1
|
Chen X, Li Y. Solution-Processed Fabrication of Ni 3S 2-Based Nanoheterostructure on Silicon Heterojunction Photocathode for Boosting Solar Hydrogen Generation. SMALL METHODS 2025; 9:e2401075. [PMID: 39533497 DOI: 10.1002/smtd.202401075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Silicon heterojunction (SHJ) solar cell is an advanced and mature photovoltaic cell. Development of photoelectrochemical (PEC) water splitting devices for hydrogen fuel production using SHJ solar cells is considered as a promising approach to address energy crisis. To achieve this goal, it is necessary to deposit passivation layer and cocatalyst layer on the photoelectrode. However, the development of low-cost and scalable preparation methods for high-quality passivation and cocatalyst layer continues to be a significant challenge. Herein, an efficient passivation layer and hydrogen evolution reaction (HER) catalyst are successfully fabricated via solution processed methods. To improve the HER activity of Ni3S2, a Ni3S2-based nanoheterostructure of crystalline Ni3S2, Ni, and amorphous Y(OH)3 is constructed. The optimized photocathode exhibits excellent PEC-HER performance, which achieves a saturated photocurrent of -35.5 mA cm-2 and an applied bias photon-to-current efficiency (ABPE) of 8.4 ± 0.1% under simulated AM1.5G one-sun illumination and more than 120 h of continuous water splitting. This study paves a way for the design and large-scale manufacturing of cost-efficient SHJ photocathode devices.
Collapse
Affiliation(s)
- Xiaoming Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuexiang Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Gao H, Xu Z, Lin S, Sun Y, Li L. Construction of a Three-Phase MnS 2/Co 4S 3/Ni 3S 2 Heterostructure for Boosting Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21077-21085. [PMID: 39315580 DOI: 10.1021/acs.langmuir.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The rational construction of highly efficient electrocatalysts for the oxygen evolution reaction (OER) plays a critical role in energy conversion systems. Designing heterostructures is a common and effective strategy to improve the performance of electrocatalysts. In this paper, an MnS2/Co4S3/Ni3S2 heterostructure was synthesized on Ni foam using a one-step vulcanization method. It provides a modified electronic structure and plentiful three-phase heterogeneous interfaces that can effectively enrich the active sites and accelerate electron transfer, thereby improving the OER activity. Thanks to the heterostructure, the MnS2/Co4S3/Ni3S2 exhibits a low overpotential of 265 and 304 mV for the OER to reach current densities of 50 and 100 mA/cm2, respectively. Furthermore, the surface reconstruction of MnS2/Co4S3/Ni3S2 has been investigated, which revealed the formation of metal hydr(oxy)oxides evolved during the OER process. This work provides a facile strategy for constructing three-phase heterostructures, shedding light on the development of high-performance, nonprecious metal-based OER electrocatalysts.
Collapse
Affiliation(s)
- Haoran Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Zhikun Xu
- School of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Shuangyan Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Yujing Sun
- School of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China
| | - Lin Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| |
Collapse
|
3
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Lin HH, Liang HI, Luo SC. Modulating Surface Cation Concentration via Tuning the Molecular Structures of Ethylene Glycol-Functionalized PEDOT for Improved Alkaline Hydrogen Evolution Reaction. JACS AU 2024; 4:3070-3083. [PMID: 39211622 PMCID: PMC11350742 DOI: 10.1021/jacsau.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The sluggish catalytic kinetics of nonprecious metal-based electrocatalysts often hinder them from achieving efficient hydrogen evolution reactions (HERs). Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been promising materials for various electrochemical applications. Nevertheless, previous studies have demonstrated that PEDOT coatings can be detrimental to HER performance. In this study, we investigated the alkaline HER efficiency of nickel foam coated with three types of ethylene glycol (EG)-functionalized EDOT. Specifically, EDOT derivatives bearing hydroxyl (-OH) and methoxy (-OCH3) end groups on the EG side chain and molecules containing two EDOT units are interconnected via EG moieties. EG groups are selected due to their strong interaction with alkali metal cations. Intriguingly, improved HER performance is observed on all electrodes coated with EG-functionalized EDOTs. Electrochemical impedance spectroscopy, electrochemical quartz crystal microbalance with dissipation, and XPS analysis are employed to explore the origin of enhanced HER efficiency. The results suggest the EG moieties can induce locally concentrated ions near the electrode surface and facilitate water dissociation through noncovalent interactions. The influence of EG chain length is systematically investigated by synthesizing molecules with di-EG, tetra-EG, and hexa-EG functionalities. This study highlights the importance of molecular design in modifying electrode surface properties to promote alkaline HER.
Collapse
Affiliation(s)
- Hsun-Hao Lin
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-I Liang
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science
and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Bhat MA, Ul Islam S, Majid K. Interfacial Electronic Structure Engineering of NiCo 2Se 4 and NiTe 2 Nanorods for Enhanced Hydrogen Evolution Reaction. Chemphyschem 2024:e202400454. [PMID: 39180754 DOI: 10.1002/cphc.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 08/26/2024]
Abstract
Finding the best candidates with outstanding electrocatalytic capabilities for the hydrogen evolution reaction is essential for realizing large-scale hydrogen production through electrolysis. In this study, we synthesized NiCo2Se4 (NCS) and NiTe2 (NT) nanorod arrays using a hydrothermal method. The confirmation of catalyst formation was achieved through X-ray diffraction analysis, electron microscopy imaging, and X-ray photoelectron spectroscopy. Leveraging the plentiful heterointerfaces and synergistic effects arising from the incorporation of bimetallic components, the NCS/NT electrocatalyst demonstrates remarkable efficacy in catalyzing the hydrogen evolution reaction. It achieves a minimal overpotential of 163 mV to attain a current density of 50 mA cm-2, showcasing exceptional catalytic activity. Further exploration has revealed that the engineering of heterogeneous interfaces and the morphology of nanorods not only guarantee the exposure of numerous active sites and expedite electron-mass transfer but also trigger electron modulation. Such modulation serves to fine-tune the adsorptive and desorptive dynamics of reaction intermediates, culminating in an enhancement of the catalyst's inherent activity. This study illuminates the novel composite electrocatalyst with robust synergy, highlighting the pivotal role of their unique nanostructures in achieving high-efficiency hydrogen production via electrolysis.
Collapse
Affiliation(s)
- Muzaffar A Bhat
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Shahjahan Ul Islam
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Kowsar Majid
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| |
Collapse
|
6
|
Wang T, Luo Z, Wang C, Li Y, Chen X, Tang Y, Wang X, Zhou Z. An exploration of the solution of direct methanol fuel cell cost effectiveness. Front Chem 2024; 12:1434996. [PMID: 39176075 PMCID: PMC11338878 DOI: 10.3389/fchem.2024.1434996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/05/2024] [Indexed: 08/24/2024] Open
Abstract
The work in this paper incorporated printed circuit board (PCB) technology into micro-direct methanol fuel cells (µDMFCs) and conjectured and verified the performance degradation factors of PCB current collectors in µDMFCs by testing different designed configuration µDMFCs. The experiment results showed that all kinds of PCB coating can benefit from the porous stainless-steel plates covering to a great extent. At the end of 48 h discharging, µDMFCs with porous stainless-steel plates between MEA and PCB coating achieved higher performance than those of the direct contacting series. It can be inferred from various types of experimental data that because of stainless-steel porous plate isolating, the impact of corrosion on the surface of the PCB electrode plate was reduced to a certain extent. The corrosion of the electrode plate was slowed down in the µDMFC discharging as a result of the passivation behavior on the iron surface and a decrease in corrosion current. Consequently, the attenuation of the PCB performance was delayed. The conclusion of this work explores a practical direction to enhance the cost-effectiveness of fuel cells, promoting the large-scale application of DMFCs in the future.
Collapse
Affiliation(s)
- Tengyi Wang
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
- Weihai Key Laboratory of Marine Sensors, Weihai, China
| | - Zhiwei Luo
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Changsheng Wang
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yang Li
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
- Weihai Key Laboratory of Marine Sensors, Weihai, China
- Harbin Institute of Technology (Weihai) International Microelectronics Center, Weihai, China
| | - Xi Chen
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Yang Tang
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xinsheng Wang
- Department of Electronics Science and Technology, Harbin Institute of Technology, Weihai, China
- Weihai Key Laboratory of Marine Sensors, Weihai, China
- Harbin Institute of Technology (Weihai) International Microelectronics Center, Weihai, China
- Shandong Provincial Key Laboratory of Marine Electronic Information and Intelligent Unmanned Systems, Weihai, China
- Key Laboratory of Cross-Domain Synergy and Comprehensive Support for Unmanned Marine Systems, Ministry of Industry and Information Technology, Weihai, China
| | - Zhiquan Zhou
- Shandong Provincial Key Laboratory of Marine Electronic Information and Intelligent Unmanned Systems, Weihai, China
- Key Laboratory of Cross-Domain Synergy and Comprehensive Support for Unmanned Marine Systems, Ministry of Industry and Information Technology, Weihai, China
| |
Collapse
|
7
|
Alam R, Roy SC, Islam T, Feng R, Zhu X, Donley CL, Islam SM. Molybdenum-Oxysulfide-Functionalized MgAl-Layered Double Hydroxides─A Sorbent for Selenium Oxoanions. Inorg Chem 2024; 63:10997-11005. [PMID: 38833549 DOI: 10.1021/acs.inorgchem.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Effective removal of chemically toxic selenium oxoanions at high-capacity and trace levels from contaminated water remains a challenge in current scientific pursuits. Here, we report the functionalization of the MgAl layered double hydroxide with molybdenum-oxysulfide (MoO2S2) anion, referred to as LDH-MoO2S2, and its potential to sequester SeVIO42- and SeIVO32- from aqueous solution. LDH-MoO2S2 nanosheets were synthesized by an ion exchange method in solution. Synchrotron X-ray pair distribution function (PDF) and extended X-ray absorption fine structure (EXAFS) revealed an unexpected transformation of the MoO2S22- to Mo2O2S62- like species during the intercalation process. LDH-MoO2S2 is remarkably efficient in removing SeO42- and SeO32- ions from the ppm to trace level (≤10 ppb), with distribution constant (Kd) ranging from 104 to 105 mL/g. This material showed exceptionally high sorption capacities of 237 and 358 mg/g for SeO42- and SeO32-, respectively. Furthermore, LDH-MoO2S2 demonstrates substantial affinity and efficiency to remove SeO32-/SeO42- even in the presence of competitive ions from contaminated water. Hence, the removal of selenium (VI/IV) oxoanions collectively occurs through reductive precipitation and ion exchange mechanisms. This work provides significant insights into the chemical structure of the MoO2S2 anion into LDH and emphasizes its exceptional potential for high-capacity selenium removal and positioning it as a premier sorbent for selenium oxoanions.
Collapse
Affiliation(s)
- Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Taohedul Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Xianchun Zhu
- Department of Civil Engineering, Jackson State University, Jackson, Mississippi 39217, United States
| | - Carrie L Donley
- Department of Chemistry, and Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
8
|
Zhu L, Zhou S, Cheng H, Komarneni S, Ma J. In-situ growth of Mn-Ni 3S 2 on nickel foam for catalytic ozonation of p-nitrophenol. CHEMOSPHERE 2024; 357:142037. [PMID: 38626811 DOI: 10.1016/j.chemosphere.2024.142037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
In this study, a new catalyst for catalytic ozonation was obtained by in-situ growth of Mn-Ni3S2 nanosheets on the surface of nickel foam (NF). The full degradation of p-nitrophenol (PNP) was accomplished under optimal conditions in 40 min. The effects of material dosage, ozone dosage, pH and the presence of inorganic anions on the degradation efficiency of PNP were investigated. ESR analysis showed that singlet oxygen (1O2) and superoxide radical (O2•-) are the main contributors of PNP degradation. This study offers a new combination of supported catalysts with high efficiency and easy recovery, which provides a new idea for wastewater treatment.
Collapse
Affiliation(s)
- Linjie Zhu
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Siyi Zhou
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Jianfeng Ma
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
9
|
Li F, Cao J, Yu H, Lin H, Chen S. Superhydrophilic Dendritic FeP/Cu 3P Electrocatalyst for Urea Splitting via the Intramolecular Mechanism. Inorg Chem 2024; 63:4204-4213. [PMID: 38386868 DOI: 10.1021/acs.inorgchem.3c04285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The electrocatalytic overall urea splitting can achieve the dual goals of urea treatment and hydrogen energy acquisition. Herein, we exploited the principle of precipitation dissolution equilibrium to obtain bimetallic phosphide FeP/Cu3P/CF for the simultaneous oxidation of urea and reduction of water and comprehensively reveal the inherent molecular thermodynamic mechanisms on the surface of catalysts. The excellent electrochemical performance can be derived from the super water affinity and synergistic effect. Especially, the theoretical calculation unveils that the synergistic effect between FeP and Cu3P can lower the activation energy required for urea electrooxidation, thereby promoting urea splitting. In situ differential electrochemical mass spectrometry (in situ DEMS) measurements further demonstrated that urea oxidation on FeP/Cu3P/CF proceeded according to the intramolecular mechanism. This work has laid the foundation for constructing highly efficient superhydrophilic bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Huiqin Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| |
Collapse
|
10
|
Xu J, Wang P, Chen S, Li L, Li D, Zhang Y, Wu Q, Fan J, Ma L. 3D-printed MoS 2/Ni electrodes with excellent electro-catalytic performance and long-term stability for dechlorination of florfenicol. J Environ Sci (China) 2024; 137:420-431. [PMID: 37980027 DOI: 10.1016/j.jes.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/20/2023]
Abstract
Here, we report the production of 3D-printed MoS2/Ni electrodes (3D-MoS2/Ni) with long-term stability and excellent performance by the selective laser melting (SLM) technique. As a cathode, the obtained 3D-MoS2/Ni could maintain a degradation rate above 94.0% for florfenicol (FLO) when repeatedly used 50 times in water. We also found that the removal rate of FLO by 3D-MoS2/Ni was about 12 times higher than that of 3D-printed pure Ni (3D-Ni), attributed to the improved accessibility of H*. In addition, the electrochemical characterization results showed that the electrochemically active surface area of the 3D-MoS2/Ni electrode is about 3-fold higher than that of the 3D-Ni electrode while the electrical resistance is 4 times lower. Based on tert-butanol suppression, electron paramagnetic resonance and triple quadrupole mass spectrometer experiments, a "dual path" mechanism and possible degradation pathway for the dechlorination of FLO by 3D-MoS2/Ni were proposed. Furthermore, we also investigated the impacts of the cathode potential and the initial pH of the solution on the degradation of FLO. Overall, this study reveals that the SLM 3D printing technique is a promising approach for the rapid fabrication of high-stability metal electrodes, which could have broad application in the control of water contaminants in the environmental field.
Collapse
Affiliation(s)
- Jianhui Xu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Pengxu Wang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shenggui Chen
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China; Dongguan Institute of Science and Technology Innovation, Dongguan University of Technology, Dongguan 523808, China; School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lei Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yunfei Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Qi Wu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jinhong Fan
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luming Ma
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Hu M, Qian Y, Yu S, Yang Q, Wang Z, Huang Y, Li L. Amorphous MoS 2 Decorated Ni 3 S 2 with a Core-shell Structure of Urchin-Like on Nickel-Foam Efficient Hydrogen Evolution in Acidic and Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305948. [PMID: 37759414 DOI: 10.1002/smll.202305948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The large-scale commercialization of the hydrogen evolution reaction (HER) necessitates the development of cost-effective and highly efficient electrocatalysts. Although transition metal sulfides, such as MoS2 and Ni3 S2 , hold great potential in the field of HER, their catalytic performance has been unsatisfactory due to incomplete exposure of active sites and poor electrical conductivity. In this work, via a simple hydrothermal strategy, amorphous MoS2 nanoshells in the form of urchin-like MoS2 -Ni3 S2 core-shell heterogeneous structure is realized and in situ loaded on nickel foam (A-MoS2 -Ni3 S2 -NF). In particular, XPS analysis results show that the coupling of amorphous MoS2 and Ni3 S2 makes the electrode surface exhibit electron-abundant property, which will have a positive impact on HER catalytic activity. In addition, the fully exposed active site of amorphous MoS2 is another crucial factor contributing to its high catalytic performance of A-MoS2 -Ni3 S2 -NF electrode. In particular, at a current density of 10 mA cm⁻2 , the overpotential of electrode is 95 mV (1.0 m KOH) and 145 mV (0.5 m H2 SO4 ). This work highlights the importance of amorphous MoS2 and MoS2 -Ni3 S2 of sea-urchin core-shell structure in optimizing HER performance, which provides an important reference for HER research.
Collapse
Affiliation(s)
- Mengliang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yuanpeng Qian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Shuhui Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Qingyao Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Zhinan Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Yishuai Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, P. R. China
| |
Collapse
|
12
|
Prasanna M, Logeshwaran N, Ramakrishnan S, Yoo DJ. Metallic 1T-N-WS 2 /WO 3 Heterojunctions Featuring Interface-Engineered Cu-S Configuration for Selective Electrochemical CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306165. [PMID: 37715287 DOI: 10.1002/smll.202306165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Indexed: 09/17/2023]
Abstract
Electrocatalytic carbon-dioxide reduction reactions (ECO2 RR) are one of the most rational techniques to control one's carbon footprint. The desired product formation depends on deliberate reaction kinetics and a choice of electron-proton contribution. Herein the usage of novel CuS active centers decorated over stable 1T metallic N-WS2 /WO3 nanohybrids as an efficient selective formate conversion electrocatalyst with regard to ECO2 RR is reported. The preferred reaction pathway is identified as *OCHO, which is reduced (by gaining H+ + e- ) to HCOO- (HCOO- path) as the primary product. More significantly, at -1.3 V versus RHE yield of FEHCOO - is 55.6% ± 0.5 with a Jgeo of -125.05 mA cm-2 for CuS@1T-N-WS2 /WO3 nanohybrids. In addition, predominant catalytic activity, selectivity, and stability properties are observed; further post-mortem analysis demonstrates the choice of material importance. The present work describes an impressive approach to develop highly active electrocatalysts for selective ECO2 RR applications.
Collapse
Affiliation(s)
- Murugesan Prasanna
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Natarajan Logeshwaran
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Shanmugam Ramakrishnan
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, UK
| | - Dong Jin Yoo
- Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, 567-Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
13
|
Zhang N, Huang S, Chen L, Li Y, Tang M, Pei Q, Liu J. Superhydrophilic/superaerophobic amorphous Ni 3S 2/NiMoS electrocatalyst for enhanced hydrogen evolution. J Colloid Interface Sci 2023; 652:95-103. [PMID: 37591087 DOI: 10.1016/j.jcis.2023.08.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
It is important to develop electrocatalysts that are cheap and have high activity for hydrogen evolution reaction (HER). In this work, Ni3S2/NiMoS with amorphous phase and unique candied-haws shaped nanoarray structure was successfully grown on nickel foam (Ni3S2/NiMoS/NF) as efficient HER catalyst. Combining Ni3S2 with NiMoS resulted in the extension of the heterointerfaces between the materials, which facilitated the HER process in alkaline medium. The amorphous Ni3S2/NiMoS with disordered atom arrangement provided abundant active sites. Also, the unique morphology of the catalytic electrode simultaneously enabled it exhibit superhydrophilicity and underwater superaerophobicity. It is beneficial for the sufficient diffusion of the electrolyte onto the catalyst surface and the fast departure of hydrogen bubbles from the surface. As a result, the activity of Ni3S2/NiMoS/NF was higher than that of Pt/C even at high current densities. It is very valuable for industrial applications that require high current density. The superior stability of Ni3S2/NiMoS/NF compared to Pt/C further demonstrated that this catalytic electrode has potential for industrial applications.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China.
| | - Shanshan Huang
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Lu Chen
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Yue Li
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Min Tang
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Qunyue Pei
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum, Beijing, 18 Fuxue Road, Changping District, Beijing 102249, PR China.
| |
Collapse
|
14
|
Xu H, Liang N, Bai Z, Yang B, Chen D, Tang H. Design and Realization of Ni Clusters in MoS 2@Ni/RGO Catalysts for Alkaline Efficient Hydrogen Evolution Reaction. Molecules 2023; 28:6658. [PMID: 37764434 PMCID: PMC10538220 DOI: 10.3390/molecules28186658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Due to their almost zero relative hydrogen atom adsorption-free energy, MoS2-based materials have received substantial study. However, their poor electronic conductivity and limited number of catalytic active sites hinder their widespread use in hydrogen evolution reactions. On the other hand, metal clusters offer numerous active sites. In this study, by loading Ni metal clusters on MoS2 and combining them with the better electrical conductivity of graphene, the overpotential of the hydrogen evolution reaction was reduced from 165 mV to 92 mV at 10 mA·cm-2. This demonstrates that a successful method for effectively designing water decomposition is the use of synergistic interactions resulting from interfacial electron transfer between MoS2 and Ni metal clusters.
Collapse
Affiliation(s)
- Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, China
| | - Nannan Liang
- School of Information Engineering, Suzhou University, Suzhou 234000, China
- School of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Zhi Bai
- School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China
| | - Bo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
| | - Dongmeng Chen
- College of Science, China University of Petroleum, Qingdao 266580, China
| | - Huaibao Tang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
15
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
16
|
Wen Y, Pan F, Zheng Q, Huo Y, Xie F, Lin D. Polymetallic sulfide nanosheet arrays with composite structure as a highly efficient oxygen evolution electrocatalyst. J Colloid Interface Sci 2023; 635:494-502. [PMID: 36599246 DOI: 10.1016/j.jcis.2022.12.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Designing an earth-abundant and cost-effective electrocatalyst for oxygen evolution reaction (OER) is the crux to the hydrogen production by water electrolysis on industrial scale. Herein, we developed a trimetallic sulfide hybrid of CoS1.097/Fe1-xS/Ni3S2/NF nanoarrays by the combination of morphology optimization and interface modulation. The unique morphology of ultrathin nanosheets significantly enriches the reaction sites of the catalyst, while the abundant heterogeneous interfaces effectively regulate the local electron structure and thus intrinsically enhances the catalytic activity of the material. As a result, the catalyst delivers the superior OER performance with the ultralow overpotential of 229 mV at the current density of 50 mA cm-2 and Tafel slope of 30.2 mV dec-1. Furthermore, the current density of the material keeps constant for 50 h in 1.0 M KOH. This work proposes a strategy for the synthesis of polymetallic sulfide catalysts with composite structure as an efficient OER catalyst by morphology optimization and interface modulation.
Collapse
Affiliation(s)
- Yahan Wen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Fuchun Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yu Huo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Fengyu Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| |
Collapse
|
17
|
Zhang N, Li Y, Zhang R, Huang S, Wang F, Tang M, Liu J. Tiny Ni3S2 boosting MoS2 hydrogen evolution in alkali by enlarging coupling boundaries and stimulating basal plane. J Colloid Interface Sci 2023; 642:479-487. [PMID: 37023519 DOI: 10.1016/j.jcis.2023.03.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The relatively slow reaction kinetics of the hydrogen evolution reaction (HER) by water electrolysis in alkali hinder its large-scale industrial production. To improve the HER activity in alkaline media, a novel Ni3S2/MoS2/CC catalytic electrode was synthesized by a simple two-step hydrothermal method in this work. The modification of MoS2 by Ni3S2 could facilitate the adsorption and dissociation of water, thus accelerating the alkaline HER kinetics. Moreover, the unique morphology of small Ni3S2 nanoparticles grown on MoS2 nanosheets not only increased the interface coupling boundaries, which acted as the most efficient active sites for the Volmer step in alkaline medium, but also sufficiently activated the MoS2 basal plane, thus providing more active sites. Consequently, Ni3S2/MoS2/CC only needed overpotentials of 189.4 and 240 mV to drive current densities of 100 and 300 mA·cm-2, respectively. More importantly, its catalytic performance of Ni3S2/MoS2/CC even exceeded that of Pt/C at a high current density after 261.7 mA·cm-2 in 1.0 M KOH.
Collapse
|
18
|
Yu Z, Yan H, Wang C, Wang Z, Yao H, Liu R, Li C, Ma S. Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Liu H, Wen D, Zhu B. In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
He W, Zhang R, Cao D, Li Y, Zhang J, Hao Q, Liu H, Zhao J, Xin HL. Super-Hydrophilic Microporous Ni(OH)x/Ni 3 S 2 Heterostructure Electrocatalyst for Large-Current-Density Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205719. [PMID: 36373671 DOI: 10.1002/smll.202205719] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Exploiting active and stable non-precious metal electrocatalysts for alkaline hydrogen evolution reaction (HER) at large current density plays a key role in realizing large-scale industrial hydrogen generation. Herein, a self-supported microporous Ni(OH)x/Ni3 S2 heterostructure electrocatalyst on nickel foam (Ni(OH)x/Ni3 S2 /NF) that possesses super-hydrophilic property through an electrochemical process is rationally designed and fabricated. Benefiting from the super-hydrophilic property, microporous feature, and self-supported structure, the electrocatalyst exhibits an exceptional HER performance at large current density in 1.0 M KOH, only requiring low overpotential of 126, 193, and 238 mV to reach a current density of 100, 500, and 1000 mA cm-2 , respectively, and displaying a long-term durability up to 1000 h, which is among the state-of-the-art non-precious metal electrocatalysts. Combining hard X-rays absorption spectroscopy and first-principles calculation, it also reveals that the strong electronic coupling at the interface of the heterostructure facilitates the dissociation of H2 O molecular, accelerating the HER kinetics in alkaline electrolyte. This work sheds a light on developing advanced non-precious metal electrocatalysts for industrial hydrogen production by means of constructing a super-hydrophilic microporous heterostructure.
Collapse
Affiliation(s)
- Wenjun He
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Da Cao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Ying Li
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Jun Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Qiuyan Hao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Hui Liu
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Jianling Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information, Hebei University of Technology, Ministry of Education, Tianjin, 300130, China
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
21
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
Ren Y, Wang C, Duan W, Zhou L, Pang X, Wang D, Zhen Y, Yang C, Gao Z. MoS 2/Ni 3S 2 Schottky heterojunction regulating local charge distribution for efficient urea oxidation and hydrogen evolution. J Colloid Interface Sci 2022; 628:446-455. [PMID: 35998467 DOI: 10.1016/j.jcis.2022.08.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 10/16/2022]
Abstract
Electrocatalytic urea oxidation reaction (UOR) is a prospective method to substitute the slow oxygen evolution reaction (OER) and solve the problem of urea-rich water pollution due to the low thermodynamic voltage, but its complex six-electron oxidation process greatly impedes the overall efficiency of electrolysis. Here, density functional theory (DFT) calculations imply that the metallic Ni3S2 and semiconductive MoS2 could form Mott-Schottky catalyst because of the suitable band structure. Therefore, we synthesized MoS2/Ni3S2 electrocatalyst by a simple hydrothermal method, and studied its UOR and hydrogen evolution reaction (HER) performance. The formed MoS2/Ni3S2 Schottky heterojunction is only required 109 and 166 mV to obtain ±10 mA cm-2 for UOR and HER, respectively, showing great bifunctional catalytic activity. Moreover, the full urea electrolysis driven by MoS2/Ni3S2 delivers 10 and 100 mA cm-2 at a relatively low potential of 1.44 and 1.59 V. Comprehensive experiments and DFT calculations demonstrate that the MoS2/Ni3S2 Schottky heterojunction causes self-driven charge transfer at the interface and forms built-in electric field, which is not only benefit to reduce H* adsorption energy, but also helps to adjust the absorption and directional distribution of urea molecules, thereby promoting the activity of decomposition of water and urea. This research furnishes a tactic to devise more efficient catalysts for H2 generation and the treatment of urea-rich water pollution.
Collapse
Affiliation(s)
- Yufei Ren
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Chuantao Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Wen Duan
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Lihai Zhou
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Xiangxiang Pang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Danjun Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Yanzhong Zhen
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China
| | - Chunming Yang
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China.
| | - Ziwei Gao
- College of Chemistry & Chemical Engineering, Yan'an University, Research Institute of Comprehensive Energy Industry Technology, Yan'an 716000, Shaanxi, PR China; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No.620, West Chang'an Avenue, Xi'an 710119, PR China; School of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, PR China.
| |
Collapse
|
23
|
Cao J, Zhou J, Li M, Chen J, Zhang Y, Liu X. Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Numerical Study on Hydrodynamic Characteristics and Electrochemical Performance of Alkaline Water Electrolyzer by Micro-Nano Surface Electrode. MATERIALS 2022; 15:ma15144927. [PMID: 35888392 PMCID: PMC9316051 DOI: 10.3390/ma15144927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
This study constructed a two-dimensional alkaline water electrolyzer model based on the two-phase flow Euler–Euler model. In the model, the micro-nano surface electrodes with different structure types and graphic parameters (distance, height, and width) were used and compared with the vertical flat electrode to evaluate their influence on electrolysis performance. The simulation results show that the performance of the micro-nano surface electrode is much better than that of the vertical flat electrode. The total length of micro-nano structural units relates to the contact area between the electrode and the electrolyte and affects the cell voltage, overpotential, and void fraction. When rectangular structural units with a distance, height, and width of 0.5 µm, 0.5 µm, and 1 µm are used, the total length of the corresponding micro-nano surface electrode is three times that of the vertical flat electrode, and the cathode overpotential decreases by 65.31% and the void fraction increases by 54.53% when it replaces the vertical flat electrode.
Collapse
|
25
|
Xu X, Zhang J, Yang N, Zhao X, Gu M, Cheng Y, Niu C. Effective controlling of Ni3S2/MoS2 porous hollow spheres on Ni foam by non‐ionic surfactant micelles for oxygen evolution reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuequan Xu
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| | - Jinying Zhang
- Xi'an Jiaotong University School of Electrical Engineering Iharbour Campus 710054 Xi’an CHINA
| | - Na Yang
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| | - Xuewen Zhao
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| | - Mengyue Gu
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| | - Yonghong Cheng
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| | - Chunming Niu
- Xi'an Jiaotong University School of Electrical Engineering CHINA
| |
Collapse
|
26
|
Guo D, Wan Z, Fang G, Zhu M, Xi B. A Tandem Interfaced (Ni 3 S 2 -MoS 2 )@TiO 2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201896. [PMID: 35560706 DOI: 10.1002/smll.202201896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Reported herein is a highly active and durable hydrogen evolution reaction (HER) electrocatalyst, which is constructed following a tandem interface strategy and functional in alkaline and even neutral medium (pH ≈ 7). The ternary composite material, consisting of conductive nickel foam (NF) substrate, Ni3 S2 -MoS2 heterostructure, and TiO2 coating, is synthesized by the hydrothermal method and atomic layer deposition (ALD) technique. Representative results include: (1) versatile characterizations confirm the proposed composite structure and strong electronic interactions among comprised sulfide and oxide species; (2) the material outperforms commercial Pt/C by recording an overpotential of 115 mV and a Tafel slope of 67 mV dec-1 under neutral conditions. A long-term stability in alkaline electrolytes up to 200 h and impressive overall water splitting behavior (1.56 V @ 10 mA cm-2 ) are documented; (3) implementation of ALD oxide tandem layer is crucial to realize the design concept with superior HER performance by modulating a variety of heterointerface and intermediates electronic structure.
Collapse
Affiliation(s)
- Daying Guo
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zhixin Wan
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengqi Zhu
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Xi
- School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, PFCM Lab, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
27
|
Hyperbranched NixPy/NiCoP Arrays Based on Nickel Foam Electrode for Efficient and Stable Electrocatalytic Hydrogen Evolution. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00747-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Cho J, Kim M, Seok H, Choi GH, Yoo SS, Sagaya Selvam NC, Yoo PJ, Kim T. Patchwork-Structured Heterointerface of 1T-WS 2/a-WO 3 with Sustained Hydrogen Spillover as a Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24008-24019. [PMID: 35549071 DOI: 10.1021/acsami.2c03584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using tungsten disulfide (WS2) as a hydrogen evolution reaction (HER) electrocatalyst brought on several ways to surpass its intrinsic catalytic activity. This study introduces a nanodomain tungsten oxide (WO3) interface to 1T-WS2, opening a new route for facilitating the transfer of a proton to active sites, thereby enhancing the HER performance. After H2S plasma sulfurization on the W layer to realize nanocrystalline 1T-WS2, subsequent O2 plasma treatment led to the formation of amorphous WO3 (a-WO3), resulting in a patchwork-structured heterointerface of 1T-WS2/a-WO3 (WSO). Addition of a hydrophilic interface (WO3) facilitates the hydrogen spillover effect, which represents the transfer of absorbed protons from a-WO3 to 1T-WS2. Moreover, the faster response of the cathodic current peak (proton insertion) in cyclic voltammetry is confirmed by the higher degree of oxidation. The rationale behind the faster proton insertion is that the introduced a-WO3 works as a proton channel. As a result, WSO-1.2 (the ratio of 1T-WS2 to a-WO3) exhibits a remarkable HER activity in that 1T-WS2 consumes more protons provided by the channel, showing an overpotential of 212 mV at 10 mA/cm2. Density functional theory calculations also show that the WO3 phase gives higher binding energies for initial proton adsorption, while the 1T-WS2 phase shows reduced HER overpotential. This improved catalytic performance demonstrates a novel strategy for water splitting to actively elicit the related reaction via efficient proton transport.
Collapse
Affiliation(s)
- Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwan Hyun Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seong Soo Yoo
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Pil J Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
29
|
Xu Q, Wang P, Wan L, Xu Z, Sultana MZ, Wang B. Superhydrophilic/Superaerophobic Hierarchical NiP 2@MoO 2/Co( Ni)MoO 4 Core-Shell Array Electrocatalysts for Efficient Hydrogen Production at Large Current Densities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19448-19458. [PMID: 35469395 DOI: 10.1021/acsami.2c01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rationally constructing low-cost, high-efficiency, and durable electrocatalysts toward the hydrogen evolution reaction at large current densities is imperative for water splitting, especially for large-scale industrial applications. Herein, a hierarchical core-shell NiP2@MoO2/Co(Ni)MoO4 cuboid array electrode with superhydrophilic/superaerophobic properties is successfully fabricated and the formation mechanism of the core-shell structure is systematically investigated. Through an in situ partially converted gas-solid reaction during the phosphating process, Ni and Co elements are leached and rearranged to form NiP2 particles and amorphous CoO as the shell layer and the inner undecomposed Co(Ni)MoO4 crystals serve as the core layer. Because of its seamless core-shell structure and superhydrophilicity/superaerophobicity of hierarchical cuboid arrays, NiP2@MoO2/Co(Ni)MoO4 exhibits superior HER activity in 1 M KOH with only an overpotential of 297 mV to deliver 1000 mA cm-2 and can work steadily for 650 h at 200 mA cm-2. Remarkably, when coupled with NiFe LDH for overall water splitting, it can drive an AA battery with an ultralow cell voltage of 1.49 V to deliver 10 mA cm-2. This work sheds new light on designing large-current-density efficient HER electrocatalysts for large-scale industrial applications.
Collapse
Affiliation(s)
- Qin Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Wan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziang Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Mst Zakia Sultana
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
30
|
Zhang J, Yao Z, Zou W, Shen Q, Fan M, Ma T. Trimetal NiCoMn sulfides cooperated with two-dimensional Ti3C2 for high performance hybrid supercapacitor. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Yu W, Chen Z, Zhao Y, Gao Y, Xiao W, Dong B, Wu Z, Wang L. An in situ generated 3D porous nanostructure on 2D nanosheets to boost the oxygen evolution reaction for water-splitting. NANOSCALE 2022; 14:4566-4572. [PMID: 35253819 DOI: 10.1039/d1nr08007e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efficient oxygen evolution reaction (OER) electrocatalysts can accelerate the reaction kinetics of water-splitting for large-scale hydrogen generation. In this work, 2D nanosheets decorated with a 3D porous nanostructure, including Fe, Co and Ni elements, are developed via anodic cyclic voltammetry scanning (ACVs) in the presence of sodium sulfide (FeCoNi-NS-ACVs). The formed 2D nanosheets provide metal ions during ACVs to generate a 3D porous structure and also construct a hierarchical morphology to favor the transport of the electrolyte and release of produced gas bubbles. What's more, the developed FeCoNi-NS-ACVs possesses superhydrophilic and excellent electroconductivity properties. Benefiting from the above merits, FeCoNi-NS-ACVs exhibits excellent electrocatalytic performances for the OER with low overpotentials of 170 mV and 198 mV to drive 50 mA cm-2 and 100 mA cm-2, respectively, with a small Tafel slope of 64 mV dec-1 and remarkable durability over 50 h. Moreover, the FeCoNi-NS-ACVs also exhibits outstanding electrocatalytic activity and stability toward overall water-splitting.
Collapse
Affiliation(s)
- Wenli Yu
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zhi Chen
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ying Zhao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yuxiao Gao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Weiping Xiao
- College of Science, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao International Cooperation Base of Ecological Chemical industry and Intelligent Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
32
|
Xiao Q, Xu X, Fan C, Qi Z, Jiang S, Deng Q, Tong Q, Zhang Q. Deposition of Cu on Ni3S2 nanomembranes with simply spontaneous replacement reaction for enhanced hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Qiao H, Li Z, Liu F, Ma Q, Ren X, Huang Z, Liu H, Deng J, Zhang Y, Liu Y, Qi X, Zhang H. Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2908-2917. [PMID: 34985250 DOI: 10.1021/acsami.1c21421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic water splitting for hydrogen production is an efficient, clean, and sustainable strategy to solve energy and environmental problems. As the important alternative materials for noble metals (Pt, Ir, etc.), two-dimensional (2D) materials have been widely applied for electrocatalysis, although the practical performance is restricted by low carrier mobility and slow reaction kinetics. Here, we adopt the strategy of Au nanoparticle modification to achieve the enhanced hydrogen evolution reaction (HER) performance of InSe nanosheets. Experimental results prove that the HER performance of InSe nanosheets is significantly enhanced under the modification of Au nanoparticles, and the overpotential (392 mV) and Tafel slope (59 mV/dec) are significantly reduced compared to sole InSe nanosheets (580 mV and 148.2 mV/dec). First-principles calculations have found that the InSe/Au system exhibits metallicity because the free electrons provided by the Au particles are injected into the InSe, thereby improving its conductivity. The difference charge density and localized charge density of InSe/Au show that Au nanoparticle loading can induce the formation of Au-Se electron-transfer channels with electrovalent bond characteristics, which effectively promotes the charge transfer. Meanwhile, the standard free-energy calculation of the HER process shows that the InSe/Au heterojunction has a H* adsorption/desorption Gibbs free energy [(|ΔGH*|) = 0.59 eV] closer to the optimal value. This study reveals the theoretical mechanism of metal modification to improve the performance of electrocatalytic HER and is expected to motivate the development of a new strategy for enhancing the catalytic activity of 2D semiconductor materials.
Collapse
Affiliation(s)
- Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Zhongjun Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| | - Fei Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Qian Ma
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Xiaohui Ren
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| | - Zongyu Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
- Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, China
| | - Huating Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jun Deng
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Yunsheng Liu
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
34
|
Wang J, Wei J, An C, Tang H, Deng Q, Li J. Electrocatalyst Design for Conversion of Energy Molecules: Electronic State Modulation and Mass Transport Regulation. Chem Commun (Camb) 2022; 58:10907-10924. [DOI: 10.1039/d2cc03630d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic conversions of energy molecules are involved in many energy conversion processes. Improving the activity of electrocatalyst is critical for increasing the efficiency of these energy conversion processes. However, the...
Collapse
|
35
|
|
36
|
Wu Z, Wang J, Li H, Cao L, Dong B. Boosting of Oxygen Evolution Reaction Performance through Defect and Lattice Distortion Engineering. NEW J CHEM 2022. [DOI: 10.1039/d2nj00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing efficient, stable, and inexpensive electrocatalyst for oxygen evolution reaction (OER) is significant for development and utilization of clean energy. Defects in electrocatalysts strongly impact their chemical properties and can...
Collapse
|
37
|
Wang P, Wang B. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59593-59617. [PMID: 34878246 DOI: 10.1021/acsami.1c17448] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is regarded as the most attractive technique to store renewable electricity in the form of hydrogen fuel. However, the corresponding anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER) remain challenging, which exhibit complex reactions and sluggish kinetic behaviors at the triple-phase interface. Material surface and interface engineering provide a feasible approach to improve catalytic activity. Besides, self-supported electrocatalysts have been proven to be highly efficient toward water splitting, because of the regulated catalyst/substrate interface. In this Review, the state-of-the-art achievements in self-supported electrocatalyst for HER/OER have demonstrated the feasibility of surface and interface engineering strategies to boost performance. The six key effective surface/interface engineering approaches for rational catalysts design are systematically reviewed, including defect engineering, morphology engineering, crystallographic tailoring, heterostructure design, catalyst/substrate interface engineering, and catalyst/electrolyte interface regulation. Finally, the challenges and opportunities on the valuable directions are proposed to inspire future investigation of highly active and durable HER/OER electrocatalysts.
Collapse
Affiliation(s)
- Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| |
Collapse
|
38
|
Recent Development of Multifunctional Sensors Based on Low-Dimensional Materials. SENSORS 2021; 21:s21227727. [PMID: 34833801 PMCID: PMC8618950 DOI: 10.3390/s21227727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
With the demand for accurately recognizing human actions and environmental situations, multifunctional sensors are essential elements for smart applications in various emerging technologies, such as smart robots, human-machine interface, and wearable electronics. Low-dimensional materials provide fertile soil for multifunction-integrated devices. This review focuses on the multifunctional sensors for mechanical stimulus and environmental information, such as strain, pressure, light, temperature, and gas, which are fabricated from low-dimensional materials. The material characteristics, device architecture, transmission mechanisms, and sensing functions are comprehensively and systematically introduced. Besides multiple sensing functions, the integrated potential ability of supplying energy and expressing and storing information are also demonstrated. Some new process technologies and emerging research areas are highlighted. It is presented that optimization of device structures, appropriate material selection for synergy effect, and application of piezotronics and piezo-phototronics are effective approaches for constructing and improving the performance of multifunctional sensors. Finally, the current challenges and direction of future development are proposed.
Collapse
|
39
|
Dong Q, Li M, Sun M, Si F, Gao Q, Cai X, Xu Y, Yuan T, Zhang S, Peng F, Fang Y, Yang S. Phase-Controllable Growth Ni x P y Modified CdS@Ni 3 S 2 Electrodes for Efficient Electrocatalytic and Enhanced Photoassisted Electrocatalytic Overall Water Splitting. SMALL METHODS 2021; 5:e2100878. [PMID: 34927978 DOI: 10.1002/smtd.202100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 06/14/2023]
Abstract
The rational design and construction of cost-effective nickel-based phosphide or sulfide (photo)electrocatalysts for hydrogen production from water splitting has sparked a huge investigation surge in recent years. Whereas, nickel phosphides (Nix Py ) possess more than ten stoichiometric compositions with different crystalline. Constructing Nix Py with well crystalline and revealing their intrinsic catalytic mechanism at atomic/molecular levels remains a great challenge. Herein, an easy-to-follow phase-controllable phosphating strategy is first proposed to prepare well crystalline Nix Py (Ni3 P and Ni12 P5 ) modified CdS@Ni3 S2 heterojunction electrocatalysts. It is found that Ni3 P modified CdS@Ni3 S2 (CdS@Ni3 S2 /Ni3 P) exhibits remarkable stability and bifunctional electrocatalytic activities in both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory results suggest that P-Ni sites and P sites in CdS@Ni3 S2 /Ni3 P, respectively, serve as OER and HER active sites during electrocatalytic water splitting processes. Moreover, benefiting from the advantageous photocatalyst@electrocatalyst core@shell structure, CdS@Ni3 S2 /Ni3 P delivers an advantaged photoassisted electrocatalytic water splitting property. The champion electrical to hydrogen and solar to hydrogen energy conversion efficiencies of CdS@Ni3 S2 /Ni3 P, respectively, reach 93.35% and 4.65%. This work will provide a general guidance for synergistically using solar energy and electric energy for large-scale H2 production from water splitting.
Collapse
Affiliation(s)
- Qianwen Dong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mingli Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mingshuang Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Fangyuan Si
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Qiongzhi Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yuehua Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Teng Yuan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Peng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siyuan Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
40
|
Chen W, Wei W, Wang K, Cui J, Zhu X, Ostrikov KK. Partial sulfur vacancies created by carbon-nitrogen deposition of MoS 2 for high-performance overall electrocatalytic water splitting. NANOSCALE 2021; 13:14506-14517. [PMID: 34473169 DOI: 10.1039/d1nr02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is a promising energy-efficient solution to obtain clean hydrogen energy. Bifunctional electrocatalysts made up of cheap and abundant elements and suitable for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are critically needed, yet their performance deserves substantial improvement. The catalytic activity could be improved by creating unsaturated defects, which so far has rarely been demonstrated. Here, we combine the effects of unsaturated sulfur vacancies and bi-elemental C and N doping in MoS2 nanosheets to achieve high-performance bifunctional electrocatalysts. The new method to obtain C and N doped MoS2 at high temperature is presented. The obtained C-N-MoS2/CC-T catalysts with S unsaturated defect sites and Mo-N links exhibit high activity and improved electrical conductivity for both the HER and OER in alkaline media. Systematic experiments and density functional theory (DFT) analysis confirm that CN-doping exposes catalytically active sites and enhances water adsorption. The optimized C-N-MoS2/CC-700 catalyst exhibits low overpotentials of 90 and 230 mV at 10 mA cm-2 for the HER and OER, respectively. Importantly, the porous C-N-MoS2/CC-700 nanosheets deliver low voltages of 1.58 V for the overall water splitting at 10 mA cm-2 and robust operation for 30 h without any reduced activity. Such impressive performances are attributed to their unique structure with large specific surface area, abundant S unsaturated sites, Mo-N links, and shortened electron transfer paths. This partial defect filling by the bi-dopant incorporation approach is generic and is promising for a broad range of advanced energy materials.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Kefeng Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Jinhai Cui
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xingwang Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
41
|
Introducing a self-improving catalyst for hydrogen evolution and efficient catalyst for oxygen evolution reaction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Zhao M, Yang X, Li X, Tang Z, Song Z. Photocathodic protection performance of Ni3S2/g-C3N4 photoanode for 304 stainless steel. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Boosting electrocatalytic activity toward alkaline hydrogen evolution by strongly coupled ternary Ni3S4/Ni/Ni(OH)2 hybrid. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Ge J, Jin J, Cao Y, Jiang M, Zhang F, Guo H, Lei X. Heterostructure Ni 3S 4-MoS 2 with interfacial electron redistribution used for enhancing hydrogen evolution. RSC Adv 2021; 11:19630-19638. [PMID: 35479198 PMCID: PMC9033570 DOI: 10.1039/d1ra02828f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Developing highly effective and inexpensive electrocatalysts for hydrogen evolution reaction (HER), particularly in a water-alkaline electrolyzer, are crucial to large-scale industrialization. The earth-abundant molybdenum disulfide (MoS2) is an ideal electrocatalyst in acidic media but suffers from a high overpotential in alkaline solution. Herein, nanospherical heterostructure Ni3S4-MoS2 was obtained via a one-pot synthesis method, in which Ni3S4 was uniformly integrated with MoS2 ultrathin nanosheets. There were abundant heterojunctions in the as-synthesized catalyst, which were verified by X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). The structure features with interfacial electron redistribution was proved by XPS and density functional theory (DFT) calculations, which offered several advantages to promote the HER activity of MoS2, including increased specific surface area, exposed abundant active edge sites and improved electron transfer. Ni3S4-MoS2 exhibited a low overpotential of 116 mV at 10 mA cm-2 in an alkaline solution with a corresponding Tafel slope of 81 mV dec-1 and long-term stability of over 20 h. DFT simulations indicated that the synergistic effects in the system with the chemisorption of H on the (002) plane of MoS2 and OH on the (311) plane of Ni3S4 accelerated the rate-determining water dissociation steps of HER. This study provides a valuable route for the design and synthesis of inexpensive and efficient HER electrocatalyst, heterostructure Ni3S4-MoS2.
Collapse
Affiliation(s)
- Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| | - Jiaxing Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| | - Yanming Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| | - Meihong Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| | - Hongling Guo
- Institute of Forensic Science, Ministry of Public Security Beijing 100038 China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64455357
| |
Collapse
|
45
|
Ma G, Du X, Zhang X. Flower-like Fe-Co-M (M=S, O, P and Se) Nanosheet Arrays Grown on Nickel Foam as High-efficiency Bifunctional Electrocatalysts. Chem Asian J 2021; 16:959-965. [PMID: 33660405 DOI: 10.1002/asia.202100069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 11/10/2022]
Abstract
The development of highly efficient, inexpensive, abundant and non-precious metal electrocatalysts is the lifeblood of the hydrogen production industry, especially the hydrogen production industry by electrolysis of water. A Fe-Co-S/NF bifunctional electrocatalyst with nanoflower-like structure was synthesized on three-dimensional porous nickel foam through one-step hydrothermal and one-step high-temperature sulfuration operations, and the material displays high-efficiency electrocatalytic performance. As a catalyst for the hydrogen evolution reaction, Fe-Co-S/NF can drive a current density of 10 mA/cm2 at an overpotential of 143 mV with a Tafel slope of 80.2 mV/dec. When it was used as an oxygen evolution reaction catalyst, it exhibits good OER reactivity with a low Tafel slope (82.6 mV/dec) and with requiring only 117 mV overpotential to drive current densities up to 50 mA/cm2 . In addition, the Fe-Co-S/NF//Fe-Co-S/NF electrolytic cell was assembled, an electrolysis voltage of 1.64 V is required to drive a current density of 50 mA/cm2 , which is one of the most active catalysts reported so far. This work indicates that the introduction of S, P and Se treating processes could effectively improve electrical conductivity of the material and enhance the catalytic activity of the material. This work offers an effective and convenient method for improving the morphology of the catalyst, increasing the surface area of the catalyst and developing high-efficiency and low-cost catalysts.
Collapse
Affiliation(s)
- Guangyu Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, P. R. China
| | - Xiaoqiang Du
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, P. R. China
| | - Xiaoshuang Zhang
- School of Science, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
46
|
Iron, manganese co-doped Ni3S2 nanoflowers in situ assembled by ultrathin nanosheets as a robust electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2021; 588:248-256. [DOI: 10.1016/j.jcis.2020.12.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
|
47
|
Electrocatalytic hydrogen evolution on the noble metal-free MoS 2/carbon nanotube heterostructure: a theoretical study. Sci Rep 2021; 11:3958. [PMID: 33597690 PMCID: PMC7889931 DOI: 10.1038/s41598-021-83562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
Molybdenum disulfide (MoS2) is considered as a promising noble-metal-free electrocatalyst for the Hydrogen Evolution Reaction (HER). However, to effectively employ such material in the HER process, the corresponding electrocatalytic activity should be comparable or even higher than that of Pt-based materials. Thus, efforts in structural design of MoS2 electrocatalyst should be taken to enhance the respective physico-chemical properties, particularly, the electronic properties. Indeed, no report has yet appeared about the possibility of an HER electrocatalytic association between the MoS2 and carbon nanotubes (CNT). Hence, this paper investigates the synergistic electrocatalytic activity of MoS2/ CNT heterostructure for HER by Density Functional Theory simulations. The characteristics of the heterostructure, including density of states, binding energies, charge transfer, bandgap structure and minimum-energy path for the HER process were discussed. It was found that regardless of its configuration, CNT is bound to MoS2 with an atomic interlayer gap of 3.37 Å and binding energy of 0.467 eV per carbon atom, suggesting a weak interaction between CNT and MoS2. In addition, the energy barrier of HER process was calculated lower in MoS2/CNT, 0.024 eV, than in the MoS2 monolayer, 0.067 eV. Thus, the study elaborately predicts that the proposed heterostructure improves the intrinsic electrocatalytic activity of MoS2.
Collapse
|
48
|
Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1907818. [PMID: 32578254 PMCID: PMC11468112 DOI: 10.1002/adma.201907818] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has been deemed as an ideal substitute fuel to fossil energy because of its renewability and the highest energy density among all chemical fuels. One of the most economical, ecofriendly, and high-performance ways of hydrogen production is electrochemical water splitting. Recently, 2D transition metal dichalcogenides (also known as 2D TMDs) showed their utilization potentiality as cost-effective hydrogen evolution reaction (HER) catalysts in water electrolysis. Herein, recent representative research efforts and systematic progress made in 2D TMDs are reviewed, and future opportunities and challenges are discussed. Furthermore, general methods of synthesizing 2D TMDs materials are introduced in detail and the advantages and disadvantages for some specific methods are provided. This explanation includes several important regulation strategies of creating more active sites, heteroatoms doping, phase engineering, construction of heterostructures, and synergistic modulation which are capable of optimizing the electrical conductivity, exposure to the catalytic active sites, and reaction energy barrier of the electrode material to boost the HER kinetics. In the last section, the current obstacles and future chances for the development of 2D TMDs electrocatalysts are proposed to provide insight into and valuable guidelines for fabricating effective HER electrocatalysts.
Collapse
Affiliation(s)
- Qiang Fu
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| | - Xianjie Wang
- School of PhysicsHarbin Institute of TechnologyHarbin150001China
| | - Ping Xu
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Tai Yao
- Interdisciplinary Science Research CenterHarbin Institute of TechnologyHarbin150001China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| | - Wenwu Zhong
- School of Advanced StudyTaizhou UniversityTaizhou317000China
| | - Shengwei Liu
- School of Environmental Science and EngineeringSun Yat‐sen UniversityGuangzhou510006China
| | - Tangling Gao
- Institute of PetrochemistryHeilongjiang Academy of SciencesHarbin150040China
| | - Zhihua Zhang
- School of Materials Science and EngineeringDalian Jiaotong UniversityDalian116028China
| | - Lingling Xu
- Key Laboratory for Photonic and Electronic Bandgap MaterialsMinistry of EducationSchool of Physics and Electronic EngineeringHarbin Normal UniversityHarbin150025China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
49
|
Ahmed ATA, Ansari AS, Pawar S, Shong B, Kim H, Im H. Anti–corrosive FeO decorated CuCo2S4 as an efficient and durable electrocatalyst for hydrogen evolution reaction. APPLIED SURFACE SCIENCE 2021; 539:148229. [DOI: 10.1016/j.apsusc.2020.148229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
50
|
Meng A, Hong X, Zhang H, Tian W, Li Z, Sheng L, Li Q. Nickel sulfide nanoworm network architecture as a binder-free high-performance non-enzymatic glucose sensor. Mikrochim Acta 2021; 188:34. [PMID: 33417060 DOI: 10.1007/s00604-020-04665-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/23/2020] [Indexed: 11/24/2022]
Abstract
Nickel sulfide nanoworm (Ni3S2 NW) network architecture was directly grown on the poly (3,4-ethylenedioxythiophene)-reduced graphene oxide hybrid films (PEDOT-rGO HFs) modified on glassy carbon electrode (GCE), acting as a binder-free sensor for high-performance non-enzymatic glucose monitoring. The sensor exhibited the satisfactory sensitivity (2123 μA mM-1 cm-2), wide linear range (15~9105 μM), low detection limit (0.48 μM), and rapid response time (< 1.5 s) at a potential of 0.5 V (vs. SCE) in 0.1 M NaOH and possessed good selectivity, reproducibility, and stability. The enhanced electrocatalytic activity of the sensor towards glucose oxidation was attributed to the particular morphology, satisfying hydrophilic nature, strong combination between Ni3S2 NWs, PEDOT-rGO, and bare GCE. Moreover, it can be used for assaying glucose in human serum samples without dilution, indicating potential for clinical diagnostic applications. Graphical abstract Nickel sulfide nanoworms (Ni3S2 NWs)/poly (3,4-ethylenedioxythiophene)-reduced graphene oxide hybrid films (PEDOT-rGO HFs) were used to construct a binder-free high-performance non-enzymatic glucose sensor with satisfactory sensitivity, wide linear range, low detection limit, good selectivity, amazing reproducibility, and stability.
Collapse
Affiliation(s)
- Alan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Xiaocheng Hong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Haiqin Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Wenli Tian
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China
| | - Zhenjiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China.,Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, Shandong, People's Republic of China
| | - Liying Sheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, Shandong, People's Republic of China. .,Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, Shandong, People's Republic of China.
| | - Qingdang Li
- Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, College of Electromechanical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, Shandong, People's Republic of China
| |
Collapse
|