1
|
Ma C, Li Y, Liu B, Deng J, Gao X, Zhang H, Zhang B, Zhou Q, Peng X, Zhang H. Exosomes derived from adipose mesenchymal stem cells promote corneal injury repair and inhibit the formation of scars by anti-apoptosis. Colloids Surf B Biointerfaces 2025; 247:114454. [PMID: 39675062 DOI: 10.1016/j.colsurfb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In the corneal wound healing process, epithelial cell re-epithelialization and migration are the critical first steps following an injury. As the disease progresses, orderly regeneration of corneal stromal collagen and mild corneal stromal fibrosis are vital for corneal function reconstruction. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exos) have emerged as a promising therapy due to their anti-oxidant, anti-apoptosis, and tissue repair properties. In this study, we successfully isolated exosomes via differential centrifugation and verified their effective extraction through transmission electron microscopy and nanoparticle tracking analysis. In vitro, ADSCs-Exos increased corneal epithelial cell migration by 20 % and reduced oxidative damage by 50 %. In addition, ADSCs-Exos demonstrated remarkable wound healing properties in corneal tissue. This effect was attributed to their ability to inhibit apoptosis of corneal stroma cells by upregulating Bax and downregulating Bcl2, reducing the Bax/Bcl2 protein expression ratio from 1 to 0.45. This decrease may subsequently inhibit α-SMA expression, thereby preventing corneal scarring. Overall, this research has elucidated the effects and potential targets of ADSCs-Exos in promoting corneal wound repair, offering a novel and promising approach for treating corneal injuries.
Collapse
Affiliation(s)
- Chunli Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yixiao Li
- Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Shandong University, Jinan 250100, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Linyi 276000, China
| | - Junjie Deng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China
| | - Xue Gao
- Shandong University, Jinan 250100, China; The Second Hospital of Shandong University, Jinan 250033, China
| | - Huixin Zhang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Bingqiang Zhang
- Qingdao Key Laboratory of Cancer and Immune Cells, Qingdao Restore Medical Testing Laboratory Co., Ltd., Qingdao 266111, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiaoting Peng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Han Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China.
| |
Collapse
|
2
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Hu H, Gao H, Wang K, Jin Z, Zheng W, Wang Q, Yang Y, Yu C, Xu K, Gao C. Effective treatment of traumatic brain injury by injection of a selenium-containing ointment. Acta Biomater 2024; 187:161-171. [PMID: 39236795 DOI: 10.1016/j.actbio.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Traumatic brain injury (TBI) is an incurable and overwhelming disease accompanied with serve disability and huge financial burden, where the overproduced reactive oxygen species (ROS) can exacerbate the secondary injury, leading to massive apoptosis of neurons. In this study, β-cyclodextrin (CD)-capped hyperbranched polymers containing selenium element (HSE-CD) were crosslinked with CD-modified hyaluronic acid (HA-CD) and amantadine-modified hyaluronic acid (HA-AD) to obtain a ROS-responsive ointment (R-O). The structures of synthesized polymers were characterized with 1H nuclear magnetic resonance, and the properties of ointment were investigated with rheology and antioxidation. Compared to non-ROS-responsive ointment (N-O), the R-O ointment had stronger efficiency in decreasing the ROS level in BV2 cells in vitro. In a controlled rat cortical impact (CCI) model, the R-O ointment could relieve the DNA damage and decrease apoptosis in injured area via reducing the ROS level. Besides, after the R-O treatment, the rats showed significantly less activated astrocytes and microglia, a lower level of pro-inflammatory cytokines and a higher ratio of M2/M1 macrophage and microglia. Moreover, compared to the TBI group the R-O ointment promoted the doublecortin (DCX) expression and tissue structure integrity around the cavity, and promoted the recovery of nerve function post TBI. STATEMENT OF SIGNIFICANCE: Traumatic brain injury (TBI) is an incurable and overwhelming disease, leading to severe disability and huge social burden, where reactive oxygen species (ROS) are considered as one of the most significant factors in the secondary injury of TBI. A ROS responsive supramolecular ointment containing di-selenide bonds was injected in rats with controlled cortical impact. It relieved the DNA damage and decreased apoptosis in the injured area via reducing the ROS levels, downregulated neuroinflammation, and improved neurological recovery of TBI in vivo. This designed self-adaptive biomaterial effectively regulated the pathological microenvironment in injured tissue, and achieved better therapeutic effect.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huan Gao
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoxuan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufang Yang
- Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Chaonan Yu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
4
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Zhang J, Sun X, Heng Y, Zeng Y, Wang Y, Shen Y, Peng A, Tang W, Zeng M, Yu Z. Transforming Cell-Drug Interaction through Granular Hydrogel-Mediated Delivery of Polyplex Nanoparticles for Enhanced Safety and Extended Efficacy in Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39784-39795. [PMID: 39036892 DOI: 10.1021/acsami.4c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The utilization of hydrogels for DNA/cationic polymer polyplex nanoparticle (polyplex) delivery has significantly advanced gene therapy in tissue regeneration and cancer treatment. However, persistent challenges related to the efficacy and safety of encapsulated polyplexes, stemming from issues such as aggregation, degradation, or difficulties in controlled release during or postintegration with hydrogel scaffolds, necessitate further exploration. Here, we introduce an injectable gene therapy gel achieved by incorporating concentrated polyplexes onto densely packed hydrogel microparticles (HMPs). Polyplexes, when uniformly adhered to the gene therapy gel through reversible electrostatic interactions, can detach from the HMP surface in a controlled manner, contrasting with free polyplexes, and thereby reducing dose-dependent toxicity during transfection. Additionally, the integration of RGD cell adhesion peptides enhances the scaffolding characteristics of the gel, facilitating cell adhesion, migration, and further minimizing toxicity during gene drug administration. Notably, despite the overall transfection efficiency showing average performance, utilizing confocal microscopy to meticulously observe and analyze the cellular states infiltrating into various depths of the gene therapy gel resulted in the groundbreaking discovery of significantly enhanced local transfection efficiency, with primary cell transfection approaching 80%. This phenomenon could be potentially attributed to the granular hydrogel-mediated delivery of polyplex nanoparticles, which revolutionizes the spatial and temporal distribution and thus the "encounter" mode between polyplexes and cells. Moreover, the gene therapy gel's intrinsic injectability and self-healing properties offer ease of administration, making it a highly promising candidate as a novel gene transfection gel dressing with significant potential across various fields, including regenerative medicine and innovative living materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yunfeng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yijia Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Anhui Peng
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Wenzhe Tang
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Ming Zeng
- Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Milne C, Song R, Johnson M, Zhao C, Santoro Ferrer F, A S, Lyu J, Wang W. Dual-Modified Hyaluronic Acid for Tunable Double Cross-Linked Hydrogel Adhesives. Biomacromolecules 2024; 25:2645-2655. [PMID: 38456398 PMCID: PMC11005013 DOI: 10.1021/acs.biomac.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.
Collapse
Affiliation(s)
- Cameron Milne
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Rijian Song
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Chunyu Zhao
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Francesca Santoro Ferrer
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Sigen A
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- School
of Medicine, Anhui University of Science
and Technology, Huainan 232001, China
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4 D04 V1W8, Ireland
- Research
and Clinical Translation Center of Gene Medicine and Tissue Engineering,
School of Public Health, Anhui University
of Science and Technology, Huainan 232001, China
| |
Collapse
|
7
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
8
|
Wang K, Yao SY, Wang Z, Shen L, Guo DS, Zhu Y, Yang X, Yu Q, Gao C. A Sequential Dual Functional Supramolecular Hydrogel with Promoted Drug Release to Scavenge ROS and Stabilize HIF-1α for Myocardial Infarction Treatment. Adv Healthc Mater 2024; 13:e2302940. [PMID: 37844263 DOI: 10.1002/adhm.202302940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 10/18/2023]
Abstract
Myocardial infarction (MI) has a characteristic inflammatory microenvironment due to the overproduction of reactive oxygen species (ROS) and causes the extraordinary deposition of collagen and thereby fibrosis. An on-demand adaptive drug releasing hydrogel is designed to modulate the inflammatory microenvironment and inhibit cardiac fibroblasts (CFs) proliferation post MI by scavenging the overproduced ROS and releasing 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA) to maintain the expression of hypoxia-inducible factor 1α (HIF-1α). DPCA is prefabricated to a prodrug linked with disulfide bond (DPCA-S-S-OH). The DPCA-S-S-OH and carboxylated calixarene (CSAC4A) are grafted onto the backbone of methacrylated hyaluronic acid (HAMA) to obtain HAMA-S-S-DPCA and HAMA-CA, respectively, which are further reacted to form a dual network hydrogel (R+ /DPCA(CA)) with covalent linking and host-guest interaction between DPCA and CSAC4A. The ROS-triggered hydrolysis of ester bond and subsequently sustaining release of DPCA from the cavity of CSAC4A jointly cause the constant expression of HIF-1α, which significantly restricts the CFs proliferation, leading to suppressed fibrosis and promoted heart repair.
Collapse
Affiliation(s)
- Kai Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiayan Yang
- Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai, 201318, China
| | - Qifeng Yu
- Shanghai NewMed Medical Technology Co., Ltd, Pudong New Area, Shanghai, 201318, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
9
|
Shi C, Zhang Y, Wu G, Zhu Z, Zheng H, Sun X, Heng Y, Pan S, Xiu H, Zhang J, Yin Z, Yu Z, Liang B. Hyaluronic Acid-Based Reactive Oxygen Species-Responsive Multifunctional Injectable Hydrogel Platform Accelerating Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2302626. [PMID: 37943252 DOI: 10.1002/adhm.202302626] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetic wounds are more likely to develop into complex and severe chronic wounds. The objective of this study is to develop and assess a reactive oxygen species (ROS)-responsive multifunctional injectable hydrogel for the purpose of diabetic wound healing. A multifunctional hydrogel (HA@Cur@Ag) is successfully synthesized with dual antioxidant, antibacterial, and anti-inflammatory properties by crosslinking thiol hyaluronic acid (SH-HA) and disulfide-bonded hyperbranched polyethylene glycol (HB-PBHE) through Michael addition; while, incorporating curcumin liposomes and silver nanoparticles (AgNPs). The HA@Cur@Ag hydrogel exhibits favorable biocompatibility, degradability, and injectivity. The outcomes of in vitro and in vivo experiments demonstrate that the hydrogel can effectively be loaded with and release curcumin liposomes, as well as silver ions, thereby facilitating diabetic wound healing through multiple mechanisms, including ROS scavenging, bactericidal activity, anti-inflammatory effects, and the promotion of angiogenesis. Transcriptome sequencing reveals that the HA@Cur@Ag hydrogel effectively suppresses the activation of the tumour necrosis factor (TNF)/nuclear factor κB (NF-κB) pathway to ameliorate oxidative stress and inflammation in diabetic wounds. These findings suggest that this ROS-responsive multifunctional injectable hydrogel, which possesses the ability to precisely coordinate and integrate intricate biological and molecular processes involved in wound healing, exhibits notable potential for expediting diabetic wound healing.
Collapse
Affiliation(s)
- Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Ying Zhang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haiping Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| |
Collapse
|
10
|
Bezold MG, Hanna AR, Dollinger BR, Patil P, Yu F, Duvall CL, Gupta MK. Hybrid Shear-thinning Hydrogel Integrating Hyaluronic Acid with ROS-Responsive Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213368. [PMID: 38107427 PMCID: PMC10723243 DOI: 10.1002/adfm.202213368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 12/19/2023]
Abstract
Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)-bl-poly(N,N-dimethylacrylamide)-bl-poly(N,N-dimethylacrylamide-co-N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with β-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.
Collapse
Affiliation(s)
- Mariah G. Bezold
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Andrew R. Hanna
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Bryan R. Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
11
|
Chung H, An S, Han SY, Jeon J, Cho S, Lee YC. Endoscopically injectable and self-crosslinkable hydrogel-mediated stem cell transplantation for alleviating esophageal stricture after endoscopic submucosal dissection. Bioeng Transl Med 2023; 8:e10521. [PMID: 37206239 PMCID: PMC10189443 DOI: 10.1002/btm2.10521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Esophageal stricture after extensive endoscopic submucosal dissection impairs the quality of life of patients with superficial esophageal carcinoma. Beyond the limitations of conventional treatments including endoscopic balloon dilatation and the application of oral/topical corticosteroids, several cell therapies have been recently attempted. However, such methods are still limited in clinical situations and existing setups, and the efficacies are less in some cases since the transplanted cells hardly remain at the resection site for a long time due to swallowing and peristalsis of the esophagus. Thus, a cell transplantation platform directly applicable with clinically established equipment and enabling stable retention of transplanted cells can be a promising therapeutic option for better clinical outcomes. Inspired by ascidians that rapidly self-regenerate, this study demonstrates endoscopically injectable and self-crosslinkable hyaluronate that allows both endoscopic injection in a liquid state and self-crosslinking as an in situ-forming scaffold for stem cell therapy. The pre-gel solution may compatibly be applied with endoscopic tubes and needles of small diameters, based on the improved injectability compared to the previously reported endoscopically injectable hydrogel system. The hydrogel can be formed via self-crosslinking under in vivo oxidative environment, while also exhibiting superior biocompatibility. Finally, the mixture containing adipose-derived stem cells and the hydrogel can significantly alleviate esophageal stricture after endoscopic submucosal dissection (75% of circumference, 5 cm in length) in a porcine model through paracrine effects of the stem cell in the hydrogel, which modulate regenerative processes. The stricture rates on Day 21 were 79.5% ± 2.0%, 62.8% ± 1.7%, and 37.9% ± 2.9% in the control, stem cell only, and stem cell-hydrogel groups, respectively (p < 0.05). Therefore, this endoscopically injectable hydrogel-based therapeutic cell delivery system can serve as a promising platform for cell therapies in various clinically relevant situations.
Collapse
Affiliation(s)
- Hyunsoo Chung
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Department of Medical Device DevelopmentSeoul National University College of MedicineSeoulRepublic of Korea
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
| | - Soohwan An
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung Yeop Han
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Jihoon Jeon
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS)SeoulRepublic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute, Yonsei UniversitySeoulRepublic of Korea
| | - Yong Chan Lee
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
12
|
Dhiman A, Sharma AK, Bhardwaj D, Agrawal G. Biodegradable dual stimuli responsive alginate based microgels for controlled agrochemicals release and soil remediation. Int J Biol Macromol 2023; 228:323-332. [PMID: 36572087 DOI: 10.1016/j.ijbiomac.2022.12.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
To meet the growing food demand of increasing world population while reducing the harmful environmental effects of agrochemicals, development of smart nanoformulation is of prime importance. Herein, dual stimuli responsive alginate based microgels (OAlgDP MGs) (≈160 nm) are developed for controlled release of agrochemicals and soil remediation. These microgels are prepared using octyl amine functionalized alginate which is crosslinked by 3, 3'-dithiopropionohydrazide crosslinker providing both hydrazone and disulfide bonds in microgels network. OAlgDP MGs are further loaded with hydrophobic diuron herbicide displaying ≈85 % encapsulation efficiency. Sustained release of diuron is obtained in 2 mM GSH (≈100 % after 380 h) and at pH 5 (≈72 % after 240 h). Furthermore, OAlgDP MGs are nontoxic up to 150 μg/mL against HEK293T cells while their reduced form is capable of capturing the heavy metal ions (Cu2+ and Hg2+) showing the potential of the developed system for moving toward sustainable agriculture.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Amit Kumar Sharma
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India.
| |
Collapse
|
13
|
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, Luo G, Xu Y, Qian W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12:e1094. [PMID: 36354147 PMCID: PMC9647861 DOI: 10.1002/ctm2.1094] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Lanlan Dong
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Baohua Zhao
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yifei Lu
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Shurun Huang
- Department of Burns and Plastic Surgerythe 910th Hospital of Joint Logistic Force of Chinese People's Liberation ArmyQuanzhouFujianChina
| | - Zhiqiang Yuan
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Gaoxing Luo
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yong Xu
- Orthopedic InstituteSuzhou Medical CollegeSoochow UniversitySuzhouChina
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Wei Qian
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| |
Collapse
|
14
|
Chen YG, Li CX, Zhang Y, Qi YD, Liu XH, Feng J, Zhang XZ. Hybrid suture coating for dual-staged control over antibacterial actions to match well wound healing progression. MATERIALS HORIZONS 2022; 9:2824-2834. [PMID: 36039967 DOI: 10.1039/d2mh00591c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Absorbable sutures have moved to the forefront in surgical fields with a huge market. Antibacterial activity is one indispensable feature for the next generation of absorbable sutures. This study develops a simple and cost-effective coating method to endow sutures with staged control over antibacterial actions to achieve enhanced dual stages of the wound healing process. This method is achieved in aqueous solution under mild conditions without the usage of any organic solvent and reserves the fundamental properties of suture materials, based on the pH-dependent reversible self-polymerization of tannic acid (TA) together with the strong adhesion of poly (tannic acid) (PTA) not only toward the suture surface but also with TA. Just by changing pH of TA solution, a hybrid coating (MPTA) composed of PTA and TA could be readily formed on the commercialized sutures originating from synthetic and natural materials. In the initial post-surgery stage, wound sites are susceptible to aseptic and/or bacterial inflammation. The resulting acid conditions induce burst release of antibacterial TA mostly coming from the adsorbed TA monomer. In the later stage, TA release is tailored totally depending on the pH conditions determined by the healing degree of wounds, allowing the sustained antibacterial prevention in a biologically adjustable manner. Thus, antibacterial MPTA coating meets the rigid requirements that differ distinctly during two major wound healing stages. Nontoxic MPTA coating on sutures leads to excellent post-implantation outcomes regarding bacterial prevention/elimination, anti-inflammation, tissue repair and wound healing. Moreover, MPTA coating provides sutures with a robust platform for functional expansion due to the matrix-independent adhesive ability of PTA.
Collapse
Affiliation(s)
- Ying-Ge Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Yong-Dan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
15
|
Yang Y, Xu H, Li M, Li Z, Zhang H, Guo B, Zhang J. Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41726-41741. [PMID: 36089750 DOI: 10.1021/acsami.2c10490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The on-demand replacement of multifunctional hydrogel wound dressings helps to avoid bacterial colonization, and the on-demand painless peeling of tissue adhesive hydrogels on the wound site remains a major challenge to be solved. In this work, we design and develop a series of multifunctional dynamic Schiff base network hydrogels composed of cystamine-modified hyaluronic acid, benzaldehyde-functionalized poly(ethylene glycol)-co-poly(glycerol sebacate), and polydopamine@polypyrrole nanocomposite (PDA@PPy) with mild on-demand removability to enhance drug-resistant bacteria-infected wound healing. These hydrogels exhibited ideal injectable and self-healing properties, excellent tissue adhesion, in vivo hemostasis, good antioxidation, and conductivity. PDA@PPy inspired by melanin endows hydrogels with excellent antioxidant capacity, UV-blocking ability, and photothermal anti-infection ability. Based on the dynamic oxidation-reduction response of disulfide bonds inspired by the dissociation of the tertiary spatial structure transformation of poly-polypeptide chains, these hydrogels can achieve rapid painless on-demand removal under mild conditions by adding dithiothreitol. These multifunctional hydrogels significantly promoted collagen deposition and angiogenesis in the MRSA-infected full-thickness skin repair experiment. All the results showed that these multifunctional hydrogels with painless on-demand removal property showed great potential in clinical treatment of infected wounds.
Collapse
Affiliation(s)
- Yutong Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huiru Xu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlong Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Institute of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
16
|
Xu Q, Sigen A, Wang W. Injectable Hydrogels as a Stem Cell Delivery Platform for Wound Healing. MULTIFUNCTIONAL HYDROGELS FOR BIOMEDICAL APPLICATIONS 2022:323-355. [DOI: 10.1002/9783527825820.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Jiang T, Liu S, Wu Z, Li Q, Ren S, Chen J, Xu X, Wang C, Lu C, Yang X, Chen Z. ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress. Mater Today Bio 2022; 16:100365. [PMID: 35967739 PMCID: PMC9364034 DOI: 10.1016/j.mtbio.2022.100365] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022]
Abstract
Diabetic wound complications are financially costly and difficult to heal in worldwide. Whereas the therapies of diabetic wound, such as wound dressing, endocrine therapy or flap-transplantations, were not satisfied. Based on our previous study of exosome secreted by adipose-derived stem cell (ADSC-exo), we loaded ADSC-exo into the matrix metalloproteinase degradable polyethylene glycol (MMP-PEG) smart hydrogel. Physical and chemical properties of ADSC-exo@MMP-PEG smart hydrogel were tested by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), weight loss examination, etc. As the hydrogel degraded in response to MMP, ADSC-exo was released and subsequently enhanced cell function via Akt signaling. Moreover, treatment with ADSC-exo@MMP-PEG smart hydrogel significantly relieved the H2O2-induced oxidative stress, which was widely recognized as a major cause of diabetic wound nonhealing. Similar results were achieved in mice diabetic wound models, in which the ADSC-exo@MMP-PEG treatment group displayed a significantly accelerated wound healing. To summarize, the present smart hydrogel with enzyme-response and exosome-release was proved to be benefit for diabetic wounds healing, which provides a reliable theoretical basis for application of ADSC-exo in treatment of diabetic wounds. Loading ADSC-exo into PEG formed a smart hydrogel. The smart hydrogel delivered exosome in response to MMP-2. The smart hydrogel promoted diabetic wound healing by optimizing cellular functions.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Siju Liu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cuifen Lu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials and Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
- Corresponding author.
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author. Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author. Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
| |
Collapse
|
18
|
Recent Studies on Hydrogels Based on H 2O 2-Responsive Moieties: Mechanism, Preparation and Application. Gels 2022; 8:gels8060361. [PMID: 35735705 PMCID: PMC9222492 DOI: 10.3390/gels8060361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
H2O2 is essential for cellular processes and plays a vital role in the regulation of cell signaling pathways, which can be viewed as a warning signal for many kinds of disease including cancer, cardiovascular disease, reproductive abnormalities, diabetes, and renal failure. A H2O2-responsive hydrogel (H2O2-Gel) is a promising candidate for biomedical applications because of its good biocompatibility, similarity to soft biological tissues, ease of preparation, and its ability to respond to H2O2. In this study, the H2O2-responsive moieties used to fabricate H2O2-Gels were reviewed, including thioethers, disulfide bonds, selenides, diselenium bonds, diketones, boronic, and others. Next, the preparation method of H2O2-Gel was divided into two major categories according to their reaction mechanisms: either self-crosslinking or mechanisms entailing the addition of difunctional crosslinkers. Last, the applications of H2O2-Gels were emphasized, which have been viewed as desirable candidates in the fields of drug delivery, the detection of H2O2, glucose-responsive systems, ROS scavengers, tissue engineering, and cell-encapsulation.
Collapse
|
19
|
Shi W, Fang F, Kong Y, Greer SE, Kuss M, Liu B, Xue W, Jiang X, Lovell P, Mohs AM, Dudley AT, Li T, Duan B. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication 2021; 14. [PMID: 34905737 DOI: 10.1088/1758-5090/ac42de] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022]
Abstract
In the past decade, cartilage tissue engineering has arisen as a promising therapeutic option for degenerative joint diseases, such as osteoarthritis, in the hope of restoring the structure and physiological functions. Hydrogels are promising biomaterials for developing engineered scaffolds for cartilage regeneration. However, hydrogel-delivered mesenchymal stem cells or chondrocytes could be exposed to elevated levels of reactive oxygen species (ROS) in the inflammatory microenvironment after being implanted into injured joints, which may affect their phenotype and normal functions and thereby hinder the regeneration efficacy. To attenuate ROS induced side effects, a multifunctional hydrogel with an innate anti-oxidative ability was produced in this study. The hydrogel was rapidly formed through a dynamic covalent bond between phenylboronic acid grafted hyaluronic acid (HA-PBA) and poly(vinyl alcohol) and was further stabilized through a secondary crosslinking between the acrylate moiety on HA-PBA and the free thiol group from thiolated gelatin. The hydrogel is cyto-compatible and injectable and can be used as a bioink for 3D bioprinting. The viscoelastic properties of the hydrogels could be modulated through the hydrogel precursor concentration. The presence of dynamic covalent linkages contributed to its shear-thinning property and thus good printability of the hydrogel, resulting in the fabrication of a porous grid construct and a meniscus like scaffold at high structural fidelity. The bioprinted hydrogel promoted cell adhesion and chondrogenic differentiation of encapsulated rabbit adipose derived mesenchymal stem cells. Meanwhile, the hydrogel supported robust deposition of extracellular matrix components, including glycosaminoglycans and type II collagen, by embedded mouse chondrocytesin vitro. Most importantly, the hydrogel could protect encapsulated chondrocytes from ROS induced downregulation of cartilage-specific anabolic genes (ACAN and COL2) and upregulation of a catabolic gene (MMP13) after incubation with H2O2. Furthermore, intra-articular injection of the hydrogel in mice revealed adequate stability and good biocompatibilityin vivo. These results demonstrate that this hydrogel can be used as a novel bioink for the generation of 3D bioprinted constructs with anti-ROS ability to potentially enhance cartilage tissue regeneration in a chronic inflammatory and elevated ROS microenvironment.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Fang Fang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Sydney E Greer
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Wen Xue
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Xiping Jiang
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Paul Lovell
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States of America.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Andrew T Dudley
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States of America.,Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America.,Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America.,Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
20
|
Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact Mater 2021; 10:504-514. [PMID: 34901563 PMCID: PMC8637015 DOI: 10.1016/j.bioactmat.2021.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Antioxidant biomaterials have attracted much attention in various biomedical fields because of their effective inhibition and elimination of reactive oxygen species (ROS) in pathological tissues. However, the difficulty in ensuring biocompatibility, biodegradability and bioavailability of antioxidant materials has limited their further development. Novel bioavailable antioxidant materials that are derived from natural resources are urgently needed. Here, an integrated multi-omics method was applied to fabricate antioxidant biomaterials. A key cysteine-rich thrombospondin-1 type I repeat-like (TSRL) protein was efficiently discovered from among 1262 adhesive components and then used to create a recombinant protein with a yield of 500 mg L-1. The biocompatible TSRL protein was able to self-assemble into either a water-resistant coating through Ca2+-mediated coordination or redox-responsive hydrogels with tunable physical properties. The TSRL-based hydrogels showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rates than glutathione (GSH) and ascorbic acid (Aa) and protected cells against external oxidative stress significantly more effectively. When topically applied to mice skin, TSRL alleviated epidermal hyperplasia and suppressed the degradation of collagen and elastic fibers caused by ultraviolet radiation B (UVB) irradiation, confirming that it enhanced antioxidant activity in vivo. This is the first study to successfully characterize natural antioxidant biomaterials created from marine invertebrate adhesives, and the findings indicate the excellent prospects of these biomaterials for great applications in tissue regeneration and cosmeceuticals.
Collapse
|
21
|
Wang X, Li X, Duffy P, McMahon S, Wang X, Lyu J, Xu Q, A S, Chen NN, Bi V, Dürig T, Wang W. Resveratrol‐Loaded Poly(
d
,
l
‐Lactide‐
Co
‐Glycolide) Microspheres Integrated in a Hyaluronic Acid Injectable Hydrogel for Cartilage Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xi Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Xiaolin Li
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Patrick Duffy
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Sean McMahon
- Ashland Specialties Ireland Ltd. National Science Park Building V, Dublin Road, Petitswood, Mullingar Co. Westmeath N91 F6PD Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Jing Lyu
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Qian Xu
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| | - Ningyi N. Chen
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Vivian Bi
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Thomas Dürig
- Pharmaceutical R&D Ashland Specialty Ingredients G.P. 500 Hercules Road, 8136A/260 Wilmington DE 19808 USA
| | - Wenxin Wang
- Charles Institute of Dermatology School of Medicine University College Dublin Dublin 4 Ireland
| |
Collapse
|
22
|
Li C, Nie F, Liu X, Chen M, Chi D, Li S, Pipinos II, Li X. Antioxidative and Angiogenic Hyaluronic Acid-Based Hydrogel for the Treatment of Peripheral Artery Disease. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45224-45235. [PMID: 34519480 DOI: 10.1021/acsami.1c11349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by blockages of the arteries supplying the lower extremities. Ischemia initiates oxidative damage and mitochondrial dysfunction in the legs of PAD patients, causing injury to the tissues of the leg, significant decline in walking performance, leg pain while walking, and in the most severe cases, nonhealing ulcers and gangrene. Current clinical trials based on cells/stem cells, the trophic factor, or gene therapy systems have shown some promising results for the treatment of PAD. Biomaterial matrices have been explored in animal models of PAD to enhance these therapies. However, current biomaterial approaches have not fully met the essential requirements for minimally invasive intramuscular delivery to the leg. Ideally, a biomaterial should present properties to ameliorate oxidative stress/damage and failure of angiogenesis. Recently, we have created a thermosensitive hyaluronic acid (HA) hydrogel with antioxidant capacity and skeletal muscle-matching stiffness. Here, we further optimized HA hydrogels with the cell adhesion peptide RGD to facilitate the development of vascular-like structures in vitro. The optimized HA hydrogel reduced intracellular reactive oxygen species levels and preserved vascular-like structures against H2O2-induced damage in vitro. HA hydrogels also provided prolonged release of the vascular endothelial growth factor (VEGF). After injection into rat ischemic hindlimb muscles, this VEGF-releasing hydrogel reduced lipid oxidation, regulated oxidative-related genes, enhanced local blood flow in the muscle, and improved running capacity of the treated rats. Our HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Hunan Engineering Technology Research Center for the Prevention and Treatment of Otorhinolaryngologic Diseases and Protection of Visual Function with Chinese Medicine, Human University of Chinese Medicine, Changsha, Hunan 410208, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Meng Chen
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David Chi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
23
|
He Z, Xu Q, Newland B, Foley R, Lara-Sáez I, Curtin JF, Wang W. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 2021; 9:6326-6346. [PMID: 34304256 DOI: 10.1039/d1tb00728a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are generated in cellular metabolism and are essential for cellular signalling networks and physiological functions. However, the functions of ROS are 'double-edged swords' to living systems that have a fragile redox balance between ROS generation and elimination. A modest increase of ROS leads to enhanced cell proliferation, survival and benign immune responses, whereas ROS stress that overwhelms the cellular antioxidant capacity can damage nucleic acids, proteins and lipids, resulting in oncogenic mutations and cell death. ROS are therefore involved in many pathological conditions. On the other hand, ROS present selective toxicity and have been utilised against cancer and pathogens, thus also acting as a double-edged sword in the healthcare field. Injectable antioxidative hydrogels are gel precursors that form hydrogel constructs in situ upon delivery in vivo to maintain an antioxidative capacity. These hydrogels have been developed to counter ROS-induced pathological conditions, with significant advantages of biocompatibility, excellent moldability, and minimally invasive delivery. The intrinsic, readily controllable ROS-scavenging ability of the functionalised hydrogels overcomes many drawbacks of small molecule antioxidants. This review summarises the roles of ROS under pathological conditions and describes the state-of-the-art of injectable antioxidative hydrogels. A particular emphasis is also given to current ROS-producing therapeutic interventions, enabling potential application of injectable antioxidant hydrogels to prevent the adverse effects of many cancer and infection treatments.
Collapse
Affiliation(s)
- Zhonglei He
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Zheng J, Lv S, Zhong Y, Jiang X. Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1564-1583. [PMID: 33957063 DOI: 10.1080/09205063.2021.1926893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Microspheres and injectable hydrogels derived from natural biopolymers have been extensively investigated as controlled local drug delivery systems. In this study, we prepared carboxymethyl chitin microspheres (CMCH-Ms) with a diameter of 10-100 μm through physical crosslinking by increasing temperature in an aqueous two-phase system without using organic solvents, surfactants and crosslinking agents. The stable microspheres keeping spherical shape with porous microstructure in different pH environments were embeded in thermosensitive hydroxypropyl chitin (HPCH) hydrogels. The morphology, gelation rate, swelling, rheological and mechanical properties, in vitro degradation and cytotoxicity, drug loading and drug release of the CMCH-Ms/HPCH gel scaffolds were examined. In vitro degradation and cytotoxicity test indicated that CMCH-Ms/HPCH gel scaffolds were biodegradable and non-cytotoxic. Moreover, no organic solvent was used in the preparation and drug loading process of CMCH-Ms/HPCH gel scaffold. Importantly, less burst drug release and long-term sustained-release from the CMCH-Ms/HPCH composite hydrogel was observed than those from only CMCH-Ms or HPCH hydrogel. Thus, the composite CMCH-Ms/HPCH hydrogel exhibited great potential application for loading different drugs and sustained drug release in controlled local drug delivery systems.
Collapse
Affiliation(s)
- Jieyu Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Siyao Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
25
|
A S, Xu Q, Johnson M, Creagh-Flynn J, Venet M, Zhou D, Lara-Sáez I, Tai H, Wang W. An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. APPLIED MATERIALS TODAY 2021; 22:100967. [DOI: 10.1016/j.apmt.2021.100967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Ma M, Zhong Y, Jiang X. An injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting the wound healing process through photobiomodulation. J Mater Chem B 2021; 9:4567-4576. [PMID: 34047310 DOI: 10.1039/d1tb00724f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prevention of bacterial infection, acceleration of wound closure and promotion of skin regeneration are crucial in the wound healing process. In this work, the photothermal activity of an injectable thermosensitive composite hydrogel based on hydroxypropyl chitin (HPCH), tannic acid (TA) and ferric ions (Fe3+) was studied. It was found that the photothermal efficiency was enhanced when the molar ratio of Fe3+/TA increased up to 20. The composite hydrogel possessed good cytocompatibility and hemocompatibility with a low dosage of the antibacterial agent TA. In vitro and in vivo antibacterial tests showed that the HPCH/TA/Fe hydrogel possessed an effective and rapid bactericidal effect with 10 minutes of near-infrared laser irradiation. Furthermore, the combination of a low-level laser therapy with the hydrogel is conducive to the acceleration of wound closure and promotion of skin tissue repair. Thus, the injectable photothermally active antibacterial composite hydrogel has great potential for the infected skin wound regeneration in clinical applications.
Collapse
Affiliation(s)
- Mengsi Ma
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, P. R. China.
| | - Yalan Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, P. R. China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, 299 Bayi Road, Wuhan 430072, P. R. China.
| |
Collapse
|
27
|
Chen M, Li C, Nie F, Liu X, Pipinos II, Li X. Synthesis and characterization of a hyaluronic acid-based hydrogel with antioxidative and thermosensitive properties. RSC Adv 2020; 10:33851-33860. [PMID: 35519025 PMCID: PMC9056774 DOI: 10.1039/d0ra07208g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023] Open
Abstract
Peripheral arterial disease (PAD) is initiated by progressive atherosclerotic blockages of the arteries supplying the lower extremities. The most common presentation of PAD is claudication (leg pain and severe walking limitation), with many patients progressing to limb threatening ischemia and amputation. Biomaterial approaches are just beginning to be explored in the therapy of PAD with different materials now being evaluated for the delivery of cells or growth factors in animal models of PAD. A biomaterial matrix optimized for minimally invasive injection in the ischemic leg muscles of patients with PAD is urgently needed. There are several important requirements for optimal delivery, retention, and performance of a biomaterial matrix in the mechanically, histologically, and biochemically dynamic intramuscular environment of the PAD leg. Ideally, the material should have mechanical properties matching those of the recipient muscle, undergo minimal swelling, and should introduce properties that can ameliorate the mechanisms operating in PAD like oxidative stress and damage. Here we have developed an injectable, antioxidative, and thermosensitive hydrogel system based on hyaluronic acid (HA). We first synthesized a unique crosslinker of disulfide-modified poloxamer F127 diacrylate. This crosslinker led to the creation of a thermosensitive HA hydrogel with minimal swelling and muscle-matching mechanical properties. We introduced unique disulfide groups into hydrogels which functioned as an effective reactive oxygen species scavenger, exhibited hydrogen peroxide (H2O2)-responsive degradation, and protected cells against H2O2-induced damage. Our antioxidative thermosensitive HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Meng Chen
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Cui Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
28
|
Shi W, Hass B, Kuss MA, Zhang H, Ryu S, Zhang D, Li T, Li YL, Duan B. Fabrication of versatile dynamic hyaluronic acid-based hydrogels. Carbohydr Polym 2020; 233:115803. [DOI: 10.1016/j.carbpol.2019.115803] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
|
29
|
Bingol B, Altuncu S, Duman FD, Ak A, Gulyuz U, Acar HY, Okay O, Avci D. One-Step Injectable and Bioreducible Poly(β-Amino Ester) Hydrogels as Controlled Drug Delivery Platforms. ACS APPLIED POLYMER MATERIALS 2019; 1:1724-1734. [DOI: 10.1021/acsapm.9b00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Betul Bingol
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Seckin Altuncu
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Fatma Demir Duman
- Department of Chemistry, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Ayse Ak
- Department of Chemistry, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Umit Gulyuz
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Department of Chemistry and Chemical Processing Technologies, Kirklareli University, Luleburgaz 39750, Kirklareli, Turkey
| | - Havva Yagci Acar
- Department of Chemistry, Koc University, 34450 Sariyer, Istanbul, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Duygu Avci
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
30
|
Han DG, Ahn CB, Lee JH, Hwang Y, Kim JH, Park KY, Lee JW, Son KH. Optimization of Electrospun Poly(caprolactone) Fiber Diameter for Vascular Scaffolds to Maximize Smooth Muscle Cell Infiltration and Phenotype Modulation. Polymers (Basel) 2019; 11:E643. [PMID: 30970611 PMCID: PMC6523610 DOI: 10.3390/polym11040643] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Due to the morphological resemblance between the electrospun nanofibers and extracellular matrix (ECM), electrospun fibers have been widely used to fabricate scaffolds for tissue regeneration. Relationships between scaffold morphologies and cells are cell type dependent. In this study, we sought to determine an optimum electrospun fiber diameter for human vascular smooth muscle cell (VSMC) regeneration in vascular scaffolds. Scaffolds were produced using poly(caprolactone) (PCL) electrospun fiber diameters of 0.5, 0.7, 1, 2, 2.5, 5, 7 or 10 μm, and VSMC survivals, proliferations, infiltrations, and phenotypes were recorded after culturing cells on these scaffolds for one, four, seven, or 10 days. VSMC phenotypes and macrophage infiltrations into scaffolds were evaluated by implanting scaffolds subcutaneously in a mouse for seven, 14, or 28 days. We found that human VSMC survival was not dependent on the electrospun fiber diameter. In summary, increasing fiber diameter reduced VSMC proliferation, increased VSMC infiltration and increased macrophage infiltration and activation. Our results indicate that electrospun PCL fiber diameters of 7 or 10 µm are optimum in terms of VSMC infiltration and macrophage infiltration and activation, albeit at the expense of VSMC proliferation.
Collapse
Affiliation(s)
- Dae Geun Han
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Chi Bum Ahn
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Ji-Hyun Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si 31151, Korea.
| | - Joo Hyun Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Korea.
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
- Department of Molecular Medicine, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
| | - Kuk Hui Son
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Korea.
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Korea.
| |
Collapse
|
31
|
Urosev I, Dorrington H, Muzzin N, Alsop R, Bakaic E, Gilbert T, Rheinstädter M, Hoare T. Injectable Poly(oligoethylene glycol methacrylate)-Based Hydrogels Fabricated from Highly Branched Precursor Polymers: Controlling Gel Properties by Precursor Polymer Morphology. ACS APPLIED POLYMER MATERIALS 2019; 1:369-380. [DOI: 10.1021/acsapm.8b00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Ivan Urosev
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Helen Dorrington
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Nicola Muzzin
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Richard Alsop
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Emilia Bakaic
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Trevor Gilbert
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Maikel Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| | - Todd Hoare
- School of Biomedical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
32
|
Wang W, Chen J, Li M, Jia H, Han X, Zhang J, Zou Y, Tan B, Liang W, Shang Y, Xu Q, A S, Wang W, Mao J, Gao X, Fan G, Liu W. Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2880-2890. [PMID: 30592403 DOI: 10.1021/acsami.8b20158] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Drug-loaded injectable hydrogels have been proven to possess huge potential for applications in tissue engineering. However, increasing the drug loading capacity and regulating the release system to adapt to the microenvironment after myocardial infarction face a huge challenge. In this research, an ROS-sensitive injectable hydrogel strengthened by self-nanodrugs was constructed. A hyperbranched ROS-sensitive macromer (HB-PBAE) with multiacrylate end groups was synthesized through dynamic controlled Michael addition. Meanwhile, a simple protocol based on dopamine polymerization was employed to generate a polydopamine (PDA) layer deposited on the tanshinone IIA (TIIA) nanoparticles (NPs) formed from spontaneous hydrophobic self-assembly. The HB-PBAE reacted with thiolate-modified hyaluronic acid (HA-SH) to form an in situ hydrogel, where TIIA@PDA NPs can be conveniently entrapped through the chemical cross-link between thiolate and quinone groups on PDA, which doubles the modulus of hydrogels. The in vivo degradation behavior of the hydrogels was characterized by MRI, exhibiting a much slower degradation behavior that is markedly different from that of in vitro. Importantly, a significant improvement of cardiac functions was achieved after hydrogel injection in terms of increased ejection fraction and decreased infarction size, accompanied by inhibition of the expression of inflammation factors, such as IL-1β, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Min Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Huizhen Jia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Xiaoxu Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Jingxuan Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yang Zou
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Baoyu Tan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Wei Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Yingying Shang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine , University College Dublin , Belfield, Dublin D04 V1W8 , Ireland
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
- Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300072 , China
| |
Collapse
|