1
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
2
|
Tang J, Liu Y, Xue Y, Jiang Z, Chen B, Liu J. Endoperoxide-enhanced self-assembled ROS producer as intracellular prodrugs for tumor chemotherapy and chemodynamic therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230127. [PMID: 39175885 PMCID: PMC11335464 DOI: 10.1002/exp.20230127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 08/24/2024]
Abstract
Prodrug-based self-assembled nanoparticles (PSNs) with tailored responses to tumor microenvironments show a significant promise for chemodynamic therapy (CDT) by generating highly toxic reactive oxygen species (ROS). However, the insufficient level of intracellular ROS and the limited drug accumulation remain major challenges for further clinical transformation. In this study, the PSNs for the delivery of artesunate (ARS) are demonstrated by designing the pH-responsive ARS-4-hydroxybenzoyl hydrazide (HBZ)-5-amino levulinic acid (ALA) nanoparticles (AHA NPs) with self-supplied ROS for excellent chemotherapy and CDT. The PSNs greatly improved the loading capacity of artesunate and the ROS generation from endoperoxide bridge using the electron withdrawing group attached directly to C10 site of artesunate. The ALA and ARS-HBZ could be released from AHA NPs under the cleavage of hydrazone bonds triggered by the acidic surroundings. Besides, the ALA increased the intracellular level of heme in mitochondria, further promoting the ROS generation and lipid peroxidation with ARS-HBZ for excellent anti-tumor effects. Our study improved the chemotherapy of ARS through the chemical modification, pointing out the potential applications in the clinical fields.
Collapse
Affiliation(s)
- JunJie Tang
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yadong Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringIntegrated Science and Technology CenterYale UniversityWest HavenConnecticutUSA
| | - Baizhu Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSun Yat‐Sen UniversityGuangzhouChina
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| |
Collapse
|
3
|
Yang M, Li K, Zhong L, Bu Y, Ni Y, Wang T, Huang J, Zhang J, Zhou H. Molecular engineering to elevate reactive oxygen species generation for synergetic damage on lipid droplets and mitochondria. Anal Chim Acta 2024; 1311:342734. [PMID: 38816163 DOI: 10.1016/j.aca.2024.342734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Photodynamic therapy (PDT), characterized by high treatment efficiency, absence of drug resistance, minimal trauma, and few side effects, has gradually emerged as a novel and alternative clinical approach compared to traditional surgical resection, chemotherapy and radiation. Whereas, considering the limited diffusion distance and short lifespan of reactive oxygen species (ROS), as well as the hypoxic tumor microenvironment, it is crucial to design photosensitizers (PSs) with suborganelle specific targeting ability and low-oxygen dependence for accurate and highly efficient photodynamic therapy. In this study, we have meticulously designed three PSs, namely CIH, CIBr, and CIPh, based on molecular engineering. Theoretical calculation demonstrate that the three compounds possess good molecular planarity with calculated S1-T1 energy gaps (ΔES1-T1) of 1.04 eV for CIH, 0.92 eV for CIBr, and 0.84 eV for CIPh respectively. Notably, CIPh showcases remarkable dual subcellular targeting capability towards lipid droplets (LDs) and mitochondria owing to the synergistic effect of lipophilicity derived from coumarin's inherent properties combined with electropositivity conferred by indole salt cations. Furthermore, CIPh demonstrates exclusive release of singlet oxygen (1O2)and highly efficient superoxide anion free radicals(O2⦁-) upon light irradiation supported by its smallest S1-T1 energy gap (ΔES1-T1 = 0.84 eV). This leads to compromised integrity of LDs along with mitochondrial membrane potential, resulting in profound apoptosis induction in HepG2 cells. This successful example of molecular engineering guided by density functional theory (DFT) provides valuable experience for the development of more effective PSs with superior dual targeting specificity. It also provides a new idea for the development of advanced PSs with efficient and accurate ROS generation ability towards fluorescence imaging-guided hypoxic tumor therapy.
Collapse
Affiliation(s)
- Mingdi Yang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Kaiwen Li
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Liangchen Zhong
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Yingcui Bu
- School of Materials and Chemistry, Anhui Agricultural University, 230036, Hefei, PR China.
| | - Yingyong Ni
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jing Huang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Jingyan Zhang
- Anhui Key Laboratory of Advanced Building Materials, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China.
| |
Collapse
|
4
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
5
|
Desai VM, Choudhary M, Chowdhury R, Singhvi G. Photodynamic Therapy Induced Mitochondrial Targeting Strategies for Cancer Treatment: Emerging Trends and Insights. Mol Pharm 2024; 21:1591-1608. [PMID: 38396330 DOI: 10.1021/acs.molpharmaceut.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The perpetuity of cancer prevalence at a global level calls for development of novel therapeutic approaches with improved targetability and reduced adverse effects. Conventional cancer treatments have a multitude of limitations such as nonselectivity, invasive nature, and severe adverse effects. Chemotherapy is also losing its efficacy because of the development of multidrug resistance in the majority of cancers. To address these issues, selective targeting-based approaches are being explored for an effective cancer treatment. Mitochondria, being the moderator of a majority of crucial cellular pathways like metabolism, apoptosis, and reactive oxygen species (ROS) homeostasis, are an effective targeting site. Mitochondria-targeted photodynamic therapy (PDT) has arisen as a potential approach in this endeavor. By designing photosensitizers (PSs) that preferentially accumulate in the mitochondria, PDT offers a localized technique to induce cytotoxicity in cancer cells. In this review, we intend to explore the crucial principles and challenges associated with mitochondria-targeted PDT, including variability in mitochondrial function, mitochondria-specific PSs, targeted nanocarrier-based monotherapy, and combination therapies. The hurdles faced by this emerging strategy with respect to safety, optimization, clinical translation, and scalability are also discussed. Nonetheless, mitochondria-targeted PDT exhibits a significant capacity in cancer treatment, especially in combination with other therapeutic modalities. With perpetual research and technological advancements, this treatment strategy is a great addition to the arsenal of cancer treatment options, providing better tumor targetability while reducing the damage to surrounding healthy tissues. This review emphasizes the current status of mitochondria-targeted PDT, limitations, and future prospects in its pursuit of safe and efficacious cancer therapy.
Collapse
Affiliation(s)
- Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India 333031
| | - Mahima Choudhary
- Cancer Biology Laboratory, Department of Biological Sciences, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Rajasthan, India 333031
| | - Rajdeep Chowdhury
- Cancer Biology Laboratory, Department of Biological Sciences, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Rajasthan, India 333031
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Vidya Vihar, Pilani, Rajasthan, India 333031
| |
Collapse
|
6
|
Xiao R, Zheng F, Kang K, Xiao L, Bi A, Chen Y, Zhou Q, Feng X, Chen Z, Yin H, Wang W, Chen Z, Cheng X, Zeng W. Precise visualization and ROS-dependent photodynamic therapy of colorectal cancer with a novel mitochondrial viscosity photosensitive fluorescent probe. Biomater Res 2023; 27:112. [PMID: 37941059 PMCID: PMC10634017 DOI: 10.1186/s40824-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prominent global cancer with high mortality rates among human beings. Efficient diagnosis and treatment have always been a challenge for CRC management. Fluorescence guided cancer therapy, which combines diagnosis with therapy into one platform, has brought a new chance for achieving precise cancer theranostics. Among this, photosensitizers, applied in photodynamic therapy (PDT), given the integration of real-time imaging capacity and efficacious treatment feasibility, show great potential to serve as remarkable tools. Although much effort has been put into constructing photosensitizers for locating and destroying CRC cells, it is still in high need to develop novel photosensitizers to attain specific detection and fulfil effective therapy. METHODS Probe HTI was rational synthesized for the diagnosis and treatment of CRC. Spectrometric determination was carried out first, followed by the 1O2 generation ability test. Then, HTI was displayed in distinguishing CRC cells from normal cells Further, the PDT effect of the photosensitizer was studied in vitro. Additionally, HTI was used in CRC BALB/c nude mice model to validate its viscosity labelling and tumor suppression characteristics. RESULTS We successfully fabricated a mitochondrial targeting probe, HTI, together with remarkable viscosity sensitivity, ultralow background interference, and excellent 1O2 generation capacity. HTI was favorably applied to the viscosity detection, displaying a 11-fold fluorescent intensity enhancement in solvents from 1.57 cp to 2043 cp. Then, it was demonstrated that HTI could distinguish CRC cells from normal cells upon the difference in mitochondrial viscosity. Moreover, HTI was qualified for producing 1O2 with high efficiency in cells, supported by the sparkling signals of DCFH after incubation with HTI under light irradiation. More importantly, the viscosity labelling and tumor suppression performance in CRC CDX model was determined, enriching the multifunctional validation of HTI in vivo. CONCLUSIONS In this study, HTI was demonstrated to show a sensitive response to mitochondrial viscosity and possess a high 1O2 generation capacity. Both in vitro cell imaging and in vivo tumor treatment trials proved that HTI was effectively served as a robust scaffold for tumor labeling and CRC cells clearance. This breakthrough discovery held immense potential for advancing the early diagnosis and management of CRC through PDT. By leveraging HTI's properties, medical professionals could benefit from improved diagnostic accuracy and targeted treatment in CRC management, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Runsha Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Kuo Kang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Lei Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Colorectal Surgery, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, People's Republic of China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China
| | - Yiting Chen
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Qi Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueping Feng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, People's Republic of China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiang Ya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Engineering and Technology Research Center for Xenotransplantation of Hunan Province, Changsha, 410013, People's Republic of China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410013, Changsha, People's Republic of China.
| | - Xiaomiao Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
- Department of Nephrology, Xiangya Changde Hospital, Changde, 415000, People's Republic of China.
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, People's Republic of China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
7
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
8
|
Yu H, Li JM, Deng K, Zhou W, Li KH, Wang CX, Wang Q, Wu M, Huang SW. GPX4 inhibition synergistically boosts mitochondria targeting nanoartemisinin-induced apoptosis/ferroptosis combination cancer therapy. Biomater Sci 2023; 11:5831-5845. [PMID: 37439624 DOI: 10.1039/d3bm00601h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Artemisinin, originally used for its antimalarial activity, has received much attention in recent years for cancer therapy. The anticancer mechanisms of artemisinin are complicated and debatable. Challenges in the delivery of artemisinin also persist because the anticancer effect of artemisinin alone is often not satisfactory when used with traditional nanocarriers. We herein report the mitochondrial delivery of artemisinin with extremely high anticancer capacity. The action mode of artemisinin in the mitochondria of cancer cells includes heme-participating and oxygen-independent conversion of artemisinin into a carbon-centered radical, which is partly converted into ROS in the presence of molecular oxygen. We reveal that artemisinin alone in the mitochondria can induce strong cancer cell apoptosis. In addition, due to the weak inhibition of GPX4 activity by artemisinin, weak ferroptosis is also observed. We further discover that GPX4 activity in MCF-7 cells is greatly inhibited by RSL3 to synergistically enhance the anticancer capacity of artemisinin via enhancing ferroptosis. The synergistic anticancer activity of artemisinin and RSL3 in the mitochondria not only improves cancer cell-killing ability, but also inhibits the re-proliferation of residual cancer cells. This study provides a new insight into developing highly efficient and practical artemisinin nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jia-Mi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kai Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Kun-Heng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Qian Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Gao J, Jiang H, Chen P, Zhang R, Liu N. Photosensitizer-based small molecule theranostic agents for tumor-targeted monitoring and phototherapy. Bioorg Chem 2023; 136:106554. [PMID: 37094481 DOI: 10.1016/j.bioorg.2023.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/27/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023]
Abstract
Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.
Collapse
Affiliation(s)
- Jiake Gao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Ingle J, Basu S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS OMEGA 2023; 8:8925-8935. [PMID: 36936289 PMCID: PMC10018722 DOI: 10.1021/acsomega.3c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.
Collapse
|
11
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
12
|
Li H, Kim H, Zhang C, Zeng S, Chen Q, Jia L, Wang J, Peng X, Yoon J. Mitochondria-targeted smart AIEgens: Imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Liu J, Chen W, Zheng C, Hu F, Zhai J, Bai Q, Sun N, Qian G, Zhang Y, Dong K, Lu T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Eur J Med Chem 2022; 244:114843. [DOI: 10.1016/j.ejmech.2022.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
14
|
Wu X, Zhu Z, Liu Z, Li X, Zhou T, Zhao X, Wang Y, Shi Y, Yu Q, Zhu WH, Wang Q. Tricyano-Methylene-Pyridine Based High-Performance Aggregation-Induced Emission Photosensitizer for Imaging and Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227981. [PMID: 36432090 PMCID: PMC9697965 DOI: 10.3390/molecules27227981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Photosensitizers equipped with high reactive oxygen species (ROS) generation capability and bright emission are essential for accurate tumor imaging and precise photodynamic therapy (PDT). However, traditional aggregation-caused quenching (ACQ) photosensitizers cannot simultaneously produce desirable ROS and bright fluorescence, resulting in poor image-guided therapy effect. Herein, we report an aggregation-induced emission (AIE) photosensitizer TCM-Ph with a strong donor-π-acceptor (D-π-A) structure, which greatly separates the HOMO-LUMO distribution and reduces the ΔEST, thereby increasing the number of triplet excitons and producing more ROS. The AIE photosensitizer TCM-Ph has bright near-infrared emission, as well as a higher ROS generation capacity than the commercial photosensitizers Bengal Rose (RB) and Chlorine e6 (Ce6), and can effectively eliminate cancer cells under image guidance. Therefore, the AIE photosensitizer TCM-Ph has great potential to replace the commercial photosensitizers.
Collapse
Affiliation(s)
- Xupeng Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenxing Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangyu Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tijian Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaolei Zhao
- Research Center of Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Yuwei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqi Shi
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Correspondence:
| |
Collapse
|
15
|
Wang J, Wu H, Zhao Q, Zou Y, Ding D, Yin H, Xu H. Aggregation-Induced Emission Photosensitizer Synergizes Photodynamic Therapy and the Inhibition of the NF-κB Signaling Pathway to Overcome Hypoxia in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29613-29625. [PMID: 35729075 DOI: 10.1021/acsami.2c06063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, and TNBC patients often develop resistance to endocrine or molecular targeted therapy. Thus, a search for effective treatments is urgently required. Photodynamic therapy (PDT) has been verified to be a successful therapy for cancer. However, this treatment is oxygen-consuming, thus considerably limiting the PDT outcomes. The present study introduced a multistage drug delivery system to alleviate hypoxia and enhance PDT efficiency. Specifically, aggregation-induced emission luminogen (AIEgen) TPE-Py was first introduced to achieve PDT properties, and natural naphthohydroquinone dimer Rubioncolin C (RC), a blocker of mitochondria-associated oxidative phosphorylation (OXPHOS) and an NF-κB inhibitor, was applied to suppress the O2 consumption of OXPHOS and mitigate hypoxia thereafter. Enhanced PDT efficiency was validated by in vitro and in vivo TNBC models. In terms of the mechanism, AIEgen-based PDT synergized with RC could induce a fatal burst of reactive oxygen species (ROS) and ROS-mediated apoptosis. Moreover, this combination promoted the effectiveness of PDT by inhibiting the NF-κB signaling pathway. All of these results demonstrated that the administration system not only achieved a synergistic anti-TNBC effect but also expanded the clinical application of AIEgen-based PDT by overcoming hypoxia and inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Haisi Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Qianqian Zhao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yifan Zou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Haitao Yin
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou 221009, P. R. China
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| |
Collapse
|
16
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Liu J, Chen H, Wang B, Luo Y, Yang G, Zhang S, Li S. Triarylboron-Based High Photosensitive Probes for Apoptosis Detection, Tumor-Targeted Imaging, and Selectively Inducing Apoptosis of Tumor Cells by Photodynamics. Anal Chem 2022; 94:8483-8488. [PMID: 35635074 DOI: 10.1021/acs.analchem.2c01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a series of triarylboron-based fluorescent probes were developed for distinguishing apoptosis from living cells and even necrosis. They also demonstrate high photosensitivity because they can produce detectable reactive oxygen species (ROS) under an ultra-low light power density (1.5 mW/cm2). By changing the peripheral groups to regulate the performance, we identified a multifunctional probe, TAB-6-amyl, which can be used not only for selectively imaging apoptosis but also for the targeted imaging of SKOV-3 cells in vitro and in vivo. It could further specifically induce the apoptosis of SKOV-3 cells under light irradiation. During the study, we also found that TAB-6-amyl can cross the blood-brain barrier (BBB). Therefore, another probe based on this kind of structure, TAB-5-M-1-cRGD, was constructed for the targeted imaging of brain glioma cells and inducing their apoptosis. This study offers some promising tools for apoptosis detection and tumor photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Hongyu Chen
- Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Bing Wang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Yingping Luo
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Guoqiang Yang
- Institute of Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shilu Zhang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Shayu Li
- College of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
18
|
Yao M, Wang X, Huang K, Jia X, Xue J, Guo B, Chen J. Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for Efficient Hepatocellular Carcinoma Cell Ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5381-5391. [PMID: 35467866 DOI: 10.1021/acs.langmuir.1c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor acidic environment-activated combination therapy holds great promise to significantly decrease side effects, circumvent multiple drug resistance, and improve therapeutic outcomes for cancer treatment. Herein, Sorafenib/ZnPc(PS)4@FeIII-TA nanoparticles (SPFT) are designed with acid-environment turned-on fluorescence to report the activation of triple therapy including photodynamic, chemodynamic, and chemotherapy on hepatocellular carcinoma. The SPFT are composed of SP cores formulated via self-assembly of sorafenib and ZnPc(PS)4, with high drug loading efficiency, and FeIII-TA shells containing FeCl3 and tannic acid. Importantly, the nanoparticles suppress reactive oxygen species (ROS) generation of ZnPc(PS)4 due to their formation in nanoparticles, while assisting simultaneous uptake of the uploaded drugs in cancer cells. The tumor acidic environment initiates FeIII-TA decomposition and accelerates a chemodynamic reaction between FeII and H2O2 to generate toxic •OH. Then, the SP core is decomposed to separate ZnPc(PS)4 and sorafenib, which leads to fluorescence turning-on of ZnPc(PS)4, expedited photodynamic reactions, and burst release of sorafenib. Notably, SPFT shows low dark cytotoxicity to normal cells but exerts high potency on hepatocellular carcinoma cells under near-infrared light irradiation, which is much more potent than either sorafenib or ZnPc(PS)4 alone. This research offers a facile nanomedicine design strategy for cancer therapy.
Collapse
Affiliation(s)
- Mengyu Yao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiaojie Wang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiao Jia
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
19
|
Cai L, Wang Z, Lin B, Liu K, Wang Y, Yuan Y, Tao X, Lv R. Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. NANOSCALE ADVANCES 2022; 4:2224-2232. [PMID: 36133451 PMCID: PMC9418583 DOI: 10.1039/d2na00197g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
In this research, rare earth nanoparticles coupled with dihydroartemisinin (DHA) and a targeted antibody (RENP-DHA-Cap) for sprayed NIR II imaging and photodynamic therapy (PDT) of tongue cancer were designed. Genetic algorithms combined with combinatorial chemistry were proposed and successfully achieved in a single optimized luminescent phosphor with enhanced NIR II and high upconversion luminescence (UCL) under a NIR laser of wavelength 980 nm or/and 808 nm. In particular, T1 magnetic resonance imaging (MRI) signals can be adjusted with the Gd ion concentration. In combination with the targeted antibody of capmatinib (Cap), precise NIR II imaging for in situ tongue cancer by a simple spray method can be achieved. Most importantly, NIR II imaging and PDT treatment can be realized with RENP-DHA-capmatinib injected intravenously. This orthogonal theranostic mode with precise diagnosis under 808 nm and targeted effective treatment under 980 nm may promote tongue cancer theranostics.
Collapse
Affiliation(s)
- Lingling Cai
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Zhan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Kaikai Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| |
Collapse
|
20
|
Huang H, Zhu Y, Yu ZP, Wang J, Chen L, Wu Z, Yu J, Zhong F, Zhu X, Zhou H. Near-Infrared multifunctional theranostic agent with Wave-Like aggregates modulated by substituent position effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120881. [PMID: 35042042 DOI: 10.1016/j.saa.2022.120881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Precise design of organic photosensitizers (PSs) promoted the technological innovation for multimodal imaging-guided synergistic therapy. Nonetheless, various group substitution could not only optimize the basic photophysical behavior, but possibly change the aggregate, which handicaps the deep understanding of the "Formula-Aggergete-Property" relationship. Bearing this in mind, herein two isomers, named 6-TDE and 7-TDE, were prepared via substituting position modification. Among them, 6-TDE exhibited the grid-like structure, while 7-TDE presented wavy-like structure. Despite the aggregates were different, 6-TDE and 7-TDE shared common features including partly twisted backbone and non-overlapped-orbit, hence resulting in similar optical physical behavior such as decent extinction coefficient, near-IR emission, large stockes shifts, etc. Meanwhile, though two PSs could both generated Type-I and Type-II ROS, 7-TDE possessed smaller singlet-triplet splitting (ΔEST), which exhibited favorable ROS as well as outstanding mitochondrial targeting, achieving efficient photodynamic therapy (PDT) effect. During this process, mitochondrial autophagy could be tracked and observed effectively and in real-time. Moreover, 7-TDE presented outstanding performance in multimodal imaging, including fluorescence imaging (FLI), photoacousticimaging (PAI) and photothermal imaging (PTI). This study enriches the strategy of precise molecular engineering to optimize theranostic agents.
Collapse
Affiliation(s)
- Houshi Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Yuhan Zhu
- College of Life Science, Anhui University, Hefei, 230601, PR China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Feng Zhong
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| |
Collapse
|
21
|
Tian M, Chen W, Wu Y, An J, Hong G, Chen M, Song F, Zheng WH, Peng X. Liposome-Based Nanoencapsulation of a Mitochondria-Stapling Photosensitizer for Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12050-12058. [PMID: 35234031 DOI: 10.1021/acsami.1c23156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria-targeting photodynamic therapy (PDT) can block mitochondrial function and trigger the inherent proapoptotic cascade signal of mitochondria, which has been considered to have the potential to amplify the efficiency of PDT. However, the dynamic change of mitochondrial membrane potential (MMP) makes most cationic photosensitizers easily fall off from the mitochondria, which greatly limits the efficiency of PDT. Here, we have developed a smart liposome encapsulation method based on a mitochondria-stapling photosensitizer for efficient theranostic photodynamic therapy. The stapling photosensitizer can be covalently bound inside mitochondria via two reaction sites without a falloff effect, regardless of the change of MMP. As a result, the liposome-based nanophotosensitizer showed a high efficiency of PDT (IC50 = 0.98 μM) under 630 nm light. At the same time, the nanophotosensitizer had fluorescence imaging-guided ability to monitor abnormal mitochondrial morphology during PDT. Importantly, the results of mice experiments also showed that the liposome-based nanophotosensitizer possessed excellent antitumor PDT activity because the released photosensitizer can stay inside mitochondria during the whole process of PDT.
Collapse
Affiliation(s)
- Mingyu Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Jing An
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Miaomiao Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
22
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
23
|
Xu J, Shamul JG, Kwizera EA, He X. Recent Advancements in Mitochondria-Targeted Nanoparticle Drug Delivery for Cancer Therapy. NANOMATERIALS 2022; 12:nano12050743. [PMID: 35269231 PMCID: PMC8911864 DOI: 10.3390/nano12050743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023]
Abstract
Mitochondria are critical subcellular organelles that produce most of the adenosine triphosphate (ATP) as the energy source for most eukaryotic cells. Moreover, recent findings show that mitochondria are not only the "powerhouse" inside cells, but also excellent targets for inducing cell death via apoptosis that is mitochondria-centered. For several decades, cancer nanotherapeutics have been designed to specifically target mitochondria with several targeting moieties, and cause mitochondrial dysfunction via photodynamic, photothermal, or/and chemo therapies. These strategies have been shown to augment the killing of cancer cells in a tumor while reducing damage to its surrounding healthy tissues. Furthermore, mitochondria-targeting nanotechnologies have been demonstrated to be highly efficacious compared to non-mitochondria-targeting platforms both in vitro and in vivo for cancer therapies. Moreover, mitochondria-targeting nanotechnologies have been intelligently designed and tailored to the hypoxic and slightly acidic tumor microenvironment for improved cancer therapies. Collectively, mitochondria-targeting may be a promising strategy for the engineering of nanoparticles for drug delivery to combat cancer.
Collapse
Affiliation(s)
- Jiangsheng Xu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; (J.X.); (J.G.S.); (E.A.K.)
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
24
|
Photosensitizers with Aggregation-induced Emission and Their Biomedical Applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Zhang S, Chen H, Zhao B, Liu R, Wang B, Zhang X, Deng G, Luo Y, Liu J. Molecular-engineered highly photosensitive triarylphosphine oxide compounds for apoptosis imaging and selectively inducing apoptosis of tumor cells by photodynamic therapy. Biomater Sci 2022; 10:3441-3446. [PMID: 35666470 DOI: 10.1039/d2bm00462c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although photodynamic therapy (PDT) has wide applications, tumor-targeting probes with high photosensitivity or apoptosis-monitoring capability are still scarce, which possess low phototoxicity and can be used for evaluating the therapeutic...
Collapse
Affiliation(s)
- Shilu Zhang
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Hongyu Chen
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Bo Zhao
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Ronglan Liu
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Bing Wang
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Xiaoming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Yingping Luo
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of Pharmacy, Sichuan Key Laboratory of Medical Imaging, Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Sichuan 637100, China
| |
Collapse
|
26
|
Wen S, Hu X, Shi Y, Han J, Han S. Imaging of Mitophagy Enabled by an Acidity-Reporting Probe Anchored on the Mitochondrial Inner Membrane. Anal Chem 2021; 93:16887-16898. [PMID: 34894657 DOI: 10.1021/acs.analchem.1c03881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Classical chemical probes are prone to dissipation from stressed organelles, as evidenced by the incapability of mitochondrial dyes to image mitophagy linked to multiple diseases. We herein reported mitophagy imaging via covalent anchoring of a lysosomal probe to the mitochondrial inner membrane (CALM). Utilizing DBCORC-TPP, an azide-conjugatable probe with acidity-triggered fluorescence, CALM is operated via ΔΨm-promoted probe accumulation in mitochondria and thereby bioorthogonal ligation of the trapped probe with azido-choline (Azcholine) metabolically installed on the mitochondrial membrane. Overcoming the limitation of synthetic probes to dissipate from stressed organelles, CALM enables signal-on fluorescence imaging of mitophagy induced by starvation and is further employed to reveal mitophagy in ferroptosis. These results suggest the potential of CALM as a new tool to study mitophagy.
Collapse
|
27
|
Tang J, Zhang X, Cheng L, Liu Y, Chen Y, Jiang Z, Liu J. Multiple stimuli-responsive nanosystem for potent, ROS-amplifying, chemo-sonodynamic antitumor therapy. Bioact Mater 2021; 15:355-371. [PMID: 35356815 PMCID: PMC8935089 DOI: 10.1016/j.bioactmat.2021.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
Although sonodynamic therapy (SDT) is a promising non-invasive tumor treatment strategy due to its safety, tissue penetration depth and low cost, the hypoxic tumor microenvironment limits its therapeutic effects. Herein, we have designed and developed an oxygen-independent, ROS-amplifying chemo-sonodynamic antitumor therapy based on novel pH/GSH/ROS triple-responsive PEG-PPMDT nanoparticles. The formulated artemether (ART)/Fe3O4-loaded PEG-PPMDT NPs can rapidly release drug under the synergistic effect of acidic endoplasmic pH and high intracellular GSH/ROS levels to inhibit cancer cell growth. Besides, the ROS level in the NPs-treated tumor cells is magnified by ART via interactions with both Fe2+ ions formed in situ at acidic pH and external ultrasound irradiation, which is not affected by hypoxia tumor microenvironment. Consequently, the enriched intracellular ROS level can cause direct necrosis of ROS-stressed tumor cells and further accelerate the drug release from the ROS-responsive PEG-PPMDT NPs, achieving an incredible antitumor potency. Specifically, upon the chemo-sonodynamic therapy by ART/Fe3O4-loaded PEG-PPMDT NPs, all xenotransplants of human hepatocellular carcinoma (HepG2) in nude mice shrank significantly, and 40% of the tumors were completely eliminated. Importantly, the Fe3O4 encapsulated in the NPs is an efficient MRI contrast agent and can be used to guide the therapeutic procedures. Further, biosafety analyses show that the PEG-PPMDT NPs possess minimal toxicity to main organs. Thus, our combined chemo-sonodynamic therapeutic method is promising for potent antitumor treatment by controlled release of drug and facile exogenous generation of abundant ROS at target tumor sites. pH/GSH/ROS triple-responsive PEG-PPMDT were synthesized by enzymatic polymerization. ART and Fe3O4 loaded PEG-PPMDT NPs processes SDT/CDT and MRI theranostic function. Intracellular ROS was magnified by Fe2+-ART interaction and ultrasound irradiation.
Collapse
Affiliation(s)
- JunJie Tang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Lili Cheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yadong Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaozhong Jiang
- Faculty of Arts and Sciences, Department of Biomedical Engineering, Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, United States
- Corresponding author.
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
- Corresponding author.
| |
Collapse
|
28
|
Chakravarty S, Roy Chowdhury S, Mukherjee S. AIE materials for cancer cell detection, bioimaging and theranostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:19-44. [PMID: 34782105 DOI: 10.1016/bs.pmbts.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AIE materials exhibit weakly emissive or non-emissive properties in dilute solutions while emit powerful fluorescence in the aggregated/solid state. Recently, AIE based materials have gained immense attention due to their multifunctional role in cancer cell detection, bioimaging and cancer theranostics. In this present book chapter, we will highlight recent advancements of AIE materials for different cancer theranostics applications.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States
| | - Sayan Roy Chowdhury
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
29
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 798] [Impact Index Per Article: 199.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
30
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
31
|
Real-time imaging mitochondrial viscosity dynamic during mitophagy mediated by photodynamic therapy. Anal Chim Acta 2021; 1178:338847. [PMID: 34482880 DOI: 10.1016/j.aca.2021.338847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy has been generally developed and approved as a promising theranostic technique in recent years, which requires photosensitizers to bear high efficiency of reactive oxygen species production, precisely targeting ability and excellent biocompatibility. The real-time monitoring the microenvironments such as viscosity dynamic involved in mitophagy mediated by photodynamic therapy is significantly important to understand therapeutic process but barely reported. In this work, a pyridinium-functionalized triphenylamine derivative, (E)-4-(2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)vinyl)-1-methylpyridin-1-ium iodide (Mito-I), was exploited as photosensitizer for mitochondria-targeted photodynamic therapy and as fluorescent probe for imaging the mitochondrial viscosity dynamic during mitophagy simultaneously. The results indicated that the additional phenyl ring in Mito-I was beneficial to promote its efficiency of singlet oxygen production. The excellent capability of targeting mitochondria and singlet oxygen generation allowed Mito-I for the specifically mitochondria-targeted photodynamic therapy. Moreover, Mito-I displayed off-on fluorescence response to viscosity with high selectivity and sensitivity. The observed enhancement in fluorescence intensity of Mito-I revealed the increasingly mitochondrial viscosity during mitophagy mediated by the photodynamic therapy of Mito-I. As a result, this work presents a rare example to realize the mitochondria-targeting photodynamic therapy as well as the real-time monitoring viscosity dynamic during mitophagy, which is of great importance for the basic medical research involved in photodynamic therapy.
Collapse
|
32
|
Yang X, Wang L, Guo S, Li R, Tian F, Guan S, Zhou S, Lu J. Self-Cycling Free Radical Generator from LDH-Based Nanohybrids for Ferroptosis-Enhanced Chemodynamic Therapy. Adv Healthc Mater 2021; 10:e2100539. [PMID: 34319006 DOI: 10.1002/adhm.202100539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Nonapoptotic ferroptosis has been a novel form of programmed cell death, which provides a new solution to enrich the anticancer treatment efficacy of traditional apoptotic therapeutic modality. Herein, a novel nanohybrid is designed by loading the PEG-encapsulated Artemisinin (denoted as A@P) on the ultrathin MgFe-LDH nanosheets (denoted as uLDHs) for improved chemodynamic therapy (CDT). The A@P/uLDHs cannot only realize the self-assembly between the Art and carrier but also be regarded as free radical generator. A comprehensive mechanistic study suggests that this unique A@P/uLDHs is able to in situ activate Art and self-cycling generate toxic C-centered free radical inside the cancer cells, without depending on abundant H2 O2 , accompanied with diminished cancerous antioxidation by depleting glutathione (GSH). The accumulation of ROS and depletion of GSH can further oxidize unsaturated fatty acid to generate lipid peroxide, whose overexpression can induce cell ferroptosis accompanied by cellular iron homeostasis turbulence. Both in vitro and in vivo results exhibit that A@P/uLDHs are an efficient nanoagent for highly efficient ferroptosis-enhanced CDT treatment. This work imparts the promising new visions about the ferroptosis-enhanced CDT via fine regulation of material design for improved cancer treatments.
Collapse
Affiliation(s)
- Xueting Yang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. O. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shuaitian Guo
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. O. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ran Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. O. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fangzhen Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology P. O. Box 98, Beisanhuan East Road 15 Beijing 100029 P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
33
|
Sun Z, Chen W, Liu J, Yu B, Jiang C, Lu L. Mitochondria-Targeting Enhanced Phototherapy by Intrinsic Characteristics Engineered "One-for-All" Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35568-35578. [PMID: 34286585 DOI: 10.1021/acsami.1c10850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitochondria-targeted synergistic therapy, including photothermal (PTT) and photodynamic therapy (PDT), has aroused wide attention due to the high sensitivity to reactive oxygen species (ROS) and heat shock of mitochondria. However, most of the developed nanosystems for the combinatorial functions require the integration of different components, such as photosensitizers and mitochondria-targeted molecules. Consequently, it indispensably requires sophisticated design and complex synthetic procedures. In this work, a well-designed Bi2S3-based nanoneedle, that localizes to mitochondria and produces extra ROS with inherent photothermal effect, was reported by doping of Fe (denoted as FeBS). The engineered intrinsic characteristics certify the capacity of such "one-for-all" nanosystems without additional molecules. The lipophilicity and surface positive charge are demonstrated as crucial factors for specifical mitochondria targeting. Significantly, Fe doping overcomes the disadvantage of the narrow band gap of Bi2S3 to prevent the fast recombination of electron-hole, hence resulting in the generation of ROS for PDT. The "one-for-all" nanoparticles integrate with mitochondria-targeting and synergistic effect of PDT and PTT, thus exhibit enhanced therapeutic effect and inhibit the growth of tumors observably. This strategy may open a new direction in designing the mitochondria-targeted materials and broadening the properties of inorganic semiconductor materials for satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui P. R. China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui P. R. China
| | - Jianhua Liu
- Department of Radiology, Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Bin Yu
- University of Science and Technology of China, Hefei 230026, Anhui P. R. China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui P. R. China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui P. R. China
| |
Collapse
|
34
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
35
|
Saini V, Venkatesh V. AIE material for photodynamic therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:45-73. [PMID: 34782107 DOI: 10.1016/bs.pmbts.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is emerging as an excellent strategy to treat different types of cancers. The advantages of using PDT over other cancer treatment modalities are owing to its non-invasive nature, spatiotemporal precession, controllable photoactivity, and least side effects. The photosensitization ability of traditional photosensitizers (PSs) are severely curtailed by aggregation-induced quenching (ACQ). On the contrary, aggregation induced emission (AIE) molecules/fluorogens (AIEgens) show enhanced fluorescence emission and high reactive oxygen species (ROS)/singlet oxygen (1O2) production capability in the aggregated state. These unique characteristics of AIEgens make them potential AIE-PSs for fluorescence/luminescence image-guided combination PDT. In this chapter, we discussed the strategies that are developed to synthesize small molecule-based AIE-PSs, metal complex-based AIE-PSs, and AIE-PSs with two-photon absorbance (TPA) properties, polymer-based AIE-PSs, and nanoparticles based AIE-PSs for PDT. We have also discussed the rational design of targeting peptide conjugated AIE-PSs to selective target cancer cells over normal cells. Furthermore, recent findings on nanoparticle-based combination AIE-PSs are also discussed, where the combination AIE-PSs show synergistically improved anticancer activity and overcome the drug resistance. Finally, we shed light on the recent development, ongoing challenges, and future directions for designing better AIE-PS for PDT.
Collapse
Affiliation(s)
- Vishal Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
36
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021; 60:16889-16893. [PMID: 34050693 DOI: 10.1002/anie.202103706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Photoactivated trimerization of 2,3,3-trimethyl-3H-indole derivatives created near infrared fluorophore Cy5. The synthetic method is air-tolerant, photosensitizer free, metal free, and condensation agent free. Living cells make Cy5 on a time scale of minutes under white light irradiation at a low power intensity, with the monomer as the only exogenous agent. The new method is promising to find applications in cell studies for in situ spatiotemporally controlled fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
37
|
Zhang M, Wang W, Mohammadniaei M, Zheng T, Zhang Q, Ashley J, Liu S, Sun Y, Tang BZ. Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008802. [PMID: 33893670 DOI: 10.1002/adma.202008802] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Compared to other tumors, glioblastoma (GBM) is extremely difficult to treat. Recently, photothermal therapy (PTT) has demonstrated advanced therapeutic efficacy; however, because of the relatively low tissue-penetration efficiency of laser light, its application in deep-seated tumors remains challenging. Herein, bradykinin (BK) aggregation-induced-emission nanoparticles (BK@AIE NPs) are synthesized; these offer selective penetration through the blood-tumor barrier (BTB) and strong absorbance in the near-infrared region (NIR). The BK ligand can prompt BTB adenosine receptor activation, which enhances transportation and accumulation inside tumors, as confirmed by T1 -weighted magnetic resonance and fluorescence imaging. The BK@AIE NPs exhibit high photothermal conversion efficiency under 980 nm NIR laser irradiation, facilitating the treatment of deep-seated tumors. Tumor progression can be effectively inhibited to extend the survival span of mice after spatiotemporal PTT. NIR irradiation can eradicate tumor tissues and release tumor-associated antigens. It is observed that the PTT treatment of GBM-bearing mice activates natural killer cells, CD3+ T cells, CD8+ T cells, and M1 macrophages in the GBM area, increasing the therapeutic efficacy. This study demonstrates that NIR-assisted BK@AIE NPs represent a promising strategy for the improved systematic elimination of GBMs and the activation of local brain immune privilege.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jon Ashley
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
38
|
Wang Y, Xu S, Shi L, Teh C, Qi G, Liu B. Cancer‐Cell‐Activated in situ Synthesis of Mitochondria‐Targeting AIE Photosensitizer for Precise Photodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Cathleen Teh
- Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore 117558 Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
39
|
Wang Y, Xu S, Shi L, Teh C, Qi G, Liu B. Cancer-Cell-Activated in situ Synthesis of Mitochondria-Targeting AIE Photosensitizer for Precise Photodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:14945-14953. [PMID: 33887096 DOI: 10.1002/anie.202017350] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/03/2021] [Indexed: 12/23/2022]
Abstract
Maximization of phototoxic damage on tumor with minimized side effect on normal tissue is essential for effective anticancer photodynamic therapy (PDT). This requires highly cancer-cell-specific or even cancer-cell-organelle-specific synthesis or delivery of efficient photosensitizers (PSs) in vitro and in vivo, which is difficult to achieve. Herein, we report a strategy of cancer-cell-activated PS synthesis, by which an efficient mitochondria-targeting photosensitizer with aggregation-induced-emission (AIE) feature can be selectively synthesized as an efficient image-guided PDT agent inside cancer cells. MOF-199, a CuII -based metal-organic framework, was selected as an inert carrier to load the PS precursors for efficient delivery and served as a CuI catalyst source for in situ click reaction to form PSs exclusively in cancer cells. The in situ synthesized PS showed mitochondria-targeting capability, allowing potent cancer-cell-specific ablation under light irradiation. The high specificity of PSs produced in cancer cells also makes it safer post-treatment.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Leilei Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Cathleen Teh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
40
|
He Z, Tian S, Gao Y, Meng F, Luo L. Luminescent AIE Dots for Anticancer Photodynamic Therapy. Front Chem 2021; 9:672917. [PMID: 34113602 PMCID: PMC8185329 DOI: 10.3389/fchem.2021.672917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging effective strategy for cancer treatment. Compared with conventional cancer therapies, such as surgery, chemotherapy, and radiotherapy, PDT has shown great promise as a next-generation cancer therapeutic strategy owing to its many advantages such as non-invasiveness, negligible observed drug resistance, localized treatment, and fewer side effects. One of the key elements in photodynamic therapy is the photosensitizer (PS) which converts photons into active cytotoxic species, namely, reactive oxygen species (ROS). An ideal PS for photodynamic therapy requires the efficient generation of ROS, high stability against photo bleaching, and robust performance in different environments and concentrations. PSs with aggregation-induced emission (AIE) characteristics have drawn significant attention, in that they can overcome the aggregation- caused quenching effect that is commonly seen in the case of fluorescence dyes and provide excellent performance at high concentrations or in their condensed state. Moreover, organic nanomaterials with AIE characteristics, or AIE dots, have played an increasingly significant role in assisting PDT based on its excellent ROS generation efficiency and simultaneous imaging feature. This review summarizes the recent advances on the molecular design of AIE PSs and AIE dots-based probes, as well as their emerging applications for enhanced anticancer PDT theranostics.
Collapse
Affiliation(s)
- Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Wang R, Li X, Yoon J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19543-19571. [PMID: 33900741 DOI: 10.1021/acsami.1c02019] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular organelles are the cornerstones of cells, and destroying them will cause cell dysfunction and even death. Therefore, realizing precise organelle targeting of photosensitizers (PSs) can help reduce PS dosage, minimize side effects, avoid drug resistance, and enhance therapeutic efficacy in photodynamic therapy (PDT). Organelle-targeted PSs provide a new paradigm for the construction of the next generation of PSs and may provide implementable strategies for future precision medicine. In this Review, the recent targeting strategies of different organelles and the corresponding design principles of molecular and nanostructured PSs are summarized and discussed. The current challenges and opportunities in organelle-targeted PDT are also presented.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
42
|
Liu S, Feng G, Tang BZ, Liu B. Recent advances of AIE light-up probes for photodynamic therapy. Chem Sci 2021; 12:6488-6506. [PMID: 34040725 PMCID: PMC8132949 DOI: 10.1039/d1sc00045d] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
As a new non-invasive treatment method, photodynamic therapy (PDT) has attracted great attention in biomedical applications. The advantages of possessing fluorescence for photosensitizers have made it possible to combine imaging and diagnosis together with PDT. The unique features of aggregation-induced emission (AIE) fluorogens provide new opportunities for facile design of light-up probes with high signal-to-noise ratios and improved theranostic accuracy and efficacy for image-guided PDT. In this review, we summarize the recent advances of AIE light-up probes for PDT. The strategies and principles to design AIE photosensitizers and light-up probes are firstly introduced. The application of AIE light-up probes in photodynamic antitumor and antibacterial applications is further elaborated in detail, from binding/targeting-mediated, reaction-mediated, and external stimuli-mediated light-up aspects. The challenges and future perspectives of AIE light-up probes in the PDT field are also presented with the hope to encourage more promising developments of AIE materials for phototheranostic applications and translational research.
Collapse
Affiliation(s)
- Shanshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, School of Materials Science and Engineering, South China University of Technology Guangzhou 510640 China
- Department of Chemistry, The Hong Kong University of Science & Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
43
|
Varmazyad M, Modi MM, Kalen AL, Sarsour EH, Wagner B, Du J, Schultz MK, Buettner GR, Pigge FC, Goswami PC. N-alkyl triphenylvinylpyridinium conjugated dihydroartemisinin perturbs mitochondrial functions resulting in enhanced cancer versus normal cell toxicity. Free Radic Biol Med 2021; 165:421-434. [PMID: 33561488 PMCID: PMC8020572 DOI: 10.1016/j.freeradbiomed.2021.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Dihydroartemisinin (DHA) is an FDA-approved antimalarial drug that has been repurposed for cancer therapy because of its preferential antiproliferative effects on cancer versus normal cells. Mitochondria represent an attractive target for cancer therapy based on their regulatory role in proliferation and cell death. This study investigates whether DHA conjugated to innately fluorescent N-alkyl triphenylvinylpyridinium (TPVP) perturbs mitochondrial functions resulting in a differential toxicity of cancer versus normal cells. TPVP-DHA treatments resulted in a dose-dependent toxicity of human melanoma and pancreatic cancer cells, whereas normal human fibroblasts were resistant to this treatment. TPVP-DHA treatments resulted in a G1-delay of the cancer cell cycle, which was also associated with a significant inhibition of the mTOR-metabolic and ERK1/2-proliferative signaling pathways. TPVP-DHA treatments perturbed mitochondrial functions, which correlated with increases in mitochondrial fission. In summary, TPVP mediated mitochondrial targeting of DHA enhanced cancer cell toxicity by perturbing mitochondrial functions and morphology.
Collapse
Affiliation(s)
| | - Mira M Modi
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Amanda L Kalen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Brett Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Juan Du
- Department of Surgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael K Schultz
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
44
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
45
|
Mitochondrion-anchoring AIEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Wang Y, Zu M, Ma X, Jia D, Lu Y, Zhang T, Xue P, Kang Y, Xu Z. Glutathione-Responsive Multifunctional "Trojan Horse" Nanogel as a Nanotheranostic for Combined Chemotherapy and Photodynamic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50896-50908. [PMID: 33107728 DOI: 10.1021/acsami.0c15781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It remains a great challenge to design a multifunctional and robust nanoplatform for stimuli-responsive drug delivery toward a lesion, which tactfully integrates multiple molecules with therapeutic and diagnostic characteristics. Herein, we reported a facile and ingenious cross-linked nanogel (DSA) based on the chemical cross-link of drugs as a straightforward strategy to overcome the instability of the assembly. In DSA, doxorubicin (DOX) and 5-aminolevulinic acid (ALA) were cross-linked with a disulfide linker for realizing synergistic anticancer therapy. The stability of DSA was adjusted via balancing the hydrophobic/hydrophilic property with hydrophilic NH2-PEG1k. After regulating the coordination of the DOX part and ALA moiety, the drug-loaded nanogel exhibited superior chemotherapeutic efficacies. Additionally, the DSA could selectively biosynthesize fluorescent protoporphyrin IX (PpIX) in tumor cells, which could be applied for a real-time imaging probe of accurate cancer diagnosis. Besides, the in situ synthesized PpIX in mitochondria could serve as a photosensitizer to convert oxygen into toxic reactive oxygen species under a near infrared ray at 660 nm irradiation, leading to an excellent tumor-killing efficacy. This work proposed a unique strategy for designing a series of prodrug nanogels as a universal drug delivery platform for realizing precise disease therapy and diagnostics.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Screening Assays, Antitumor
- Female
- Glutathione/analysis
- Glutathione/metabolism
- Hydrophobic and Hydrophilic Interactions
- Levulinic Acids/chemistry
- Levulinic Acids/pharmacology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Molecular Structure
- Nanogels/chemistry
- Particle Size
- Photochemotherapy
- Rats
- Rats, Sprague-Dawley
- Surface Properties
- Theranostic Nanomedicine
- Aminolevulinic Acid
Collapse
Affiliation(s)
- Yajun Wang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Menghang Zu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xianbin Ma
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Die Jia
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yi Lu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Tian Zhang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
47
|
Huang Y, Zhang G, Zhao R, Zhang D. Aggregation-Induced Emission Luminogens for Mitochondria-Targeted Cancer Therapy. ChemMedChem 2020; 15:2220-2227. [PMID: 33094568 DOI: 10.1002/cmdc.202000632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/24/2022]
Abstract
The importance of mitochondria in tumorigenesis makes these organelles an ideal target for cancer therapy. In recent years, luminogens with the aggregation-induced emission (AIE) effect have been developed for mitochondrial targeting and cancer treatment. The induction of mitochondrial dysfunction can be an effective pathway of chemotherapy, photodynamic therapy, and combination therapy against cancer. This review focuses on recent progress in the field of AIE luminogens (AIEgens) for cancer theranostics based on mitochondrial targeting and dysfunction. AIEgens for cancer treatment, including chemotherapy, photodynamic therapy, and combination therapy, are summarized herein. Molecular design efforts toward mitochondrial targeting and mitochondria-damaging mechanisms are also discussed. Finally, we discuss the challenges and future directions of development for AIEgens in mitochondria-targeted cancer treatment.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
49
|
Zhou S, Feng G, Wang S, Qi G, Wu M, Liu B. Fast and High-Throughput Evaluation of Photodynamic Effect by Monitoring Specific Protein Oxidation with MALDI-TOF Mass Spectrometry. Anal Chem 2020; 92:12176-12184. [PMID: 32786497 DOI: 10.1021/acs.analchem.0c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In antibacterial practices by photodynamic treatment, bacteria are incubated with photosensitizers and then oxidized to death by generating reactive oxygen species (ROS) under light irradiation. Generally, Luria-Bertani (LB) agar colony is a conventional method to evaluate the photodynamic effect. However, this method is time consuming, easily disturbed by pollutants, and limited to the analysis of a pure bacteria sample. Herein, we introduce a novel method of photodynamic effect evaluation through in situ detection of specific protein oxidation by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) with only 1 μL of sample in a fast (less than 1 min per sample) and high-throughput (up to 384 samples per run) way. The oxidation rates of specific proteins stayed highly consistent with bactericidal rates and thus MALDI-TOF MS might be able to replace the LB agar colony to evaluate the photodynamic effect. With the present method, several experimental conditions including different photosensitizer types, dosage controls, and different illumination times were easily screened to optimize photodynamic effect. Photodynamic effects of various bacteria species, cancer cells, and even mixture samples were also evaluated. The results demonstrate the promising application of MALDI-TOF MS in evaluating the photodynamic effect of each component in a mixture sample without any separation or purification, which could not be achieved by the traditional LB agar colony method.
Collapse
Affiliation(s)
- Shiwei Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Shaowei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
50
|
Wu Y, Zeng Q, Qi Z, Deng T, Liu F. Recent Progresses in Cancer Nanotherapeutics Design Using Artemisinins as Free Radical Precursors. Front Chem 2020; 8:472. [PMID: 32626687 PMCID: PMC7311774 DOI: 10.3389/fchem.2020.00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisinin and its derivatives (ARTs) are sort of important antimalarials, which exhibit a wide range of biological activities including anticancer effect. To solve the issues regarding poor solubility and limited bioavailability of ARTs, nanoformulation of ARTs has thus emerged as a promising strategy for cancer treatment. A common consideration on nanoARTs design lies on ARTs' delivery and controlled release, where ARTs are commonly regarded as hydrophobic drugs. Based on the mechanism that ARTs' activation relies on ferrous ions (Fe2+) or Fe2+-bonded complexes, new designs to enhance ARTs' activation have thus attracted great interests for advanced cancer nanotherapy. Among these developments, the design of a nanoparticle that can accelerate ARTs' activation has become the major consideration, where ARTs have been regarded as radical precursors. This review mainly focused on the most recent developments of ARTs nanotherapeutics on the basis of advanced drug activation. The basic principles in those designs will be summarized, and a few excellent cases will be also discussed in detail.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingping Zeng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|