-SH), which was subsequently co-modified with α-amylase onto gold nanorods (GNR) to prepare the antibacterial nanoparticle composite, GNR-Amy-PFEMA (G-A-P). These nanomaterials exhibit both photothermal and enzymatic properties, enabling G-A-P to effectively sterilize and disperse biofilm. Under near-infrared light irradiation, the temperature of G-A-P composite increases significantly, leading to bacterial cell damage and biofilm disruption. The G-A-P composite demonstrated nearly 100 % eradication of planktonic bacteria after 5 min of irradiation and achieved a 70.9 % reduction in mature biofilm biomass, with a 3.37-log decrease in the number of bacteria within the biofilm. These composites display strong antimicrobial activity and hold great potential for the removal of Pseudomonas aeruginosa biofilm. Furthermore, the ability of G-A-P to reduce biofilm formation without the use of traditional antibiotics suggests that it may offer an antibiotic-free alternative for managing biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoli He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinran Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinrui Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanyan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Liping Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Umar AK, Limpikirati PK, Rivai B, Ardiansah I, Sriwidodo S, Luckanagul JA. Complexed hyaluronic acid-based nanoparticles in cancer therapy and diagnosis: Research trends by natural language processing. Heliyon 2025; 11:e41246. [PMID: 39811313 PMCID: PMC11729671 DOI: 10.1016/j.heliyon.2024.e41246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics. We discovered that certain active substances, such as 5-aminolevulinic acid, adamantane, and protamine, have been on trend in terms of their usage over the past decade. Dextran, streptavidin, and catechol emerge as intriguing conjugates for HA, coupled with nanostar, quantum dots, and nanoprobe structures for optimal drug delivery and diagnostics. Strategies like hypoxic conditioning, dual responsiveness, and pulse laser activation enhance controlled release, targeted delivery, and real-time diagnostic techniques like ultrasound imaging and X-ray computed tomography (X-ray CT). Based on our findings, conventional bibliometric tools fail to highlight relevant topics in this area, instead producing merely abstract and broad-meaning keywords. Extraction using Named Entity Recognition and topic search with Latent Dirichlet Allocation successfully revealed five representative topics with the ability to exclude irrelevant keywords. A shift in research focuses from optimizing chemical toxicity to particular targeting tactics and precise release mechanisms is evident. These findings reflect the dynamic landscape of HA-based nanoparticle research in cancer therapy, emphasizing advancements in targeted drug delivery, therapeutic efficacy, and multimodal diagnostic approaches to improve overall patient outcomes.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Patanachai K. Limpikirati
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bachtiar Rivai
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Ilham Ardiansah
- Department of Animal Husbandry, Faculty Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jittima Amie Luckanagul
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Chen S, Wu Z. Targeting tumor microenvironments with gold nanoparticles for enhanced photothermal therapy. ONCOLOGIE 2024; 26:899-912. [DOI: 10.1515/oncologie-2024-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Abstract
Gold nano-drug delivery system-mediated photothermal therapy (PTT) has been widely studied in the field of anti-tumor. In order to achieve accurate drug release and improve photothermal efficiency, nano-drug delivery strategies targeting tumor microenvironment (TME) have become a hot research topic in recent years. This paper introduces four characteristics of the TME: hypoxia, low pH, high level of reactive oxygen species (ROS), and overexpression of enzymes. These differences between tumor and normal tissue become effective targets for tumor therapy. This paper summarizes the gold nano-drug delivery system that can target these four characteristics, so as to realize a large amount of drug aggregation at the tumor site and achieve efficient photothermal therapy. Moreover, the multi-response nano-drug delivery system can further control drug delivery and improve therapeutic effects. Finally, this paper also summarizes the gold nanoparticles for tumor therapy that have entered clinical trials so far. The purpose of this review is to discuss the research progress of enhanced photothermal therapy with gold nano-drug delivery systems targeting the TME, with a view to providing a reference for the future development of novel anti-tumor nanoplatforms and the clinical translation of gold nanoparticles.
Collapse
Affiliation(s)
- Sisi Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhibing Wu
- Department of Oncology , 584020 Affiliated Zhejiang Hospital of Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
7
|
Hu L, Song Z, Wu B, Yang X, Chen F, Wang X. Hyaluronic Acid-Modified and Doxorubicin-Loaded Au Nanorings for Dual-Responsive and Dual-Imaging Guided Targeted Synergistic Photothermal Chemotherapy Against Pancreatic Carcinoma. Int J Nanomedicine 2024; 19:13429-13442. [PMID: 39703980 PMCID: PMC11656332 DOI: 10.2147/ijn.s476936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Pancreatic carcinoma (PC) is a highly malignant digestive tumor. Nanotechnology-based minimally invasive techniques have been proposed to provide a new opportunity for PC treatment. Methods A minimally invasive nanoplatform (named HA/DOX-AuNRs) is fabricated by HA modifying and DOX loading Au nanorings (AuNR). Because of their complicated geometric structure and tunable localized surface plasmon resonance peak in the second near-infrared laser window (NIR-II window), HA/DOX-AuNRs exhibit fluorescence/photoacoustic and photothermal properties, dual-responsive DOX release, and tumor-targeting ability. HA/DOX-AuNRs are expected to improve the tumor therapeutic efficiency and reduce undesirable side effects through fluorescence/photoacoustic dual-imaging guided targeted synergetic photothermal chemotherapy under NIR-II irradiation. Results The morphological and physicochemical properties of HA/DOX-AuNRs are well-examined at first. The cytotoxicity, cellular uptake, and in vitro therapeutic effect of fluorescence/photoacoustic dual-imaging guided targeted synergetic photothermal chemotherapy are evaluated in Panc-1 cells. The in vivo biodistribution, anticancer effects, and systemic toxicity are investigated using PC xenograft models. Discussion HA/DOX-AuNRs significantly improve the therapeutic efficacy in a dual-responsive and dual-imaging guided targeted synergy.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Xiaodan Yang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| |
Collapse
|
8
|
Li R, Wan C, Li Y, Jiao X, Liu T, Gu Y, Gao R, Liu J, Li B. Nanocarrier-based drug delivery system with dual targeting and NIR/pH response for synergistic treatment of oral squamous cell carcinoma. Colloids Surf B Biointerfaces 2024; 244:114179. [PMID: 39217727 DOI: 10.1016/j.colsurfb.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is highly heterogeneous and aggressive, but therapies based on single-targeted nanoparticles frequently address these tumors as a single illness. To achieve more efficient drug transport, it is crucial to develop nanodrug-carrying systems that simultaneously target two or more cancer biomarkers. In addition, combining chemotherapy with near-infrared (NIR) light-mediated thermotherapy allows the thermal ablation of local malignancies via photothermal therapy (PTT), and triggers drug release to improve chemosensitivity. Thus, a novel dual-targeted nano-loading system, DOX@GO-HA-HN-1 (GHHD), was created for synergistic chemotherapy and PTT by the co-modification of carboxylated graphene oxide (GO) with hyaluronic acid (HA) and HN-1 peptide and loading with the anticancer drug doxorubicin (DOX). Targeted delivery using GHHD was shown to be superior to single-targeted nanoparticle delivery. NIR radiation will encourage the absorption of GHHD by tumor cells and cause the site-specific release of DOX in conjunction with the acidic microenvironment of the tumor. In addition, chemo-photothermal combination therapy for cancer treatment was realized by causing cell apoptosis under the irradiation of 808-nm laser. In summary, the application of GHHD to chemotherapy combined with photothermal therapy for OSCC is shown to have important potential as a means of combatting the low accumulation of single chemotherapeutic agents in tumors and drug resistance generated by single therapeutic means, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Jun Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| |
Collapse
|
9
|
Chandra J, Nasir N, Wahab S, Sahebkar A, Kesharwani P. Harnessing the power of targeted metal nanocarriers mediated photodynamic and photothermal therapy. Nanomedicine (Lond) 2024:1-19. [PMID: 39545609 DOI: 10.1080/17435889.2024.2419820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
The treatment of cancer has become a profoundly intricate procedure. Traditional treatment methods, including chemotherapy, surgery and radiotherapy, have been utilized, while notable progress has been achieved in recent years. Among targeted therapies for cancer, folic acid (FA) conjugated metal-based nanoparticles (NP) have emerged as an innovative strategy, namely for photodynamic therapy (PDT) and photothermal therapy (PTT). These NP exploit the strong attraction between FA and folate receptors, which are excessively produced in several cancer cells, in order to enable precise administration and improved effectiveness of treatment. During PDT, metal-based NP functionalized with FA are used as photosensitizers which are activated by light, and produce reactive oxygen species that cause cancer cells to undergo apoptosis. Within the framework of PTT, these NP effectively transform light energy into concentrated heat, specifically targeting and destroying tumor cells. This review examines the fundamental mechanisms by which these NP improve the effectiveness of PDT and PTT while simultaneously presenting important findings that demonstrate the effectiveness of FA-functionalized MNP in laboratory and animal models. In addition, the paper also discusses the problems and potential directions for their clinical translation.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazim Nasir
- Department of Basic Medical Sciences, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
10
|
Chen C, Xie B, Sun S, Guo S, Yang Z, Yang L, Zhang Y, Li SA, Sun W, Wang Z, Qin S, Ji Y. Bovine serum albumin-bound homologous targeted nanoparticles for breast cancer combinatorial therapy. Int J Biol Macromol 2024; 281:136090. [PMID: 39343270 DOI: 10.1016/j.ijbiomac.2024.136090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/01/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Breast cancer, the most common lethal cancer among women, is characterized by the uncontrolled growth of abnormal cells in breast tissue. Therefore, synergistic anticancer strategies are essential, particularly for maximizing drug delivery to tumor sites. Herein, bovine serum albumin (BSA)-bound nanoparticles encapsulating the photosensitizer chlorin e6 (Ce6) (BC) with a CuO2 core (BC/CuO2 NPs) were developed for cuproptosis-promoted cancer photodynamic therapy (PDT). The cancer cell membrane (CC) was then coated onto the surfaces to produce BC/CuO2@CC NPs for breast cancer combinatorial therapy. BSA serves dual functions as both a stabilizing scaffold for metal peroxide nanomaterials and a molecular connector for Ce6. The BC/CuO2@CC NPs group showed the stronger internalization capability than the other groups. BC/CuO2@CC NPs could effectively induce the greatest degree of apoptosis and death ratio (81.77 %), and lead to cuproptosis by downregulating the expression of DLAT, LIAS, and FDX1 protein in vitro. The intra-tumoral accumulation of BC/CuO2@CC NPs was 8.3- and 7.7-fold higher than that of Ce6 and BC/CuO2@CC NPs at 24 h postinjection, respectively. Moreover, synergistic efficacy of cuproptosis and PDT not only inhibited tumor growth but also prevented liver metastases. Thus, our work may be a novel approach for efficient and targeted cancer treatment.
Collapse
Affiliation(s)
- Caili Chen
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China; Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Bohong Xie
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shuming Sun
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Zishan Yang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Liuzhong Yang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Yana Zhang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zihao Wang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, China
| | - Shuang Qin
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China.
| | - Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, China.
| |
Collapse
|
11
|
Hajebi S, Chamanara M, Nasiri SS, Ghasri M, Mouraki A, Heidari R, Nourmohammadi A. Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems. Biomed Pharmacother 2024; 180:117493. [PMID: 39353321 DOI: 10.1016/j.biopha.2024.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
In recent years, the use of gold nanorods (AuNRs) has garnered considerable attention in biomedical applications due to their unique optical and physicochemical properties. They have been considered as potential tools for the advanced treatment of diseases by various stimuli such as magnetic fields, pH, temperature and light in the fields of targeted therapy, imaging and drug delivery. Their biocompatibility and tunable plasmonic properties make them a versatile platform for a range of biomedical applications. While endogenous stimuli have limited cargo delivery control at specific sites, exogenous stimuli are a more favored approach despite their circumscribed penetration depth for releasing the cargo at the specific target. Dual/multi-stimuli responsive AuNTs can be triggered by multiple stimuli for enhanced control and specificity in biomedical applications. This review provides to provide a summary of the biomedical applications of stimuli-responsive AuNRs, including their endogenous and exogenous properties, as well as their dual/multi-functionality and potential for clinical delivery. This review provides a comprehensive review on the improvement of therapeutic efficacy and the effective control of drug release with AuNRs, highlights AuNRs design strategies in recent years, discusses the advantages or challenges so far in the field of AuNRs. Finally, we have addressed the clinical translation bio-integrated nanoassemblies (CTBNs) in this field.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran
| | - Shadi Sadat Nasiri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mahsa Ghasri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Alireza Mouraki
- Department of Surface Coating and Corrosion, Institute for Color Science and Technology, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Biomaterial and Medicinal Chemistry Research Center, AJA University of Medical Science, Tehran, Iran.
| | - Abbas Nourmohammadi
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chen J, Xiang Y, Bao R, Zheng Y, Fang Y, Feng J, Wu D, Chen X. Combined Photothermal Chemotherapy for Effective Treatment Against Breast Cancer in Mice Model. Int J Nanomedicine 2024; 19:9973-9987. [PMID: 39360036 PMCID: PMC11446203 DOI: 10.2147/ijn.s473052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Breast cancer ranks among the most prevalent cancers in women, characterized by significant morbidity, disability, and mortality. Presently, chemotherapy is the principal clinical approach for treating breast cancer; however, it is constrained by limited targeting capability and an inadequate therapeutic index. Photothermal therapy, as a non-invasive approach, offers the potential to be combined with chemotherapy to improve tumor cellular uptake and tissue penetration. In this research, a mesoporous polydopamine-coated gold nanorod nanoplatform, encapsulating doxorubicin (Au@mPDA@DOX), was developed. Methods This nanoplatform was constructed by surface coating mesoporous polydopamine (mPDA) onto gold nanorods, and doxorubicin (DOX) was encapsulated in Au@mPDA owing to π-π stacking between mPDA and DOX. The dynamic diameter, zeta potential, absorbance, photothermal conversion ability, and drug release behavior were determined. The cellular uptake, cytotoxicity, deep penetration, and anti-tumor effects were subsequently investigated in 4T1 cells. After that, fluorescence imaging, photothermal imaging and pharmacodynamics studies were utilized to evaluate the anti-tumor effects in tumor-bearing mice model. Results This nanoplatform exhibited high drug loading capacity, excellent photothermal conversion and, importantly, pH/photothermal dual-responsive drug release behavior. The in vitro results revealed enhanced photothermal-facilitated cellular uptake, drug release and tumor penetration of Au@mPDA@DOX under near-infrared irradiation. In vivo studies confirmed that, compared with monotherapy with either chemotherapy or photothermal therapy, the anti-tumor effects of Au@mPDA@DOX are synergistically improved. Conclusion Together with good biosafety and biocompatibility, the Au@mPDA@DOX nanoplatform provides an alternative method for safe and synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Junzi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Yumin Xiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Rong Bao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Yingxi Fang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Jiajia Feng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310053, People's Republic of China
| |
Collapse
|
13
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Shang Q, Chen Z, Li J, Guo M, Yang J, Jin Z, Shen Y, Guo S, Wang F. Two-pronged reversal of chemotherapy resistance by gold nanorods induced mild photothermal effect. Bioeng Transl Med 2024; 9:e10670. [PMID: 39553426 PMCID: PMC11561791 DOI: 10.1002/btm2.10670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 11/19/2024] Open
Abstract
Chemotherapy treatment outcomes are severely restricted by multidrug resistance (MDR), in which tumors develop a multiple cross-resistance toward drug involving the pump and nonpump resistance mechanisms, resulting in drug efflux and defending against drug toxicity. Herein, we constructed a pH and near infrared (NIR) light responsive nanomedicine DOX@FG based on gold nanorods (GNRs) that demonstrated the potential to improve chemotherapy outcomes by overcoming MDR. DOX@FG was constructed by conjugating folic acid (FA) and doxorubicin (DOX) derivatives onto GNRs, where the DOX derivatives possessed an acid-labile hydrazone bond. Stimulated by the acidic media in endocytic organelles, DOX@FG exhibited a responsive dissociation for the controlled release of chemotherapeutic DOX. Surprisingly, we found the mild photothermal effect elicited by GNRs under NIR irradiation simultaneously inhibited the pump and nonpump resistance mechanisms, enhancing the intracellular DOX accumulation and sensitizing the cancer cells to DOX, collectively amplify the chemotherapy efficacy and delay the MCF-7/ADR breast tumor growth. This intelligent DOX@FG nanomedicine with the potential for two-pronged reversal of MDR may provide a prospective way to encourage chemotherapy efficacy.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Ziyan Chen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jing Li
- Department of PharmacyPutuo People's HospitalShanghaiPeople's Republic of China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Zhu Jin
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghaiPeople's Republic of China
| |
Collapse
|
15
|
Xi Y, Zhou S, Long J, Zhou L, Tang P, Qian H, Jiang J, Hu Y. Construction of polypyrrole nanoparticles with a rough surface for enhanced chemo-photothermal therapy against triple negative breast cancer. NANOSCALE ADVANCES 2024; 6:d4na00434e. [PMID: 39247870 PMCID: PMC11378020 DOI: 10.1039/d4na00434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, characterized by aggressive malignancy and a poor prognosis. Emerging nanomedicine-based combination therapy represents one of the most promising strategies for combating TNBC. Polypyrrole nanoparticles (PPY) are excellent drug delivery vehicles with outstanding photothermal performances. However, the impact of morphology on PPY's drug loading efficiency and photothermal properties remains largely unexplored. In this study, we propose that pluronic P123 can assist in the synthesis of polypyrrole nanoparticles with rough surfaces (rPPY). During the synthesis, P123 formed small micelles around the nanoparticle surface, which were later removed, resulting in small pits and cavities in rPPY. Subsequently, the rPPY was loaded with the chemotherapy drug gemcitabine (Gem@rPPY) for chemo-photothermal therapy against TNBCs. Our results demonstrate that rPPY exhibited superior photothermal performance and significantly enhanced drug loading efficiency by five times compared to smooth PPY nanoparticles. In vitro assessments confirmed Gem@rPPY's robust photothermal properties by efficiently converting light into heat. Cell culture experiments with 4T1 cells and a TNBC mice model revealed significant tumor suppression upon Gem@rPPY administration, emphasizing its efficacy in inducing apoptosis. Toxicity evaluations demonstrated minimal adverse effects both in vitro and in vivo, highlighting the biocompatibility of Gem@rPPY. Overall, this study introduces a promising combination therapy nanoplatform that underscores the importance of surface engineering to enhance therapeutic outcomes and overcome current limitations in TNBC therapy.
Collapse
Affiliation(s)
- Yuanyin Xi
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Shiqi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University Chongqing 400037 China
| | - Junhui Long
- Department of Dermatology, The 958th Army Hospital of the Chinese People's Liberation Army China
| | - Linxi Zhou
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Peng Tang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Hang Qian
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Army Medical University Chongqing 400037 China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| | - Ying Hu
- Breast Disease Center, Southwest Hospital, Army Medical University Chongqing 400038 China
| |
Collapse
|
16
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
17
|
Turkmen Koc SN, Rezaei Benam S, Aral IP, Shahbazi R, Ulubayram K. Gold nanoparticles-mediated photothermal and photodynamic therapies for cancer. Int J Pharm 2024; 655:124057. [PMID: 38552752 DOI: 10.1016/j.ijpharm.2024.124057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Cancer remains one of the major causes of death globally, with one out of every six deaths attributed to the disease. The impact of cancer is felt on psychological, physical, and financial levels, affecting individuals, communities, and healthcare institutions. Conventional cancer treatments have many challenges and inadequacies. Nanomedicine, however, presents a promising solution by not only overcoming these problems but also offering the advantage of combined therapy for treatment-resistant cancers. Nanoparticles specifically engineered for use in nanomedicine can be efficiently targeted to cancer cells through a combination of active and passive techniques, leading to superior tumor-specific accumulation, enhanced drug availability, and reduced systemic toxicity. Among various nanoparticle formulations designed for cancer treatment, gold nanoparticles have gained prominence in the field of nanomedicine due to their photothermal, photodynamic, and immunologic effects without the need for photosensitizers or immunotherapeutic agents. To date, there is no comprehensive literature review that focuses on the photothermal, photodynamic, and immunologic effects of gold nanoparticles. In this review, significant attention has been devoted to examining the parameters pertaining to the structure of gold nanoparticles and laser characteristics, which play a crucial role in influencing the efficacy of photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, this article provides insights into the success of PTT and PDT mediated by gold nanoparticles in primary cancer treatment, as well as the immunological effects of PTT and PDT on metastasis and recurrence, providing a promising strategy for cancer therapy. In summary, gold nanoparticles, with their unique properties, have the potential for clinical application in various cancer therapies, including the treatment of primary cancer, recurrence and metastasis.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye
| | - Sanam Rezaei Benam
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Ipek Pınar Aral
- Department of Radiation Oncology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA; Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, USA.
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
18
|
Tang Z, Hou Y, Huang S, Hosmane NS, Cui M, Li X, Suhail M, Zhang H, Ge J, Iqbal MZ, Kong X. Dumbbell-shaped bimetallic AuPd nanoenzymes for NIR-II cascade catalysis-photothermal synergistic therapy. Acta Biomater 2024; 177:431-443. [PMID: 38307478 DOI: 10.1016/j.actbio.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.
Collapse
Affiliation(s)
- Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Mingyue Cui
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianan Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
19
|
Asadi K, Samiraninezhad N, Akbarizadeh AR, Amini A, Gholami A. Stimuli-responsive hydrogel based on natural polymers for breast cancer. Front Chem 2024; 12:1325204. [PMID: 38304867 PMCID: PMC10830687 DOI: 10.3389/fchem.2024.1325204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Aims: Breast cancer is the most common malignancy among women in both high- and low-resource settings. Conventional breast cancer therapies were inefficient and had low patient compliance. Stimuli-responsive hydrogels possessing similar physicochemical features as soft tissue facilitate diagnostic and therapeutic approaches for breast cancer subtypes. Scope: Polysaccharides and polypeptides are major natural polymers with unique biocompatibility, biodegradability, and feasible modification approaches utilized frequently for hydrogel fabrication. Alternating the natural polymer-based hydrogel properties in response to external stimuli such as pH, temperature, light, ultrasonic, enzyme, glucose, magnetic, redox, and electric have provided great potential for the evolution of novel drug delivery systems (DDSs) and various advanced technologies in medical applications. Stimuli-responsive hydrogels are triggered by specific cancer tissue features, promote target delivery techniques, and modify release therapeutic agents at localized sites. This narrative review presented innovation in preparing and characterizing the most common stimuli-responsive natural polymer-based hydrogels for diagnostic and therapeutic applications in the breast cancer area. Conclusion: Stimuli-responsive hydrogels display bioinspiration products as DDSs for breast cancer subtypes, protect the shape of breast tissue, provide modified drug release, enhance therapeutic efficacy, and minimize chemotherapy agents' side effects. The potential benefits of smart natural polymer-based hydrogels make them an exciting area of practice for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Amin Reza Akbarizadeh
- Department of Quality Control, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Amini
- Abdullah Al Salem University (AASU), College of Engineering and Energy, Khaldiya, Kuwait
- Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Liu M, Zheng L, Zha K, Yang Y, Hu Y, Chen K, Wang F, Zhang K, Liu W, Mi B, Xiao X, Feng Q. Cu(II)@MXene based photothermal hydrogel with antioxidative and antibacterial properties for the infected wounds. Front Bioeng Biotechnol 2023; 11:1308184. [PMID: 38026853 PMCID: PMC10665530 DOI: 10.3389/fbioe.2023.1308184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The regeneration of skin tissue is often impeded by bacterial infection seriously. At the same time, reactive oxygen species (ROS) are often overexpressed in infected skin wounds, causing persistent inflammation that further hinders the skin repair process. All of these make the treatment of infected wounds is still a great challenge in clinic. In this study, we fabricate Cu(II)@MXene photothermal complex based on electrostatic self-assembly between Cu2+ and MXene, which are then introduced into a hyaluronic acid (HA) hydrogel to form an antibacterial dressing. The rapid adhesion, self-healing, and injectability of the dressing allows the hydrogel to be easily applied to different wound shapes and to provide long-term wound protection. More importantly, this easily prepared Cu(II)@MXene complex can act as a photothermal antibacterial barrier, ROS scavenger and angiogenesis promoter simultaneously to accelerate the healing rate of infected wounds. Our in vivo experiments strongly proved that the inflammatory condition, collagen deposition, vessel formation, and the final wound closure area were all improved by the application of Cu(II)@MXene photothermal hydrogel dressing.
Collapse
Affiliation(s)
- Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yayan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kai Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Feng Wang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kunyu Zhang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wei Liu
- Department of Neurosurgery, Renhe Hospital, Huashan North Hospital Baoshan Branch Affiliated to Fudan University, Shanghai, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Li N, Jiang X, Zhang W, Xiao W, Wu Z, Wang H, He F. Synergetic Photodynamic-Photothermal-Chemotherapy Dual Targeting Nanoplatform Effective Against Breast Cancer in-Mice Model. Int J Nanomedicine 2023; 18:6349-6365. [PMID: 37965281 PMCID: PMC10641433 DOI: 10.2147/ijn.s428022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Combined multimodal therapy for breast cancer is a promising therapeutic approach to increase treatment efficacy and reduce systemic toxicity. The present study aimed to develop a novel multifunctional drug release nanoplatform based on RGD-conjugated hyaluronic acid (HA)-functionalized copper sulfide (CuS) for activatable dual-targeted synergetic therapy against cancer. Methods The pH and NIR-responsive dual-targeting nanoplatform CuS:Ce6@HA:DOX@RGD was prepared, characterized, and evaluated for its stability and photodynamic and photothermal properties. The loading and release of the drug were measured at different pH values with or without laser radiation using the dialysis method. The cellular uptake of the platform specifically by the tumor cells treated with different formulations was investigated through fluorescence imaging. The in vitro and in vivo biosafety levels were assessed systematically. Finally, the antitumor efficiencies against breast cancer were assessed via in vitro and in vivo experiments. Results The spheroid CuS:Ce6@HA:DOX@RGD exhibited remarkable stability and monodispersity in solution. The photosensitive CuS and Ce6 could simultaneously absorb the near-infrared light efficiently to convert NIR light to fatal heat and to generate reactive oxygen species. The CuS:Ce6@HA:DOX@RGD dissociated under an acid environment, causing the release of DOX into the tumor to accelerate upon laser irradiation. The CuS:Ce6@HA:DOX@RGD exhibited target-specific and strong binding ability via a synergic CD44/αvβ3 receptor-mediated bimodal targeting, which led to improved therapeutic efficacy. The tumor growth was effectively inhibited using synergetic photodynamic/photothermal/chemo therapy. No evident systemic toxicity was noted during treatment. Conclusion The newly prepared CuS:Ce6@HA:DOX@RGD has great potential as an activatable theranostic nanoplatform for efficient dual-targeted synergistic therapy against breast cancer.
Collapse
Affiliation(s)
- Na Li
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Xiaochun Jiang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Wanju Zhang
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Wenping Xiao
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Zhaona Wu
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Huirong Wang
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| |
Collapse
|
22
|
Beltran O, Luna M, Gastelum M, Costa-Santos A, Cambón A, Taboada P, López-Mata MA, Topete A, Juarez J. Novel Gold Nanorods@Thiolated Pectin on the Killing of HeLa Cells by Photothermal Ablation. Pharmaceutics 2023; 15:2571. [PMID: 38004550 PMCID: PMC10675277 DOI: 10.3390/pharmaceutics15112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanorods (AuNRs) have attracted attention in the field of biomedicine, particularly for their potential as photothermal agents capable of killing tumor cells by photothermic ablation. In this study, the synthesis of novel AuNRs stabilized with thiolated pectin (AuNR@SH-PEC) is reported. To achieve this, thiolated pectin (SH-PEC) was obtained by chemically binding cysteamine motifs to the pectin backbone. The success of the reaction was ascertained using FTIR-ATR. Subsequently, the SH-PEC was used to coat and stabilize the surface of AuNRs (AuNR@SH-PEC). In this context, different concentrations of SH-PEC (0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mg/mL) were added to 0.50 mL of AuNRs suspended in CTAB, aiming to determine the experimental conditions under which AuNR@SH-PEC maintains stability. The results show that SH-PEC effectively replaced the CTAB adsorbed on the surface of AuNRs, enhancing the stability of AuNRs without affecting their optical properties. Additionally, scanning electron and atomic force microscopy confirmed that SH-PEC is adsorbed into the surface of the AuNRs. Importantly, the dimension size (60 × 15 nm) and the aspect ratio (4:1) remained consistent with those of AuNRs stabilized with CTAB. Then, the photothermal properties of gold nanorods were evaluated by irradiating the aqueous suspension of AuNR@SH-PEC with a CW laser (808 nm, 1 W). These results showed that photothermal conversion efficiency is similar to the photothermal conversion observed for AuNR-CTAB. Lastly, the cell viability assays confirmed that the SH-PEC coating enhanced the biocompatibility of AuNR@SH-PEC. Most important, the viability cell assays subjected to laser irradiation in the presence of AuNR@SH-PEC showed a decrease in the cell viability relative to the non-irradiated cells. These results suggest that AuNRs stabilized with thiolated pectin can potentially be exploited in the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Osvaldo Beltran
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Mariangel Luna
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Marisol Gastelum
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
| | - Alba Costa-Santos
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Área de Materia Condensada, Departamento de Física de Partículas, Facultad de Física, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.C.-S.); (A.C.); (P.T.)
- Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco A. López-Mata
- Departamento de Ciencias de la Salud, Universidad de Sonora, Campus Cajeme, Blvd. Bordo Nuevo s/n, Antiguo Providencia, Ciudad Obregón 85040, Sonora, Mexico;
| | - Antonio Topete
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico;
| | - Josue Juarez
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico; (O.B.); (M.L.); (M.G.)
- Departamento de Física, Universidad de Sonora, Unidad Centro, Hermosillo 83000, Sonora, Mexico
| |
Collapse
|
23
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
24
|
Yang YY, Zheng Y, Liu JJ, Chang ZP, Wang YH, Shao YY, Hou RG, Zhang X. Natural Chlorogenic Acid Planted Nanohybrids with Steerable Hyperthermia for Osteosarcoma Suppression and Bone Regeneration. Adv Healthc Mater 2023; 12:e2300325. [PMID: 37167574 DOI: 10.1002/adhm.202300325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Surgical resection is the most common approach for the treatment of osteosarcoma. However, two major complications, including residual tumor cells and large bone defects, often arise from the surgical resection of osteosarcoma. Discovering new strategies for programmatically solving the two above-mentioned puzzles has become a worldwide challenge. Herein, a novel one-step strategy is reported for natural phenolic acid planted nanohybrids with desired physicochemical properties and steerable photothermal effects for efficacious osteosarcoma suppression and bone healing. Nanohybrids are prepared based on the self-assembly of chlorogenic acid and gold nanorods through robust Au-catechol interface actions, featuring precise nanostructures, great water solubility, good stability, and adjustable hyperthermia generating capacity. As expected, on the one hand, these integrated nanohybrids can severely trigger apoptosis and suppress tumor growth with strong hyperthermia. On the other hand, with controllable mild NIR irradiation, the nanohybrids promote the expression of heat shock proteins and induce prominent osteogenic differentiation. This work initiates a brand-new strategy for assisting osteosarcoma surgical excision to resolve the blockage of residual tumor cells elimination and bone regeneration.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Yuan Zheng
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Jun-Jin Liu
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Zhuang-Peng Chang
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Yue-Hua Wang
- The Third People's Hospital of Taiyuan, Taiyuan, Shanxi, 030001, P. R. China
| | - Yun-Yun Shao
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Rui-Gang Hou
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Xiao Zhang
- Department of Pharmacy, Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| |
Collapse
|
25
|
Maki MAA, Teng MS, Tan KF, Kumar PV. Polyamidoamine-stabilized and hyaluronic acid-functionalized gold nanoparticles for cancer therapy. OPENNANO 2023; 13:100182. [DOI: 10.1016/j.onano.2023.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Kotla NG, Mohd Isa IL, Larrañaga A, Maddiboyina B, Swamy SK, Sivaraman G, Vemula PK. Hyaluronic Acid-Based Bioconjugate Systems, Scaffolds, and Their Therapeutic Potential. Adv Healthc Mater 2023; 12:e2203104. [PMID: 36972409 DOI: 10.1002/adhm.202203104] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/04/2023] [Indexed: 03/29/2023]
Abstract
In recent years, the development of hyaluronic acid or hyaluronan (HA) based scaffolds, medical devices, bioconjugate systems have expanded into a broad range of research and clinical applications. Research findings over the last two decades suggest that the abundance of HA in most mammalian tissues with distinctive biological roles and chemical simplicity for modifications have made it an attractive material with a rapidly growing global market. Besides its use as native forms, HA has received much interest on so-called "HA-bioconjugates" and "modified-HA systems". In this review, the importance of chemical modifications of HA, underlying rationale approaches, and various advancements of bioconjugate derivatives with their potential physicochemical, and pharmacological advantages are summarized. This review also highlights the current and emerging HA-based conjugates of small molecules, macromolecules, crosslinked systems, and surface coating strategies with their biological implications, including their potentials and key challenges discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
| | - Balaji Maddiboyina
- Department of Medical Writing, Freyr Solutions, Hyderabad, Telangana, 500081, India
| | - Samantha K Swamy
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, 9037, Norway
| | - Gandhi Sivaraman
- Department of Chemistry, Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, 624302, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, 560065, India
| |
Collapse
|
27
|
Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, Wei Y, Guo X. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics 2023; 15:1868. [PMID: 37514054 PMCID: PMC10383270 DOI: 10.3390/pharmaceutics15071868] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer immunotherapy is an innovative treatment strategy to enhance the ability of the immune system to recognize and eliminate cancer cells. However, dose limitations, low response rates, and adverse immune events pose significant challenges. To address these limitations, gold nanoparticles (AuNPs) have been explored as immunotherapeutic drug carriers owing to their stability, surface versatility, and excellent optical properties. This review provides an overview of the advanced synthesis routes for AuNPs and their utilization as drug carriers to improve precision therapies. The review also emphasises various aspects of AuNP-based immunotherapy, including drug loading, targeting strategies, and drug release mechanisms. The application of AuNPs combined with cancer immunotherapy and their therapeutic efficacy are briefly discussed. Overall, we aimed to provide a recent understanding of the advances, challenges, and prospects of AuNPs for anticancer applications.
Collapse
Affiliation(s)
- Huiqun Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen 518000, China
| | - Jie Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jing Dai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yubo Wei
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
28
|
Uthappa UT, Suneetha M, Ajeya KV, Ji SM. Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review. Pharmaceutics 2023; 15:1713. [PMID: 37376161 DOI: 10.3390/pharmaceutics15061713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in improving specificity and efficacy in cancer therapy. This review discusses the significance of nanotechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in cancer therapy applications. Additionally, the role of various types of selected noble and non-noble M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting. Additionally, the purpose of HA, its sources and production processes, as well as its chemical and biological properties are described. In-depth explanations are provided about the contemporary applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy. Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations, are discussed, followed by a conclusion and future prospects.
Collapse
Affiliation(s)
- Uluvangada Thammaiah Uthappa
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seong Min Ji
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
29
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 353] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
30
|
Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2023; 10:1095598. [PMID: 36688039 PMCID: PMC9846181 DOI: 10.3389/fchem.2022.1095598] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy is the mainstay of cancer treatment today. Chemotherapeutic drugs are non-selective and can harm both cancer and healthy cells, causing a variety of adverse effects such as lack of specificity, cytotoxicity, short half-life, poor solubility, multidrug resistance, and acquiring cancer stem-like characteristics. There is a paradigm shift in drug delivery systems (DDS) with the advent of smarter ways of targeted cancer treatment. Smart Drug Delivery Systems (SDDSs) are stimuli responsive and can be modified in chemical structure in response to light, pH, redox, magnetic fields, and enzyme degradation can be future of translational medicine. Therefore, SDDSs have the potential to be used as a viable cancer treatment alternative to traditional chemotherapy. This review focuses mostly on stimuli responsive drug delivery, inorganic nanocarriers (Carbon nanotubes, gold nanoparticles, Meso-porous silica nanoparticles, quantum dots etc.), organic nanocarriers (Dendrimers, liposomes, micelles), antibody-drug conjugates (ADC) and small molecule drug conjugates (SMDC) based SDDSs for targeted cancer therapy and strategies of targeted drug delivery systems in cancer cells.
Collapse
Affiliation(s)
- Abhilash Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Meheli Adhikary
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Praveen Kumar Singh
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C. Das
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Seema Bhatnagar,
| |
Collapse
|
31
|
Kumar M, Jha A, Mishra B. Polymeric nanosystems for cancer theranostics. POLYMERIC NANOSYSTEMS 2023:657-697. [DOI: 10.1016/b978-0-323-85656-0.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Koo B, Kim Y, Jang YO, Liu H, Kim MG, Lee HJ, Woo MK, Kim C, Shin Y. A novel platform using homobifunctional hydrazide for enrichment and isolation of urinary circulating RNAs. Bioeng Transl Med 2023; 8:e10348. [PMID: 36684108 PMCID: PMC9842063 DOI: 10.1002/btm2.10348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in specific circulating RNA (circRNA) expressions can serve as diagnostic noninvasive biomarkers for prostate cancer (PCa). However, there are still unmet needs, such as unclear types and roles of circRNAs, PCa detection in benign prostatic hyperplasia (BPH) by unstandardized methods, and limitations of sample volume capacity and low circRNA concentrations. This study reports a simple and rapid circRNA enrichment and isolation technique named "HAZIS-CirR" for the analysis of urinary circRNAs. The method utilizes homobifunctional hydrazides with amine-modified zeolite and polyvinylidene fluoride (PVDF) syringe filtration for combining electrostatic and covalent coupling and size-based filtration, and it offers instrument-free isolation of circRNAs in 20 min without volume limitation, thermoregulation, and lysis. HAZIS-CirR has high capture efficiency (82.03%-92.38%) and a 10-fold more sensitive detection limit (20 fM) than before enrichment (200 fM). The clinical utility of HAZIS-CirR is confirmed by analyzing circulating mRNAs and circulating miRNAs in 89 urine samples. Furthermore, three miRNA panels that differentiate PCa from BPH and control, PCa from control, and BPH from control, respectively, are established by comparing miRNA levels. HAZIS-CirR will be used as an optimal and established method for the enrichment and isolation of circRNAs as diagnostic, prognostic, and predictive biomarkers in human cancers.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Yunlim Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| | - Myung Kyun Woo
- Department of Biomedical EngineeringSchool of Electrical Engineering, University of UlsanNam‐gu, UlsanRepublic of Korea
| | - Choung‐Soo Kim
- Department of Urology, Asan Medical CenterUniversity of Ulsan College of MedicineSongpa‐gu, SeoulRepublic of Korea
- Department of UrologyEwha Womans University Mokdong HospitalYangcheon‐gu, SeoulRepublic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and BiotechnologyYonsei UniversitySeodaemun‐gu, SeoulRepublic of Korea
| |
Collapse
|
33
|
Zhou L, Gong X, Zhao Y, Xu J, Guo Y. Preparation and characterization of GNRs stabled with thiolated lemon polysaccharide and the applications for tumor photothermal therapy. Int J Biol Macromol 2022; 224:1303-1312. [DOI: 10.1016/j.ijbiomac.2022.10.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
34
|
Jia Y, Chen S, Wang C, Sun T, Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front Bioeng Biotechnol 2022; 10:990145. [PMID: 36091467 PMCID: PMC9449492 DOI: 10.3389/fbioe.2022.990145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and high resistance to drugs and metastasis rates are the leading causes of death in BC patients. Releasing anti-cancer drugs precisely to the tumor site can improve the efficacy and reduce the side effects on the body. Natural polymers are attracting extensive interest as drug carriers in treating breast cancer. Hyaluronic acid (HA) is a natural polysaccharide with excellent biocompatibility, biodegradability, and non-immunogenicity and is a significant component of the extracellular matrix. The CD44 receptor of HA is overexpressed in breast cancer cells and can be targeted to breast tumors. Therefore, many researchers have developed nano drug delivery systems (NDDS) based on the CD44 receptor tumor-targeting properties of HA. This review examines the application of HA in NDDSs for breast cancer in recent years. Based on the structural composition of NDDSs, they are divided into HA NDDSs, Modified HA NDDSs, and HA hybrid NDDSs.
Collapse
Affiliation(s)
- Yufeng Jia
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, China
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
| | - Chenyu Wang
- Department of Information Management, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Reproductive Hospital of China Medical University), Shenyang, China
- *Correspondence: Tao Sun, ; Liqun Yang,
| |
Collapse
|
35
|
Janus-Nanojet as an efficient asymmetric photothermal source. Sci Rep 2022; 12:14222. [PMID: 35987802 PMCID: PMC9392775 DOI: 10.1038/s41598-022-17630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
The combination of materials with radically different physical properties in the same nanostructure gives rise to the so-called Janus effects, allowing phenomena of a contrasting nature to occur in the same architecture. Interesting advantages can be taken from a thermal Janus effect for photoinduced hyperthermia cancer therapies. Such therapies have limitations associated to the heating control in terms of temperature stability and energy management. Single-material plasmonic nanoheaters have been widely used for cancer therapies, however, they are highly homogeneous sources that heat the surrounding biological medium isotropically, thus equally affecting cancerous and healthy cells. Here, we propose a prototype of a Janus-Nanojet heating unit based on toroidal shaped plasmonic nanoparticles able to efficiently generate and release local heat directionally under typical unpolarized illumination. Based on thermoplasmonic numerical calculations, we demonstrate that these Janus-based nanoheaters possess superior photothermal conversion features (up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta T\approx 35$$\end{document}ΔT≈35 K) and unique directional heating capacity, being able to channel up over 90% of the total thermal energy onto a target. We discuss the relevance of these innovative nanoheaters in thermoplasmonics, and hyperthermia cancer therapies, which motivate the development of fabrication techniques for nanomaterials.
Collapse
|
36
|
Lin C, Huang Z, Wu T, Zhou X, Zhao R, Xu Z. A chitosan and hyaluronic acid-modified layer-by-layer lubrication coating for cardiovascular catheter. Colloids Surf B Biointerfaces 2022; 217:112687. [DOI: 10.1016/j.colsurfb.2022.112687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
|
37
|
Kong X, Sun Y, Zhang Q, Li S, Jia Y, Li R, Liu Y, Xie Z. Specific Tumor Cell Detection by a Metabolically Targeted Aggregation-Induced Emission-Based Gold Nanoprobe. ACS OMEGA 2022; 7:18073-18084. [PMID: 35664593 PMCID: PMC9161387 DOI: 10.1021/acsomega.2c01494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Detection of circulating tumor cells (CTCs) could be widely used for early diagnosis and real-time monitoring of tumor progression in liquid biopsy samples. Compared with normal cells, tumor cells exhibit relatively strong negative surface charges due to the high rate of glycolysis. In this study, a cationic fluorescence "turn-on" aggregation-induced emission (AIE) nanoprobe based on gold nanorods (GNRs) was designed and tested to detect tumor cells specifically. In brief, tetraphenylethene (TPE), an AIE dye, was conjugated to the cationic polymer polyethylenimine (PEI) yielding TPEI. TPEI-PEG-SH was obtained by further functionalizing TPEI with a thiol group. TPEI-PEG-SH was grafted to the surface of GNRs, yielding the cationic AIE nanoprobe, named as GNRs-PEG-TPEI. The nanoprobe was characterized to have a uniform particle size of 172 nm, a strong positive surface charge (+54.87 mV), and a surface modification load of ∼40%. The in vitro stability of GNRs-PEG-TPEI was verified. The cellular imaging results demonstrated that the nanoprobe could efficiently recognize several types of tumor cells including MCF-7, HepG2, and Caco-2 while exhibiting specific fluorescence signals only after interacting with tumor cells and minimal background interference. In addition, the study investigated the toxicity of the nanoprobe to the captured cells and proved the safety of the nanoprobe. In conclusion, a specific and efficient nanoprobe was developed for capture and detection of different types of tumor cells based on their unique metabolic characteristics. It holds great promise for achieving early diagnosis and monitoring the tumor progression by detecting the CTCs in clinical liquid biopsy samples.
Collapse
Affiliation(s)
| | | | - Qian Zhang
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Siju Li
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Li
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiyong Xie
- School of Pharmaceutical
Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
38
|
Liu Q, Ding X, Xu X, Lai H, Zeng Z, Shan T, Zhang T, Chen M, Huang Y, Huang Z, Dai X, Xia M, Cui S. Tumor-targeted hyaluronic acid-based oxidative stress nanoamplifier with ROS generation and GSH depletion for antitumor therapy. Int J Biol Macromol 2022; 207:771-783. [PMID: 35351548 DOI: 10.1016/j.ijbiomac.2022.03.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023]
Abstract
Tumor cells with innate oxidative stress are more susceptible to exogenous ROS-mediated oxidative damage than normal cells. However, the generated ROS could be scavenged by the overexpressed GSH in cancer cells, thus causing greatly restricted efficiency of ROS-mediated antitumor therapy. Herein, using cinnamaldehyde (CA) as a ROS generator while β-phenethyl isothiocyanate (PEITC) as a GSH scavenger, we designed a tumor-targeted oxidative stress nanoamplifier to elevate intracellular ROS level and synchronously suppress antioxidant systems, for thorough redox imbalance and effective tumor cells killing. First, an amphiphilic acid-sensitive cinnamaldehyde-modified hyaluronic acid conjugates (HA-CA) were synthesized, which could self-assemble into nano-assembly in aqueous media via strong hydrophobic interaction and π-π stacking. Then, aromatic PEITC was appropriately encapsulated into HA-CA nano-assembly to obtain HA-CA/PEITC nanoparticles. Through enhanced permeability retention (EPR) effect and specific CD44 receptor-mediated endocytosis, HA-CA/PEITC nanoparticles could accumulate in tumor tissues and successfully release CA and PEITC under acidic lysosomal environment. Both in vitro and in vivo results showed that the nanoparticles could efficiently boost oxidative stress of tumor cells via generating ROS and depleting GSH, and finally achieve superior antitumor efficacy. This nanoamplifier with good biosafety provides a potential strategy to augment ROS generation and suppress GSH for enhanced oxidation therapy.
Collapse
Affiliation(s)
- Qiuxing Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xin Ding
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shengmiao Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
39
|
Khedri M, Afsharchi F, Souderjani AH, Rezvantalab S, Didandeh M, Maleki R, Musaie K, Santos HA, Shahbazi M. Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. NANO SELECT 2022. [DOI: 10.1002/nano.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Amirhosein Hasanpour Souderjani
- Department of Pharmaceutical Engineering, School of Chemical Engineering College of Engineering, University of Tehran Tehran Iran
| | - Sima Rezvantalab
- Renewable Energies Department Faculty of Chemical Engineering Urmia University of Technology Urmia Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Hélder A. Santos
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
40
|
Zuo C, Zou Y, Gao G, Sun L, Yu B, Guo Y, Wang X, Han M. Photothermal combined with intratumoral injection of annonaceous acetogenin nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces 2022; 213:112426. [PMID: 35219964 DOI: 10.1016/j.colsurfb.2022.112426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
ACGs (annonaceous acetogenins) possess excellent antitumor activity, but their serious accompanying toxicity has prevented their application in the clinic. To address this problem, we therefore constructed an intratumoral drug delivery system integrating chemotherapy and photothermal therapy. The PEGylation of polydopamine nanoparticles (PDA-PEG NPs) possessed an excellent biocompatibility with size of 70.96 ± 2.55 nm, thus can be used as good photothermal materials in the body. Moreover, PDA-PEG NPs can kill half of cancer cells under NIR (near-infrared) laser irradiation, and the survival rate of 4T1 cells is only 1% when ACG NPs and PDA-PEG NPs are combined. In vivo distribution studies showed that the 0.1 mg/kg ACGs NPs + PDA-PEG NPs + NIR group had the highest tumor inhibition rate, which was significantly superior to that of the 0.1 mg/kg ACGs NPs intratumoral injection group (82.65% vs. 59.08%). Altogether, the combination of PDA-PEG NPs + NIR with chemotherapy drugs may provide a feasible and effective strategy for the treatment of superficial tumors.
Collapse
Affiliation(s)
- Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yuan Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Guangyu Gao
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin, Heilongjiang Province 150076, PR China
| | - Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
41
|
Ren K, Wan H, Kaper HJ, Sharma PK. Dopamine-conjugated hyaluronic acid delivered via intra-articular injection provides articular cartilage lubrication and protection. J Colloid Interface Sci 2022; 619:207-218. [PMID: 35397456 DOI: 10.1016/j.jcis.2022.03.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Due to its high molecular weight and viscosity, hyaluronic acid (HA) is widely used for viscosupplementation to provide joint pain relief in osteoarthritis. However, this benefit is temporary due to poor adhesion of HA on articular surfaces. In this study, we therefore conjugated HA with dopamine to form HADN, which made the HA adhesive while retaining its viscosity enhancement capacity. We hypothesized that HADN could enhance cartilage lubrication through adsorption onto the exposed collagen type II network and repair the lamina splendens. HADN was synthesized by carbodiimide chemistry between hyaluronic acid and dopamine. Analysis of Magnetic Resonance (NMR) and Ultraviolet spectrophotometry (Uv-vis) showed that HADN was successfully synthesized. Adsorption of HADN on collagen was demonstrated using Quartz crystal microbalance with dissipation (QCM-D). Ex vivo tribological tests including measurement of coefficient of friction (COF), dynamic creep, in stance (40 N) and swing (4 N) phases of gait cycle indicated adequate protection of cartilage by HADN with higher lubrication compared to HA alone. HADN solution at the cartilage-glass sliding interface not only retains the same viscosity as HA and provides fluid film lubrication, but also ensures better boundary lubrication through adsorption. To confirm the cartilage surface protection of HADN, we visualized cartilage wear using optical coherence tomography (OCT) and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Ke Ren
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hongping Wan
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; College of Veterinary Medicine, Sichuan Agricultural University, Department of Animal and Plant Quarantine, Chengdu 611130, China
| | - Hans J Kaper
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Prashant K Sharma
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
42
|
Xiao HF, Yu H, Wang DQ, Liu XZ, Sun WR, Li YJ, Sun GB, Liang Y, Sun HF, Wang PY, Xie SY, Wang RR. Dual-Targeted Fe₃O₄@MnO₂ Nanoflowers for Magnetic Resonance Imaging-Guided Photothermal-Enhanced Chemodynamic/Chemotherapy for Tumor. J Biomed Nanotechnol 2022; 18:352-368. [PMID: 35484752 DOI: 10.1166/jbn.2022.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T₂-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.
Collapse
Affiliation(s)
- Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - De-Qiang Wang
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Xin-Zheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Guang-Bin Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
43
|
Hydrazided hyaluronan/cisplatin/indocyanine green coordination nanoprodrug for photodynamic chemotherapy in liver cancer. Carbohydr Polym 2022; 276:118810. [PMID: 34823812 DOI: 10.1016/j.carbpol.2021.118810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
It is still a huge challenge for concurrent highly efficient loading of chemotherapeutic agent and photosensitizer into single nanocarrier via stimuli-responsive linkages due to their different physicochemical properties and pharmacokinetics. Herein, based on the discovery of unique cisplatin-hydrazide and cisplatin-indocyanine green (ICG) coordination reactions, a multifunctional coordination nanoprodrug, cisplatin/ICG co-loaded hydrazided hyaluronan/bovine serum albumin (HBCI) nanoparticles, was developed by a desolvation-dual coordination process. The nanoprodrug exhibited ultrahigh drug loading efficiency and glutathione/NIR light dual-responsive drug release behavior. In vitro cellular studies demonstrated efficient internalization and apoptosis-inducing ability of the nanoprodrug in HepG2 cells. In vivo results confirmed the efficacious tumor accumulation and biosafety of HBCI nanoprodrug and synergistic effect of HBCI-based combined photodynamic chemotherapy on inhibiting tumor growth. Overall, this work not only provides a novel dual coordination approach for highly efficient loading of cisplatin and ICG but also verifies the therapeutic potential of HBCI nanoprodrug in combating hepatocellular carcinoma.
Collapse
|
44
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
45
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Pivetta TP, Botteon CEA, Ribeiro PA, Marcato PD, Raposo M. Nanoparticle Systems for Cancer Phototherapy: An Overview. NANOMATERIALS 2021; 11:nano11113132. [PMID: 34835896 PMCID: PMC8625970 DOI: 10.3390/nano11113132] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces' functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.
Collapse
Affiliation(s)
- Thais P. Pivetta
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Caroline E. A. Botteon
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Paulo A. Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Priscyla D. Marcato
- GNanoBio, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil; (C.E.A.B.); (P.D.M.)
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Fax: +351-21-294-85-49
| |
Collapse
|
47
|
Yu J, Zhang X, Pei Z, Shuai Q. A triple-stimulus responsive melanin-based nanoplatform with an aggregation-induced emission-active photosensitiser for imaging-guided targeted synergistic phototherapy/hypoxia-activated chemotherapy. J Mater Chem B 2021; 9:9142-9152. [PMID: 34693960 DOI: 10.1039/d1tb01657a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal synergistic therapy has gained increasing attention in cancer treatment to overcome the limitations of monotherapy and achieve high anticancer efficacy. In this study, a synergistic phototherapy and hypoxia-activated chemotherapy nanoplatform based on natural melanin nanoparticles (MPs) loaded with the bioreduction prodrug tirapazamine (TPZ) and decorated with hyaluronic acid (HA) was developed. A self-reporting aggregation-induced emission (AIE)-active photosensitizer (PS) (BATTMN) was linked to the prepared nanoparticles by boronate ester bonds. The MPs and BATTMN-HA played roles as quenchers for PS and cancer targeting/photodynamic moieties, respectively. As a pH sensitive bond, the borate ester bonds between HA and BATTMN are hydrolysed in the acidic cancer environment, thereby separating BATTMN from the nanoparticles and leading to the induction of fluorescence for imaging-guided synergistic phototherapy/hypoxia-activated chemotherapy under dual irradiation. TPZ can be released upon activation by pH, near-infrared (NIR) and hyaluronidase (Hyal). Particularly, the hypoxia-dependent cytotoxicity of TPZ was amplified by oxygen consumption in the tumor intracellular environment induced by the AIE-active PS in photodynamic therapy (PDT). The nanoparticles developed in our research showed favorable photothermal conversion efficiency (η = 37%), desired cytocompatibility, and excellent synergistic therapeutic efficacy. The proposed nanoplatform not only extends the application scope of melanin materials with AIE-active PSs, but also offers useful insights into developing multistimulus as well as multimodal synergistic tumor treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
| |
Collapse
|
48
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
49
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
50
|
Della Sala F, Fabozzi A, di Gennaro M, Nuzzo S, Makvandi P, Solimando N, Pagliuca M, Borzacchiello A. Advances in Hyaluronic-Acid-Based (Nano)Devices for Cancer Therapy. Macromol Biosci 2021; 22:e2100304. [PMID: 34657388 DOI: 10.1002/mabi.202100304] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the main cause of fatality all over the world with a considerable growth rate. Many biologically active nanoplatforms are exploited for tumor treatment. Of nanodevices, hyaluronic acid (HA)-based systems have shown to be promising candidates for cancer therapy due to their high biocompatibility and cell internalization. Herein, surface functionalization of different nanoparticles (NPs), e.g., organic- and inorganic-based NPs, is highlighted. Subsequently, HA-based nanostructures and their applications in cancer therapy are presented.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Antonio Fabozzi
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Stefano Nuzzo
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Pooyan Makvandi
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| | - Nicola Solimando
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Maurizio Pagliuca
- Altergon Italia s.r.l, Zona Industriale ASI, Morra De Sanctis (AV), 83040, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Viale J.F. Kennedy 54, Naples, 80125, Italy
| |
Collapse
|