1
|
Correa CM, Legrand G, Corsini C, Avila J, Divoux T, Manneville S, Padua A, Gomes MC. Deciphering the Stability of Porous Ionic Liquids: Flow Dynamics, Liquid Structure and Suspension Energetics. Chemphyschem 2025; 26:e202401101. [PMID: 39888234 PMCID: PMC12005130 DOI: 10.1002/cphc.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
The rheological behavior of porous ionic liquids comprising ZIF-8 suspensions in two Newtonian ionic liquids - trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide and trihexyltetradecylphosphonium chloride - exhibited distinct and unexpected differences. ZIF-8 suspensions in the bis(trifluoromethylsulfonyl)imide-based liquid showed Bingham behavior with a measurable yield stress, whereas those in the chloride-based liquid remained Newtonian, even at high solid volume fractions of up to 17.4 %. Remarkably, the viscosities of these porous liquids were not significantly higher than those of the pure ionic liquids. While explaining these behaviours, we could elucidate how the stability and dynamic properties of porous ionic liquids are governed by the highly structured liquid phases, determined experimentally and using molecular dynamics simulations, and by the balance between particle-particle and ZIF-8-ionic liquid interactions, as evidenced by the heat effects measured during particle dispersion.
Collapse
Affiliation(s)
- Cintia M. Correa
- Laboratoire de Chimie de l'ENS de LyonCNRS and Université de LyonFrance
| | - Gauthier Legrand
- Laboratoire de Physique de l'ENS de LyonCNRS and Université de LyonFrance
| | - Chiara Corsini
- Laboratoire de Chimie de l'ENS de LyonCNRS and Université de LyonFrance
| | - Jocasta Avila
- Laboratoire de Chimie de l'ENS de LyonCNRS and Université de LyonFrance
| | - Thibaut Divoux
- Laboratoire de Physique de l'ENS de LyonCNRS and Université de LyonFrance
| | - Sébastien Manneville
- Laboratoire de Physique de l'ENS de LyonCNRS and Université de LyonFrance
- Institut Universitaire de France
| | - Agilio Padua
- Laboratoire de Chimie de l'ENS de LyonCNRS and Université de LyonFrance
| | | |
Collapse
|
2
|
Lu L, Chang CW, Schuyten S, Roy A, Sholl DS, Lively RP. Nonadditive CO 2 Uptake of Type II Porous Liquids Based on Imine Cages. Chemphyschem 2025:e2400985. [PMID: 40179224 DOI: 10.1002/cphc.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Type II porous liquids can potentially exploit the fluidity of liquids and sorption properties of porous sorbents, yet CO2 uptake in porous liquids is still poorly understood. Molecular simulations and experiments are used to examine CO2 uptake by a prototypical porous liquid composed of porous organic cages (CC13) in 2'-hydroxyacetophenone (2'-HAP). The simulations are in reasonable agreement with experimental measurements of CO2 solubility and provide unambiguous information on the partitioning of CO2 within microenvironments in the liquid. Analysis of CO2 dynamics is performed using these simulations, including assessing the self-diffusivity of CO2 in both the neat solvent and porous liquid. This offers insights into the kinetics of CO2 uptake and transport in type II porous liquids based on imine cages. Experiments with type II porous liquids formed by dissolving CC13 in three different size-excluded solvents show nonadditive CO2 absorption relative to predictions based on ideal volume additivity. This nonadditive absorption behavior is also observed in simulations. Nonadditive CO2 uptake is also demonstrated in type II porous liquids based on another imine-based porous cage, CC19.
Collapse
Affiliation(s)
- Lu Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Chao-Wen Chang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Ankana Roy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - David S Sholl
- Oak Ridge National Laboratory, Oak Ridge, TN, 37839, USA
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
3
|
Kai A, Mroz A, Jelfs KE, Cooper AI, Little MA, Greenaway RL. Construction of an organic cage-based porous ionic liquid using an aminal tying strategy. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2025:d5me00004a. [PMID: 40225719 PMCID: PMC11979736 DOI: 10.1039/d5me00004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
An aminal tying method was applied to post-synthetically modify a flexible organic cage, RCC1, to construct a porous ionic liquid (PIL). The resulting PIL, [RCC1-IM][NTf2]6, displayed melting behaviour below 100 °C, a transition to a glass phase on melt-quenching, CO2 uptake, and its permanent porosity was confirmed using molecular dynamic simulations.
Collapse
Affiliation(s)
- Aiting Kai
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Austin Mroz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
- I-X Centre for AI in Science, Imperial College London White City Campus W12 0BZ London UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Institute of Chemical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
4
|
Ma H, Ju X, Cui B, Meng S, Liu Y, Li J, Wang D, Yang Z. Type III Porous Liquids Based on MOF-Derived Carbon for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39964810 DOI: 10.1021/acsami.4c19826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Type III porous liquids (T3PLs), which combine the benefits of solids and liquids, have gained attention for CO2 emission reduction and sustainable development. A key challenge is maintaining porosity by using small-pore-sized pore generators while avoiding the loss of porosity during dispersion in solvents. Traditional methods require complex postsynthetic modifications, which can compromise structural integrity and stability. In this study, MOF-5 with varying particle sizes was used as a carbon precursor to examine the impact of the particle size on metal-organic framework (MOF)-derived carbons. MCMOF-5, with an internal cubic cavity and a surface-dense graphene layer, was dispersed in poly(dimethylsiloxane) (PDMS) to prepare the T3PLs. MCM-410-3%, formed by MCMOF-5 and PDMS410, exhibited excellent CO2 sorption (1.89 mmol/g at 10.0 bar, 298 K) and cyclic stability, benefiting from well-developed carbon pores and protective graphite layers. Additionally, it maintains a low viscosity (108 mPa·s) and low density (0.551 g/cm3). This simple strategy of enhancing porous solid interfaces through calcination offers a new approach to the preparation of T3PLs and provides a new option for the use of CO2 capture materials.
Collapse
Affiliation(s)
- Haosheng Ma
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Xiaoqian Ju
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, Shaanxi, P. R. China
| | - Baolu Cui
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Shuqian Meng
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Yuxi Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Junjie Li
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Dechao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710021, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an 710021, P. R. China
| |
Collapse
|
5
|
Wysokowski M, Makoś‐Chełstowska P, Brzęczek‐Szafran A, Sikora A, Gorczyński A, Jesionowski T. Porous Deep Eutectic Solvents-Unfulfilled Dream or the Next Breakthrough in Scientific Innovation? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412622. [PMID: 39716955 PMCID: PMC11791985 DOI: 10.1002/advs.202412622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Porous deep eutectic solvents (PDES) are capturing the imagination of scientists, promising a revolutionary leap in material science. These innovative materials, blending the versatility of deep eutectic solvents (DES) with the intricate architectures of porous structures, offer an exciting array of applications-from green chemistry and catalysis to energy storage and environmental remediation. However, the journey from laboratory curiosity to industrial application is fraught with challenges. This perspective article analyzes the realm of PDES, scrutinizing the cutting-edge advancements and the challenges that lie ahead. By exploring their synthesis, unique properties, and diverse application potential, the critical question is asked: are PDES an unfulfilled dream or the next big breakthrough in scientific innovation? A comprehensive analysis reveals a "landscape" ripe with opportunity, suggesting that with targeted research and development, PDES can indeed become a cornerstone technology, driving progress across multiple scientific domains.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyBerdychowo 4Poznan60965Poland
| | - Patrycja Makoś‐Chełstowska
- Department of Process Engineering and Chemical TechnologyFaculty of ChemistryGdansk University of TechnologyGdańsk80‐233Poland
| | - Alina Brzęczek‐Szafran
- Department of Chemical Organic Technology and PetrochemistrySilesian University of TechnologyGliwice44‐100Poland
| | - Aleksandra Sikora
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyBerdychowo 4Poznan60965Poland
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | - Adam Gorczyński
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | - Teofil Jesionowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyBerdychowo 4Poznan60965Poland
| |
Collapse
|
6
|
Moitra D, Ganesan A, Wang F, Qiu L, Siniard K, Yang Z, Mahurin SM, He L, Li K, Liu H, Jiang DE, Wang T, Dai S. Permanent Nanobubbles in Water: Liquefied Hollow Carbon Spheres Break the Limiting Diffusion Current of Oxygen Reduction Reaction. J Am Chem Soc 2025; 147:3421-3427. [PMID: 39783982 DOI: 10.1021/jacs.4c13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS). Specifically, we show that the stable dispersion surface ionized HCS in water while retaining the inherent porosity. The electrocatalytic conversion of small gas molecules in aqueous electrolytes is limited by the concentration and diffusion rates of gas molecules in water. In this case, macroporous water exhibited 6 times gas uptake compared to nonporous (pure) water. By leveraging the high gas capacity and enhanced diffusion kinetics, the limiting diffusion current of oxygen reduction reaction (ORR) in macroporous water is 2 times that in nonporous water, offering promising prospects for sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Arvind Ganesan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Fan Wang
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Li
- Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
7
|
Ning H, Ge X, Sheng L, Zhang Z, Shi M, Lan H, Jie K, Zhang X, Hu X, Wu Y. Mechanochemical Synthesis of Type III Porous Liquids from Solid Precursors for the Removal and Conversion of Waste CO 2 from CH 4. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417106. [PMID: 39865856 DOI: 10.1002/adma.202417106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Indexed: 01/28/2025]
Abstract
Porous liquids (PLs) have emerged as a promising class of flow porous materials, offering distinctive benefits for sustainable separation processes coupled with catalytic transformations in the chemical industry. Despite their potential, challenges remain in the realms of synthesis complexity, stability, and the strategic engineering of separation and catalytic sites. In this study, a scalable mechanochemical synthetic approach is reported to fabricate Type III PLs from solid precursors with high stability. In these Type III PLs, ZIF-8 nanocrystals are dispersed in the deep eutectic solvents formed by solid hydrogen-bond donors and acceptors. Owing to the presence of multiple interfacial hydrogen and coordination bonds, these PLs not only maintain porosity and fluidity with high stability, enabling efficient CH4 purification by CO2 removal and sequestration, but also facilitate the catalytic conversion of stored CO2 into valuable products under ambient conditions. This strategy advances the green production of stable and well-dispersed PLs, showing the potential of PLs in the sustainable separation and catalysis coupling system in the chemical industry.
Collapse
Affiliation(s)
- Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuyang Ge
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Nanjing, 215163, P. R. China
| | - Lisha Sheng
- College of Energy and Electrical Engineering, Hohai University, Nanjing, 210098, P. R. China
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhaocong Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mingzhen Shi
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hongchao Lan
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaomin Zhang
- Institute of Green Chemistry and Engineering, Nanjing University, Nanjing, 215163, P. R. China
| | - Xingbang Hu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Nanjing, 215163, P. R. China
| | - Youting Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
8
|
Robinson Brown D, Hurlock MJ, Nenoff TM, Rimsza JM. Control of Permanent Porosity in Type 3 Porous Liquids via Solvent Clustering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5496-5505. [PMID: 39789765 DOI: 10.1021/acsami.4c18837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent. Therefore, PL design criteria on the supramolecular structures of the solvent are explored to create a fundamental understanding of how the solvent enables PL formation for rapid discovery of new PL compositions. Atomistic molecular dynamics simulation of eight solvents with a range of molecular sizes, shapes, and intramolecular bonding was performed, identifying that the shape and size of molecular clusters formed in the solvent are the driving predictor of PL formation rather than the size of the individual solvent molecule. The results demonstrate a significant departure from common approaches to PL formation based on the steric exclusion of solvent molecules from the sorbent via the size of the pore aperture. A modeling and experimental validation study further supports these findings. Through this computational material design study, a previously unexplored mechanism in PL formation, solvent-solvent clustering, is identified as a critical factor for the accelerated discovery of liquid phase carbon capture materials.
Collapse
Affiliation(s)
- Dennis Robinson Brown
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Matthew J Hurlock
- Nanoscale Sciences Department, Sandia national Laboratories, Albuquerque, New Mexico 87123, United States
| | - Tina M Nenoff
- Advanced Science & Technology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
9
|
Li E, Ganesan A, Liu H, Ivanov AS, He L, Nalaoh P, Jenkins DM, Steren CA, Mokhtari-Nori N, Hu J, Li B, Jiang DE, Mahurin SM, Yang Z, Dai S. Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction. Angew Chem Int Ed Engl 2025:e202421615. [PMID: 39760709 DOI: 10.1002/anie.202421615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/07/2025]
Abstract
Sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and molecular simulations. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Arvind Ganesan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Phattananawee Nalaoh
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Carlos Alberto Steren
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Narges Mokhtari-Nori
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Jianzhi Hu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
10
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
11
|
Li E, Siniard KM, Yang Z, Dai S. Porous liquids: an integrated platform for gas storage and catalysis. Chem Sci 2024:d4sc04288c. [PMID: 39430938 PMCID: PMC11487929 DOI: 10.1039/d4sc04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Porous liquids (PLs) represent a new frontier in materials design, combining the unique features of fluidity in liquids and permanent porosity in solids. By engineering well-defined pores into liquids via designed structure modification techniques, the greatly improved free volume significantly enhances the gas transport and storage capability of PL sorbents. Triggered by the promising applications of PLs in gas separation, PLs are further explored in catalysis particularly to integrate the gas storage and catalytic transformation procedure. This emerging field has demonstrated promising progress to advance catalytic procedures using PLs as catalysts, with performance surpassing that of the pure liquid and porous host counterparts. In this perspective article, the recent discoveries and progress in the field of integrated gas storage and catalysis by leveraging the PL platforms will be summarized, particularly compared with the traditional homogeneous or heterogeneous catalytic procedures. The unique features of PLs endow them with combined merits from liquid and solid catalysts and beyond which will be illustrated first. This will be followed by the unique techniques being utilized to probe the porosity and active sites in PLs and the structural evolution during the catalytic procedures. The catalytic application of PLs will be divided by the reaction categories, including CO2-involving transformation, O2-involving reaction, H2S conversion, hydrogenation reaction, and non-gas involving cascade reactions. In each reaction type, the synthesis approaches and structure engineering techniques of PLs, structure characterization, catalytic performance evaluation, and reaction mechanism exploration will be discussed, highlighting the structure-performance relationship and the advancement benefiting from the unique features of PLs.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
12
|
Lai B, Crawford DE, Wu H, James SL. Using Porous Liquids to Perform Liquid-Liquid Separations. Angew Chem Int Ed Engl 2024; 63:e202409894. [PMID: 38984418 DOI: 10.1002/anie.202409894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Porous liquids (PLs) are a new type of fluid sorbent investigated mainly for the separation of gas mixtures. Here, we explore their application to the separation of miscible liquids, using MEG/water (MEG=monoethylene glycol) and EtOH/water as proof-of-principle. Recovery of used MEG is industrially important but its extraction into conventional solvents from water is difficult. PLs ZIF-8@PDMS (PL1, PDMS=polydimethylsilicone) or ZIF-8@sesame oil (PL2) each consisting of 25 wt % of the hydrophobic microporous material ZIF-8 dispersed in PDMS or sesame oil respectively, were formulated and found to be exceedingly physically stable to sedimentation. A 5 nm PEEK membrane was used to provide a permeable barrier between the PL and the alcohol/water phase. MEG was selectively extracted through the membrane from approximately 50 : 50 wt % MEG/water mixtures into the PL phase and this procedure could be applied repeatedly. It was effective for MEG/water mixtures as dilute as 3 : 97 wt %. The PL could also be regenerated (80 °C at 0.01 bar) and re-used, suggesting its potential for continuous, cyclic extraction. Furthermore, PL3 (silicalite-1@PDMS) was effective in selective alcohol extraction from beverages. It shows potential for lowering the alcohol concentration in gin or wine due to its excellent chemical stability and nontoxicity. Overall, we show that the enhanced adsorption properties of PLs due the presence of empty pores, which provides unusually high gas solubilities, also makes them, in principle, applicable to liquid-liquid separations.
Collapse
Affiliation(s)
- Beibei Lai
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | | | - Haochen Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Stuart L James
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| |
Collapse
|
13
|
Dinker MK, Li MM, Liu Y, Zuo M, Ding L, Kou J, Sun LB. What Matters to Fabrication of Type II Porous Liquids: A Case Study on Metallocages and Bulky Ionic Liquid? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403174. [PMID: 39031672 DOI: 10.1002/smll.202403174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Porosity in bulky solvents can be created by the methods of dispersing and dissolving porous hosts or by their chemical adornment. And the ensuing liquids with cavities offer requisite high gas uptakes. Intriguingly, metal-organic cages (MOCs) as discrete nanoporous hosts have been utilized recently as soluble entities to obtain a series of interesting type II porous liquids (PLs). Yet, factors affecting the fabrication of type II PLs have not been disclosed. Herein, three metallocages (NUT-101, ZrT-1-NH2, and ZrT-1) with the same zirconocene nodes but different organic ligands are chosen as porous hosts and a polyethylene-glycol (PEG) linked bis-imidazolium based IL, IL(NTf2), is used as a bulky solvent. It is revealed for the first time that the generation of type II PL depends upon the flexibility of MOCs and the interaction between MOCs and solvent molecules. The maximum solubility is observed with NUT-101 (5%) in IL(NTf2) while ZrT-1-NH2 and ZrT-1 remain least soluble (0.5% and 0.2%). As a result, PL-NUT-101-5% with most intrinsic cavities shows higher CO2 uptake (0.576 mmol g-1) than PL-ZrT-1-NH2-0.5% and PL-ZrT-1-0.2% as well as those reported type II PLs.
Collapse
Affiliation(s)
- Manish Kumar Dinker
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Meng Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingrui Zuo
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Lifeng Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
14
|
Hurlock MJ, Lu L, Sarswat A, Chang CW, Rimsza JM, Sholl DS, Lively RP, Nenoff TM. Exploitation of Pore Structure for Increased CO 2 Selectivity in Type 3 Porous Liquids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51639-51648. [PMID: 39277871 DOI: 10.1021/acsami.4c09811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
CO2 capture requires materials with high adsorption selectivity and an industrial ease of implementation. To address these needs, a new class of porous materials was recently developed that combines the fluidity of solvents with the porosity of solids. Type 3 porous liquids (PLs) composed of solvents and metal-organic frameworks (MOFs) offer a promising alternative to current liquid carbon capture methods due to the inherent tunability of the nanoporous MOFs. However, the effects of MOF structural features and solvent properties on CO2-MOF interactions within PLs are not well understood. Herein experimental and computational data of CO2 gas adsorption isotherms were used to elucidate both solvent and pore structure influences on ZIF-based PLs. The roles of the pore structure including solvent size exclusion, structural environment, and MOF porosity on PL CO2 uptake were examined. A comparison of the pore structure and pore aperture was performed using ZIF-8, ZIF-L, and amorphous-ZIF-8. Adsorption experiments here have verified our previously proposed solvent size design principle for ZIF-based PLs (1.8× ZIF pore aperture). Furthermore, the CO2 adsorption isotherms of the ZIF-based PLs indicated that judicious selection of the pore environment allows for an increase in CO2 selectivity greater than expected from the individual PL components or their combination. This nonlinear increase in the CO2 selectivity is an emergent behavior resulting from the complex mixture of components specific to the ZIF-L + 2'-hydroxyacetophenone-based PL.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Lu Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Akriti Sarswat
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chao-Wen Chang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Transformational Decarbonization Initiative, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tina M Nenoff
- Advanced Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
15
|
Zhang X, Li J, Lu F, Xie F, Xu X, Su L, Gao X, Zheng L. Porous liquids: a novel porous medium for efficient carbon dioxide capture. Phys Chem Chem Phys 2024; 26:22832-22845. [PMID: 39177483 DOI: 10.1039/d4cp02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Porous liquids (PLs) are the combination of porous solid material and flowing liquid, which provides alternative options to solve difficulties in the development of porous solids. With the booming development of PLs since 2015, plenty of syntheses and applications have been reported with a specific focus on gas adsorption. Given the lack of a comprehensive review, this paper reviews the application of PLs in CO2 capture. To start with, ground-breaking case studies are reviewed to help understand the progress of PLs research. Then, as a major part of this paper, studies of PLs for CO2 capture are reviewed separately. Moreover, five basic properties of porous liquids, including stability, viscosity, selectivity, porosity, capacity, and the influencing factors are systemically reviewed respectively. Furthermore, gas storage and release mechanisms in PLs are briefly outlined, and potential processing methods of PLs used for CO2 capture are discussed.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Jiayi Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Fengjin Xie
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Xinming Xu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Long Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, No 58, Renmin Avenue, Haikou 570228, China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| |
Collapse
|
16
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
17
|
Jiang HY, Wang ZM, Sun XQ, Zeng SJ, Guo YY, Bai L, Yao MS, Zhang XP. Advanced Materials for NH 3 Capture: Interaction Sites and Transport Pathways. NANO-MICRO LETTERS 2024; 16:228. [PMID: 38935160 PMCID: PMC11211316 DOI: 10.1007/s40820-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zao-Ming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-Ku, YoshidaKyoto, 606-8501, Japan
| | - Xue-Qi Sun
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shao-Juan Zeng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lu Bai
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Ming-Shui Yao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiang-Ping Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- China University of Petroleum, Beijing, 102249, People's Republic of China.
| |
Collapse
|
18
|
Li S, Wang D, Lee Y, Li T. Preserving Mesoporosity in Type III Porous Liquids through Dual-layer Surface Weaving. Angew Chem Int Ed Engl 2024; 63:e202405288. [PMID: 38588044 DOI: 10.1002/anie.202405288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The fundamental limitation for pore preservation in a Type III porous liquid (T3PL) is the need for a small aperture from the porous filler to realize size exclusion of a bulky solvent. We present a dual-layer surface weaving strategy that can disregard this limitation and achieve micro- and mesoporous metal-organic framework (MOF)-based T3PLs even with apertures much larger than the solvent molecules. By first weaving a tight network of poly(tert-butyl methacrylate) on the MOF surface, the poly(dimethylsiloxane) (PDMS) solvent can be effectively excluded from the pores while smaller guest molecules such as CO2, C2H4, and H2O can freely access the interior, as confirmed by low-pressure adsorption isotherms. Further application of a PDMS-containing polymer coating helps lower the viscosity of the PL due to increased particle dispersibility. This strategy has resulted in the successful construction of T3PLs with aperture sizes up to 3.1 nm.
Collapse
Affiliation(s)
- Siqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China, 201210
| | - Yongjin Lee
- Department of Chemical Engineering, Inha University, Incheon, Republic of Korea, 22212
| | - Tao Li
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA, Australia, 5005
| |
Collapse
|
19
|
Wu P, Wang B, Chen L, Zhu J, Yang N, Zhu L, Deng C, Hua M, Zhu W, Xu C. Tailoring Type III Porous Ionic Liquids for Enhanced Liquid-Liquid Two-Phase Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401996. [PMID: 38482957 PMCID: PMC11095146 DOI: 10.1002/advs.202401996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 05/16/2024]
Abstract
Porous Ionic Liquids (PILs) have gained attention but facing challenges in catalysis, especially in liquid-liquid two-phase reactions due to limited catalytic sites and hydrophilicity control. This work engineered a Type III PILs (PILS-M) using zeolitic imidazolate framework-8 (ZIF-8) confined phosphomolybdic acid (HPMo) as the microporous framework and N-butyl pyridine bis(trifluoromethane sulfonyl) imide ionic liquid ([Bpy][NTf2]) as the solvent. The PILS-M not only combines the advantages of traditional ionic liquids and microporous frameworks, including excellent extraction, high dispersion of catalytically active species, remarkable stability, etc., but also can make the inner surface of ZIF-8 turned to be hydrophilic that favors the contact between aqueous hydrogen peroxide oxidant and catalytically active sites for the promotion of catalytic performance in reactive extractive desulfurization (REDS) processes of fuel oils. This study demonstrates Type III PILs' potential as catalysts for sustainable chemical processes, offering insights into versatile PILs applications in diverse fields.
Collapse
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
- College of Chemical Engineering and EnvironmentState Key Laboratory of Heavy Oil ProcessingChina University of Petroleum‐BeijingBeijing102249P. R. China
| | - Bangzhu Wang
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Linlin Chen
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Jie Zhu
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Ning Yang
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Linhua Zhu
- School of Chemistry and Chemical EngineeringHainan Normal UniversityHaikou571158P. R. China
| | - Chang Deng
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Mingqing Hua
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
| | - Wenshuai Zhu
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiang212013P. R. China
- College of Chemical Engineering and EnvironmentState Key Laboratory of Heavy Oil ProcessingChina University of Petroleum‐BeijingBeijing102249P. R. China
| | - Chunming Xu
- College of Chemical Engineering and EnvironmentState Key Laboratory of Heavy Oil ProcessingChina University of Petroleum‐BeijingBeijing102249P. R. China
| |
Collapse
|
20
|
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
21
|
Brand MC, Trowell HG, Fuchter MJ, Greenaway RL. Incorporating Photoresponses into Porous Liquids. Chemistry 2024; 30:e202303593. [PMID: 38095875 PMCID: PMC11497317 DOI: 10.1002/chem.202303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 01/13/2024]
Abstract
Porous liquids combine the properties of a porous solid with those of a liquid, creating a porous flowable media. Since their discovery, these materials have gathered widespread interest within the scientific community, with substantial numbers of new systems being discovered, often with a focus on increasing the pore volume and gas capacity. Which begs the question, what does the future hold for porous liquids? Recently, the first examples of photoresponsive porous liquids have emerged, allowing changes in porosity to be observed under UV irradiation. Here, we expand on our previous report of photoresponsive porous liquids and explore the conceptualisation of responsive porous liquids and how these materials could be developed with the ability to respond to light, thereby offering a potential mechanism of controllable uptake and release in these systems. This concept article summarises different approaches that could be used to incorporate a photoresponse in a porous liquid before discussing recently reported systems, alongside important factors to consider in their design. Finally, by taking inspiration from the methods used to translate porous solids into the liquid state, combined with the field of photoresponsive materials, we discuss potential strategies that could be employed to realise further examples of photoresponsive porous liquids.
Collapse
Affiliation(s)
- Michael C. Brand
- Department of Chemistry, Materials Innovation Factory and Leverhulme Research Centre for Functional Materials DesignUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
| | - Hamish G. Trowell
- Department of Chemistry, Molecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| | - Matthew J. Fuchter
- Department of Chemistry, Molecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| | - Rebecca L. Greenaway
- Department of Chemistry, Molecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
22
|
Hurlock M, Christian MS, Rimsza JM, Nenoff TM. Design Principles Guiding Solvent Size Selection in ZIF-Based Type 3 Porous Liquids for Permanent Porosity. ACS MATERIALS AU 2024; 4:224-237. [PMID: 38496053 PMCID: PMC10941279 DOI: 10.1021/acsmaterialsau.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/19/2024]
Abstract
Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, -69, -71(RHO), and -71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.
Collapse
Affiliation(s)
- Matthew
J. Hurlock
- Nanoscale Sciences
Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Matthew S. Christian
- Geochemistry Department, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M. Rimsza
- Geochemistry Department, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Advanced Science and
Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
23
|
Liu J, Xiong H, Shuai H, Liu X, Peng Y, Wang L, Wang P, Zhao Z, Deng Z, Zhou Z, Chen J, Chen S, Zeng Z, Deng S, Wang J. Molecular sieving of iso-butene from C 4 olefins with simultaneous high 1,3-butadiene and n-butene uptakes. Nat Commun 2024; 15:2222. [PMID: 38472257 DOI: 10.1038/s41467-024-46607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Iso-butene (iso-C4H8) is an important raw material in chemical industry, whereas its efficient separation remains challenging due to similar molecular properties of C4 olefins. The ideal adsorbent should possess simultaneous high uptakes for 1,3-butadiene (C4H6) and n-butene (n-C4H8) counterparts, endowing high efficiency for iso-C4H8 separation in adsorption columns. Herein, a sulfate-pillared adsorbent, SOFOUR-DPDS-Ni (DPDS = 4,4'-dipyridyldisulfide), is reported for the efficient iso-C4H8 separation from binary and ternary C4 olefin mixtures. The rigidity in pore sizes and shapes of SOFOUR-DPDS-Ni exerts the molecular sieving of iso-C4H8, while exhibiting high C4H6 and n-C4H8 uptakes. The benchmark Henry's selectivity for C4H6/iso-C4H8 (2321.8) and n-C4H8/iso-C4H8 (233.5) outperforms most reported adsorbents. Computational simulations reveal the strong interactions for C4H6 and n-C4H8. Furthermore, dynamic breakthrough experiments demonstrate the direct production of high-purity iso-C4H8 (>99.9%) from C4H6/iso-C4H8 (50/50, v/v), n-C4H8/iso-C4H8 (50/50, v/v), and C4H6/n-C4H8/iso-C4H8 (50/15/35, v/v/v) gas-mixtures.
Collapse
Affiliation(s)
- Junhui Liu
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hanting Xiong
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hua Shuai
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xing Liu
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yong Peng
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Lingmin Wang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Pengxiang Wang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhiwei Zhao
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhenning Deng
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhenyu Zhou
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jingwen Chen
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shixia Chen
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zheling Zeng
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shuguang Deng
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Jun Wang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
24
|
Mow R, Russell-Parks GA, Redwine GEB, Petel BE, Gennett T, Braunecker WA. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1579-1590. [PMID: 38370283 PMCID: PMC10870717 DOI: 10.1021/acs.chemmater.3c02828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H2, temperatures where PLs lose their fluidity. Covalent organic framework (COF)-based PLs that could reversibly form stable complexes with H2 near ambient temperatures would represent a promising development for gas storage and transport applications. We report here the development, characterization, and evaluation of a material with these remarkable characteristics based on Cu(I)-loaded COF colloids. Our synthetic strategy required tailoring conditions for growing robust coatings of poly(dimethylsiloxane)-methacrylate (PDMS-MA) around COF colloids using atom transfer radical polymerization (ATRP). We demonstrate exquisite control over the coating thickness on the colloidal COF, quantified by transmission electron microscopy and dynamic light scattering. The coated COF material was then suspended in a liquid polymer matrix to make a PL. CO2 isotherms confirmed that the coating preserved the general porosity of the COF in the free-flowing liquid, while CO sorption measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed the preservation of Cu(I) coordination sites. We then evaluated the gas sorption phenomenon in the Cu(I)-COF-based PLs using DRIFTS and temperature-programmed desorption measurements. In addition to confirming that H2 transport is possible at or near mild refrigeration temperatures with these materials, our observations indicate that H2 diffusion is significantly influenced by the glass-transition temperature of both the coating and the liquid matrix. The latter result underscores an additional potential advantage of PLs in tailoring gas diffusion and storage temperatures through the coating composition.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Grace E. B. Redwine
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Brittney E. Petel
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
25
|
Sheng L, Wang Y, Mou X, Xu B, Chen Z. Accelerating Metal-Organic Framework Selection for Type III Porous Liquids by Synergizing Machine Learning and Molecular Simulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56253-56264. [PMID: 37988477 DOI: 10.1021/acsami.3c12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
MOF-based type III porous liquids, comprising porous MOFs dissolved in a liquid solvent, have attracted increasing attention in carbon capture. However, discovering appropriate MOFs to prepare porous liquids was still limited in experiments, wasting time and energy. In this study, we have used the density functional theory and molecular dynamics simulation methods to identify 4530 MOF candidates as the core database based on the idea of prohibiting the pore occupancy of porous liquids by the solvent, [DBU-PEG][NTf2] ionic liquid. Based on high-throughput molecular simulation, random forest machine learning models were first trained to predict the CO2 sorption and the CO2/N2 sorption selectivity of MOFs to screen the MOFs to prepare porous liquids. The feature importance was inferred based on Shapley Additive Explanations (SHAP) interpretation, and the ranking of the top 5 descriptors for sorption/selectivity trade-off (TSN) was gravimetric surface area (GSA) > porosity > density > metal fraction > pore size distribution (PSD, 3.5-4 Å). RICBEM was predicted to be one candidate for preparing porous liquid with CO2 sorption capacity of 20.87 mmol/g and CO2/N2 sorption selectivity of 16.75. The experimental results showed that the RICBEM-based porous liquid was successfully synthesized with CO2 sorption capacity of 2.21 mmol/g and CO2/N2 sorption selectivity of 63.2, the best carbon capture performance known to date. Such a screening method would advance the screening of cores and solvents for preparing type III porous liquids with different applications by addressing corresponding factors.
Collapse
Affiliation(s)
- Lisha Sheng
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Key Laboratory of Inlet and Exhaust System Technology, Ministry of Education, Nanjing 210000, P. R. China
| | - Yi Wang
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Xinzhu Mou
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing 210000, P. R. China
| |
Collapse
|
26
|
Shu C, Zhao M, Cheng H, Deng Y, Stiernet P, Hedin N, Yuan J. Desulfurization of diesel via joint adsorption and extraction using a porous liquid derived from ZIF-8 and a phosphonium-type ionic liquid. REACT CHEM ENG 2023; 8:3124-3132. [PMID: 38024524 PMCID: PMC10660146 DOI: 10.1039/d3re00364g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023]
Abstract
A type-III porous liquid based on zeolitic imidazolate framework-8 (ZIF-8) and an ionic liquid trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([THTDP][BTI]) was synthesized and used for the desulfurization of model diesel. The desulfurization effect by ZIF-8/[THTDP][BTI] combined both the adsorptive desulfurization by ZIF-8 and the extraction desulfurization by [THTDP][BTI]. The removal of the three chosen aromatic organic sulfides by the ZIF-8/[THTDP][BTI] porous liquid followed the order of dibenzothiophene (73.1%) > benzothiophene (70.0%) > thiophene (61.5%). It was further found that deep desulfurization could be realized by ZIF-8/[THTDP][BTI] through triple desulfurization cycles and ZIF-8/[THTDP][BTI] can be regenerated readily. The desulfurization mechanism was explored further in detail by conformation search and density functional theory calculations. Calculations supported that the large molecular volume of [THTDP][BTI] excluded itself from the cavities of ZIF-8, making the pores of ZIF-8 in the porous liquid unoccupied and accessible by other guest species, here the studied organic sulfides. These calculations indicate that the van der Waals interactions were the main interactions between ZIF-8/[THTDP][BTI] and specifically benzothiophene. This work supports that the porous liquid ZIF-8/[THTDP][BTI] could potentially be used for desulfurization of diesel in industry.
Collapse
Affiliation(s)
- Chenhua Shu
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Min Zhao
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Hua Cheng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Yajie Deng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Pierre Stiernet
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
27
|
Ning H, Shi M, Yang Q, Huang J, Zhang X, Wu Y, Jie K. Rational Design of Porous Ionic Liquids for Coupling Natural Gas Purification with Waste Gas Conversion. Angew Chem Int Ed Engl 2023; 62:e202310741. [PMID: 37706280 DOI: 10.1002/anie.202310741] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Removal of trace impurities for natural gas purification coupled with waste gas conversion is highly desired in industry. We here report a type of porous ionic liquids (PILs) that can realize the continuous flow separation of CH4 /CO2 /H2 S and the conversion of the captured H2 S to useful products. The PILs are synthesized through a step-by-step surface modification of ionic liquids (ILs) onto UiO-66-OH nanocrystals. The introduction of free tertiary amine groups on the nanocrystal surface endows these PILs with an exceptional ability to enrich H2 S from CO2 and CH4 with impressive selectivity, while the permanent pores of UiO-66-OH act as containers to store an exceptionally higher amount of the selectively captured H2 S than the corresponding nonporous ILs. Simultaneously, the tertiary amines as dual functional moieties offer effective catalytic sites for the conversion of the H2 S stored in PILs into 3-mercaptoisobutyric acid, a key intermediate required for the synthesis of Captopril (an antihypertensive drug). Molecular dynamics, density functional theory calculations and Grand Canonical Monte Carlo simulations help understand both the mechanisms of separation and catalysis performance, confirming that the tertiary amines as well as the permanent pores in UiO-66-OH play vital roles in the whole procedure.
Collapse
Affiliation(s)
- Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mingzhen Shi
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingwei Huang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaomin Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Suzhou, 215163, P. R. China
| | - Youting Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Suzhou, 215163, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Li X, Mao Z, He Z, Su F, Li M, Jiang M, Chao S, Zheng Y, Liang J. Hierarchical Yolk-Shell Porous Ionic Liquids with Lower Viscosity for Efficient C 3H 6/C 3H 8 Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37879671 DOI: 10.1021/acsami.3c10874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Yolk-shell metal-organic framework (YS-MOF) liquids are candidate materials in large-size species with high-efficiency separation, owing to their hierarchical porosity, faster mass transfer, better compatibility, and higher solution processability than MOF liquids with micropores. Nevertheless, facile synthesis strategies of yolk-shell porous ionic liquids (YSPILs) with regulations of size and morphology are an ongoing challenge. Herein, we propose a general strategy to construct YSPILs based on Z67@PDA with tunable core sizes and morphologies. Benefiting from the unique hierarchical yolk-shell structure, as-prepared YSPILs exhibit promise in C3H6/C3H8 capture and separation with the increased sizes of core in yolk-shell ZIF-67@PDA. Advanced YS-MOF liquids have improved the adsorption properties and increased our ability to tailor chemical composition and pore architecture. Impressively, the adsorption capacity of C3H6 and C3H8 of YSPILs exhibits an approximately 3-fold enhancement compared with that of the neat ILs, confirming that the accessible porosities are retained. Effective C3H6/C3H8 separation performance of YSPILs over PILs based on ZIF-67, revealing the hierarchical porosity of YS-Z67@PDA liquids, benefits larger-size gas separation. Therefore, we believe that this work can not only help us to rationally design novel hierarchically porous ionic liquids but also promote candidate applications in large-size species separation, catalysis, and nanoreactors.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhuojun Mao
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Mingtao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Maogang Jiang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| | - Shuaijun Chao
- School of Mechanical Engineering, Xi'an Jiaotong University, No. 28, Xian Ning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P. R. China
| | - Jiahe Liang
- Department of Ultrasonic Medicine, 3D Printing Research Center, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038. P. R. China
| |
Collapse
|
29
|
Avila J, Corsini C, Correa CM, Rosenthal M, Padua A, Costa Gomes M. Porous Ionic Liquids Go Green. ACS NANO 2023; 17:19508-19513. [PMID: 37812175 DOI: 10.1021/acsnano.3c06343] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.
Collapse
Affiliation(s)
- Jocasta Avila
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Chiara Corsini
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Cintia M Correa
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Martin Rosenthal
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
- Dual-Belgian-Beamline (DUBBLE), European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Agilio Padua
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
30
|
Drożdż W, Ciesielski A, Stefankiewicz AR. Dynamic Cages-Towards Nanostructured Smart Materials. Angew Chem Int Ed Engl 2023; 62:e202307552. [PMID: 37449543 DOI: 10.1002/anie.202307552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The interest in capsular assemblies such as dynamic organic and coordination cages has blossomed over the last decade. Given their chemical and structural variability, these systems have found applications in diverse fields of research, including energy conversion and storage, catalysis, separation, molecular recognition, and live-cell imaging. In the exploration of the potential of these discrete architectures, they are increasingly being employed in the formation of more complex systems and smart materials. This Review highlights the most promising pathways to overcome common drawbacks of cage systems (stability, recovery) and discusses the most promising strategies for their hybridization with systems featuring various dimensionalities. Following the description of the most recent advances in the fabrication of zero to three-dimensional cage-based systems, this Review will provide the reader with the structure-dependent relationship between the employed cages and the properties of the materials.
Collapse
Affiliation(s)
- Wojciech Drożdż
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Artur Ciesielski
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
31
|
Egleston BD, Greenaway RL. Liquids with Permanent Macroporosity. Angew Chem Int Ed Engl 2023; 62:e202308150. [PMID: 37493063 DOI: 10.1002/anie.202308150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Permanent macropores (>50 nm) had not been reported in the liquid state until a recent report by Tao Li and co-workers describing a synthetic strategy to form a porous liquid with dual micro-macroporosity. This is prepared by producing hierarchically porous particles that are surface coated and fluidised by dispersion. Surface micropores enable permanent porosity by steric exclusion of the fluid phase. The material has a considerable water uptake capacity (27 % w/w) due to large (480 nm) unoccupied macropores. This also enables switching of thermal conductivity on uptake of water. These are new properties translated from porous solids to the liquid state.
Collapse
Affiliation(s)
- Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, W12 0BZ, London, UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, W12 0BZ, London, UK
| |
Collapse
|
32
|
Qiu L, Peng H, Yang Z, Fan J, Li M, Yang S, Driscoll DM, Ren L, Mahurin SM, He LN, Dai S. Revolutionizing Porous Liquids: Stabilization and Structural Engineering Achieved by a Surface Deposition Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302525. [PMID: 37321653 DOI: 10.1002/adma.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Facile approaches capable of constructing stable and structurally diverse porous liquids (PLs) that can deliver high-performance applications are a long-standing, captivating, and challenging research area that requires significant attention. Herein, a facile surface deposition strategy is demonstrated to afford diverse type III-PLs possessing ultra-stable dispersion, external structure modification, and enhanced performance in gas storage and transformation by leveraging the expeditious and uniform precipitation of selected metal salts. The Ag(I) species-modified zeolite nanosheets are deployed as the porous host to construct type III-PLs with ionic liquids (ILs) containing bromide anion , leading to stable dispersion driven by the formation of AgBr nanoparticles. The as-afforded type-III PLs display promising performance in CO2 capture/conversion and ethylene/ethane separation. Property and performance of the as-produced PLs can be tuned by the cation structure of the ILs, which can be harnessed to achieve polarity reversal of the porous host via ionic exchange. The surface deposition procedure can be further extended to produce PLs from Ba(II)-functionalized zeolite and ILs containing [SO4 ]2- anion driven by the formation of BaSO4 salts. The as-produced PLs are featured by well-maintained crystallinity of the porous host, good fluidity and stability, enhanced gas uptake capacity, and attractive performance in small gas molecule utilization.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Honggen Peng
- School of Resources and Environment/School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juntian Fan
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lei Ren
- School of Resources and Environment/School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
33
|
Borne I, Saigal K, Jones CW, Lively RP. Thermodynamic Evidence for Type II Porous Liquids. Ind Eng Chem Res 2023; 62:11689-11696. [PMID: 37520782 PMCID: PMC10375470 DOI: 10.1021/acs.iecr.3c01201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Porous liquids are an emerging class of microporous materials where intrinsic, stable porosity is imbued in a liquid material. Many porous liquids are prepared by dispersing porous solids in bulky solvents; these can be contrasted by the method of dissolving microporous molecules. We highlight the latter "Type II" porous liquids-which are stable thermodynamic solutions with demonstrable colligative properties. This feature significantly impacts the ultimate utility of the liquid for various end-use applications. We also describe a facile method for determining if a Type II porous liquid candidate is "porous" based on assessing the partial molar volume of the porous host molecule dissolved in the solvent by measuring the densities of candidate solutions. Conventional CO2 isotherms confirm the porosity of the porous liquids and corroborate the facile density method.
Collapse
|
34
|
Koutsianos A, Pallach R, Frentzel-Beyme L, Das C, Paulus M, Sternemann C, Henke S. Breathing porous liquids based on responsive metal-organic framework particles. Nat Commun 2023; 14:4200. [PMID: 37452021 PMCID: PMC10349080 DOI: 10.1038/s41467-023-39887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation of the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications.
Collapse
Affiliation(s)
- Athanasios Koutsianos
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Roman Pallach
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Louis Frentzel-Beyme
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Chinmoy Das
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Maria-Goeppert-Mayer Str. 2, 44221, Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, Maria-Goeppert-Mayer Str. 2, 44221, Dortmund, Germany
| | - Sebastian Henke
- Anorganische Chemie, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany.
| |
Collapse
|
35
|
Hurlock MJ, Christian MS, Fritzsching KJ, Rademacher DX, Rimsza JM, Nenoff TM. Experimental and Computational Mechanisms that Govern Long-Term Stability of CO 2-Adsorbed ZIF-8-Based Porous Liquids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379160 DOI: 10.1021/acsami.3c06177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Porous liquids (PLs) based on the zeolitic imidazole framework ZIF-8 are attractive systems for carbon capture since the hydrophobic ZIF framework can be solvated in aqueous solvent systems without porous host degradation. However, solid ZIF-8 is known to degrade when exposed to CO2 in wet environments, and therefore the long-term stability of ZIF-8-based PLs is unknown. Through aging experiments, the long-term stability of a ZIF-8 PL formed using the water, ethylene glycol, and 2-methylimidazole solvent system was systematically examined, and the mechanisms of degradation were elucidated. The PL was found to be stable for several weeks, with no ZIF framework degradation observed after aging in N2 or air. However, for PLs aged in a CO2 atmosphere, formation of a secondary phase occurred within 1 day from the degradation of the ZIF-8 framework. From the computational and structural evaluation of the effects of CO2 on the PL solvent mixture, it was identified that the basic environment of the PL caused ethylene glycol to react with CO2 forming carbonate species. These carbonate species further react within the PL to degrade ZIF-8. The mechanisms governing this process involves a multistep pathway for PL degradation and lays out a long-term evaluation strategy of PLs for carbon capture. Additionally, it clearly demonstrates the need to examine the reactivity and aging properties of all components in these complex PL systems in order to fully assess their stabilities and lifetimes.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Matthew S Christian
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Keith J Fritzsching
- Organic Materials Science Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - David X Rademacher
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Advanced Science and Technology, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
36
|
He C, Zou YH, Si DH, Chen ZA, Liu TF, Cao R, Huang YB. A porous metal-organic cage liquid for sustainable CO 2 conversion reactions. Nat Commun 2023; 14:3317. [PMID: 37286561 DOI: 10.1038/s41467-023-39089-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
Porous liquids are fluids with the permanent porosity, which can overcome the poor gas solubility limitations of conventional porous solid materials for three phase gas-liquid-solid reactions. However, preparation of porous liquids still requires the complicated and tedious use of porous hosts and bulky liquids. Herein, we develop a facile method to produce a porous metal-organic cage (MOC) liquid (Im-PL-Cage) by self-assembly of long polyethylene glycol (PEG)-imidazolium chain functional linkers, calixarene molecules and Zn ions. The Im-PL-Cage in neat liquid has permanent porosity and fluidity, endowing it with a high capacity of CO2 adsorption. Thus, the CO2 stored in an Im-PL-Cage can be efficiently converted to the value-added formylation product in the atmosphere, which far exceeds the porous MOC solid and nonporous PEG-imidazolium counterparts. This work offers a new method to prepare neat porous liquids for catalytic transformation of adsorbed gas molecules.
Collapse
Affiliation(s)
- Chang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- College of Ecological Environment and Urban Construction, Fujian University of Technology, 350118, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yu-Huang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Zi-Ao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China.
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China.
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.
| |
Collapse
|
37
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
38
|
Brand MC, Rankin N, Cooper AI, Greenaway RL. Photoresponsive Type III Porous Liquids. Chemistry 2023; 29:e202202848. [PMID: 36250279 PMCID: PMC10108065 DOI: 10.1002/chem.202202848] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Porous materials are the subject of extensive research because of potential applications in areas such as gas adsorption and molecular separations. Until recently, most porous materials were solids, but there is now an emerging class of materials known as porous liquids. The incorporation of intrinsic porosity or cavities in a liquid can result in free-flowing materials that are capable of gas uptakes that are significantly higher than conventional non-porous liquids. A handful of porous liquids have also been investigated for gas separations. Until now, the release of gas from porous liquids has relied on molecular displacement (e.g., by adding small solvent molecules), pressure or temperature swings, or sonication. Here, we explore a new method of gas release which involves photoisomerisable porous liquids comprising a photoresponsive MOF dispersed in an ionic liquid. This results in the selective uptake of CO2 over CH4 and allows gas release to be controlled by using UV light.
Collapse
Affiliation(s)
- Michael C. Brand
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Nicola Rankin
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Andrew I. Cooper
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Leverhulme Research Centre for Functional Materials DesignMaterials Innovation Factory and Department of ChemistryUniversity of LiverpoolLiverpoolL7 3NYUK
| | - Rebecca L. Greenaway
- Department of ChemistryMaterials Innovation FactoryUniversity of Liverpool51 Oxford StreetLiverpoolL7 3NYUK
- Department of ChemistryMolecular Sciences Research HubImperial College London82 Wood LaneLondonW12 0BZUK
| |
Collapse
|
39
|
Boventi M, Mauri M, Alexander F, James SL, Simonutti R, Castiglione F. Exploring cavities in Type II Porous Liquids with Xenon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
An enhancement of CO2 capture in a type-III porous liquid by 2-Methylimidazole zinc salt (ZIF-8). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Shaikh AR, Posada-Pérez S, Brotons-Rufes A, Pajski JJ, Vajiha, Kumar G, Mateen A, Poater A, Solà M, Chawla M, Cavallo L. Selective absorption of H2S and CO2 by azole based protic ionic liquids: A combined density functional theory and molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Dinker MK, Zhao K, Dai Z, Ding L, Liu X, Sun L. Porous Liquids Responsive to Light**. Angew Chem Int Ed Engl 2022; 61:e202212326. [DOI: 10.1002/anie.202212326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Manish Kumar Dinker
- State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Kan Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Zhengxing Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Lifeng Ding
- Department of Chemistry Xi'an JiaoTong-Liverpool University Suzhou 215123 Jiangsu China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
43
|
He L, He J, Cui P, Feng Y, Hua M, Zhang J, Wu P, Zhu W, Li H, Liu Z, Xu C. Microporous Boron Nitride-based Porous Ionic Liquid for Enhanced Extractive Desulfurization of Fuel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Borne I, Simon N, Jones CW, Lively RP. Design of Gas Separation Processes Using Type II Porous Liquids as Physical Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isaiah Borne
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Natalie Simon
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
46
|
Mahdavi H, Smith SJD, Mulet X, Hill MR. Practical considerations in the design and use of porous liquids. MATERIALS HORIZONS 2022; 9:1577-1601. [PMID: 35373794 DOI: 10.1039/d1mh01616d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The possibility of creating well-controlled empty space within liquids is conceptually intriguing, and from an application perspective, full of potential. Since the concept of porous liquids (PLs) arose several years ago, research efforts in this field have intensified. This review highlights the design, synthesis, and applicability of PLs through a thorough examination of the current state-of-the-art. Following a detailed examination of the fundamentals of PLs, we examine the different synthetic approaches proposed to date, discuss the nature of PLs, and their pathway from the laboratory to practical application. Finally, possible challenges and opportunities are outlined.
Collapse
Affiliation(s)
| | - Stefan J D Smith
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Xavier Mulet
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Australia.
- CSIRO, Bag 10, Clayton South, VIC 3169, Australia.
| |
Collapse
|
47
|
Mukesh C, Sarmad S, Samikannu A, Nikjoo D, Siljebo W, Mikkola JP. Pore size-excluded low viscous porous liquids for CO2 sorption at room temperature and thermodynamic modeling study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Mahdavi H, Eden NT, Doherty CM, Acharya D, Smith SJD, Mulet X, Hill MR. Underlying Polar and Nonpolar Modification MOF-Based Factors that Influence Permanent Porosity in Porous Liquids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23392-23399. [PMID: 35544409 PMCID: PMC9136846 DOI: 10.1021/acsami.2c03082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
It is increasingly apparent that porous liquids (PLs) have unique use cases due to the combination of ready liquid handling and their inherently high adsorption capacity. Among the PL types, those with permanent porosity are the most promising. Although Type II and III PLs have economic synthetic methods and can be made from a huge variety of metal-organic frameworks (MOFs) and solvents, these nanocomposites still need to be stable to be useful. This work aims to systematically explore the possibilities of creating PLs using different MOF modification methods. This delivered underpinning insights into the molecular-level influence between solvent and MOF on the overall nanocomposite stability. Zirconium-based metal-organic frameworks were combined with two different solvents of varying chemistry to deliver CO2 sorption capacities as high as 2.9 mmol g-1 at 10 bar. The results of the study could have far-reaching ramifications for future investigations in the PL field.
Collapse
Affiliation(s)
- Hamidreza Mahdavi
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Nathan T. Eden
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Cara M. Doherty
- CSIRO
Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Durga Acharya
- CSIRO
Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Stefan J. D. Smith
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Xavier Mulet
- CSIRO
Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Matthew R. Hill
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| |
Collapse
|
49
|
Egleston BD, Mroz A, Jelfs KE, Greenaway RL. Porous liquids - the future is looking emptier. Chem Sci 2022; 13:5042-5054. [PMID: 35655552 PMCID: PMC9093153 DOI: 10.1039/d2sc00087c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
The development of microporosity in the liquid state is leading to an inherent change in the way we approach applications of functional porosity, potentially allowing access to new processes by exploiting the fluidity of these new materials. By engineering permanent porosity into a liquid, over the transient intermolecular porosity in all liquids, it is possible to design and form a porous liquid. Since the concept was proposed in 2007, and the first examples realised in 2015, the field has seen rapid advances among the types and numbers of porous liquids developed, our understanding of the structure and properties, as well as improvements in gas uptake and molecular separations. However, despite these recent advances, the field is still young, and with only a few applications reported to date, the potential that porous liquids have to transform the field of microporous materials remains largely untapped. In this review, we will explore the theory and conception of porous liquids and cover major advances in the area, key experimental characterisation techniques and computational approaches that have been employed to understand these systems, and summarise the investigated applications of porous liquids that have been presented to date. We also outline an emerging discovery workflow with recommendations for the characterisation required at each stage to both confirm permanent porosity and fully understand the physical properties of the porous liquid.
Collapse
Affiliation(s)
- Benjamin D Egleston
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Austin Mroz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| | - Rebecca L Greenaway
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
50
|
Zhang Z, Yang B, Zhang B, Cui M, Tang J, Qiao X. Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat Commun 2022; 13:2353. [PMID: 35487897 PMCID: PMC9054828 DOI: 10.1038/s41467-022-30092-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards L-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and L-Trp. Specifically, each HD unit is filled with nearly 5 L-Trp molecules, which is higher than the L-Trp occupation in the structure unit of other benchmark metal-organic frameworks.
Collapse
Affiliation(s)
- Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Baolin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Bingjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| |
Collapse
|