1
|
Ma H, Ye T, Qu G, Qin Y, Liao J, Yang Y, Zhang W, Liu N, Li F. Locoregional radionuclide therapy of glioblastoma with [ 211At]At-PDA-FAPI. Sci Rep 2025; 15:18248. [PMID: 40415095 DOI: 10.1038/s41598-025-03356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025] Open
Abstract
Glioblastoma is the most common and aggressive tumor of the central nervous system. Locoregional administration of therapeutic radiopharmaceuticals appears to be a promising modality for recurrent glioblastomas. In this study, fibroblast activation protein alpha (FAPα) targeting molecule fibroblast activation protein inhibitor-04 (FAPI-04) was conjugated to polydopamine (PDA) nanoparticles, and then, α-emitter astatine-211 was labeled onto the nanocomposite to form [211At]At-PDA-FAPI. In vitro, [211At]At-PDA-FAPI was able to significantly reduce the cell viability, induce DSB formation, arrest cell cycle at G2/M phase and promote cell apoptosis. Furthermore, [211At]At-PDA-FAPI exhibited effective tumor inhibition ability in U87MG xenografts. Mice received 0.56 MBq [211At]At-PDA-FAPI showed a reduced tumor volume of approximately 65% on the 9th day after injection, and the median survival in this group (48 days) was obviously improved compared with that in the saline group (18 days). Meanwhile, increased apoptosis was also observed in tumor sites after [211At]At-PDA-FAPI treatment. In addition, H&E analysis of major organs confirmed the biological safety of [211At]At-PDA-FAPI. This study provides an effective and promising strategy for locoregional treatment of glioblastoma.
Collapse
Affiliation(s)
- Huan Ma
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Tianzhen Ye
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Guofeng Qu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yilin Qin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
2
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
3
|
Xu K, Li K, He Y, Mao Y, Li X, Zhang L, Tan M, Yang Y, Luo Z, Liu P, Cai K. Engineered nanoplatform mediated gas therapy enhanced ferroptosis for tumor therapy in vivo. Bioact Mater 2025; 44:488-500. [PMID: 39559423 PMCID: PMC11570688 DOI: 10.1016/j.bioactmat.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The high glutathione (GSH) environment poses a significant challenge for inducing ferroptosis in tumor cells, necessitating the development of nanoplatforms that can deplete intracellular GSH. In this study, we developed an engineered nanoplatform (MIL-100@Era/L-Arg-HA) that enhances ferroptosis through gas therapy. First, we confirmed that the Fe element in the nanoplatform undergoes valence changes under the influence of high GSH and H2O2 in tumor cells. Meanwhile, L-Arg generates NO gas in the presence of intracellular H2O2, which reacts with GSH. Additionally, Erastin depletes GSH by inhibiting the cystine/glutamate antiporter system, reducing cystine uptake and impairing GPX4, while also increasing intracellular H2O2 levels by activating NOX4 protein expression. Through these combined GSH-depletion mechanisms, we demonstrated that MIL-100@Era/L-Arg-HA effectively depletes GSH levels, disrupts GPX4 function, and increases intracellular lipid ROS levels in vitro. Furthermore, this nanoplatform significantly inhibited tumor cell growth and extended the survival time of tumor-bearing mice in vivo. This engineered nanoplatform, which enhances ferroptosis through gas therapy, shows significant promise for ferroptosis-based cancer therapy and offers potential strategies for clinical tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineered and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, PR China
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineered, Chongqing University Chongqing, 400044, PR China
| |
Collapse
|
4
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
R Alanagh H, Fathi P, Knox HJ, Moitra P, Chan J, Pan D. Exploring Biliverdin's Molecular Interactions with Cu- and Fe-Based MOFs: A Unified In Vitro Study with Photoacoustic Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18407-18417. [PMID: 39167692 DOI: 10.1021/acs.langmuir.3c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-organic frameworks (MOFs) have shown promise in enhancing the stability of biomolecules. Herein, biliverdin (BVD), a photoacoustic (PA) and fluorescent agent, was immobilized within the pores of NH2-MIL-101 (Fe) (FeMOFs) and on the surface of CuBTC crystallites (CuMOFs). MOFs were found to enhance the fluorescence emission and quench the PA intensity of biliverdin. Fluorescence and PA studies, in tandem with DFT simulations, demonstrated that the spectral interactions between MOFs and BVD resulted from interactions between biliverdin and the MOF pores and surfaces in addition to alterations in the HOMO-LUMO energy gap. The MOF internal structure of the MOF played a role in BVD loading, with the FeMOFs enabling greater BVD encapsulation, while CuMOF interactions with BVD primarily took place on the MOF surface. The role of these surface vs pore interactions in the release of biliverdin was explored. This study demonstrates that the effects of the MOF internal structure, surface interactions, and energy interactions should be taken into consideration for biomolecule loading in MOFs.
Collapse
Affiliation(s)
- Hamideh R Alanagh
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 611 West Park Street, Urbana, Illinois 61801, United States
| | - Parinaz Fathi
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 611 West Park Street, Urbana, Illinois 61801, United States
| | - Hailey J Knox
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parikshit Moitra
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Department of Bioengineering, Beckman Institute of Advanced Science and Technology, Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Carle Foundation Hospital, 611 West Park Street, Urbana, Illinois 61801, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Diagnostic Radiology and Nuclear Medicine and Department of Chemical, Biochemical and Environmental Engineering University of Maryland Baltimore and University of Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Zhao H, Becharef S, Dumas E, Carn F, Patriarche G, Mura S, Gazeau F, Serre C, Steunou N. A gold nanocluster/MIL-100(Fe) bimodal nanovector for the therapy of inflammatory disease through attenuation of Toll-like receptor signaling. NANOSCALE 2024; 16:12037-12049. [PMID: 38809107 DOI: 10.1039/d3nr06685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A better understanding of the molecular and cellular events involved in the inflammation process has opened novel perspectives in the treatment of inflammatory diseases, particularly through the development of well-designed nanomedicines. Here we describe the design of a novel class of anti-inflammatory nanomedicine (denoted as Au@MIL) synthesized through a one-pot, cost-effective and green approach by coupling a benchmark mesoporous iron(III) carboxylate metal organic framework (MOF) (i.e. MIL-100(Fe)) and glutathionate protected gold nanoclusters (i.e. Au25SG18 NCs). This nano-carrier exhibits low toxicity and excellent colloidal stability combined with the high loading capacity of the glucocorticoid dexamethasone phosphate (DexP) whose pH-dependent delivery was observed. The drug loaded Au@MIL nanocarrier shows high anti-inflammatory activity due to its capacity to specifically hinder inflammatory cell growth, scavenge intracellular reactive oxygen species (ROS) and downregulate pro-inflammatory cytokine secretion. In addition, this formulation has the capacity to inhibit the Toll-like receptor (TLR) signaling cascade namely the nuclear factor kappa B (NF-κB) and the interferon regulatory factor (IRF) pathways. This not only provides a new avenue for the nanotherapy of inflammatory diseases but also enhances our fundamental knowledge of the role of nanoMOF based nanomedicine in the regulation of innate immune signaling.
Collapse
Affiliation(s)
- Heng Zhao
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France.
| | - Sonia Becharef
- Université Paris Cité, MSC UMR CNRS 7057, 75006 Paris, France.
| | - Eddy Dumas
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| | - Florent Carn
- Université Paris Cité, MSC UMR CNRS 7057, 75006 Paris, France.
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Florence Gazeau
- Université Paris Cité, MSC UMR CNRS 7057, 75006 Paris, France.
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France.
| | - Nathalie Steunou
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France.
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris Saclay, Versailles, France
| |
Collapse
|
8
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
9
|
Su Y, Pan H, Wang J, Liu D, Pan W. Eudragit S100 coated nanodiamond-based nanoparticles as an oral chemo-photothermal delivery system for local treatment of colon cancer. Colloids Surf B Biointerfaces 2024; 237:113849. [PMID: 38492413 DOI: 10.1016/j.colsurfb.2024.113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Oral colonic nano-drug delivery system has received more and more attention in the treatment of colon cancer due to local precision treatment and reduction of drug system distribution. However, the complex and harsh gastrointestinal environment and the retention of nanoparticles in the colon limit its development. To this end, we designed Eudragit S100 (ES) coated nanoparticles (ES@PND-PEG-TPP/DOX). Polydopamine coated nanodiamond (PND) was modified with amino-functionalized polyethylene glycol (NH2-PEG-NH2) and triphenylphosphine (TPP) successively. Due to the high specific surface area of PND, it can efficiently load the model drug doxorubicin hydrochloride (DOX). In addition, PND also has high photothermal conversion efficiency, generating heat to kill cancer cells under near infrared (NIR) laser, realizing the combination of chemotherapy and photothermal therapy (CT-PTT). TPP modification enhanced nanoparticle uptake by colon cancer cells and prolonged preparations retention time at the colon. ES shell protected the drug from being destroyed and prevented the nanoparticles from sticking to the small intestine. Ex vitro fluorescence imaging showed that TPP modification can enhance the residence time of nanoparticles in the colon. In vivo pharmacodynamics demonstrated that CT-PTT group has the greatest inhibitory effect on tumor growth, which means that the nanocarrier has potential clinical value in the in-situ treatment of colon cancer.
Collapse
Affiliation(s)
- Yupei Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, PR China
| | - Jiahui Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China.
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
10
|
Yang Y, Dai X. Current status of controlled onco-therapies based on metal organic frameworks. RSC Adv 2024; 14:12817-12828. [PMID: 38645527 PMCID: PMC11027480 DOI: 10.1039/d4ra00375f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Despite consecutive efforts devoted to the establishment of innovative therapeutics for cancer control, cancer remains as a primary global public health concern. Achieving controlled release of anti-cancer agents may add great value to the field of oncology that requires the involvement of nanotechnologies. Metal organic frameworks (MOFs) hold great promise in this regard owing to their unique structural properties. MOFs can act as superior candidates for drug delivery given their porous structure and large loading area, and can be prepared into anti-cancer therapeutics by incorporating stimuli-sensitive components into the ligands or nodes of the framework. By combing through chemical and physical features of MOFs favorable for onco-therapeutic applications and current cancer treatment portfolios taking advantages of these characteristics, this review classified MOFs feasible for establishing controlled anti-cancer modalities into 6 categories, outlined the corresponding strategies currently available for each type of MOF, and identified understudied areas and future opportunities towards innovative MOF design for improved or expanded clinical anti-cancer applications.
Collapse
Affiliation(s)
- Yixuan Yang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P.R. China
| | - Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P.R. China
| |
Collapse
|
11
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
14
|
Pantwalawalkar J, Mhettar P, Nangare S, Mali R, Ghule A, Patil P, Mohite S, More H, Jadhav N. Stimuli-Responsive Design of Metal-Organic Frameworks for Cancer Theranostics: Current Challenges and Future Perspective. ACS Biomater Sci Eng 2023; 9:4497-4526. [PMID: 37526605 DOI: 10.1021/acsbiomaterials.3c00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Scientific fraternity revealed the potential of stimuli-responsive nanotherapeutics for cancer treatment that aids in tackling the major restrictions of traditionally reported drug delivery systems. Among stimuli-responsive inorganic nanomaterials, metal-organic frameworks (MOFs) have transpired as unique porous materials displaying resilient structures and diverse applications in cancer theranostics. Mainly, it demonstrates tailorable porosity, versatile chemical configuration, tunable size and shape, and feasible surface functionalization, etc. The present review provides insights into the design of stimuli-responsive multifunctional MOFs for targeted drug delivery and bioimaging for effective cancer therapy. Initially, the concept of cancer, traditional cancer treatment, background of MOFs, and approaches for MOFs synthesis have been discussed. After this, applications of stimuli-responsive multifunctional MOFs-assisted nanostructures that include pH, light, ions, temperature, magnetic, redox, ATP, and others for targeted drug delivery and bioimaging in cancer have been thoroughly discussed. As an outcome, the designed multifunctional MOFs showed an alteration in properties due to the exogenous and endogenous stimuli that are beneficial for drug release and bioimaging. The several reported types of stimuli-responsive surface-modified MOFs revealed good biocompatibility to normal cells, promising drug loading capability, target-specific delivery of anticancer drugs into cancerous cells, etc. Despite substantial progress in this field, certain crucial issues need to be addressed to reap the clinical benefits of multifunctional MOFs. Specifically, the toxicological compatibility and biodegradability of the building blocks of MOFs demand a thorough evaluation. Moreover, the investigation of sustainable and greener synthesis methods is of the utmost importance. Also, the low flexibility, off-target accumulation, and compromised pharmacokinetic profile of stimuli-responsive MOFs have attracted keen attention. In conclusion, the surface-modified nanosized design of inorganic diverse stimuli-sensitive MOFs demonstrated great potential for targeted drug delivery and bioimaging in different kinds of cancers. In the future, the preference for stimuli-triggered MOFs will open a new frontier for cancer theranostic applications.
Collapse
Affiliation(s)
- Jidnyasa Pantwalawalkar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Prachi Mhettar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Rushikesh Mali
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, Maharashtra, India
| | - Anil Ghule
- Department of Chemistry, Shivaji University, 416013, Kolhapur Maharashtra, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Suhas Mohite
- Bharati Vidyapeeth Deemed University, Yashwantrao Mohite Arts, Science and Commerce College, 411038 Pune, Maharashtra, India
| | - Harinath More
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| |
Collapse
|
15
|
Wahnou H, Liagre B, Sol V, El Attar H, Attar R, Oudghiri M, Duval RE, Limami Y. Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment. Cancers (Basel) 2023; 15:3826. [PMID: 37568642 PMCID: PMC10416951 DOI: 10.3390/cancers15153826] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in healthcare, necessitating the exploration of novel therapeutic strategies. Natural compounds such as polyphenols with inherent anticancer properties have gained attention as potential therapeutic agents. This review highlights the need for novel therapeutic approaches in CRC, followed by a discussion on the synthesis of polyphenols-based nanoparticles. Various synthesis techniques, including dynamic covalent bonding, non-covalent bonding, polymerization, chemical conjugation, reduction, and metal-polyphenol networks, are explored. The mechanisms of action of these nanoparticles, encompassing passive and active targeting mechanisms, are also discussed. The review further examines the intrinsic anticancer activity of polyphenols and their enhancement through nano-based delivery systems. This section explores the natural anticancer properties of polyphenols and investigates different nano-based delivery systems, such as micelles, nanogels, liposomes, nanoemulsions, gold nanoparticles, mesoporous silica nanoparticles, and metal-organic frameworks. The review concludes by emphasizing the potential of nanoparticle-based strategies utilizing polyphenols for CRC treatment and highlights the need for future research to optimize their efficacy and safety. Overall, this review provides valuable insights into the synthesis, mechanisms of action, intrinsic anticancer activity, and enhancement of polyphenols-based nanoparticles for CRC treatment.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34280, Turkey;
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | | | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| |
Collapse
|
16
|
Ye Y, Yu H, Chen B, Zhao Y, Lv B, Xue G, Sun Y, Cao J. Engineering nanoenzymes integrating Iron-based metal organic frameworks with Pt nanoparticles for enhanced Photodynamic-Ferroptosis therapy. J Colloid Interface Sci 2023; 645:882-894. [PMID: 37178565 DOI: 10.1016/j.jcis.2023.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Photodynamic therapy (PDT), as a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species, has been widely used for eliminating cancer cells under specific wavelength light irradiation. However, the low aqueous solubility of PSs and special tumor microenvironments (TME), such as high glutathione (GSH) and tumor hypoxia remain challenges towards PDT for hypoxic tumor treatment. To address these problems, we constructed a novel nanoenzyme for enhanced PDT-ferroptosis therapy by integrating small Pt nanoparticles (Pt NPs) and near-infrared photosensitizer CyI into iron-based metal organic frameworks (MOFs). In addition, hyaluronic acid was adhered to the surface of the nanoenzymes to enhance the targeting ability. In this design, MOFs act not only as a delivery vector for PSs, but also a ferroptosis inducer. Pt NPs stabilized by MOFs were functioned as an oxygen (O2) generator by catalyzing hydrogen peroxide into O2 to relieve tumor hypoxia and increase singlet oxygen generation. In vitro and in vivo results demonstrated that under laser irradiation, this nanoenzyme could effectively relive the tumor hypoxia and decrease the level of GSH, resulting in enhanced PDT-ferroptosis therapy against hypoxic tumor. The proposed nanoenzymes represent an important advance in altering TME for improved clinical PDT-ferroptosis therapy, as well as their potential as effective theranostic agents for hypoxic tumors.
Collapse
Affiliation(s)
- Yuyun Ye
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bohan Chen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Bai Lv
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Guanghe Xue
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
17
|
Tao R, Zhang N, Zhang L, Habumugisha T, Chen Y, Lu Y, Wang Y, Wang K, Wang Y, Jiang J. Characterization and antivibrio activity of chitosan-citral Schiff base calcium complex for a calcium citrate sustained release antibacterial agent. Int J Biol Macromol 2023; 239:124355. [PMID: 37023879 DOI: 10.1016/j.ijbiomac.2023.124355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Vibrio parahemolyticus is the "Number one killer" of seafood products. Anti-vibrio agents having low cost and high-safety are urgently needed to supplement the application needs. This work attempted to prepare CS-CT-CCa complex with citral (CT), chitosan (CS) and calcium citrate (CCa) as raw material by microwave-assisted high-pressure homogenization. Additionally the coordination structure and morphology of Bridge-CS-CT-Schiff base/OH-CCa were verified. The prepared CS-CT-CCa had a well-dispersed property (the size: 3.55~9.33 μm and the zeta potential: +38.7~+67.5 mV) and an excellent sustained released ability (sustained release up to 180 min). MIC, Glucose assay, MDA assay, biofilm formation inhibition assay, SEM, swimming and swarming motility assay demonstrated that CS-CT-CCa had strong (MIC of 128 μg/ml) and sustained (more than 12 h) inhibitory effects against V. parahaemolyticus. Meanwhile, CS-CT-CCa could increase the membrane permeability of V. parahaemolyticus and inhibit their biofilm-forming ability in a dose-dependent manner. It could be inferred that the antibacterial activities against V. parahaemolyticus caused inhibition of biofilm formation, swimming and swarming motilities. This study provided necessary data for the further design and development of chitosan antibacterial agents, food and feed additives.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China.
| | | | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, CAF, Hangzhou 311400, Zhejiang Province, China
| | - Yin Lu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Yinjuan Wang
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China.
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Huaqiao University, Xiamen 361000, Fujian Province, China
| | - Yangdong Wang
- Chinese Academy of Forestry Sciences, Beijing 100091, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Huaqiao University, Xiamen 361000, Fujian Province, China
| |
Collapse
|
18
|
Chen B, Zhang L, Jiang K. Recent advancements in combining MOFs and natural compounds for cancer therapy. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Huang R, Liu W, Zhang Q, Zhu G, Qu W, Tao C, Gao J, Fang Y, Fu X, Zhou J, Shi Y, Fan J, Tang Z. Laser-Induced Combinatorial Chemotherapeutic, Chemodynamic, and Photothermal Therapy for Hepatocellular Carcinoma Based on Oxaliplatin-Loaded Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3781-3790. [PMID: 36631295 PMCID: PMC9881001 DOI: 10.1021/acsami.2c19305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 05/27/2023]
Abstract
The activation of nanoparticles (NPs) in the tumor microenvironment exerts synergistic therapeutic effects with chemotherapy against multiple cancers. In this study, an NP system prepared using biocompatible MIL-100 NPs was studied as an effective vehicle to deliver oxaliplatin for hepatocellular carcinoma treatment. The NPs were coated with polydopamine (PDA) and NH2-PEGTK-COOH and then loaded with oxaliplatin to create the multi-functional NP Oxa@MIL-PDA-PEGTK. Oxa@MIL-PDA-PEGTK is activated in the tumor microenvironment, causing the generation of cytotoxic reactive oxygen species (ROS) via the Fenton reaction and the release of the loaded oxaliplatin. In addition, under near-infrared (NIR) irradiation, Oxa@MIL-PDA-PEGTK can generate hyperthermia at tumor sites. Moreover, owing to the light-induced activation of the Oxa@MIL-PDA-PEGTK NPs, higher drug delivery efficiency, more precise targeted activation, and reduced off-target toxicity were observed in in vitro and in vivo experiments. Taken together, owing to its improved drug delivery efficiency and multi-functional activities, including the ability for targeted chemotherapy coupled with photothermal and chemodynamic therapy, Oxa@MIL-PDA-PEGTK may serve as a new approach for treating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Run Huang
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Weiren Liu
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Qinghao Zhang
- East
China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guiqi Zhu
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Weifeng Qu
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Chenyang Tao
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Jun Gao
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Yuan Fang
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Xiutao Fu
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Jian Zhou
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Yinghong Shi
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Jia Fan
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| | - Zheng Tang
- Department
of Liver Surgery and Transplantation, Liver
Cancer Institute, Zhongshan Hospital, Fudan University, and Key Laboratory
of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 Fenglin Road, Shanghai 200032, China
- Research
Unit of Bench and Clinic Research for Liver Cancer Recurrence and
Metastasis, Chinese Academy of Medical Sciences
(No. 2019RU050), Shanghai 200032, China
| |
Collapse
|
20
|
Zhang ZJ, Hou YK, Chen MW, Yu XZ, Chen SY, Yue YR, Guo XT, Chen JX, Zhou Q. A pH-responsive metal-organic framework for the co-delivery of HIF-2α siRNA and curcumin for enhanced therapy of osteoarthritis. J Nanobiotechnology 2023; 21:18. [PMID: 36650517 PMCID: PMC9847079 DOI: 10.1186/s12951-022-01758-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
The occurrence of osteoarthritis (OA) is highly correlated with the reduction of joint lubrication performance, in which persistent excessive inflammation and irreversible destruction of cartilage dominate the mechanism. The inadequate response to monotherapy methods, suboptimal efficacy caused by undesirable bioavailability, short retention, and lack of stimulus-responsiveness, are few unresolved issues. Herein, we report a pH-responsive metal-organic framework (MOF), namely, MIL-101-NH2, for the co-delivery of anti-inflammatory drug curcumin (CCM) and small interfering RNA (siRNA) for hypoxia inducible factor (HIF-2α). CCM and siRNA were loaded via encapsulation and surface coordination ability of MIL-101-NH2. Our vitro tests showed that MIL-101-NH2 protected siRNA from nuclease degradation by lysosomal escape. The pH-responsive MIL-101-NH2 gradually collapsed in an acidic OA microenvironment to release the CCM payloads to down-regulate the level of pro-inflammatory cytokines, and to release the siRNA payloads to cleave the target HIF-2α mRNA for gene-silencing therapy, ultimately exhibiting the synergetic therapeutic efficacy by silencing HIF-2α genes accompanied by inhibiting the inflammation response and cartilage degeneration of OA. The hybrid material reported herein exhibited promising potential performance for OA therapy as supported by both in vitro and in vivo studies and may offer an efficacious therapeutic strategy for OA utilizing MOFs as host materials.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ying-Ke Hou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ming-Wa Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Xue-Zhao Yu
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Si-Yu Chen
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Ya-Ru Yue
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Xiong-Tian Guo
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| | - Jin-Xiang Chen
- grid.284723.80000 0000 8877 7471NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 People’s Republic of China
| | - Quan Zhou
- grid.284723.80000 0000 8877 7471Department of Medical Imaging, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Southern Medical University, Guangzhou, 510630 Guangdong People’s Republic of China
| |
Collapse
|
21
|
Zhang W, Zhang C, Yang C, Wang X, Liu W, Yang M, Cao Y, Ran H. Photochemically-driven highly efficient intracellular delivery and light/hypoxia programmable triggered cancer photo-chemotherapy. J Nanobiotechnology 2023; 21:11. [PMID: 36631855 PMCID: PMC9835365 DOI: 10.1186/s12951-023-01774-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Using nanotechnology to improve the efficiency of tumor treatment represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements of complex tumor treatment. RESULTS In this paper, a programmed-triggered nanoplatform (APP NPs), which is sequentially responsive to light and hypoxia, is rationally integrated for photoacoustic (PA) imaging-guided synergistic cancer photo-chemotherapy. The nanoplatform is constructed by in situ hybridization of dopamine monomer in the skeleton of PCN-224 and loading prodrug banoxantrone (AQ4N). Upon first-stage irradiation with a 660 nm laser, cellular internalization was effectively promoted by a photosensitizer-mediated photochemical effect. Furthermore, under second-stage irradiation, APP NPs exhibit a notably high photothermal conversion efficiency and sufficient reactive oxygen species (ROS) production for photothermal therapy (PTT) and photodynamic therapy (PDT), respectively, which not only triggers rapid intercellular drug release but also consequently aggravates tumor hypoxia levels, and aggravated hypoxia can further active the cytotoxicity of AQ4N for chemotherapy. Both in vitro and in vivo studies confirm that the dual-stage light guided photo-chemotherapy strategy exhibits a greatly enhanced anticancer effects and superior therapeutic safety. CONCLUSION This work represents a versatile strategy to construct a dual-stage light induced PDT/PTT and hypoxia-activated chemotherapy nanoplatform and will be promising for the development of multistimuli-responsive nanosystems with programmable functions for precise cancer therapy.
Collapse
Affiliation(s)
- Wei Zhang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Cuncheng Zhang
- Department of Ultrasound, Chongqing General Hospital, No. 104, Pipashan Main Street, Yuzhong District, Chongqing, 40013 China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, No. 104, Pipashan Main Street, Yuzhong District, Chongqing, 40013 China
| | - Xingyue Wang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Weiwei Liu
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Mi Yang
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Yang Cao
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| | - Haitao Ran
- grid.412461.40000 0004 9334 6536Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
22
|
Feng L, Zhao R, Yang L, Liu B, Dong S, Qian C, Liu J, Zhao Y. Tumor-Specific NIR-Activatable Nanoreactor for Self-Enhanced Multimodal Imaging and Cancer Phototherapy. ACS NANO 2023; 17:1622-1637. [PMID: 36623255 DOI: 10.1021/acsnano.2c11470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive nanosystems for tumor treatment with high specificity and sensitivity have aroused great attention. Herein, we develop a tumor microenvironment responsive and near-infrared (NIR)-activatable theranostic nanoreactor for imaging-guided anticancer therapy. The nanoreactor (SnO2-x@AGP) is comprised of poly(vinylpyrrolidine) encapsulated hollow mesoporous black SnO2-x nanoparticles coloaded with glucose oxidase (GOx) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The constructed nanoreactor can be specifically activated through endogenous H2O2 by an NIR-mediated "bursting-like" process to enhance its imaging and therapeutic functions. Black SnO2-x with abundant oxygen vacancies expedites effective separation of electron-hole pairs from energy-band structure and endows them with strong hyperthermia effect upon NIR laser irradiation. The generating toxic H2O2 with the assistance of GOx provides SnO2-x@AGP with the capacity of oxidative stress therapy. Ascended H2O2 can activate ABTS into ABTS•+. ABTS•+ not only possesses significant NIR absorption properties, but also disrupts intracellular glutathione to generate excessive reactive oxygen species for improved phototherapy, leading to more effective treatment together with oxidative stress therapy. Thus, SnO2-x@AGP with NIR-mediated and H2O2-activated performance presents tumor inhibition efficacy with minimized damage to normal tissues. These outstanding characteristics of SnO2-x@AGP bring an insight into the development of activatable nanoreactors for smart, precise, and non-invasive cancer theranostics.
Collapse
Affiliation(s)
- Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| | - Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Sciences and Chemical Engineering, Harbin Engineering University, Harbin150001, People's Republic of China
| | - Cheng Qian
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore637371, Singapore
| |
Collapse
|
23
|
Liu X, Liu Y, Qiang L, Ren Y, Lin Y, Li H, Chen Q, Gao S, Yang X, Zhang C, Fan M, Zheng P, Li S, Wang J. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment. J Tissue Eng 2023; 14:20417314231170371. [PMID: 37205149 PMCID: PMC10186582 DOI: 10.1177/20417314231170371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is the most prevalent bone malignant tumor in children and teenagers. The bone defect, recurrence, and metastasis after surgery severely affect the life quality of patients. Clinically, bone grafts are implanted. Primary bioceramic scaffolds show a monomodal osteogenesis function. With the advances in three-dimensional printing technology and materials science, while maintaining the osteogenesis ability, scaffolds become more patient-specific and obtain additional anti-tumor ability with functional agents being loaded. Anti-tumor therapies include photothermal, magnetothermal, old and novel chemo-, gas, and photodynamic therapy. These strategies kill tumors through novel mechanisms to treat refractory osteosarcoma due to drug resistance, and some have shown the potential to reverse drug resistance and inhibit metastasis. Therefore, multifunctional three-dimensional printed bioceramic scaffolds hold excellent promise for osteosarcoma treatments. To better understand, we review the background of osteosarcoma, primary 3D-printed bioceramic scaffolds, and different therapies and have a prospect for the future.
Collapse
Affiliation(s)
- Xingran Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Lei Qiang
- Southwest Jiaotong University, Chengdu,
China
| | - Ya Ren
- Southwest Jiaotong University, Chengdu,
China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Li
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Qiuhan Chen
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Shuxin Gao
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Xue Yang
- Southwest Jiaotong University, Chengdu,
China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery,
Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Li
- Department of Orthopedics, The First
Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic
Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of
Medicine, Shanghai, China
- Southwest Jiaotong University, Chengdu,
China
- Shanghai Jiao Tong University,
Shanghai, China
- Weifang Medical University School of
Rehabilitation Medicine, Weifang, Shandong Province, China
| |
Collapse
|
24
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
25
|
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-Jolandan S, Ghorbani-Bidkorpeh F, Asadian E, Shahbazi MA. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. APPLIED MATERIALS TODAY 2022; 29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Sun H, Zhan M, Mignani S, Shcharbin D, Majoral JP, Rodrigues J, Shi X, Shen M. Modulation of Macrophages Using Nanoformulations with Curcumin to Treat Inflammatory Diseases: A Concise Review. Pharmaceutics 2022; 14:2239. [PMID: 36297677 PMCID: PMC9611033 DOI: 10.3390/pharmaceutics14102239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin (Cur), a traditional Chinese medicine extracted from natural plant rhizomes, has become a candidate drug for the treatment of diseases due to its anti-inflammatory, anticancer, antioxidant, and antibacterial activities. However, the poor water solubility and low bioavailability of Cur limit its therapeutic effects for clinical applications. A variety of nanocarriers have been successfully developed to improve the water solubility, in vivo distribution, and pharmacokinetics of Cur, as well as to enhance the ability of Cur to polarize macrophages and relieve macrophage oxidative stress or anti-apoptosis, thus accelerating the therapeutic effects of Cur on inflammatory diseases. Herein, we review the design and development of diverse Cur nanoformulations in recent years and introduce the biomedical applications and potential therapeutic mechanisms of Cur nanoformulations in common inflammatory diseases, such as arthritis, neurodegenerative diseases, respiratory diseases, and ulcerative colitis, by regulating macrophage behaviors. Finally, the perspectives of the design and preparation of future nanocarriers aimed at efficiently exerting the biological activity of Cur are briefly discussed.
Collapse
Affiliation(s)
- Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Serge Mignani
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS UMR 860, 45, rue des Saints Peres, 75006 Paris, France
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaya 27, 220072 Minsk, Belarus
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Laboratoire de Chimie de Coordination du CNRS, Université Toulouse, 31077 Toulouse, France
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
27
|
Attia M, Glickman RD, Romero G, Chen B, Brenner AJ, Ye JY. Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Tsang CY, Cheung CY, Beyer S. Assessing the colloidal stability of copper doped ZIF-8 in water and serum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Zhao D, Zhang W, Yu S, Xia SL, Liu YN, Yang GJ. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J Nanobiotechnology 2022; 20:421. [PMID: 36153522 PMCID: PMC9509633 DOI: 10.1186/s12951-022-01631-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
Light-mediated nanotherapeutics have recently emerged as promising strategies to precisely control the activation of therapeutic reagents and imaging probe both in vitro and in vivo, largely ascribed to their unique properties, including minimally invasive capabilities and high spatiotemporal resolution. Nanoscale metal-organic frameworks (NMOFs), a new family of hybrid materials consisting of metal attachment sites and bridging ligands, have been explored as a new platform for enhanced cancer diagnosis and therapy due to their tunable size, modifiable surface, good biocompatibility, high agent loading and, most significantly, their ability to be preferentially deposited in tumors through enhanced permeability and retention (EPR). Especially the light-driven NMOF-based therapeutic platform, which not only allow for increased laser penetration depth and enhanced targeting, but also enable imaging-guided or combined treatments. This review provides up-to-date developments of NMOF-based therapeutic platforms for cancer treatment with emphasis on light-triggered therapeutic strategies and introduces their advances in cancer diagnosis and therapy in recent years.
Collapse
Affiliation(s)
- Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Si-Lei Xia
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ya-Nan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, China.
| | - Guan-Jun Yang
- School of Marine Science, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
30
|
Chen J, Cheng F, Luo D, Huang J, Ouyang J, Nezamzadeh-Ejhieh A, Khan MS, Liu J, Peng Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans 2022; 51:14817-14832. [PMID: 36124915 DOI: 10.1039/d2dt02470e] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, metal-organic frameworks (MOFs), basically inorganic-organic hybrid materials, have gained tremendous attention due to their vast applications. MOFs have shown enormous applications in almost every research field. However, the area of designing MOF materials for their biological applications is still an emerging field that needs attention. Titanium-based metal-organic framework (Ti-MOF) materials are used in many research areas due to their structural advantages, such as small particle size and large effective surface area. On the other hand, they have also shown unique advantages such as good biocompatibility, excellent catalytic oxidation and photocatalytic properties and ease of functionalization. This study reviews the recent research progress on Ti-MOFs in therapeutic areas such as antibacterial, oncology, anti-inflammation, and bone injury, which will provide new directions for further research in this biomedical field. Therefore, this article will help scientists working in the particular field to enhance their understanding of Ti-based MOFs for functional biomedical applications.
Collapse
Affiliation(s)
- Jinyi Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Fan Cheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Dongwen Luo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jiefeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China.
| | | | - M Shahnawaz Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China. .,Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
31
|
Ni W, Wu J, Feng Y, Hu Y, Liu H, Chen J, Chen F, Tian H. Metformin reprograms tumor microenvironment and boosts chemoimmunotherapy in colorectal cancer. Biomater Sci 2022; 10:5596-5607. [PMID: 35979933 DOI: 10.1039/d2bm00988a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor stroma plays an important role in the occurrence, development, and metastasis of colorectal cancer (CRC). The dense collagenous stroma forms a physical barrier for antitumor drugs and sustains a highly tumor immunosuppressive microenvironment. To address this issue, a spatiotemporal combination of antitumor stroma and nanoscale functional materials was used as an antitumor strategy for reprogramming the tumor immune microenvironment. In this combination, metformin hydrochloride (MET) was intraperitoneally injected to disrupt the dense tumor stroma for promoting drug delivery and remodeling the tumor immune microenvironment. Subsequently, intravenously injected multifunctional drug-delivery materials (MIL-100/mitoxantrone/hyaluronic acid nanoparticles, MMH NPs) were visualized by double imaging (photoacoustic (PA) and fluorescence imaging) and generated a robust immune response via immunogenic cell death (ICD). More importantly, the combination treatment also acted synergistically with the anti-OX40 agonist antibody (αOX40), which enhanced the treatment of orthotopic CRC. In summary, the combination strategy of MET/MMH NPs/αOX40 provides a novel and effective clinical option for CRC therapy.
Collapse
Affiliation(s)
- Weidong Ni
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China. .,Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Yingying Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Haiyan Liu
- Center for Biological Experiment, College of Basic Medicine, Jilin University, Changchun 130021, PR China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
32
|
Song J, Sun X, Du Y, Wu Q, Niu M, Fu C, Tan L, Ren X, Chen L, Meng X. Micro-Opening Ridged Waveguide Tumor Hyperthermia Antenna Combined with Microwave-Sensitive MOF Material for Tumor Microwave Hyperthermia Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4154-4164. [PMID: 35940588 DOI: 10.1021/acsabm.2c00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microwave hyperthermia is an emerging minimally invasive therapy in which thermal damage and apoptosis of tumor cells are induced by local heating of tissues with microwave radiation. Recently, microwave hyperthermia has been widely used in clinical practice; however, uneven aggregation and dispersion of malignant tumors after microwave hyperthermia are the main problems associated with this method. In this work, a microridged waveguide tumor hyperthermia antenna with an operating frequency of 915 MHz was designed. Although its volume is only 6.6 cm3, it exhibited a highly focused heating effect, achieving rapid heating in a small area. However, microwave hyperthermia has several shortcomings. Microwaves cannot specifically identify and target tumors; this decreases the efficiency of the treatment if the temperature of the tumor site is not sufficiently high for its size and location. Therefore, Zr metal-organic framework (ZrMOF)-derived composite ZCNC was synthesized using the ultrasonic aerosol flow method, which has good microwave sensitization and biosafety. ZCNC reduced the damage to normal cells and greatly improved the tumor treatment effect of microwave hyperthermia (tumor inhibition rate reached 78.01%). Thus, the proposed strategy effectively improves the current clinical microwave hyperthermia treatment method.
Collapse
Affiliation(s)
- Jingjing Song
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohan Sun
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Yongxing Du
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University, Shenyang 110001, China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lufeng Chen
- Department of Radiation Oncology, First Clinical Medical School and First Hospital of Shanxi Medical University, Taiyiuan 030001, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China
| |
Collapse
|
33
|
Liu N, Wu S, Tian X, Li X. Fabrication of injectable hydrogels from an anticancer peptide for local therapeutic delivery and synergistic photothermal-chemotherapy. J Mater Chem B 2022; 10:5165-5173. [PMID: 35734944 DOI: 10.1039/d2tb00917j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The susceptibility of anticancer peptides to proteolytic degradation is often considered as a major weakness that limits systemic therapeutic applications. However, localized delivery of anticancer peptides via injectable hydrogels is expected to improve drug efficacy and reduce systemic toxicity. Herein, an injectable hydrogel with drug releasing properties, NIR responsiveness and pH sensitivity was developed from an anticancer peptide (KL), Fe3+ ions and protocatechualdehyde via dynamic and reversible interactions. Benefiting from the formation of Fe(III)-catechol complexes between Fe3+ ions and protocatechualdehyde within gel networks, the obtained hydrogel exhibited intrinsic NIR absorption properties for photothermal ablation of tumor cells, and remote light control of drug release. Besides, the pH-labile imine bonds between KL and protocatechualdehyde endowed the injectable gel with pH sensitivity for sustained release of KL under a mildly acidic environment, inducing membrane destabilization and facilitating the cell uptake of DOX for combinational chemotherapy. Both in vitro and in vivo experiments revealed that the injectable hydrogel exhibited a synergistic therapeutic effect on inhibiting tumor growth via combinational photothermal-chemotherapy. Therefore, this work provides a promising attempt to develop a therapeutic hydrogel from an anticancer peptide, which could work as a localized drug delivery platform for synergistic photothermal-chemotherapy.
Collapse
Affiliation(s)
- Na Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shunjie Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China.
| | - Xinming Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
34
|
Engineering Bio-MOF/polydopamine as a biocompatible targeted theranostic system for synergistic multi-drug chemo-photothermal therapy. Int J Pharm 2022; 623:121912. [PMID: 35710074 DOI: 10.1016/j.ijpharm.2022.121912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
In this study, a biodegradable multifunctional photothermal drug delivery nanoparticles (MPH NPs) using curcumin (Cur) as the ligand coated with hyaluronic acid (HA) was successfully prepared, which could simultaneously deliver Cur and doxorubicin hydrochloride (DOX·HCl) to overcome the common drug resistance in cancer cells. Polydopamine (PDA) as a protective shell prevents premature degradation of Cur in physiological environment and enables it to play effective medicinal value. MPH NPs can specifically recognize CD44 receptors on the surface of cancer cells for tumor targeting, with the damage of the partially released DOX to the superficial tumor cells, and then the positively charged Cur released may gradually penetrate into the cells through electron interaction to improve the problem of low permeability. In vitro cell experiments showed that hydrophobic/hydrophilic drugs co-loaded MPDH (MPH loaded with DOX·HCl) could enter the cancer cells through the endocytosis mediated by clathrin / caveolin, and the inhibition rate of MPDH on HeLa cells reached 79.28 % irradiation under 808 nm laser. MPH were composed of safe materials that have been proven to be biodegradable in human body, which avoided the disadvantages that NPs were difficult to discharge and caused damage to normal organs during long-term use.
Collapse
|
35
|
Liu H, Xu C, Meng M, Li S, Sheng S, Zhang S, Ni W, Tian H, Wang Q. Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer. Acta Biomater 2022; 144:132-141. [PMID: 35307591 DOI: 10.1016/j.actbio.2022.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Because of molecular heterogeneity in tumors, clinical outcomes of tumor treatment are not very satisfactory, and novel strategies are therefore needed to address this challenge. Combination therapy could efficiently enhance tumor treatment by stimulating multiple pathways, reducing the systemic toxicity of monotherapy, and regulating the tumor immune microenvironments. Herein, metal-organic framework MIL-100 (Fe) nanoparticles (NPs) were synthesized by a microwave-assisted method, and oxaliplatin (OXA) and indocyanine green (ICG) were then loaded into hyaluronic acid (HA)-modified MIL-100 NPs to obtain multifunctional nanoparticles (OIMH NPs). The OIMH NPs exhibited sensitive photoacoustic imaging (PAI) for imaging-guided therapy and showed a good synergistic effect by combining chemotherapy with photothermal therapy (PTT) to kill tumor cells. Immunogenic cell death (ICD) and activation of T cells induced by the chemo-photothermal therapy could sensitize for immune checkpoint blockade (aPD-L1) response, thus eliciting systemic antitumor immunity. Finally, tumor inhibition was observed, which could be attributed to the combination of chemotherapy, PTT, and aPD-L1. On the basis of the study findings, an innovative imaging-mediated combined therapeutic strategy involving multifunctional NPs was proposed, which might potentially offer a new clinical treatment for colorectal cancer. STATEMENT OF SIGNIFICANCE: The metal-organic framework-mediated chemo-photothermal therapy guided by photoacoustic imaging (PAI) is an accurate and effective approach for tumor inhibition, which can synergistically achieve immunogenic cell death and lead to an increasing infiltration of immune cells in the tumor microenvironment, thereby enhancing the sensitivity for immune checkpoint blockade (aPD-L1) therapy. This type of therapy can not only reduce the systemic toxicity caused by traditional treatment methods, but it can also solve the issue of low response of immune checkpoint blockade in colorectal cancer (CRC). Our study provides experimental evidence for using the combination of immunotherapy and chemo-photothermal therapy against CRC.
Collapse
|
36
|
Maranescu B, Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int J Mol Sci 2022; 23:4458. [PMID: 35457275 PMCID: PMC9026733 DOI: 10.3390/ijms23084458] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
In the last decade, metal organic frameworks (MOFs) have shown great prospective as new drug delivery systems (DDSs) due to their unique properties: these materials exhibit fascinating architectures, surfaces, composition, and a rich chemistry of these compounds. The DSSs allow the release of the active pharmaceutical ingredient to accomplish a desired therapeutic response. Over the past few decades, there has been exponential growth of many new classes of coordination polymers, and MOFs have gained popularity over other identified systems due to their higher biocompatibility and versatile loading capabilities. This review presents and assesses the most recent research, findings, and challenges associated with the use of MOFs as DDSs. Among the most commonly used MOFs for investigated-purpose MOFs, coordination polymers and metal complexes based on synthetic and natural polymers, are well known. Specific attention is given to the stimuli- and multistimuli-responsive MOFs-based DDSs. Of great interest in the COVID-19 pandemic is the use of MOFs for combination therapy and multimodal systems.
Collapse
Affiliation(s)
- Bianca Maranescu
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania
| | - Aurelia Visa
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
| |
Collapse
|
37
|
Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomater 2022; 13:27. [PMID: 35323227 PMCID: PMC8953174 DOI: 10.3390/jfb13010027] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) nanomaterials (e.g., graphene) have shown to have a high potential in future biomedical applications due to their unique physicochemical properties such as unusual electrical conductivity, high biocompatibility, large surface area, and extraordinary thermal and mechanical properties. Although the potential of graphene as the most common 2D nanomaterials in biomedical applications has been extensively investigated, the practical use of other nanoengineered 2D materials beyond graphene such as transition metal dichalcogenides (TMDs), topological insulators (TIs), phosphorene, antimonene, bismuthene, metal-organic frameworks (MOFs) and MXenes for biomedical applications have not been appreciated so far. This review highlights not only the unique opportunities of 2D nanomaterials beyond graphene in various biomedical research areas such as bioelectronics, imaging, drug delivery, tissue engineering, and regenerative medicine but also addresses the risk factors and challenges ahead from the medical perspective and clinical translation of nanoengineered 2D materials. In conclusion, the perspectives and future roadmap of nanoengineered 2D materials beyond graphene are outlined for biomedical applications.
Collapse
Affiliation(s)
- Maryam Derakhshi
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Sahar Daemi
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Pegah Shahini
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| | - Afagh Habibzadeh
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Akbar Ashkarran
- Precision Health Program and Department of Radiology, Michigan State University, East Lansing, MI 48824, USA; (M.D.); (P.S.)
| |
Collapse
|
38
|
Li Y, Su Y, Pan H, Deng W, Wang J, Liu D, Pan W. Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational therapy of orthotopic colon cancer. Pharmacol Res 2022; 176:106080. [PMID: 35032663 DOI: 10.1016/j.phrs.2022.106080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.
Collapse
Affiliation(s)
- Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yupei Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, PR China
| | - Wenbin Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiahui Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dandan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China.
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
39
|
Tian Q, Wang X, Song S, An L, Yang S, Huang G. Engineering of an endogenous hydrogen sulfide responsive smart agent for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon cancer. J Adv Res 2022; 41:159-168. [PMID: 36328745 PMCID: PMC9637562 DOI: 10.1016/j.jare.2022.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Engineering of a endogenous hydrogen sulfide responsive combination of photothermal therapy and chemotherapy for colon cancer. HKUST-1 was loaded with curcumin as an endogenous hydrogen sulfide-triggered smart agent. Cur@HKUST-1@PVP allows selective colon cancer tumor imaging.
Introduction Photothermal therapy can be synergistically combined with chemotherapy to improve the therapeutic effect for colon cancer. However, conventional therapeutic agents have side effects in normal tissues, limiting their application. Objectives To reduce these side effects, a smart agent (Cur@HKUST-1@PVP) whose functionality is triggered by the high content of endogenous hydrogen sulfide in colon tumors was engineered for photoacoustic imaging-guided combination of photothermal therapy and chemotherapy for colon tumors. Methods After reacting with hydrogen sulfide, Cur@HKUST-1@PVP simultaneously generates CuS and releases curcumin. The generated CuS serves as an imaging agent for both photothermal therapy and photoacoustic imaging, while the released curcumin is used for chemotherapy. Results In vivo photoacoustic imaging experiments demonstrated that Cur@HKUST-1@PVP can be used for selectively imaging colon cancer tumors. In vivo experiments in mice for treatment suggested that the endogenous hydrogen sulfide-activated combination of photothermal therapy and chemotherapy has a better treatment effect that photothermal therapy or chemotherapy treatment alone. Conclusion The endogenous hydrogen sulfide-activated Cur@HKUST-1@PVP agent developed herein shows great potential for the accurate diagnosis and effective treatment of colon cancer.
Collapse
|
40
|
Faaizatunnisa N, Lestari WW, Saputra OA, Saraswati TE, Larasati L, Wibowo FR. Slow-Release of Curcumin Induced by Core–Shell Mesoporous Silica Nanoparticles (MSNs) Modified MIL-100(Fe) Composite. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02230-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, Hu X, Yang J, Sun Y, Zhu Z, Fang K, Chai K, Shi S, Dong C. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater 2022; 138:463-477. [PMID: 34718179 DOI: 10.1016/j.actbio.2021.10.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive therapeutic strategy that can convert oxygen to highly cytotoxic singlet oxygen (1O2) through the co-localization of excitation light and photosensitizers. However, compromised by the hypoxic tumor microenvironment, the therapeutic efficacy of PDT is reduced seriously. Herein, to overcome tumor-associated hypoxia, and further achieve tumor-targeted synergistic chemotherapy/PDT/photothermal therapy (PTT), we have constructed a biodegradable oxygen-producing nanoplatform (named Ini@PM-HP), which was composed of the porous metal-organic framework (PCN-224(Mn)), the poly (ADP-ribose) polymerase (PARP) inhibitor (Iniparib), and the polydopamine-modified hyaluronic acid (HA-PDA). Since HA can specifically bind to the overexpressed HA receptors (cluster determinant 44, CD44) on tumor cell, Ini@PM-HP prefers to accumulate at the tumor site once injected intravenously. Then iniparib can be released in tumor environment (TME), thereby dysfunctioning DNA damage repair and promoting cell apoptosis. At the same time, the chelating of Mn and tetrakis(4-carboxyphenyl) porphyrin (Mn-TCPP) can generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic TME and achieving enhanced PDT. Moreover, owing to the high photothermal conversion efficiency of PDA, PTT can be driven by the 808 nm laser irradiation. As systematically demonstrated in vitro and in vivo, this nanotherapeutic approach enables the combined therapy with great inhibition on tumor. Overall, the as-prepared nanoplatform provide a promising strategy to overcome tumor-associated hypoxia, and shows great potential for combination tumor therapy. STATEMENT OF SIGNIFICANCE: A delicately designed biodegradable oxygen-producing nanoplatform Ini@PM-HP is constructed to achieve combination therapy of solid tumors. Taking advantage of the active-targeting, PTT, enhanced PDT and PARPi, this nanotherapeutic approach successfully enables the combined chemo/photothermal/photodynamic therapy with great inhibition of solid tumors.
Collapse
|
42
|
Ma Y, Qu X, Liu C, Xu Q, Tu K. Metal-Organic Frameworks and Their Composites Towards Biomedical Applications. Front Mol Biosci 2022; 8:805228. [PMID: 34993235 PMCID: PMC8724581 DOI: 10.3389/fmolb.2021.805228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Owing to their unique features, including high cargo loading, biodegradability, and tailorability, metal–organic frameworks (MOFs) and their composites have attracted increasing attention in various fields. In this review, application strategies of MOFs and their composites in nanomedicine with emphasis on their functions are presented, from drug delivery, therapeutic agents for different diseases, and imaging contrast agents to sensor nanoreactors. Applications of MOF derivatives in nanomedicine are also introduced. Besides, we summarize different functionalities related to MOFs, which include targeting strategy, biomimetic modification, responsive moieties, and other functional decorations. Finally, challenges and prospects are highlighted about MOFs in future applications.
Collapse
Affiliation(s)
- Yana Ma
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xianglong Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Liu
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Liu Y, Jiang T, Liu Z. Metal-Organic Frameworks for Bioimaging: Strategies and Challenges. Nanotheranostics 2022; 6:143-160. [PMID: 34976590 PMCID: PMC8671950 DOI: 10.7150/ntno.63458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metal-organic frameworks (MOFs), composited with metal ions and organic linkers, have become promising candidates in the biomedical field own to their unique properties, such as high surface area, pore-volume, tunable pore size, and versatile functionalities. In this review, we introduce and summarize the synthesis and characterization methods of MOFs, and their bioimaging applications, including optical bioimaging, magnetic resonance imaging (MRI), computed tomography (CT), and multi-mode. Furthermore, their bioimaging strategies, remaining challenges and future directions are discussed and proposed. This review provides valuable references for the designing of molecular bioimaging probes based on MOFs.
Collapse
Affiliation(s)
- Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
44
|
Huang C, Liao H, Liu X, Xiao M, Liao S, Gong S, Yang F, Shu X, Zhou X. Preparation and characterization of vanillin-chitosan Schiff base zinc complex for a novel Zn 2+ sustained released system. Int J Biol Macromol 2022; 194:611-618. [PMID: 34822818 DOI: 10.1016/j.ijbiomac.2021.11.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
In this work, a novel sustained released system (VCSB-Zn(II)) for zinc supplements was built by vanillin-chitosan Schiff base (VCSB) chelated with Zn2+ to improve the zinc trace element utilization ratio. Samples were characterized by FT-IR, 1H NMR, XRD, SEM, and TGA. The results showed that VCSB exhibited a more excellent chelation capacity of Zn2+ than chitosan. The chelation capacity of VCSB was about 1.7 times more than that of chitosan, corresponding to 50.96 mg/g and 29.91 mg/g, respectively. Furthermore, VCSB-Zn(II) showed excellent sustained released performance at simulated gastric fluid because of the acid slow-dissolving ability. And the higher the CN content of VCSB, the higher the cumulative release rate (Ri) of Zn2+, the highest Ri reached 77.81%. The sustained released curves were described by the first-order and Korsmeyer-Peppas equation, which described the Zn2+ sustained released performance caused by the dissolution of VCSB-Zn(II) and Fick diffusion. This Zn2+ sustained released system shows great potential in the application in the field of trace elements supplements for animals.
Collapse
Affiliation(s)
- Chaoqiang Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Haiyan Liao
- Network & Modern Education Technology Center, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Xuhong Liu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Min Xiao
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Songyi Liao
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Sheng Gong
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| | - Fujie Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China.
| | - Xinhua Zhou
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; Guangzhou Key Laboratory of Efficient Utilization of Agrochemicals, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
45
|
Yao L, Cao W, Cui Y, Qian G. An Adenosine Triphosphate-Responsive Metal-Organic Framework Decorated with Palladium Nanosheets for Synergistic Tri-Modal Therapy. CrystEngComm 2022. [DOI: 10.1039/d2ce00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional nanoplatform is urgently desired for the development of the highly efficient anticancer therapeutic agents. Here, a class of palladium nanosheets (Pd NSs)-laden MIL-101-NH2 (MIL@Pd) nanostructure encapsulated with doxorubicin...
Collapse
|
46
|
Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021; 13:pharmaceutics13122166. [PMID: 34959445 PMCID: PMC8703898 DOI: 10.3390/pharmaceutics13122166] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.
Collapse
|
47
|
Hussain S, Peng X. Ultra-fast photothermal-responsive Fe-TCPP-based thin-film nanocomposite membranes for ON/OFF switchable nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Choe HS, Shin MJ, Kwon SG, Lee H, Kim DK, Choi KU, Kim JH, Kim JH. Yolk-Shell-Type Gold Nanoaggregates for Chemo- and Photothermal Combination Therapy for Drug-Resistant Cancers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53519-53529. [PMID: 34730926 DOI: 10.1021/acsami.1c10036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epithelial ovarian cancer is a gynecological cancer with the highest mortality rate, and it exhibits resistance to conventional drugs. Gold nanospheres have gained increasing attention over the years as photothermal therapeutic nanoparticles, owing to their excellent biocompatibility, chemical stability, and ease of synthesis; however, their practical application has been hampered by their low colloidal stability and photothermal effects. In the present study, we developed a yolk-shell-structured silica nanocapsule encapsulating aggregated gold nanospheres (aAuYSs) and examined the photothermal effects of aAuYSs on cell death in drug-resistant ovarian cancers both in vitro and in vivo. The aAuYSs were synthesized using stepwise silica seed synthesis, surface amino functionalization, gold nanosphere decoration, mesoporous organosilica coating, and selective etching of the silica template. Gold nanospheres were agglomerated in the confined silica interior of aAuYSs, resulting in the red-shifting of absorbance and enhancement of the photothermal effect under 808 nm laser irradiation. The efficiency of photothermal therapy was first evaluated by inducing aAuYS-mediated cell death in A2780 ovarian cancer cells, which were cultured in a two-dimensional culture and a three-dimensional spheroid culture. We observed that photothermal therapy using aAuYSs together with doxorubicin treatment synergistically induced the cell death of doxorubicin-resistant A2780 cancer cells in vitro. Furthermore, this type of combinatorial treatment with photothermal therapy and doxorubicin synergistically inhibited the in vivo tumor growth of doxorubicin-resistant A2780 cancer cells in a xenograft transplantation model. These results suggest that photothermal therapy using aAuYSs is highly effective in the treatment of drug-resistant cancers.
Collapse
Affiliation(s)
- Hyun-Seok Choe
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Gyu Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
49
|
Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D Nanomaterials for Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:276-302. [PMID: 34970073 PMCID: PMC8713997 DOI: 10.1016/j.mattod.2021.04.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of biomaterials with remarkable potential for biomedical applications. The planar topography of these nanomaterials confers unique physical, chemical, electronic and optical properties, making them attractive candidates for therapeutic delivery, biosensing, bioimaging, regenerative medicine, and additive manufacturing strategies. The high surface-to-volume ratio of 2D nanomaterials promotes enhanced interactions with biomolecules and cells. A range of 2D nanomaterials, including transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), layered silicates (nanoclays), 2D metal carbides and nitrides (MXenes), metal-organic framework (MOFs), covalent organic frameworks (COFs) and polymer nanosheets have been investigated for their potential in biomedical applications. Here, we will critically evaluate recent advances of 2D nanomaterial strategies in biomedical engineering and discuss emerging approaches and current limitations associated with these nanomaterials. Due to their unique physical, chemical, and biological properties, this new class of nanomaterials has the potential to become a platform technology in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Aparna Murali
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Giriraj Lokhande
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A. Deo
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
50
|
Yao L, Tang Y, Cao W, Cui Y, Qian G. Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal-Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy. ACS Biomater Sci Eng 2021; 7:4999-5006. [PMID: 34550683 DOI: 10.1021/acsbiomaterials.1c00874] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iron-based metal-organic frameworks (MOFs) have been reported to have great potential for encapsulating doxorubicin hydrochloride (DOX), which is a frequently used anthracycline anticancer drug. However, developing a facile approach to realize high loading capacity and efficiency as well as controlled release of DOX in MOFs remains a huge challenge. Herein, we synthesized water-stable MIL-101(Fe)-C4H4 through a microwave-assisted method. It was found the nano-MOFs acted as nanosponges when soaked in a DOX alkaline aqueous solution with a loading capacity experimentally up to 24.5 wt %, while maintaininga loading efficiency as high as 98%. The mechanism of the interaction between DOX and nanoMOFs was investigated by absorption spectra and density functional theory (DFT) calculations, which revealed that the deprotonated DOX was electrostatically adsorbed to the unsaturated Fe3OCl(COO)6·H2O (named Fe3 trimers). In addition, the as-designed poly(ethylene glycol-co-propylene glycol) (F127) modified nanoparticles (F127-DOX-MIL) could be decomposed under the stimulation of glutathione (GSH) and ATP. As a result, DOX and Fe(III) ions were released, and they could undergo a Fenton-like reaction with the endogenous H2O2 to generate the highly toxic hydroxyl radical (·OH). The in vitro experiments indicated that F127-DOX-MIL could cause remarkable Hela cells inhibition through chemotherapy and chemodynamic therapy. Our study provides a new strategy to design a GSH/ATP-responsive drug-delivery nanosystem for chemo/chemodynamic therapy.
Collapse
Affiliation(s)
- Lijia Yao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ying Tang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenqian Cao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|