1
|
Chen X, Huang H, Huang S, Wu Q, Liu J, Duan H, Chen H. Constructing BiOI@N v/g-C 3N 4 with S-scheme heterojunction for enhanced photoelectrochemical performances towards highly sensitive and selective detection of trace chlorpyrifos. Anal Chim Acta 2025; 1359:344102. [PMID: 40382101 DOI: 10.1016/j.aca.2025.344102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/26/2025] [Accepted: 04/19/2025] [Indexed: 05/20/2025]
Abstract
Chlorpyrifos, one of the organophosphorus pesticide commonly used in the environment, may bring about an irreversible harm such as lung cancer to human body. Photoelectrochemical (PEC) detection techniques based on g-C3N4 for sensing chlorpyrifos have attracted increasing attentions, but impeded by several inherent constraints such as a limit of active sites and carriers transfer. To conquer these challenges, a photoelectrochemical sensor of BiOI@Nv/g-C3N4 with a step scheme heterojunction was thereby proposed for the sensitive and selective detection of trace chlorpyrifos. Herein, the created N vacancies facilitated the migration of photo-electrons from BiOI to recombine with the holes of Nv/g-C3N4 under light irradiation. A powerful oriented built-in electric field was established directing from Nv/g-C3N4 to BiOI. The photocurrent intensity of the as-prepared sensor exhibited over 7.6 times higher than that of pure g-C3N4, showing a well PEC performance. High selectivity of the developed sensor was attributed to the specific interaction between Bi sites of the developed composites and the S, N atoms in chlorpyrifos. Such sensitive and steady PEC sensor exhibited a linear detection range from 0.01 to 20 ppb with a detection limit of 0.004 ppb. Further, the sensor displayed reliable performance when applied to real river water and soil samples, achieving nice recovery rates. Unlike traditional PEC sensor, this one was prepared into S-scheme heterojunction by creating a N defect-induced driving force based on the altered built-in electric field. The work not only provides experimental evidences but also advances the fundamental theories so as to offer a robust g-C3N4-based PEC platform for environmental analysis.
Collapse
Affiliation(s)
- Xi Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Haicai Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Shipeng Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingping Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jingqiu Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Haoyu Duan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
2
|
Dhanasekaran T, Jayathuna MA, Manigandan R, Negishi Y. Ag-Embedded Hollow Poly( o-phenylenediamine)-Reinforced NiOOH-BiOCl Hybrid-Structured Nanomaterials for Highly Sensitive Dual Electrocatalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12403-12413. [PMID: 40366199 DOI: 10.1021/acs.langmuir.4c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The rational development of electrodes for electrochemical sensors has wider application prospects in the fields of wearable electronics, environmental monitoring, and medicine. However, it is highly challenging to construct an electrode with high sensitivity and selectivity due to the complex analytical matrices and low concentrations of the targeted compounds. In this study, we rationally designed the Ag-embedded hollow poly(o-phenylenediamine)-reinforced NiOOH-BiOCl (h-APNB) electrocatalyst for dual electrocatalysis toward a biosphere pollutant of 4-nitrophenol (4-NP) and a biomolecule of uric acid (UA). Under optimized conditions, it shows a nanomolar detection limit of 126 pM and 2.3 nM, a high sensitivity of 8.251 and 4.92 μA μM-1 cm-2, and linear ranges of 0.001-0.011 and 0.01-1.31 μM for 4-NP and UA, respectively. Owing to its enhanced sensitivity, accuracy, and stability, h-APNB/GCE significantly improved current response with minimal overvoltage for analyte detection. Of interest, the real-sample detection of 4-NP in rainwater and tap water and UA in urine and serum samples is carried out, thereby demonstrating its practical applicability. These hybrid nanostructured electrocatalysts offer significant advantages for sensor applications attributed to the synergism between the electrode/electrolyte interface and electrolyte confinement in the nanomaterial.
Collapse
Affiliation(s)
- Thangavelu Dhanasekaran
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Mugamathu Ali Jayathuna
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, Tamil Nadu 600 014, India
| | - Ramadoss Manigandan
- Department of Chemistry, Rajalakshmi Engineering College, Thandalam, Chennai 602 105, India
| | - Yuichi Negishi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku,Sendai 980-8577, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
3
|
Wang T, Cheng S, Zhao F, Zeng B. H 2O 2-induced photocurrent polarity reversal of chitosan stabilized I-BiOBr/CuS composite heterojunction for highly sensitive cholesterol detection. Int J Biol Macromol 2025; 306:141439. [PMID: 40010472 DOI: 10.1016/j.ijbiomac.2025.141439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Photocurrent polarity reversal reflects a crucial switching procedure between the anode and cathode paths, which is important for the eradication of false-positive signals and the enhancement of the detection sensitivity and reliability of photoelectrochemical (PEC) sensors. Herein, we constructed a PEC biosensor which exhibited excellent H₂O₂-induced photocurrent polarity reversal properties. In the sensor chitosan stabilized I-BiOBr/CuS semiconductor heterojunction was employed as the photosensitive material, which exhibited large cathode photocurrent. Upon the introduction of H₂O₂ the photocurrent polarity reversed due to the change of PEC mechanism. As an application proof of the mechanism, cholesterol was coupled with cholesterol oxidase to produce H₂O₂. The reversal photocurrent increased with increasing cholesterol concentration, achieving sensitive and selective PEC detection of cholesterol. Under the selected conditions, the PEC sensor showed a detection limit as low as 0.21 μM, a broad linear range and high stability. Moreover, the measurement results of actual samples were comparable to those of commercial cholesterol detection tool. Hence, it was promising in clinical diagnosis.
Collapse
Affiliation(s)
- Tingting Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; School of Pharmacy, Shandong Second Medical University, Weifang 261053, PR China
| | - Siying Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
4
|
Kumar M, Dhiman A, Singh G, Kaur N, Singh N. Pyrene functionalized organic cation receptor-based "turn-on" fluorescence approach for monitoring of chlorpyrifos in food, soil, and water samples. Anal Chim Acta 2025; 1336:343488. [PMID: 39788659 DOI: 10.1016/j.aca.2024.343488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides. RESULTS Herein, we demonstrates the metal-free detection of CPF pesticide in aqueous medium, based on the organic nanoparticles of benzimidazole-based cationic receptor (R1-ONPs), and thoroughly analyzed using advanced techniques such as AFM, FESEM, and DLS etc. The photophysical investigations revealed that developed R1-ONPs exhibited high selectivity towards chlorpyrifos with an enhancement in fluorescence emission. Further, the observed pyrene excimer-based "turn-on" fluorescence mechanism, and the interaction between developed sensor and chlorpyrifos has been validated utilizing 1H, and 31P NMR spectroscopy. The developed sensor can effectively quantify chlorpyrifos up to a detection limit of 18.9 nM (3σ method) with a range of 0-120 μM as well as below the cutoff limit set by FAO. Moreover, the real-time application of developed sensor (R1-ONPs) was evaluated to monitor chlorpyrifos in spiked food, water, and soil samples with good (%) recovery. SIGNIFICANCE The development of metal-free, pyrene-excimer-based "Turn-On" fluorescent sensor offers a novel, eco-friendly strategy for the detection of chlorpyrifos in aqueous medium. Additionally, its ability to quantify the chlorpyrifos at levels as low as those set by FAO makes it more efficient tool for monitoring the environmental toxicity ensuring better protection for human, and animal health.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Aman Dhiman
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Gagandeep Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
5
|
Chen Y, Liang J, Xu J, Shan L, Lv J, Wu C, Zhang L, Li L, Yu J. Ultrasensitive Paper-Based Photoelectrochemical Biosensor for Acetamiprid Detection Enabled by Spin-State Manipulation and Polarity-Switching. Anal Chem 2024. [PMID: 39018067 DOI: 10.1021/acs.analchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Efficient carrier separation is vitally crucial to improving the detection sensitivity of photoelectrochemical (PEC) biosensors. Here, we developed a facile strategy to efficiently regulate the carrier separation efficiency of the photoactive matrix BiOI and In2S3 signal label functionalized paper chip by manipulation of electrons spin-state and rational design of electron transport pathways. The spin-dependent electronic structures of BiOI and In2S3 were regulated via enhanced electron-spin parallel alignment induced by an external magnetic field, markedly retarding carrier recombination and extending their lifetime. Simultaneously, with the progress of the target-induced catalytic hairpin assembly process, the transfer path of photogenerated carriers was changed, leading to a switch in photocurrent polarity from cathode to anode. This reversed electron transport pathway not only boosted the separation ability of photogenerated electrons but also eliminated false-positive and false-negative signals, thereby further improving the detection sensitivity. As a proof of concept, the well-designed magnetic field-stimulated paper-based PEC biosensor showed highly selectivity and sensitivity for acetamiprid assay with a wide linear range of 1 fM to 20 nM and an ultralow detection limit of 0.73 fM. This work develops a universal strategy for improving the sensitivity of biosensors and exhibits enormous potential in the fields of bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiaxin Liang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jiahui Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Shan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingjing Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chengjun Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
6
|
Xu BF, Zhang J, Tanjung AP, Xu F, Wang AJ, Mei LP, Song P, Feng JJ. MOF-derived sandwich-structured dual Z-Scheme Co 9S 8@ZnIn 2S 4/CdSe hollow nanocages heterojunction: Target-induced ultrasensitive photoelectrochemical sensing of chlorpyrifos. Biosens Bioelectron 2024; 257:116324. [PMID: 38669844 DOI: 10.1016/j.bios.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.
Collapse
Affiliation(s)
- Ben-Fang Xu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jin Zhang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Aisyah Protonia Tanjung
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Fan Xu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
7
|
Krishna Perumal P, Chen CW, Giri BS, Singhania RR, Patel AK, Dong CD. Graphene-based functional electrochemical sensors for the detection of chlorpyrifos in water and food samples: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:631-641. [PMID: 38410271 PMCID: PMC10894149 DOI: 10.1007/s13197-023-05772-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 02/28/2024]
Abstract
Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Chiu-wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007 India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157 Taiwan
| |
Collapse
|
8
|
Lin Q, Lu L, Huang X, Li M, Tang D. Photocurrent-polarity switching between methylene blue-loaded liposome and iodine-doped BiOCl for in-situ amplified immunoassay. Talanta 2024; 268:125346. [PMID: 37913594 DOI: 10.1016/j.talanta.2023.125346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
This work designed a liposome-mediated photocurrent polarity switching immunosensor depending on the reversed photocurrent of iodine-doped BiOCl (I-BOC) nanoflowers induced by the released methylene blue (MB) for the detection of prostate-specific antigen (PSA). Initially, MB-loaded liposomes as indicators were confined within the microplates to participate in the sandwiched immunoreaction and lysed under the treatment of Triton X-100 to release numerous MB. Owing to the host-guest recognition between β-cyclodextrin (β-CD) and MB, the released MB was immobilized on the β-CD-modified I-BOC/FTO electrode and triggered the photocurrent polarity reversal from cathodic photocurrent to anodic photocurrent. The sensing platform realized an accurate and sensitive assay of PSA due to the effective elimination of false-positive/negative signals in a linear range of 0.02-50 ng mL-1 with a limit of detection of 12 pg mL-1. Furthermore, this work not only conjugated liposome-assisted signal amplification strategy with the photocurrent polarity switching system but also provided a novel pathway for various protein determinations.
Collapse
Affiliation(s)
- Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
9
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
10
|
Liu Q, Guo Z, Hou X, Huang G, You T. Signal Modulation of Organic Photoelectrochemical Transistor by a Z-Scheme Photocathodic Gate: An Innovative Dual Amplification Strategy for Sensitive Aptasensing Application. Anal Chem 2023; 95:17108-17116. [PMID: 37948569 DOI: 10.1021/acs.analchem.3c04258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a Z-scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a Z-scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude. As a result, the output PEC signal of CdTe-BiOBr was enhanced by 17.5-fold as compared to BiOBr, and the channel current (IDS) of the OPECT device was 117-fold magnified than its gate current (IG) response. Exemplified by tetracycline (TC) as a model target and aptamer as the specific recognition element, a versatile cathodic aptasensing platform was constructed based on the proposed OPECT device. The introduced OPECT aptasensor merits advantages, including a good linear range (1.0 × 10-12 to 1.0 × 10-6 M), a low limit of detection (4.2 × 10-13 M), and superior sensitivity than the traditional PEC methods for TC detection, which represents a universal protocol for developing the innovative photocathodic OPECT sensing platform toward accurate analysis.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Zhijie Guo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuli Hou
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Guoping Huang
- CECEP Solar Energy Technology (Zhenjiang) Co., Ltd., Zhenjiang 212013, Jiangsu, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
11
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
Wang T, Ran Y, He Y, Shi L, Zeng B, Zhao F. Self-powered photoelectrochemical/visual sensing platform based on PEDOT/BiOBr 0.8I 0.2 organic-inorganic hybrid material and MWCNTs/SnS 2 heterojunction for the ultrasensitive detection of programmed death ligand-1. Biosens Bioelectron 2023; 237:115558. [PMID: 37531891 DOI: 10.1016/j.bios.2023.115558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Programmed death ligand-1 (PD-L1) can enhance the immune tolerance of tumor cells by suppressing the activity of T-cells, and is one of the culprits that lead to the immune escape of tumor cells. Thus, the sensitive and portable detection of PD-L1 levels is essential for many types of tumor prognosis. Herein, a novel dual-mode analytical device for the ultrasensitive detection of PD-L1 has been developed. In this configuration, an advanced organic-inorganic hybrid material of poly(3,4-ethylenedioxythiophene) -BiOBr0.8I0.2 is designed as photocathode to enhance the photogenerated electron migration efficiency of the MWCNTs/SnS2-photoanode by external circuit, amplifying cathodic photocurrent without extra energy supply. The PD-L1 aptamer is loaded on the photocathode surface to ensure selectivity. The obtained sensing platform can achieve highly sensitive and specific detection of PD-L1 in complex environment, with a low detection limit of 0.29 pg mL-1. On the other hand, electrochromic material Prussian blue (PB) and MWCNTs/SnS2 are integrated to fabricate a portable sensing chip for PD-L1. Under illumination, photogenerated electrons of MWCNTs/SnS2 are injected into Prussian blue, and the blue PB is reduced to white product, indicating the concentration of PD-L1, without need of other instrument. This self-powered photoelectrochemical and visual analysis system has good practicability and is a promising clinical diagnosis tool.
Collapse
Affiliation(s)
- Tingting Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yanqing Ran
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yifei He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Lei Shi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China.
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China.
| |
Collapse
|
13
|
Shanmugam M, Kuthala N, Kong X, Chiang CS, Hwang KC. Combined Gadolinium and Boron Neutron Capture Therapies for Eradication of Head-and-Neck Tumor Using Gd 10B 6 Nanoparticles under MRI/CT Image Guidance. JACS AU 2023; 3:2192-2205. [PMID: 37654578 PMCID: PMC10466345 DOI: 10.1021/jacsau.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Eradication of head-and-neck (H&N) tumors is very difficult and challenging because of the characteristic feature of frequent recurrence and the difficulty in killing cancer stem cells. Neutron capture therapy (NCT) is emerging as a noninvasive potential modality for treatments of various types of tumors. Herein, we report that 98.5% 10B-enriched anti-EGFR-Gd10B6 nanoparticles can not only deliver large doses of 158 μg 10B/g tumor tissues as well as 56.8 μg 157Gd/g tumor tissues with a very high tumor-to-blood (T/B) 10B ratio of 4.18, but also exert very effective CT/MRI image-guided combined GdBNCT effects on killing cancer stem cells and eradication of recurrent head-and-neck (H&N) tumors. This leads to a long average half-lifespan of 81 days for H&N tumor-bearing mice, which is a record-making result, and surpasses the best result reported in the literature using combined radiotherapy and T cell-mediated immunotherapy (70 d).
Collapse
Affiliation(s)
- Munusamy Shanmugam
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Naresh Kuthala
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Xiangyi Kong
- Department
of Breast Surgical Oncology, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan R.O.C.
| | - Kuo Chu Hwang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| |
Collapse
|
14
|
Zhang X, Gao Y, Li J, Fan X, Song R, Song W. Self-Cleaning Recyclable Multiplexed Photoelectrochemical Sensing Strategy Based on Exonuclease III-Assisted Signal Discrimination. Anal Chem 2023. [PMID: 37261957 DOI: 10.1021/acs.analchem.3c01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
For discriminating the signals of multi-targets, multiplexed photoelectrochemical (PEC) detection is generally accomplished by modulating the light source or voltage, which prospect is usually limited by expensive instrumentation, tedious operational steps, and time-consuming material screening. To realize multiplexed determination on single photoelectric interface using the routine technique, a non-instrument-assisted strategy for signal discrimination needs to be explored. Herein, we propose an exonuclease III-mediated multiple PEC signals resolution strategy and construct a self-cleaning recyclable multiplexed PEC sensor using a porphyrin-bipyridine-based covalent organic framework (Por-Bpy COF) photocathode. Specifically, following the dual-target recognition event, exonuclease III cleaves the DNA strand attached to the magnetic bead so that the two signal labels can be separated. Once the signal label binds to the DNA on the electrode surface (E-DNA), exonuclease III turns to excise the DNA strand of the signal label and consequently the E-DNA can repeatedly bind different signal labels. As a result, distinguishable photocurrent signals of different targets can be generated on a single photoelectric interface. The feasibility of this multiplexed sensor is verified by detecting two coexisting mycotoxins aflatoxin B1 and zearalenone. On account of eliminating the instrumentation constraints and simplifying the experimental procedures, the proposed sensing strategy may provide a brand-new idea for the exploration of portable multiplexed PEC sensing devices.
Collapse
Affiliation(s)
- Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiawen Li
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xue Fan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Renhuan Song
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ma D, Liu J, Liu H, Yi J, Xia F, Tian D, Zhou C. Multiplexed electrochemical aptasensor based on mixed valence Ce(III, IV)-MOF for simultaneous determination of malathion and chlorpyrifos. Anal Chim Acta 2022; 1230:340364. [DOI: 10.1016/j.aca.2022.340364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
|
17
|
Thirumalraj B, Jaihindh DP, Alaswad SO, Sudhakaran MSP, Selvaganapathy M, Alfantazi A, Choe H, Kwon K. Fabricating BiOCl/BiVO 4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples. ENVIRONMENTAL RESEARCH 2022; 212:113636. [PMID: 35679907 DOI: 10.1016/j.envres.2022.113636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are essential medications for human and animal health, as they are used to battle urinary infections and bacterial diseases. Therefore, the rapid determination of antibiotic drugs in biological samples is necessary to address the current clinical challenge. Here, we developed a heterojunction ternary composite of BiOCl/BiVO4 nanosheets enriched with graphene oxide (BiOCl/BiVO4@GO) for accurate and minimal-level detection of an antihistamine (promethazine hydrochloride, PMZ) in urine samples. The BiOCl/BiVO4 nanosheets were prepared by a wet chemical approach using a deep eutectic green solvent. The spectroscopic and analytical methods verified the formation and interaction of the BiOCl/BiVO4@GO composite. Our results showed that the thoroughly exfoliated BiOCl/BiVO4@GO composite retained good electrical conductivity and fast charge transfer toward the electrode-electrolyte interface in neutral aqueous media. In addition, the experimental conditions were accurately optimized, and the BiOCl/BiVO4@GO composite showed excellent electrocatalytic activity toward the oxidation of PMZ. Indeed, the BiOCl/BiVO4@GO composite demonstrated a good linear response range (0.01-124.7 μM) and a detection level of 3.3 nM with a sensitivity of 1.586 μA μM-1 cm-2. In addition, the BiOCl/BiVO4@GO composite had excellent storage stability, good reproducibility, and reliable selectivity. Finally, the BiOCl/BiVO4@GO displayed a desirable recovery level of PMZ in urine samples for real-time monitoring.
Collapse
Affiliation(s)
- Balamurugan Thirumalraj
- School of Materials Science & Engineering, Kookmin University, Seoul 02707, Republic of Korea; Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea.
| | | | - Saleh O Alaswad
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - M S P Sudhakaran
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | | | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Heeman Choe
- School of Materials Science & Engineering, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyungjung Kwon
- Department of Energy & Mineral Resources Engineering, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
18
|
Liu ZZ, Li KP, Yang XB, Zhang YQ, Xie ZX, Duan ZQ, Zhou B, Hu YM. Selenylation to charge transfer improvement at the counter electrode (CE)/electrolyte interface for nanocrystalline Cu 1.8S 1-xSe x CEs. Phys Chem Chem Phys 2022; 24:21157-21164. [PMID: 36039748 DOI: 10.1039/d2cp02308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt counter electrodes (CEs) have been widely used in dye-sensitized solar cells (DSSCs) due to their high conductivity and electrocatalytic activity. However, industrialization of DSSCs is limited by shortcomings of Pt CEs such as being expensive, and weak corrosion resistance in electrolytes. Reported in this paper is two simple approaches to Pt-free Cu1.8S1-xSex CEs. Nanocrystalline Cu1.8S1-xSex CEs were fabricated via two processes, that is, a solvothermal process to Cu1.8S1-xSex powder followed by CE fabrication, and a solvothermal process and CE fabrication to Cu1.8S films followed by selenylation to Cu1.8S1-xSex CEs. Photoelectric conversion efficiencies (PCE) of 4.02% and 4.16% were achieved respectively by the as-fabricated Cu1.8S1-xSex CEs. Compared with the cells with Cu1.8S CEs fabricated by the same processes, increases of 19% and 45% were achieved, respectively. The PCE improvement comes from the enhancement of charge transfer at the CE/electrolyte interface induced by the selenylation of the CEs.
Collapse
Affiliation(s)
- Z Z Liu
- College of Engineering, Dali University, Dali, 671003, China.
| | - K P Li
- College of Engineering, Dali University, Dali, 671003, China.
| | - X B Yang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Y Q Zhang
- College of Engineering, Dali University, Dali, 671003, China.
| | - Z X Xie
- College of Engineering, Dali University, Dali, 671003, China.
| | - Z Q Duan
- College of Engineering, Dali University, Dali, 671003, China.
| | - B Zhou
- College of Engineering, Dali University, Dali, 671003, China.
| | - Y M Hu
- College of Engineering, Dali University, Dali, 671003, China.
| |
Collapse
|
19
|
Du X, Du W, Sun J, Jiang D. Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal–ligand charge transfer effect by Ti3C2 based Schottky junction. Food Chem 2022; 385:132731. [DOI: 10.1016/j.foodchem.2022.132731] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
|
20
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
21
|
Sradha S A, George L, P K, Varghese A. Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review. Crit Rev Toxicol 2022; 52:431-448. [PMID: 36178423 DOI: 10.1080/10408444.2022.2122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chlorpyrifos (CP) is one of the most popular organophosphorus pesticides that is commonly used in agricultural and nonagricultural environments to combat pests. However, several concerns regarding contamination due to the unmitigated use of chlorpyrifos have come up over recent years. This has popularized research on various techniques for chlorpyrifos detection. Since conventional methods do not enable smooth detection, the recent trends of chlorpyrifos detection have shifted toward electrochemical and optical sensing techniques that offer higher sensitivity and selectivity. The objective of this review is to provide a brief overview of some of the important and innovative contributions in the field of electrochemical and optical sensing of chlorpyrifos with a primary focus on the comparative advantages and shortcomings of these techniques. This review paper will help to offer better perspectives for research in organophosphorus pesticide detection in the future.
Collapse
Affiliation(s)
- Athira Sradha S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Keerthana P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
22
|
A Label-free Photoelectrochemical Sensor Based on Bi2S3@Nitrogen Doped Graphene Quantum Dots for Ascorbic Acid Determination. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang C, Zhang B, Cao J, Zeng B, Zhao F. Organic-Inorganic Hybrid Flower-Shaped Microspheres Applied in Photoelectrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23743-23755. [PMID: 35535992 DOI: 10.1021/acsami.2c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid materials are rarely applied in photoelectrochemical (PEC) sensing because of the serious charge-carrier recombination in organic conjugated polymers. In this work, a series of poly(3,4-ethylenedioxythiophene) (PEDOT)/ZnIn2S4 hybrid flower-shaped microspheres were synthesized using ionic liquids (ILs) as the supporting electrolyte for EDOT electropolymerization and as the regulating reagent for controlling ZnIn2S4 growth, respectively. It was found that the hybrid material [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-ZnIn2S4 ([HOEMIM]+: 1-hydroxyethyl-3-methylimidazolium cation; NTf2-: bis(trifluoromethanesulfonyl)amide) was the optimal one, with a smooth, transparent, and continuous polymer film covering the uniform and ordered cross-linked nanosheet arrays. The hybrid material could produce a high anodic photocurrent, which was about 78 times as high as that produced by the [HOEMIM]BF4-ZnIn2S4. The enhancement effect should be the highest among all the organic-inorganic hybrid materials reported so far. This was related to its unique micromorphology structure, p-n heterojunction, and the coexisting ILs, which restrained the charge-carrier recombination in PEDOT and enhanced PEDOT sensitization to ZnIn2S4. Then, a carcinoembryonic antigen PEC immunosensor was constructed based on the photoanodic sensing platform, and it exhibited good performance. Furthermore, the [HOEMIM]BF4-ZnIn2S4 was treated with NaClO solution to create the [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-S-ZnwInxSyOz general platform for both photoanodic and photocathodic sensing. As a proof of concept, L-cysteine and dissolved oxygen were used as models for photoanodic and photocathodic sensing, respectively. The results demonstrated that the general PEC platform was quite competent. This work opens up a window for the design of organic-inorganic hybrid PEC materials and will promote the application of such hybrid materials in PEC biosensing.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Bihong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Jiangping Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| |
Collapse
|
24
|
Liu X, Zhou Z, Wang T, Ma C, Yan Y. N-doped graphene quantum dots for enhancing multi-level Bi 2Ti 2O 7 spheres photocatalytic activity via electronic trapping. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2020.1844735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiqing Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Zhiping Zhou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, P. R. China
| | - Changchang Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- Department of Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
25
|
Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications. CRYSTALS 2022. [DOI: 10.3390/cryst12040491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Environmental pollution and various diseases seriously affect the health of human beings. Photocatalytic nanomaterials (NMs) have been used for degrading pollution for a long time. However, the biomedical applications of photocatalytic NMs have only recently been investigated. As a typical photocatalytic NM, bismuth oxychloride (BiOCl) exhibits excellent photocatalytic performance due to its unique layered structure, electronic properties, optical properties, good photocatalytic activity, and stability. Some environmental pollutants, such as volatile organic compounds, antibiotics and their derivatives, heavy metal ions, pesticides, and microorganisms, could not only be detected but also be degraded by BiOCl-based NMs due to their excellent photocatalytic and photoelectrochemical properties. In particular, BiOCl-based NMs have been used as theranostic platforms because of their CT and photoacoustic imaging abilities, as well as photodynamic and photothermal performances. However, some reviews have only profiled the applications of dye degradation, hydrogen or oxygen production, carbon dioxide reduction, or nitrogen fixation of BiOCl NMs. There is a notable knowledge gap regarding the systematic study of the relationship between BiOCl NMs and human health, especially the biomedical applications of BiOCl-based NMs. As a result, in this review, the recent progress of BiOCl-based photocatalytic degradation and biomedical applications are summarized, and the improvement of BiOCl-based NMs in environmental and healthcare fields are also discussed. Finally, a few insights into the current status and future perspectives of BiOCl-based NMs are given.
Collapse
|
26
|
Deng Y, Yan W, Guo Y, Wang Q, Bi Y, Dong C, Fan L. Highly sensitive and selective photoelectrochemical aptasensing of di-2-ethylhexyl phthalate based on graphene quantum dots decorated TiO 2 nanotube arrays. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128107. [PMID: 34971987 DOI: 10.1016/j.jhazmat.2021.128107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
A photoelectrochemical (PEC) sensing platform for di-2-ethylhexyl phthalate (DEHP) was constructed using graphene quantum dots decorated TiO2 nanotube arrays (GQDs-decorated TiO2 NTs) as the transducer species and the anti-DEHP aptamer as the biological recognition element. GQDs were synthesized using the alkali-mediated hydrothermal method, and then anchored onto the TiO2 NTs uniformly and intimately via pronounced electrostatic interaction. Coupling GQDs with TiO2 NTs not only enhanced visible-light absorption, but promoted charge separation and transportation, exhibiting excellent photocurrent response, and PEC activity. Various means were conducted to explore morphologies, optical, structural and PEC properties of the materials. As an identification unit, the anti-DEHP aptamer molecules were immobilized on GQDs-decorated TiO2 NTs using a cross-linking coupling method. The developed PEC sensing platform exhibits excellent sensing behavior for DEHP, and provides a low detection limit of 0.1 ng/L, high selectivity and stability. Meanwhile, its application in real environmental samples was evaluated and satisfying results were achieved. Thus, the established sensing platform provides a promising tool to detect DEHP in the environment.
Collapse
Affiliation(s)
- Yuan Deng
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Yujing Guo
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Qiang Wang
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030001, PR China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, PR China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Lifang Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
27
|
Oxygen Vacancies and Bi2S3 Nanoparticles Co-sensitized TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Sensing of Chlorpyrifos. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Cheng C, Liang Q, Yan M, Liu Z, He Q, Wu T, Luo S, Pan Y, Zhao C, Liu Y. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127721. [PMID: 34865907 DOI: 10.1016/j.jhazmat.2021.127721] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Due to the low efficiency of single-component nano materials, there are more and more studies on high-efficiency composites. As zero dimensional (0D) non-metallic semiconductor material, the emergence of graphene quantum dots (GQDs) overcomes the shortcomings of traditional photocatalysts (rapid rate of electron-hole recombination and narrow range of optical response). Their uniqueness is that they can combine the advantages of quantum dots (rich functional groups at edge) and sp2 carbon materials (large specific surface area). The inherent inert carbon stabilizes chemical and physical properties, and brings new breakthroughs to the development of benchmark photocatalysts. The photocatalytic efficiency of GQDs composite with semiconductor materials (SCs) can be improved by the following three points: (1) accelerating charge transfer, (2) extending light absorption range, (3) increasing active sites. The methods of preparation (bottom-up and top-down), types of heterojunctions, mechanisms of photocatalysis, and applications of GQDs/SCs (wastewater treatment, energy storage, gas sensing, UV detection, antibiosis and biomedicine) are comprehensively discussed. And it is hoped that this review can provide some guidance for the future research on of GQDs/SCs on photocatalysis.
Collapse
Affiliation(s)
- Chunyu Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Songhao Luo
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenhui Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
29
|
Bu Y, Zhang M, Fu J, Yang X, Liu S. Black phosphorous quantum dots for signal-on cathodic photoelectrochemical aptasensor monoitoring amyloid β peptide. Anal Chim Acta 2022; 1189:339200. [PMID: 34815042 DOI: 10.1016/j.aca.2021.339200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
In this paper, a quantitative cathodic photoelectrochemical aptasensor is described by using black phosphorous quantum dots (BPQDs) as photoactive material and assisted by heme as electron acceptor for sensing of amyloid β peptide (Aβ). Specifically, BPQDs were synthesized by solvothermal method and characterized by various techniques. The as-prepared BPQDs were assembled on the transparent indium tin oxide electrode, and the positively charged poly-l-lysine (PLL) was then absorbed onto BPQDs via electronic interaction. Subsequently, the aptamer as the specific recognition element for Aβ oligomer was introduced on the BPQDs-PLL modified electrode. After bound with heme to form Aβ-heme complex, Aβ oligomer was simultaneously captured by the aptamer on the electrode, resulting in an enhanced photocurrent response. Under the optimized conditions, the present PEC sensor reveals a good linear response to Aβ peptide ranging from 1.0 fM to 100 nM with a detection limit of 0.87 fM. The present signal-on cathodic PEC bioassay possesses the potential to create a new paradigm in amplified PEC assays that could provide outstanding performance for bioanalysis.
Collapse
Affiliation(s)
- Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengjie Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Junliang Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
30
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Feng J, Li N, Du Y, Ren X, Wang X, Liu X, Ma H, Wei Q. Ultrasensitive Double-Channel Microfluidic Biosensor-Based Cathodic Photo-electrochemical Analysis via Signal Amplification of SOD-Au@PANI for Cardiac Troponin I Detection. Anal Chem 2021; 93:14196-14203. [PMID: 34636556 DOI: 10.1021/acs.analchem.1c02922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interesting double-channel microfluidic chip integration with a sandwich-type cathodic photo-electrochemical (PEC) biosensor is utilized for ultrasensitive and efficient detection of cardiac troponin I (cTnI) based on a signal amplification strategy. The Pd nanoparticles loading on the I-doped bismuth oxybromide with oxygen vacancies (Pd/I:BiOBr-OVs) as a sensing platform can effectively enhance cathodic photocurrent response by improving the visible light absorption ability with I doping, facilitating the efficiency separation of photogenerated electron-hole pairs with OVs, and increasing the electron-transfer rate with Pd loading, where the photogenerated electron could be captured by dissolved O2 to boost generation of a superoxide anion radical (•O2-). To further enhance the PEC response, a novel superoxide dismutase loaded on gold@polyaniline (SOD-Au@PANI) as a signal amplification label is developed for incubating the detection antibody (dAb). It is particularly noteworthy that SOD can effectively catalyze dismutation of the •O2- to produce H2O2 and O2, and Au@PANI with a good reduction and catalytic property can catalyze the produced H2O2 into H2O and O2. Then, the produced O2 that has been dissolved or adsorbed can capture more photogenerated electrons, resulting in more electron-hole pairs to separate, so as to the cathodic photocurrent signal of this system which can be amplified more significantly. Therefore, a signal amplification cathodic PEC biosensor is prepared for sensitively detecting cTnI, in which a good linearity ranging from 0.1 pg/mL to 100 ng/mL with a low detection limit of 0.042 pg/mL is obtained. Furthermore, the proposed biosensor exhibits excellent sensitivity and high selectivity, which could be extended to detect other disease markers in biological analysis and early disease diagnosis.
Collapse
Affiliation(s)
- Jinhui Feng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Ning Li
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
32
|
Dashtian K, Shahbazi S, Tayebi M, Masoumi Z. A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Shanmugam M, Kuthala N, Vankayala R, Chiang CS, Kong X, Hwang KC. Multifunctional CuO/Cu 2O Truncated Nanocubes as Trimodal Image-Guided Near-Infrared-III Photothermal Agents to Combat Multi-Drug-Resistant Lung Carcinoma. ACS NANO 2021; 15:14404-14418. [PMID: 34428028 DOI: 10.1021/acsnano.1c03784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the development of various therapeutic modalities to tackle cancer, multidrug resistance (MDR) and incomplete destruction of deep tissue-buried tumors remain as long-standing challenges responsible for tumor recurrence and low survival rates. In addition to the MDR and deep tissue photoactivation problems, most primary tumors metastasize to the lungs and lymph nodes to form secondary tumors. Therefore, it leaves a great challenge to develop theranostic approaches to combat both MDR and deep tissue photoactivation problems. Herein, we develop a versatile plasmonic CuO/Cu2O truncated nanocube-based theranostic nanomedicine to act as a triple modal near-infrared fluorescence (NIRF) imaging agent in the biological window II (1000-1500 nm)/photoacoustic imaging (PAI)/T1-weighted magnetic resonance (MR) imaging agents, sensitize the formation of singlet oxygen (1O2) to exert nanomaterial-mediated photodynamic therapeutic (NIR-II NmPDT), and absorb long NIR light (i.e., 1550 nm) in the biological window III (1500-1700 nm) to exert nanomaterial-mediated photothermal therapeutic (NIR-III NmPTT) effects for the effective destruction of multi-drug-resistant lung tumors. We found that H69AR lung cancer cells do not create drug resistance toward plasmonic CuO/Cu2O TNCs-based nanomedicines.
Collapse
Affiliation(s)
- Munusamy Shanmugam
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Naresh Kuthala
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, Jodhpur, Rajasthan, India
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan ROC
| |
Collapse
|
34
|
Dai H, Yuan X, Jiang L, Wang H, Zhang J, Zhang J, Xiong T. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213985] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Du X, Sun J, Jiang D, Du W. Non-noble metal plasmonic enhanced photoelectrochemical sensing of chlorpyrifos based on 1D TiO 2-x/3D nitrogen-doped graphene hydrogel heterostructure. Anal Bioanal Chem 2021; 413:5373-5382. [PMID: 34264374 DOI: 10.1007/s00216-021-03513-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Low-cost and resource-rich non-noble metal plasmonic materials have attracted tremendous attention as potential substitutes for plasmonic noble metals. Herein, 3D nitrogen-doped graphene hydrogels (NGH) decorated with Ti3+ self-doped 1D rod-shaped titanium dioxide nanorods (TiO2-x NR), 10-25 nm in size, were prepared by a facile one-step method. It was found that the as-fabricated TiO2-x NR/NGH showed a synergistic effect, displaying enhanced photoelectrochemical (PEC) activity by controlling the nanoscale architecture and improving the electronic properties, while also producing abundant oxygen vacancies, which extended the light harvesting and suppressed the recombination of electron-hole pairs induced by the non-noble metal surface plasmon resonance (SPR) effect. In particular, the transient-state photocurrent intensity of the TiO2-x NR/NGH composites was 5.1 times as high as that of pure TiO2. Therefore, the TiO2-x NR/NGH composites could serve as a substrate material for PEC sensing, providing a good basis for selective and sensitive detection of chlorpyrifos. Under optimal conditions, the constructed PEC sensor was found to have several advantages including a broad linear range (0.05 ng/mL-0.5 μg/mL), low detection limit (0.017 ng/mL), and considerable stability, demonstrating that the sensor may offer a promising route in the field of environmental analysis.
Collapse
Affiliation(s)
- Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, People's Republic of China. .,School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Jun Sun
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, People's Republic of China
| | - Wenhan Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, People's Republic of China
| |
Collapse
|
36
|
Dong Y, Xu C, Zhang L. Construction of 3D Bi/ZnSnO 3 hollow microspheres for label-free highly selective photoelectrochemical recognition of norepinephrine. NANOSCALE 2021; 13:9270-9279. [PMID: 33982739 DOI: 10.1039/d1nr00792k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we reported a label-free and reliable photoelectrochemical (PEC) platform for highly selective monitoring of norepinephrine (NE) based on metallic Bi nanoparticles anchored on hollow porous ZnSnO3 microspheres (3D Bi/ZnSnO3) via a simple solvothermal strategy. The designed 3D Bi/ZnSnO3 Schottky junction exhibited a unique photoanodic response toward NE among other catechol derivatives, such as epinephrine (EP) and dopamine (DA), and effectively shielded the interference from thirteen coexisting biomolecules like uric acid (UA) and ascorbic acid (AA). High selectivity and excellent sensitivity could be correlated to the unique chelating coordination interaction between NE and Zn2+ at surface sites as well as the efficient carrier separation of Bi/ZnSnO3, thereby developing a novel "signal-on" label-free and selective strategy for NE detection. The proposed Bi/ZnSnO3-based PEC sensor achieved remarkable NE biosensing with a low detection limit of 0.68 nmol L-1 and a wide response ranging from 0.002 to 350.0 μmol L-1. The applicability of this biosensor was realized for the selective analysis of NE in human serum, human urine and injection samples, laying the foundation for the label-free PEC monitoring of NE in biological fluids.
Collapse
Affiliation(s)
- Yuanyuan Dong
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China. and College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China
| | - Chenxing Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
37
|
Yang H, Zhang M, Wang L, Yu R, Tu W, Wang Z, Wang R, Gao H, Dai Z. Modulating Polarization of Perovskite-Based Heterostructures via In Situ Semiconductor Generation and Enzyme Catalysis for Signal-Switchable Photoelectrochemical Biosensing. Anal Chem 2021; 93:8370-8378. [DOI: 10.1021/acs.analchem.1c01457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hao Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Min Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Renzhong Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenwen Tu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Rui Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Huan Gao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
38
|
Zhang Z, Wu T, Zhou H, Jiang C, Wang Y. 3D flower-shaped BiOI encapsulated in molecularly imprinted polymer for hypersensitivity to norfloxacin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhang XY, Han L, Dan Yu L, Wang XH, Ling Y, Li NB, Luo HQ. Crystal Violet-Sensitized Direct Z-Scheme Heterojunction Coupled with a G-Wire Superstructure for Photoelectrochemical Sensing of Uracil-DNA Glycosylase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15881-15889. [PMID: 33779139 DOI: 10.1021/acsami.1c01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dye sensitization achieving photoelectrochemical (PEC) signal amplification for ultrasensitive bioanalysis has undergone a major breakthrough. In this proposal, an innovative PEC sensing platform is developed by combining Z-scheme WO3@SnS2 photoactive materials and a G-wire superstructure as well as a dye sensitization enhancement strategy. The newly synthesized WO3@SnS2 heterojunction with outstanding PEC performance is employed as a photoelectrode matrix. Due to the formation of the Z-scheme heterojunction between WO3 and SnS2, the migration dynamics of the photogenerated carrier is evidently augmented. To improve sensitivity, the target excision-driven dual-cycle signal amplification strategy is introduced to output exponential c-myc fragments. Crystal violet is then conjugated into the G-quadruplex to amplify the PEC signal, where crystal violet generates excited electrons by capturing visible light and rapidly injects electrons into the conduction band of SnS2, suppressing the recombination of the photo-induced carrier. Moreover, the G-wire superstructure acts as a universal amplification pathway, ensuring adequate crystal violet loads. Specifically, the biosensor for uracil-DNA glycosylase quantification displays a wide detection range (0.0005-1.0 U/mL) and a lower detection limit (0.00025 U/mL). Furthermore, the Z-scheme electron migration mechanism and the crystal violet sensitization effect are discussed in detail. The construction of the PEC sensor provides a new consideration for signal amplification and material design.
Collapse
Affiliation(s)
- Xing Yue Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lei Han
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ling Dan Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Hu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yu Ling
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
40
|
Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB. A hollow visible-light-responsive surface molecularly imprinted polymer for the detection of chlorpyrifos in vegetables and fruits. Food Chem 2021; 355:129656. [PMID: 33813158 DOI: 10.1016/j.foodchem.2021.129656] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
A visible-light-responsive azobenzene derivative, 3,5-dichloro-4-((2,6-dichloro-4-(methacryloyloxy)phenyl)diazenyl)benzoic acid, was synthesized and used as the functional monomer to fabricate a visible-light-responsive core-shell structured surface molecularly imprinted polymer (PS-co-PMAA@VSMIP). After removal of the sacrificial PS-co-PMAA core, a hollow structured surface molecularly imprinted polymer (HVSMIP) was obtained. Both the PS-co-PMAA@VSMIP and HVSMIP were used for the detection of chlorpyrifos, a moderately toxic organophosphate pesticide. They exhibited good visible-light-responsive properties (550 nm for trans→cis and 440 nm for cis→trans isomerization for an azobenzene chromophore) in ethanol/water (9:1, v/v). Compared with the PS-co-PMAA@VSMIP, the HVSMIP had a larger surface area, pore volume, binding capacity, imprinting effect, maximum chemical binding capacity, dissociation constant, and photo-isomerization rate. The HVSMIP was applied to detect trace chlorpyrifos in fruit and vegetable samples. This was achieved by measuring the trans→cis rate constant of the HVSMIP in the sample solution, with good recoveries, low relative standard deviations, and a low detection limit.
Collapse
Affiliation(s)
- Mei-Jun Chen
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hai-Lin Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Min Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong.
| | - Cheng-Bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
41
|
Zhao D, Zhang Y, Ji S, Lu Y, Bai X, Yin M, Huang C, Jia N. Molecularly imprinted photoelectrochemical sensing based on ZnO/polypyrrole nanocomposites for acrylamide detection. Biosens Bioelectron 2020; 173:112816. [PMID: 33221506 DOI: 10.1016/j.bios.2020.112816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/21/2023]
Abstract
A highly sensitive quenching molecular imprinting (MIP) photoelectrochemical (PEC) sensor was proposed to detect acrylamide (AM) by using the photoactive composite of ZnO and polypyrrole (PPy) as the PEC signal probe. ZnO, with high electron mobility, excellent chemical and thermal stability as well as good biocompatibility, was selected as the photoelectrically active material. A polypyrrole film was formed on the nanodisk ZnO by electrochemical polymerization, and the recognition site of AM was left on the surface of the PPy film by elution, enabling the specific detection of AM. The transfer of electrons will be hindered when AM is adsorbed on the ZnO/PPy nanocomposites surface, which results in the decrease of photocurrent signal. The proposed molecularly imprinted PEC sensor exhibits significant detection performance of AM in the range of 10-1 M-2.5 × 10-9 M with a LOD of 2.147 × 10-9 M (S/N = 3). The use of photoelectrochemical technology combined with molecular imprinting technology enables the PEC sensor to have excellent selectivity, superior repeatability, preferable stability, low cost, and easy construction, providing a new method for the detection of AM. The high recovery rate in the detection of real samples of potato chips and biscuits indicates that the proposed PEC sensor has potential in monitoring the emerging food safety risks.
Collapse
Affiliation(s)
- Danyang Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yao Zhang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Shaowei Ji
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yao Lu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xinyu Bai
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Mengting Yin
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, PR China.
| |
Collapse
|
42
|
Li R, Chen H, Xiong J, Xu X, Cheng J, Liu X, Liu G. A Mini Review on Bismuth-Based Z-Scheme Photocatalysts. MATERIALS 2020; 13:ma13225057. [PMID: 33182570 PMCID: PMC7697340 DOI: 10.3390/ma13225057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, the bismuth-based (Bi-based) Z-scheme photocatalysts have been paid great attention due to their good solar energy utilization capacity, the high separation rate of their photogenerated hole-electron pairs, and strong redox ability. They are considerably more promising materials than single semiconductors for alleviating the energy crisis and environmental deterioration by efficiently utilizing sunlight to motivate various photocatalytic reactions for energy production and pollutant removal. In this review, the traits and recent research progress of Bi-based semiconductors and recent achievements in the synthesis methods of Bi-based direct Z-scheme heterojunction photocatalysts are explored. The recent photocatalytic applications development of Bi-based Z-scheme heterojunction photocatalysts in environmental pollutants removal and detection, water splitting, CO2 reduction, and air (NOx) purification are also described concisely. The challenges and future perspective in the studies of Bi-based Z-scheme heterojunction photocatalysts are discussed and summarized in the conclusion of this mini review.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| | - Hanyang Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jianrong Xiong
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xiaoying Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Jiajia Cheng
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Huixing Rd, Ziliujing District, Zigong 64300, China
| | - Guo Liu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, No. 1 Dongsan Road, Er'xian Bridge, Chengdu 610059, China
| |
Collapse
|
43
|
Wang H, Zhang B, Tang Y, Wang C, Zhao F, Zeng B. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Zhang B, Wang H, Xi J, Zhao F, Zeng B. Novel Bi 2+xWO 6 p-n Homojunction Nanostructure: Preparation, Characterization, and Application for a Self-Powered Cathodic Photoelectrochemical Immunosensor. ACS Sens 2020; 5:2876-2884. [PMID: 32820628 DOI: 10.1021/acssensors.0c01044] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Synthesizing novel cathodic photoactive materials with high photoelectrochemical (PEC) performance is urgently important for the development of photocathodic sensors. Herein, a novel photocathode material, Bi self-doped Bi2WO6 (i.e., Bi2+xWO6) p-n homojunction, is prepared via a simple ethylene glycol-assisted solvothermal reduction for the first time. Compared with pristine Bi2WO6, Bi2+xWO6 possesses a narrower band gap and higher light harvesting ability. Among the synthesized materials, Bi2.1WO6 exhibits the highest photocurrent response, which is 23 times that of pure Bi2WO6 because of the synergistic effect of doped Bi and the p-n homojunction. The open circuit potential, "V-shaped" Mott-Schottky plot, linear sweep voltammetry curve, and transient photocurrent demonstrate the p-n homojunction characteristics of the material well. By using the Bi2+xWO6 p-n homojunction as the photocathode for sensing and the plasmonic WO3/Au composite as the photoanode for signal amplification, a new self-powered membraneless PEC immunosensor is established for a highly sensitive detection of human epididymal protein 4. This study offers a new idea for designing novel photocatalysts with satisfactory performance, and the Bi2+xWO6 p-n homojunction is expected to act as a promising PEC platform for developing various self-powered biosensors.
Collapse
Affiliation(s)
- Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| | - Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| | - Jiajia Xi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, P. R. China
| |
Collapse
|
45
|
Enhanced photocatalytic destruction of pollutants by surface W vacancies in V W-Bi 2WO 6 under visible light. J Colloid Interface Sci 2020; 576:385-393. [PMID: 32450371 DOI: 10.1016/j.jcis.2020.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
W vacancies containing Bi2WO6 (VW-Bi2WO6) was synthesized by a reductant-involved hydrothermal process. The photoactivity of Bi2WO6 was enhanced by 3.3 times and the TOC removal rate increased from 38.3% to 64.7% after the introduction of surface W vacancies. Positron annihilation spectrometry (PAS), XPS, Raman spectra and other characterization results indicated that W vacancies existed on the catalyst surface. The surface W vacancies were proved to widen the band gap and negatively shift CB edge to produce more O2•- and photoexcited holes at catalyst surface, as confirmed by ESR and radicals trapping experiments. Further, according to the results of pyridine adsorbed FTIR and Zeta potentials, the enhanced interaction between pollutants and VW-Bi2WO6 was confirmed. As a result, the active species produced at surface were able to be accelerated to directly react with organic pollutants, leading to the highly efficient degradation and mineralization of pollutants in water.
Collapse
|
46
|
Target-triggered "signal-off" electrochemical aptasensor assisted by Au nanoparticle-modified sensing platform for high-sensitivity determination of circulating tumor cells. Anal Bioanal Chem 2020; 412:8107-8115. [PMID: 32929571 DOI: 10.1007/s00216-020-02940-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
In this study, we fabricated a high-sensitivity "signal-off" electrochemical aptasensing platform for quantifying circulating tumor cells (CTCs) based on target-triggered signal readout of methylene blue (MB). Au nanoparticles (AuNPs) were introduced to enlarge the specific surface area of the gold electrode (GE), which would immobilize homogeneous and more MB-aptamers. MB-modified and stem-loop-like aptamers were assigned as a recognition element with K562 cells. Thiolated complementary strands hybridized with MB-aptamers to form double-stranded DNA (dsDNA) conformation which were further self-assembled on the surface of AuNP-modified GE, leading to a marked current peak of MB signal. In the presence of K562 cells, the MB-aptamers preferred to recognize and bind with the cells, causing the disassembly of MB-aptamers from the GE surface. Therefore, the reduced value of MB signal was related to the number of K562 cells. With the proposed aptasensor, a dynamic linear range from 1 × 102 to 1 × 106 cells mL-1 was obtained with a detection limit of 23 cells mL-1. Moreover, the aptasensor showed good selectivity, stability, and reproducibility as well as potential use in the clinical setting. Meanwhile, characterization techniques such as field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy were performed to analyze the evolution of the morphology and each fabricated step of the constructed aptasensor. Our proposed aptasensor could be designed as a universal platform for CTC determination by replacing tumor cell-specific aptamers, which is a promising strategy for basic research and clinical applications. Graphical abstract.
Collapse
|
47
|
Yang R, Liu J. Sensitive and selective photoelectrochemical immunosensing platform based on potential-induced photocurrent-direction switching strategy and a direct Z-scheme CdS//hemin photocurrent-direction switching system. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 2020; 212:120797. [DOI: 10.1016/j.talanta.2020.120797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
|
49
|
Qian Y, Feng J, Xu R, Fan D, Du Y, Ren X, Wei Q, Ju H. Zinc and Molybdenum Co-Doped BiVO 4 Nanoarray for Photoelectrochemical Diethylstilbestrol Analysis Based on the Dual-Competitive System of Manganese Hexacyanoferrate Hydrate Nanocubes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16662-16669. [PMID: 32196305 DOI: 10.1021/acsami.0c04010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study proposes a competitive photoelectrochemical (PEC) immunosensor for detecting diethylstilbestrol (DES). The PEC sensing platform uses a zinc and molybdenum codoped BiVO4 nanoarray ((Zn,Mo):BiVO4) as the photoactive matrix and manganese hexacyanoferrate hydrate loading silicon dioxide layer composite nanocubes (MHCF@SiO2 NCs) as the signal quencher. The (Zn,Mo):BiVO4 nanoarray demonstrated brilliant PEC behavior, by virtue of the local electric field formed by the codoped Zn and Mo. This doping accelerated the electron transfer and improved the photoelectric conversion efficiency in BiVO4 nanoarray under visible light. Furthermore, the nanoarray structure with its large surface area provided abundant binding sites for the immune response. As the MHCF@SiO2 NCs-anti-DES competitively bonded with either free DES or bovine serum albumin conjugated DES (BSA-DES), hydrogen peroxide (H2O2) as electron donor was competitively consumed and meanwhile steric resistance blocked electrons transfer. For the above reasons, the photocurrent signal was reduced. Thus, the standard sample free DES was accurately detected, and the fabricated PEC immunosensor displayed an outstanding photocurrent response from 0.1 pg/mL to 50 ng/mL with a detection limit of 0.05 pg/mL. Simultaneously, the acceptable stability, selectivity, and reproducibility of the designed dual-competitive sensing platform suggest its applicability to small molecule detection.
Collapse
Affiliation(s)
- Yanrong Qian
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
50
|
Liu T, Wang Y. Synergistic effect of iodine doping and platinum loading on boosting the visible light photocatalytic activity of BiOBr. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|