1
|
Xu Q, Zhang Q, Yu Z, Zhou M, Zhong H, Li Y, Wang P, Zhang Y, Lee WSV, Zhang K. Unraveling and regulating electrode-electrolyte integration towards high-performing MoS 2 loaded fiber shaped supercapacitor. J Colloid Interface Sci 2025; 688:621-629. [PMID: 40022784 DOI: 10.1016/j.jcis.2025.02.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Molybdenum disulfide (MoS2) is touted as a highly promising material for fiber-shaped supercapacitors (FSCs) but limited by its low capacitance and unsatisfactory cycling stability. Here, we report a MoS2 deposited stainless steel wire (MoS2@SSW) that can be electrochemically intercalated with dual ions (Na+ and H+). A high capacitance of ∼1632.7 mF cm-2 at 0.4 mA cm-2 and high capacitance retention of 84.25 % after 10,000 cycles under sulfuric acid/sodium sulfate (H2SO4/Na2SO4) aqueous electrolyte is recorded for this system. This is mainly attributed to the pre-intercalation of H+ into MoS2 to form MoS-SH. This process redistributes the local charge regions on MoS2 surface and lowers the energy barrier for Na+ migration in MoS2 to facilitate the adsorption and intercalation of Na+. Notably, MoS2@SSW FSCs are integrated into three-dimensional space textiles as a proof-of-concept. This novel exploration of the nanointerface resulted by electrolyte engineering offers a feasible design paradigm for the development of high-performing FSCs.
Collapse
Affiliation(s)
- Qingli Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China; Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore; Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zhigen Yu
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mengjuan Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China; Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China; Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China; Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China.
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Kun Zhang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
2
|
Kang L, Liu S, Zhang Q, Zou J, Ai J, Qiao D, Zhong W, Liu Y, Jun SC, Yamauchi Y, Zhang J. Hierarchical Spatial Confinement Unlocking the Storage Limit of MoS 2 for Flexible High-Energy Supercapacitors. ACS NANO 2024; 18:2149-2161. [PMID: 38190453 DOI: 10.1021/acsnano.3c09386] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Molybdenum sulfide (MoS2) is a promising electrode material for supercapacitors; however, its limited Mo/S edge sites and intrinsic inert basal plane give rise to sluggish active electronic states, thus constraining its electrochemical performance. Here we propose a hierarchical confinement strategy to develop ethylene molecule (EG)-intercalated Co-doped sulfur-deficient MoS2 (Co-EG/SV-MoS2) for efficient and durable K-ion storage. Theoretical analyses suggest that the intercalation-confined EG and lattice-confined Co can enhance the interfacial K-ion storage capacity while reducing the K-ion diffusion barrier. Experimentally, the intercalated EG molecules with mildly reducing properties induced the creation of sulfur vacancies, expanded the interlayer spacing, regulated the 2H-1T phase transition, and strengthened the structural grafting between layers, thereby facilitating ion diffusion and ensuring structural durability. Moreover, the Co dopants occupying the initial Mo sites initiated charge transfer, thus activating the basal plane. Consequently, the optimized Co-EG/SV-MoS2 electrode exhibited a substantially improved electrochemical performance. Flexible supercapacitors assembled with Co-EG/SV-MoS2 delivered a notable areal energy density of 0.51 mW h cm-2 at 0.84 mW cm-2 with good flexibility. Furthermore, supercapacitor devices were integrated with a strain sensor to create a self-powered system capable of real-time detection of human joint motion.
Collapse
Affiliation(s)
- Ling Kang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Qia Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jianxiong Zou
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jin Ai
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Donghong Qiao
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wenda Zhong
- School of Pharmacy, Weifang Medical University, No. 7166 Baotongxi Street, Weifang 261053, China
| | - Yuxiang Liu
- School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jian Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
3
|
Li X, Lin X, Yang N, Li X, Zhang W, Komarneni S. Different metal cation-doped MnO 2/carbon cloth for wide voltage energy storage. J Colloid Interface Sci 2023; 649:731-740. [PMID: 37385038 DOI: 10.1016/j.jcis.2023.06.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Aqueous gel supercapacitors, as an important component of flexible energy storage devices, have received widespread attention for their fast charging/discharging rates, long cycle life and high electrochemical stability under mechanical deformation condition. However, the low energy density of aqueous gel supercapacitors has greatly hindered their further development due to the narrow electrochemical window and limited energy storage capacity. Therefore, different metal cation-doped MnO2/carbon cloth-based flexible electrodes herein are prepared by constant voltage deposition and electrochemical oxidation in various saturated sulphate solutions. The influence of different metal cations as K+, Na+ and Li+ doping and deposition conditions on the apparent morphology, lattice structure and electrochemical properties are explored. Furthermore, the pseudo-capacitance ratio of the doped MnO2 and the voltage expansion mechanism of the composite electrode are investigated. The specific capacitance and pseudo-capacitance ratio of the optimized δ-Na0.31MnO2/carbon cloth as MNC-2 electrode could be reached 327.55 F/g at 10 mV/s and 35.56% of the pseudo-capacitance, respectively. The flexible symmetric supercapacitors (NSCs) with desirable electrochemical performances in the operating range of 0-1.4 V are further assembled with MNC-2 as the electrodes. The energy density is 26.8 Wh/kg at the power density of 300 W/kg, while the energy density can still reach 19.1 Wh/kg when the power density is up to 1150 W/kg. The energy storage devices with high-performance developed in this work can provide new ideas and strategic support for the application in portable and wearable electronic devices.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China; Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, PR China.
| | - Xiaoping Lin
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China
| | - Na Yang
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China
| | - Xianghong Li
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China
| | - Wei Zhang
- College of Textile and Garment, Hebei University of Science & Technology, The Innovation Center of Textile and Garment Technology, Hebei 050018, PR China
| | - Sridhar Komarneni
- Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Du M, Zhang K. Nanoporous Conducting Polymer Nanowire Network-Encapsulated MnO 2-Based Flexible Supercapacitor with Enhanced Rate Capability and Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22563-22573. [PMID: 37094246 DOI: 10.1021/acsami.3c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transition-metal-oxide-based electrochemical electrodes usually suffer from poor electron and ion transport, leading to deteriorated rate performance and cycling stability. Herein, we address these issues by developing a facile "conducting encapsulation" strategy toward a nanoporous PEDOT nanowire/MnO2 nanoparticle/PEDOT nanowire composite electrode. Through encapsulation of the PEDOT nanowire network, the overall electrochemical performance of the resultant composite electrode is substantially enhanced. Specifically, the rate capability and capacitance retention are improved by ∼48.2 and ∼33%, respectively, which are 89.8% at 0.8-40 mA/cm2 and 93% after 3000 charge/discharge cycles at 2.0 mA/cm2, respectively. Moreover, the specific capacitance is increased by ∼6 times of that of the MnO2@PEDOT NW electrode at ∼200 mA/cm2. We find that a nanoporous conducting nanowire network that encapsulates a MnO2 nanoparticle layer can provide efficient electron and ion transport paths and stabilize the structure of MnO2 from collapse during charge/discharge cycling and mechanical deformation. This strategy can be applied to other pseudocapacitive material-based electrochemical electrodes, such as transition-metal oxides and conducting polymers.
Collapse
Affiliation(s)
- Minzhi Du
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, PR China
| | - Kun Zhang
- Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
5
|
Liu T, Chen L, Chen L, Tian G, Ji M, Zhou S. Layer-by-Layer Heterostructure of MnO 2@Reduced Graphene Oxide Composites as High-Performance Electrodes for Supercapacitors. MEMBRANES 2022; 12:1044. [PMID: 36363599 PMCID: PMC9697611 DOI: 10.3390/membranes12111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
In this paper, δ-MnO2 with layered structure was prepared by a facile liquid phase method, and exfoliated MnO2 nanosheet (e-MnO2) was obtained by ultrasonic exfoliation, whose surface was negatively charged. Then, positive charges were grafted on the surface of MnO2 nanosheets with a polycation electrolyte of polydiallyl dimethylammonium chloride (PDDA) in different concentrations. A series of e-MnO2@reduced graphene oxide (rGO) composites were obtained by electrostatic self-assembly combined with hydrothermal chemical reduction. When PDDA was adjusted to 0.75 g/L, the thickness of e-MnO2 was ~1.2 nm, and the nanosheets were uniformly adsorbed on the surface of graphene, which shows layer-by-layer morphology with a specific surface area of ~154 m2/g. On account of the unique heterostructure, the composite exhibits good electrochemical performance as supercapacitor electrodes. The specific capacitance of e-MnO2-0.75@rGO can reach 456 F/g at a current density of 1 A/g in KOH electrolyte, which still remains 201 F/g at 10 A/g. In addition, the capacitance retention is 98.7% after 10000 charge-discharge cycles at 20 A/g. Furthermore, an asymmetric supercapacitor (ASC) device of e-MnO2-0.75@rGO//graphene hydrogel (GH) was assembled, of which the specific capacitance achieves 94 F/g (1 A/g) and the cycle stability is excellent, with a retention rate of 99.3% over 10000 cycles (20 A/g).
Collapse
Affiliation(s)
- Tingting Liu
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Lei Chen
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ling Chen
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guoxing Tian
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingtong Ji
- Qinhuangdao Key Laboratory of Marine Oil and Gas Resource Exploitation and Pollution Prevention, Northeast Petroleum University at Qinhuangdao, Qinhuangdao 066004, China
- Provincial Key Laboratory of Polyolefin New Materials, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Shuai Zhou
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Han L, Luo J, Zhang R, Gong W, Chen L, Liu F, Ling Y, Dong Y, Yong Z, Zhang Y, Wei L, Zhang X, Zhang Q, Li Q. Arrayed Heterostructures of MoS 2 Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors. ACS NANO 2022; 16:14951-14962. [PMID: 36037075 DOI: 10.1021/acsnano.2c05905] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonmetallic ammonium ions that feature high safety, low molar mass, and small hydrated radius properties have shown great advantages in wearable aqueous supercapacitors. The construction of high-energy-density flexible ammonium-ion asymmetric supercapacitors (AASCs) is promising but still challenging due to the lack of high-capacitance pseudocapacitive anodes. Herein, freestanding core-shell heterostructures supported on carbon nanotube fibers were designed by anchoring MoS2 nanosheets on nanowires (MoS2@TiN/CNTF) as anodes for AASCs. With contributions of abundant active sites and conspicuous synergistic effects of multiple components for arrayed heterostructure engineering, the developed MoS2@TiN/CNTF anodes exhibit a specific capacitance of 1102.5 mF cm-2 at 2 mA cm-2. Theoretical calculations confirm the dramatic enhancement of the binding strength of ammonium ions on the MoS2 shell layer at the heterostructure, where a built-in electric field exists to accelerate the charge transfer. By utilizing a MnO2/CNTF cathode and NH4Cl/poly(vinyl alcohol) (PVA) as a gel electrolyte, quasi-solid-state fiber-shaped AASCs were successfully constructed, achieving a specific capacitance of 351.2 mF cm-2 and an energy density of 195.1 μWh cm-2, outperforming most recently reported fiber-shaped supercapacitors. This work provides a promising strategy to rationally design heterostructure engineering of MoS2@TiN nanoarrays toward advanced anodes for application in next-generation AASCs.
Collapse
Affiliation(s)
- Lijie Han
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Rongkang Zhang
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Fan Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yihao Dong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Insitute of Nanotechnology, Nanchang 330200, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
7
|
Rahman AU, Zarshad N, Jianghua W, Shah M, Ullah S, Li G, Tariq M, Ali A. Sodium Pre-Intercalation-Based Na 3-δ-MnO 2@CC for High-Performance Aqueous Asymmetric Supercapacitor: Joint Experimental and DFT Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2856. [PMID: 36014721 PMCID: PMC9414395 DOI: 10.3390/nano12162856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical energy storage devices are ubiquitous for personal electronics, electric vehicles, smart grids, and future clean energy demand. SCs are EES devices with excellent power density and superior cycling ability. Herein, we focused on the fabrication and DFT calculations of Na3-δ-MnO2 nanocomposite, which has layered MnO2 redox-active sites, supported on carbon cloth. MnO2 has two-dimensional diffusion channels and is not labile to structural changes during intercalation; therefore, it is considered the best substrate for intercalation. Cation pre-intercalation has proven to be an effective way of increasing inter-layered spacing, optimizing the crystal structure, and improving the relevant electrochemical behavior of asymmetric aqueous supercapacitors. We successfully established Na+ pre-intercalated δ-MnO2 nanosheets on carbon cloth via one-pot hydrothermal synthesis. As a cathode, our prepared material exhibited an extended potential window of 0-1.4 V with a remarkable specific capacitance of 546 F g-1(300 F g-1 at 50 A g-1). Moreover, when this cathode was accompanied by an N-AC anode in an asymmetric aqueous supercapacitor, it illustrated exceptional performance (64 Wh kg-1 at a power density of 1225 W kg-1) and incomparable potential window of 2.4 V and 83% capacitance retention over 10,000 cycles with a great Columbic efficiency.
Collapse
Affiliation(s)
- Anis Ur Rahman
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nighat Zarshad
- Department of Polymer Science, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wu Jianghua
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Muslim Shah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Sana Ullah
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Guigen Li
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Muhammad Tariq
- Department of PCB, Bayazid Rokhan Institute of Higher Studies, Kabul 1002, Afghanistan
| | - Asad Ali
- Department of Chemistry, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
8
|
Zhang S, Xia Q, Ma S, Yang W, Wang Q, Yang C, Jin B, Liu C. Current advances and challenges in nanosheet-based wearable power supply devices. iScience 2021; 24:103477. [PMID: 34927023 PMCID: PMC8646179 DOI: 10.1016/j.isci.2021.103477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nowadays, wearable devices mainly exist in the form of portable accessories with various functions, connecting various kinds of terminals like mobile phones to form various wearable systems. In a wearable system, the wearable power supply device is the key component as energy dispenser for all devices. Nanosheets, a kind of two-dimensional material, which always displays a high surface-to-volume ratio and thus is lightweight and has remarkable conductive as well as electrochemical properties, have become the optimal choice for wearable power supply devices. The development and status of nanosheet-based wearable power supply devices including nanosheet-based wearable batteries, nanosheet-based wearable supercapacitors, nanosheet-based wearable self-powered energy suppliers are introduced in this article. Besides, the future opportunities and challenges of wearable devices are discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Qingchao Xia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Shuyang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Polytechnic Institute, Zhejiang University, Ningbo, China
| | - Wei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Qianqian Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Canjun Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Bo Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| | - Chen Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Ningbo Research Institute, Zhejiang University, Hangzhou 310027, China
- Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
9
|
Lyu L, Hooch Antink W, Kim YS, Kim CW, Hyeon T, Piao Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101974. [PMID: 34323350 DOI: 10.1002/smll.202101974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Flexible and stretchable supercapacitors (FS-SCs) are promising energy storage devices for wearable electronics due to their versatile flexibility/stretchability, long cycle life, high power density, and safety. Transition metal compounds (TMCs) can deliver a high capacitance and energy density when applied as pseudocapacitive or battery-like electrode materials owing to their large theoretical capacitance and faradaic charge-storage mechanism. The recent development of TMCs (metal oxides/hydroxides, phosphides, sulfides, nitrides, and selenides) as electrode materials for FS-SCs are discussed here. First, fundamental energy-storage mechanisms of distinct TMCs, various flexible and stretchable substrates, and electrolytes for FS-SCs are presented. Then, the electrochemical performance and features of TMC-based electrodes for FS-SCs are categorically analyzed. The gravimetric, areal, and volumetric energy density of SC using TMC electrodes are summarized in Ragone plots. More importantly, several recent design strategies for achieving high-performance TMC-based electrodes are highlighted, including material composition, current collector design, nanostructure design, doping/intercalation, defect engineering, phase control, valence tuning, and surface coating. Integrated systems that combine wearable electronics with FS-SCs are introduced. Finally, a summary and outlook on TMCs as electrodes for FS-SCs are provided.
Collapse
Affiliation(s)
- Lulu Lyu
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Wytse Hooch Antink
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Seong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chae Won Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuanzhe Piao
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| |
Collapse
|
10
|
Li Q. Interfacial Control of NiCoP@NiCoP Core-Shell Nanoflake Arrays as Advanced Cathodes for Ultrahigh-Energy-Density Fiber-Shaped Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101617. [PMID: 34235844 DOI: 10.1002/smll.202101617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Efficient improvement of the energy density and overall electrochemical performance of fiber-shaped asymmetric supercapacitors (FASCs) for practical applications in portable and wearable electronics requires highly electrochemically active materials and a rational design. Herein, two-step phosphorization (TSP) processes are performed to directly grow 3D well-aligned NiCoP@NiCoP (NCP@NCP TSP) nanoflake arrays (NFAs) on carbon nanotube fibers (CNTFs). Profiting from the metallic characteristics and excellent electrochemical performance of NiCoP and the hierarchical design of the core-shell heterostructure, the NCP@NCP TSP NFAs/CNTF hybrid electrode exhibits significantly improved electrochemical performance. The as-fabricated NCP@NCP TSP NFAs/CNTF electrode possesses an ultrahigh areal capacitance of 10 035 mF cm-2 at a current density of 1 mA cm-2 , with excellent rate capability and cycling stability. Furthermore, an FASC device with a maximum operating voltage of 1.6 V is assembled by adopting NCP@NCP TSP NFAs/CNTF as a positive electrode, hierarchical TiN@VN core-shell heterostructure nanowire arrays (NWAs)/CNTF as negative electrode, and KOH-PVA as a gel electrolyte. The FASC device exhibits a high areal capacitance of 430.4 mF cm-2 and an ultrahigh energy density of 51.02 mWh cm-3 . Thus, the rationally designed NiCoP@NiCoP electrode is a promising candidate for incorporation into next-generation wearable and portable energy-storage devices.
Collapse
Affiliation(s)
- Qiulong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
11
|
Zheng X, Fei J, Li M, Huang J, Wang N. Sodium citrate‐assisted synthesis of
nano‐manganese
oxide on carbon fiber for enhancing the mechanical and frictional performances of carbon fiber‐reinforced resin matrix composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xinhui Zheng
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Jie Fei
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
- State Key Laboratory of Solidification Processing Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University Xi'an PR China
| | - Meng Li
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Jianfeng Huang
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| | - Na Wang
- Key Laboratory for Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering Shaanxi University of Science and Technology Xi'an PR China
| |
Collapse
|
12
|
Jin J, Ding J, Wang X, Hong C, Wu H, Sun M, Cao X, Lu C, Liu A. High mass loading flower-like MnO 2 on NiCo 2O 4 deposited graphene/nickel foam as high-performance electrodes for asymmetric supercapacitors. RSC Adv 2021; 11:16161-16172. [PMID: 35479179 PMCID: PMC9030704 DOI: 10.1039/d0ra10948g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/20/2021] [Indexed: 01/14/2023] Open
Abstract
The implementation of high mass loading MnO2 on electrochemical electrodes of supercapacitors is currently challenging due to the poor electrical conductivity and elongated electron/ion transport distance. In this paper, a NiCo2O4/MnO2 heterostructure was built on the surface of three-dimensional graphene/nickel foam (GNF) by a hydrothermal method. The petal structured NiCo2O4 loaded on graphene played a wonderful role as a supporting framework, which provided more space for the growth of high mass loading MnO2 microflowers, thereby increasing the utilization rate of the active material MnO2. The GNF@NiCo2O4/MnO2 composite was used as a positive electrode and achieved a high areal capacitance of 1630.5 mF cm-2 at 2 mA cm-2 in the neutral Na2SO4 solution. The asymmetric supercapacitor assembled with the GNF@NiCo2O4/MnO2 positive electrode and activated carbon negative electrode possessed a wide voltage window (2.1 V) and splendid energy density (45.9 Wh kg-1), which was attributed to the satisfactory electroactive area, low resistance, quick mass diffusion and ion transport caused by high mass loading MnO2.
Collapse
Affiliation(s)
- Jing Jin
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 China .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology Hangzhou 310023 China
| | - Jie Ding
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 China .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology Hangzhou 310023 China
| | - Xing Wang
- Center for Optoelectronics Materials and Devices, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Congcong Hong
- Center for Optoelectronics Materials and Devices, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 China .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology Hangzhou 310023 China
| | - Min Sun
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 China .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology Hangzhou 310023 China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310018 China
| | - Congda Lu
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 China .,Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology Hangzhou 310023 China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices, Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
13
|
Cao Y, Zhou T, Wu K, Yong Z, Zhang Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv 2021; 11:6628-6643. [PMID: 35423204 PMCID: PMC8694961 DOI: 10.1039/d0ra09482j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Aligned carbon nanotube (CNT) fibers have been considered as one of the ideal candidate electrodes for fiber-shaped energy harvesting and storage devices, due to their merits of flexibility, lightweight, desirable mechanical property, outstanding electrical conductivity as well as high specific surface area. Herein, the recent advancements on the aligned CNT fibers for energy harvesting and storage devices are reviewed. The synthesis, structure, and properties of aligned carbon nanotube fibers are briefly summarized. Then, their applications in fiber-shaped energy harvesting and storage devices (i.e., solar cells, supercapacitors, and batteries) are demonstrated. The remaining challenges are finally discussed to highlight the future research direction in the development of aligned CNT fibers for fiber-shaped energy devices.
Collapse
Affiliation(s)
- Yufang Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Tao Zhou
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Kunjie Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Yongyi Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| |
Collapse
|
14
|
Rani JR, Thangavel R, Kim M, Lee YS, Jang JH. Ultra-High Energy Density Hybrid Supercapacitors Using MnO 2/Reduced Graphene Oxide Hybrid Nanoscrolls. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2049. [PMID: 33081310 PMCID: PMC7603058 DOI: 10.3390/nano10102049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
Manganese oxide (MnO2) is a promising material for supercapacitor applications, with a theoretical ultra-high energy density of 308 Wh/kg. However, such ultra-high energy density has not been achieved experimentally in MnO2-based supercapacitors because of several practical issues, such as low electrical conductivity of MnO2, incomplete utilization of MnO2, and dissolution of MnO2. The present study investigates the potential of MnO2/reduced graphene oxide (rGO) hybrid nanoscroll (GMS) structures as electrode material for overcoming the difficulties and for developing ultra-high-energy storage systems. A hybrid supercapacitor, comprising MnO2/rGO nanoscrolls as anode material and activated carbon (AC) as a cathode, is fabricated. The GMS/AC hybrid supercapacitor exhibited enhanced energy density, superior rate performance, and promising Li storage capability that bridged the energy-density gap between conventional Li-ion batteries (LIBs) and supercapacitors. The fabricated GMS/AC hybrid supercapacitor demonstrates an ultra-high lithium discharge capacity of 2040 mAh/g. The GMS/AC cell delivered a maximum energy density of 105.3 Wh/kg and a corresponding power density of 308.1 W/kg. It also delivered an energy density of 42.77 Wh/kg at a power density as high as 30,800 W/kg. Our GMS/AC cell's energy density values are very high compared with those of other reported values of graphene-based hybrid structures. The GMS structures offer significant potential as an electrode material for energy-storage systems and can also enhance the performance of the other electrode materials for LIBs and hybrid supercapacitors.
Collapse
Affiliation(s)
- Janardhanan. R. Rani
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (J.R.R.); (M.K.)
| | - Ranjith Thangavel
- Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Korea; (R.T.); (Y.S.L.)
| | - Minjae Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (J.R.R.); (M.K.)
| | - Yun Sung Lee
- Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju 61186, Korea; (R.T.); (Y.S.L.)
| | - Jae-Hyung Jang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (J.R.R.); (M.K.)
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
15
|
Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002806. [PMID: 32761793 DOI: 10.1002/smll.202002806] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/12/2020] [Indexed: 05/13/2023]
Abstract
The development of pseudocapacitive materials for energy-oriented applications has stimulated considerable interest in recent years due to their high energy-storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery-like to the pseudocapacitive-like behavior. As a result, it becomes challenging to distinguish "pseudocapacitive" and "battery" materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery-type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid-state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state-of-the-art progress in the engineering of active materials is summarized, which will guide for the development of real-pseudocapacitive energy storage systems.
Collapse
Affiliation(s)
- Nilesh R Chodankar
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Hong Duc Pham
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Ashok Kumar Nanjundan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joseph F S Fernando
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu, Jammu & Kashmir, 181221, India
| | - Dmitri Golberg
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Young-Kyu Han
- Department of Energy & Materials Engineering, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Deepak P Dubal
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| |
Collapse
|
16
|
Zarshad N, Wu J, Rahman AU, Ni H. Fe-MnO2 core-shell heterostructure for high-performance aqueous asymmetrical supercapacitor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Zhang Y, Deng S, Luo M, Pan G, Zeng Y, Lu X, Ai C, Liu Q, Xiong Q, Wang X, Xia X, Tu J. Defect Promoted Capacity and Durability of N-MnO 2- x Branch Arrays via Low-Temperature NH 3 Treatment for Advanced Aqueous Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905452. [PMID: 31608588 DOI: 10.1002/smll.201905452] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Defect engineering (doping and vacancy) has emerged as a positive strategy to boost the intrinsic electrochemical reactivity and structural stability of MnO2 -based cathodes of rechargeable aqueous zinc ion batteries (RAZIBs). Currently, there is no report on the nonmetal element doped MnO2 cathode with concomitant oxygen vacancies, because of its low thermal stability with easy phase transformation from MnO2 to Mn3 O4 (≥300 °C). Herein, for the first time, novel N-doped MnO2- x (N-MnO2- x ) branch arrays with abundant oxygen vacancies fabricated by a facile low-temperature (200 °C) NH3 treatment technology are reported. Meanwhile, to further enhance the high-rate capability, highly conductive TiC/C nanorods are used as the core support for a N-MnO2- x branch, forming high-quality N-MnO2- x @TiC/C core/branch arrays. The introduced N dopants and oxygen vacancies in MnO2 are demonstrated by synchrotron radiation technology. By virtue of an integrated conductive framework, enhanced electron density, and increased surface capacitive contribution, the designed N-MnO2- x @TiC/C arrays are endowed with faster reaction kinetics, higher capacity (285 mAh g-1 at 0.2 A g-1 ) and better long-term cycles (85.7% retention after 1000 cycles at 1 A g-1 ) than other MnO2 -based counterparts (55.6%). The low-temperature defect engineering sheds light on construction of advanced cathodes for aqueous RAZIBs.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shengjue Deng
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mi Luo
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guoxiang Pan
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, China
| | - Yinxiang Zeng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Changzhi Ai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Qinqin Xiong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Xiuli Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiangping Tu
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
18
|
Yan L, Shen C, Niu L, Liu MC, Lin J, Chen T, Gong Y, Li C, Liu X, Xu S. Experimental and Theoretical Investigation of the Effect of Oxygen Vacancies on the Electronic Structure and Pseudocapacitance of MnO 2. CHEMSUSCHEM 2019; 12:3571-3581. [PMID: 31127866 DOI: 10.1002/cssc.201901015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Defect engineering is an effective way to modulate the intrinsic physicochemical properties of materials. In this work, δ-MnO2 with oxygen vacancies is fabricated by a simple oxidation or reduction process, and the relationship between the electronic structure and pseudocapacitance is systematically studied through experimental analysis and theoretical calculations. The peaks in the Raman spectra of the as-prepared samples are shifted compared with those of pure MnO2 and the Mn3+ /Mn4+ ratio and O species content also change after the introduction of oxygen vacancies. The optimized samples exhibit a better specific capacitance of 207 F g-1 after the oxidation process and 181.4 F g-1 after the reduction treatment compared with only 143.9 F g-1 for the pure MnO2 . The samples obtained through the oxidation or reduction process also retain 93.3 or 86.4 % of the initial capacity after 5000 cycles. The excellent properties are attributed to the enhanced conductivity and increased surface reactivity or electrochemically active sites. Theoretical calculations demonstrate that the presence of oxygen vacancies leads to an increase in the density of states, which improves the redox reaction of MnO2 . This study will provide a reference for exploring and designing highperformance pseudocapacitive materials.
Collapse
Affiliation(s)
- Lijin Yan
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Cheng Shen
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Lengyuan Niu
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Mao-Cheng Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Jianhua Lin
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Taiqiang Chen
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Yinyan Gong
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Can Li
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Xinjuan Liu
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Shiqing Xu
- Institute of Coordination Bond Metrology and Engineering (CBME), China Jiliang University, Hangzhou, 310018, P. R. China
- College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P. R. China
| |
Collapse
|
19
|
Jeong JH, Park JW, Lee DW, Baughman RH, Kim SJ. Electrodeposition of α-MnO 2/γ-MnO 2 on Carbon Nanotube for Yarn Supercapacitor. Sci Rep 2019; 9:11271. [PMID: 31375776 PMCID: PMC6677808 DOI: 10.1038/s41598-019-47744-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
Abstract
Yarn supercapacitors have attracted renewed interest as promising energy storage for wearable devices due to their lightweight, long cycling lifetime and excellent weavability. There has been much effort to fabricate high performance yarn supercapacitor by depositing pseudo-capacitive materials on the outer surface of the carbon fibers. However, a key challenge still remains to achieve high capacitance and high mass loading without sacrificing the cycling stability. Herein, we perform a phase-controlled of MnO2 at various deposition temperatures with ultrahigh mass loading of 11 mg/cm2 on a MWNT sheets and fabricate it to yarn structure to achieve high capacitance without decreasing in the electrochemical performance. The structure of optimized sample (MnO2/CNTs-60, deposition at 60 °C) consists of the composite of primary α-MnO2 nanosheets and secondary γ-MnO2 nanoparticles. The heteronanostructures of MnO2 provide facile ionic and electric transport in the yarn electrode, resulting in improvement of electrochemical performance and cycling stability. The MnO2/CNTs-60 yarn electrode with ultrahigh mass loading delivers a high areal capacitance of 3.54 F/cm2 at 1 mA/cm2 and an excellent rate capability. Finally, the MnO2/CNTs-60 device exhibits an outstanding high areal energy density of 93.8 μWh/cm2 at the power density of 193 μW/cm2, which is superior to previously reported symmetric yarn supercapacitors.
Collapse
Affiliation(s)
- Jae-Hun Jeong
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Jong Woo Park
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea
| | - Duck Weon Lee
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea.,Department of Chemistry and Material Science, Aalto University, PO Box 16100, FI-00076, Aalto, Finland
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas, 75083, USA
| | - Seon Jeong Kim
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
20
|
Li S, Yu LL, Shi YT, Fan J, Li RB, Fan GD, Xu WL, Zhao JT. Greatly Enhanced Faradic Capacities of 3D Porous Mn 3O 4/G Composites as Lithium-Ion Anodes and Supercapacitors by C-O-Mn Bonding. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10178-10188. [PMID: 30768243 DOI: 10.1021/acsami.8b21063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Through C-O-Mn bonding, graphene nanosheets are homogeneously dispersed in porous Mn3O4 to take full advantages of porous Mn3O4 and graphene nanosheets, making the as-formed three-dimensional porous Mn3O4/reduced graphene oxide (rGO) composite exhibit good electrochemical performance. Besides, C-O-Mn bonding is demonstrated to greatly promote the Faradic reactions of the composite, resulting in the enhancement of its real capacity in supercapacitor (SC) electrodes as well as lithium-ion battery (LIB) anodes. By simply fine-tuning the content of graphene (<7 wt %), the composite with 2.8 wt % of rGO delivers a high capacitance of 315 F g-1 at 0.5 A g-1 with a high rate capability of 64.7% at 30 A g-1 and an excellent cycling stability of 105% (5 A g-1, 5000 cycles) as an SC electrode. Also, the one with 6.9 wt % rGO can present a reversible capacity of more than 1500 mAh g-1 at 0.05 A g-1 as the LIB anode, the highest value reported to date, which remains 561 mAh g-1 at 1 A g-1.
Collapse
Affiliation(s)
- Shuang Li
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Li-Li Yu
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Yu-Ting Shi
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Jun Fan
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Rong-Bing Li
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Gai-Di Fan
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Wei-Ling Xu
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | - Jing-Tai Zhao
- School of Material Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
- Materials Genome Institute , Shanghai University , 99 Shangda Road , Shanghai 200444 , P. R. China
| |
Collapse
|