1
|
Zhang T, Xu Z, Xu Z, Ma Y, Niu Z, Chen J, Zhang M, Shi F. Progress on layered double hydroxides as green materials in sustainable agricultural production. ENVIRONMENTAL RESEARCH 2025; 271:121031. [PMID: 39922260 DOI: 10.1016/j.envres.2025.121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
As the global population continues to grow, there is increasing demand for high-quality and high-yield food. However, traditional agrochemicals such as fertilizers and pesticides suffer from low utilization rates and can be hazardous to non-target organisms and the soil environment. Two-dimensional layered double hydroxides (LDHs) have attracted considerable attention in the agricultural sector owing to their excellent properties. To alleviate the general concern about the use of LDH materials in combination with agrochemicals, this paper presents a comprehensive overview of the structure, properties, preparation methods, and cytotoxicity of LDHs, with a focus on the advantages and disadvantages of different synthesis methods. In addition, the current research status of the application of LDHs as green materials in modern agricultural production is presented, and the applications of nano fertilizers for promoting crop growth, nano pesticides for efficient herbicide and insecticide, efficient adsorption of pollutants and soil heavy metal ions to maintain soil stability, and applications in genetic modification and enhancement of plant photosynthesis are discussed in detail. Finally, future research directions for LDH are envisioned. We hope that this study will promote the use of LDH materials in agricultural practices.
Collapse
Affiliation(s)
- Tongtong Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhenghong Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Zhihan Niu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiaqi Chen
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Min Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Zhang Z, Tang L, Luo J, Tan J, Jiang X. Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid. ADVANCED BIOTECHNOLOGY 2025; 3:4. [PMID: 39883343 DOI: 10.1007/s44307-024-00055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.e. Mg/Al-LDH vs Mg/Fe-LDH) on adsorption of 2,4-D and corresponding intrinsic mechanisms are still unclear, and the studies on the leaching control of 2,4-D by LDHs in soil environment are particularly limited. In this study, Mg/Al-LDH and Mg/Fe-LDH were selected to conduct their adsorption kinetics experiment for 2,4-D combined with the characterization technology. The results showed that the adsorption capacity of Mg/Al-LDH and Mg/Fe-LDH for 2,4-D was up to 242 mg kg-1 and 64 mg kg-1, respectively, which were negatively correlated with pH. Adsorption mechanisms of both Mg/Al-LDH and Mg/Fe-LDH for 2,4-D are dominated by chemical adsorption, including electrostatic attraction and inner sphere complexation, but no interlayer adsorption mechanism. Mg/Al-LDH contains smaller metal ion radius, which provides greater surface charge density, resulting in greater electrostatic attraction and inner sphere complexation to 2,4-D compared to Mg/Fe-LDH. The greater adsorption capacity of Mg/Al-LDH for 2,4-D was driven by the higher adsorption energy (Eads) and lower electron density, as corroborated by density functional theory (DFT) calculation. The soil column experiment further verified that Mg/Al-LDH could control the loss of 2,4-D more effectively, and the leaching amount could be significantly reduced by 61.7%, while the effect of Mg/Fe-LDH was only 24.2%. This study provides theoretical guidance for screening more potential LDH types to solve the leaching loss of 2,4-D from soil and improve its effectiveness in agricultural production.
Collapse
Affiliation(s)
- Zeyuan Zhang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Liangjie Tang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jing Luo
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Ghandali MV, Safarzadeh S, Ghasemi-Fasaei R, Zeinali S. Heavy metals immobilization and bioavailability in multi-metal contaminated soil under ryegrass cultivation as affected by ZnO and MnO 2 nanoparticle-modified biochar. Sci Rep 2024; 14:10684. [PMID: 38724636 PMCID: PMC11082237 DOI: 10.1038/s41598-024-61270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Pollution by heavy metals (HMs) has become a global problem for agriculture and the environment. In this study, the effects of pristine biochar and biochar modified with manganese dioxide (BC@MnO2) and zinc oxide (BC@ZnO) nanoparticles on the immobilization and bioavailability of Pb, Cd, Zn, and Ni in soil under ryegrass (Lolium perenne L.) cultivation were investigated. The results of SEM-EDX, FTIR, and XRD showed that ZnO and MnO2 nanoparticles were successfully loaded onto biochar. The results showed that BC, BC@MnO2 and BC@ZnO treatments significantly increased shoots and roots dry weight of ryegrass compared to the control. The maximum dry weight of root and shoot (1.365 g pot-1 and 4.163 g pot-1, respectively) was reached at 1% BC@MnO2. The HMs uptake by ryegrass roots and shoots decreased significantly after addition of amendments. The lowest Pb, Cd, Zn and Ni uptake in the plant shoot (13.176, 24.92, 32.407, and 53.88 µg pot-1, respectively) was obtained in the 1% BC@MnO2 treatment. Modified biochar was more successful in reducing HMs uptake by ryegrass and improving plant growth than pristine biochar and can therefore be used as an efficient and cost effective amendment for the remediation of HMs contaminated soils. The lowest HMs translocation (TF) and bioconcentration factors were related to the 1% BC@MnO2 treatment. Therefore, BC@MnO2 was the most successful treatment for HMs immobilization in soil. Also, a comparison of the TF values of plant showed that ryegrass had a good ability to accumulate all studied HMs in its roots, and it is a suitable plant for HMs phytostabilization.
Collapse
Affiliation(s)
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
6
|
Wang X, Kong F, Zeng W, Zhang H, Xin C, Kong X. The Resource Utilization of Poplar Leaves for CO 2 Adsorption. Molecules 2024; 29:2024. [PMID: 38731515 PMCID: PMC11085795 DOI: 10.3390/molecules29092024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Every late autumn, fluttering poplar leaves scatter throughout the campus and city streets. In this work, poplar leaves were used as the raw material, while H3PO4 and KOH were used as activators and urea was used as the nitrogen source to prepare biomass based-activated carbons (ACs) to capture CO2. The pore structures, functional groups and morphology, and desorption performance of the prepared ACs were characterized; the CO2 adsorption, regeneration, and kinetics were also evaluated. The results showed that H3PO4 and urea obviously promoted the development of pore structures and pyrrole nitrogen (N-5), while KOH and urea were more conductive to the formation of hydroxyl (-OH) and ether (C-O) functional groups. At optimal operating conditions, the CO2 adsorption capacity of H3PO4- and KOH-activated poplar leaves after urea treatment reached 4.07 and 3.85 mmol/g, respectively, at room temperature; both showed stable regenerative behaviour after ten adsorption-desorption cycles.
Collapse
Affiliation(s)
- Xia Wang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Fanyuan Kong
- Library, Weifang University, Weifang 261061, China
| | - Wulan Zeng
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Huaxiang Zhang
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Chunling Xin
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| | - Xiangjun Kong
- Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
7
|
Deng R, Yue Z, Wang X, Xu Q, Wang J. Innovative recovery of matrix layered double hydroxide from simulated acid mine wastewater for the removal of copper and cadmium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30196-30211. [PMID: 38600374 DOI: 10.1007/s11356-024-33262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
This study innovatively added biochar to optimize regulation in the neutralization process of simulated acid mine drainage (AMD) and recovered a new type of matrix layered double hydroxides (MLDH), which can be used to remove copper (Cu(II)) and cadmium (Cd(II)) from wastewater. A series of batch experiments show that MLDH with strong selective removal ability of Cu(II) and Cd(II) can be successfully obtained by adding biochar (BC) at pH = 5 end in the neutralization process. Kinetic and isotherm modeling studies indicated that the removal of Cu(II) and Cd(II) by the MLDH was a chemical multilayer adsorption process. The removal mechanism of Cu(II) and Cd(II) was further analyzed through related characterization analysis with contribution rate calculation: the removal rates of Cu(II) and Cd(II) by ion exchange were 42.7% and 26%, while that by precipitation were 34.5% and 49.9%, respectively. This study can provide a theoretical reference and experimental basis for the recovery and utilization of valuable by-products in AMD and the treatment of heavy metal wastewater.
Collapse
Affiliation(s)
- Rui Deng
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xinquan Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Qingsheng Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
8
|
Yan Y, Wang W, Liu F, Zhang M, Gao J, Lu C. Reducing nitrogen loss from farmland by layered double hydroxide-supported carbon dots-enhanced ammonium immobilization. CHEMOSPHERE 2024; 351:141160. [PMID: 38219985 DOI: 10.1016/j.chemosphere.2024.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
It remains a significant challenge to develop a kind of cost-effective and eco-friendly adsorbent with strong immobilization capabilities for ammonium in farmland. In this work, we employed Ca/Al layered double hydroxide-supported carbon dots (CDs@Ca/Al-LDHs) as a novel and efficient adsorbent for ammonium immobilization both in aqueous and soil environments. Such a composite could exhibit a high adsorption capacity towards ammonium in solution, which was four times higher than zeolite and three times higher than biochar under the same conditions. The mechanism investigations revealed that electrostatic interactions between the negatively charged CDs and the positively charged ammonium played a key role in the adsorption. In 30-day leaching experiments, the fabricated composite cumulatively reduced ammonium and nitrate by 6.3% and 9.7%, respectively at a dosage of 0.1% (w/w). Incubation experiments further confirmed that the developed composite could effectively inhibit ammonia volatilization and nitrification by immobilizing the ammonium within soil matrices. Our results demonstrated that CDs@Ca/Al-LDHs represented a promising candidate for cost-effective and eco-friendly immobilization of excess ammonium from over-fertilized farmland.
Collapse
Affiliation(s)
- Yixin Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengnan Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianlei Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Lyu P, Li L, Huang J, Ye J, Zhu C, Xie J, Wang Z, Kang M, Yan A. Enhancing sorption of layered double hydroxide-based magnetic biochar for arsenic and cadmium through optimized preparation protocols. BIORESOURCE TECHNOLOGY 2023; 388:129756. [PMID: 37696337 DOI: 10.1016/j.biortech.2023.129756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 ℃ pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 ℃ pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.
Collapse
Affiliation(s)
- Peng Lyu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianfang Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinli Huang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Ye
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinni Xie
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zihan Wang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengqi Kang
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ao Yan
- Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Rego RM, Ajeya KV, Jung HY, Kabiri S, Jafarian M, Kurkuri MD, Kigga M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302692. [PMID: 37469019 DOI: 10.1002/smll.202302692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/21/2023]
Abstract
This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, SA, 5005, Australia
| | - Mehdi Jafarian
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
11
|
Zhang X, Liu T, Zhang J, Zhu L. Potential Mechanism of Long-Term Immobilization of Pb/Cd by Layered Double Hydroxide Doped Chicken-Manure Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:867. [PMID: 36613194 PMCID: PMC9819711 DOI: 10.3390/ijerph20010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Layered double hydroxide (LDH)-doped chicken-manure biochar (CMB) with long-term stability was synthesized to immobilize Pb/Cd. MgAl-Cl-LDH-doped CMB (MHs) showed prominent long-term oxidation resistance and the least biodegradation sensitivity. Efficient Pb/Cd adsorption was observed on MHs, and the maximum adsorption capacities of Pb(II)/Cd(II) reached 1.95 mmol/g and 0.65 mmol/g, respectively. Precipitation and isomorphous substitution were identified as the key adsorption mechanisms, which formed highly stable Pb/Cd species (PbAl-CO3-LDH, Pb3(OH)2CO3, CdAl-Cl-LDH and CdCO3). Pb(II) and Cd(II) precipitated with CO32- in MHs; meanwhile, Mg(II) and Ca(II) in LDH layers were substituted by Pb(II) and Cd(II) respectively. Therefore, MHs had the potential for long-term stability of Pb/Cd. Moreover, complexation and electrostatic adsorption also contributed to the Pb/Cd immobilization to a certain extent. When 5% MHs (w/w) was applied to Pb/Cd contaminated smelting site soils, the soil pH increased from 5.9 to 7.3. After applying MHs for 25 d, the content of bioavailable Pb(II) and Cd(II) decreased by 98.8% and 85.2%, respectively, and the content of soluble Pb and Cd dropped by 99.5% and 96.7%. This study paves the way for designing a novel LDH doped CMB as efficient Pb/Cd immobilizers for smelting site soils.
Collapse
|
12
|
Zhang Y, Haris M, Zhang L, Zhang C, Wei T, Li X, Niu Y, Li Y, Guo J, Li X. Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater. CHEMOSPHERE 2022; 308:136086. [PMID: 35998726 DOI: 10.1016/j.chemosphere.2022.136086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel amino-modified chitosan/tailings composite (CS-PEI-nGT) was successfully synthesized from gold tailings particle treated by ball milling (nGT), chitosan (CS) and polyethyleneimine (PEI) as raw materials, for Lead (Pb(Ⅱ)) and Cadmium (Cd(Ⅱ)) removal from aqueous solutions. The CS-PEI-nGT was characterized by using FTIR, XRD, SEM, BET, TGA and XPS techniques. The results showed that CS-PEI-nGT had maximum adsorption capacity of 192.78 mg·g-1 and 99.46 mg·g-1 for Pb(Ⅱ) and Cd(Ⅱ) respectively at pH 5. The adsorption kinetics was described well by pseudo-second-order kinetic adsorption model, and suggested that chemisorption as the rate-controlling step for adsorption of Pb(Ⅱ) and Cd(Ⅱ). The isotherm data was accurately explained by Langmuir model with higher correlation coefficient (R2) of 0.9911 and 0.9642 for Pb(Ⅱ) and Cd(Ⅱ) respectively. In addition, CS-PEI-nGT retained its selective adsorption capacity for Pb(Ⅱ) and Cd(Ⅱ), compared to other metals such as Zn(Ⅱ), Mn(Ⅱ), Mg(Ⅱ) and Al(Ⅲ). The mechanism of the adsorption was investigated and the results revealed that amino (-NH2), silicon oxide groups (Si-O) and hydroxyl (-OH) functional groups on composite surface were accountable for metals adsorption, suggesting surface complexation, electrostatic interactions and ion exchange. Our work presents a promising strategy for tailings recycling and highly efficient removal of toxic metals ions from wastewater.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuhua Niu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaojing Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
13
|
Brahma D, Nath H, Borah D, Debnath M, Saikia H. Coconut Husk Ash Fabricated CoAl-Layered Double Hydroxide Composite for the Enhanced Sorption of Malachite Green Dye: Isotherm, kinetics and thermodynamic studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Li Y, Wu M, Wu J, Wang Y, Zheng Z, Jiang Z. Mechanistic insight and rapid co-adsorption of nitrogen pollution from micro-polluted water over MgAl-layered double hydroxide composite based on zeolite. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Liao W, Zhou X, Cai N, Chen Z, Yang H, Zhang S, Zhang X, Chen H. Simultaneous removal of cadmium, lead, chromate by biochar modified with layered double hydroxide with sulfide intercalation. BIORESOURCE TECHNOLOGY 2022; 360:127630. [PMID: 35850390 DOI: 10.1016/j.biortech.2022.127630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel KOH-activated biochar modified with Mg2Al-LDH with S2- intercalation (KBC-LDH-S) was proposed for simultaneous adsorption of anions and cations. The adsorption capacity, thermodynamic and kinetic studies, effects of initial temperature and solution pH were investigated. Furthermore, the adsorption characteristics in both single and ternary Pb-Cd-Cr systems were investigated. Comparing with bare biochar, the adsorption capacity of KBC-LDH-S was increased by 387.8 % for Cd2+ (190.4 mg/g), 358.1 % for Pb2+ (392.2 mg/g), 1106.0 % for total Cr (170.7 mg/g) and 4602 % for Cr6+ (833.8 mg/g). The S2- intercalation effectively increased the adsorption capacity of CrO42- by 3370 % and promoted simultaneous adsorption. The interlayer anion exchange and redox reaction occurred between CrO42- and S2- to generate Cr3+, and then promoted the adsorption of CrO42-. Besides, the adsorption amount and total removal efficiency first increased and then decreased with the increasing concentration in the Pb-Cd-Cr ternary system.
Collapse
Affiliation(s)
- Wei Liao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoming Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Cai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuoyuan Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Mao W, Zhang Y, Luo J, Chen L, Guan Y. Novel co-polymerization of polypyrrole/polyaniline on ferrate modified biochar composites for the efficient adsorption of hexavalent chromium in water. CHEMOSPHERE 2022; 303:135254. [PMID: 35690169 DOI: 10.1016/j.chemosphere.2022.135254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
It is still a huge challenge to prepare cheap and effective composite materials for removing hexavalent chromium (Cr(VI)) in sewage treatment. In this study, a noval co-polymerization of polypyrrole/polyaniline on ferrate modified biochar (Ppy/PANI/FBC) was fabricated via ferrate-promoted pyrolysis and in-situ oxidative polymerization of pyrrole and aniline molecules to effectively remove Cr(VI) from polluted water. The Ppy/PANI/FBC quickly decreased Cr(VI) concentration from 38.92 to 3.92 mg/L within 400 min, with an efficient removal efficiency (89.92%), which was significantly higher than that of FBC (4.75%), Ppy/FBC (72.30%), and PANI/FBC (42.43%). These results are mainly caused by its conjugated connection and well-dispersion of Ppy and PANI on the surface of a carbon-based material. Meanwhile, the experimental results were in line with the pseudo-second-order kinetic and Freundlich models. The Ppy/PANI/FBC is featured by a high capacity of Cr(VI) adsorption (up to 203.71 mg/g). In addition, it could be adopted for efficiently removing Cr(VI) over a wide pH range (4-9) because of the positively charged nitrogen (-NH.+- and = N+-). The sorption mechanisms of Cr(VI) were identified, including electrostatic interaction with surface protonated nitrogen (N+), ion exchange between the doped Cl- ions and Cr(VI), chemical decrease of the Cr(VI) to Cr(III) by the iron valence cycle and efficient electron transfer of Ppy/PANI/FBC, as well as surface complexation by amine and oxygen-containing groups. More importantly, 97.98% Cr(VI) was efficiently removed in 20 min by coupling a photocatalytic reaction, also providing a novel idea for the practical use of adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Ying Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinen Luo
- Shenzhen Zhenheli Ecology & Environment Co., Ltd., Shenzhen, 518052, China
| | - Lingtiao Chen
- Shenzhen Zhenheli Ecology & Environment Co., Ltd., Shenzhen, 518052, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
17
|
Wang H, Duan R, Zhou X, Wang J, Liu Y, Xu R, Liao Z. Efficient removal of mercury and chromium from wastewater via biochar fabricated with steel slag: Performance and mechanisms. Front Bioeng Biotechnol 2022; 10:961907. [PMID: 36091466 PMCID: PMC9453161 DOI: 10.3389/fbioe.2022.961907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Biochar derived from biomass is regarded as a promising adsorbent for wastewater treatment, but the high cost of modification is still a challenge for its large-scale practical applications. In this study, we employed steel slag as a low-cost fabricant and synthesized hydrothermally carbonized steel slag (HCSS), as a stable environmentally functional material for heavy metal removal. Typically, positively and negatively charged heavy metal contaminants of Hg2+ and Cr2O72− were employed to testify the performance of HCSS as an adsorbent, and good capacities [(283.24 mg/g for Hg (II) and 323.16 mg/g for Cr (VI)] were found. The feasibility of HCSS on real wastewater purification was also evaluated, as the removal efficiency was 94.11% and 88.65% for Hg (II) and Cr (VI), respectively. Mechanism studies revealed that the modification of steel slag on bio-adsorbents offered copious active sites for pollutants. As expected, oxygen-containing functional groups in HCSS acted as the main contributor to adsorption capacity. Moreover, some reactive iron species (i.e., Fe2+) played an essential role in chemical reduction of Cr (VI). The adsorptive reactions were pH-dependent, owing to other more mechanisms, such as coprecipitation, ion-exchange, and electrostatic attraction. This promising recycling approach of biomass waste and the design of agro-industrial byproducts can be highly suggestive of the issues of resource recovery in the application of solid waste-derived environmentally functional materials for heavy metal remediation.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Duan
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Xinquan Zhou
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- School of Chemical Engineer and Pharmacy, Henan University of Science and Technology, Luoyang, China
| | - Jia Wang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Liu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming, China
- *Correspondence: Rui Xu, ; Zhuwei Liao,
| | - Zhuwei Liao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
- Urban Construction Engineering Division, Wenhua College, Wuhan, China
- *Correspondence: Rui Xu, ; Zhuwei Liao,
| |
Collapse
|
18
|
Kim TH, Young Lee J, Xie J, Hoon Park J, Oh JM. Topology dependent modification of layered double hydroxide for therapeutic and diagnostic platform. Adv Drug Deliv Rev 2022; 188:114459. [PMID: 35850372 DOI: 10.1016/j.addr.2022.114459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Layered double hydroxide is a family of two-dimensional materials with wide range of compositions. Recently, its ability to accommodate various chemical species and biocompatibility have been attracted in the biomedical applications to develop drug delivery system and nanodiagnostics. In this review, we categorized biomedical approaches of layered double hydroxide with respect to the three topologies of, namely, interlayer space, outer surface with particle edge, and the lattice points. There have been extensive researches on the intercalation of drug or tracing to make use of interlayer space of layered double hydroxide for drug stabilization, sustained release, cellular delivery and etc. Outer surface or edge has been utilized to immobilization of large therapeutic moieties and to attach tracing moiety. Lattice points consisting of various metal species could be utilized for the specific metal species like paramagnetic elements or radioisotopes. Based on these topologies in layered double hydroxide, both the synthetic routes and the achieved functionalities in terms of biomedical application will be discussed.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Jun Young Lee
- Accelerator & Radioisotopes Development Laboratory, Korea Atomic Energy Research Institute, Jeongeup 56212, South Korea
| | - Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Jeong Hoon Park
- Accelerator & Radioisotopes Development Laboratory, Korea Atomic Energy Research Institute, Jeongeup 56212, South Korea.
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
19
|
Dai X, Thi Hong Nhung N, Hamza MF, Guo Y, Chen L, He C, Ning S, Wei Y, Dodbiba G, Fujita T. Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
21
|
Lv D. Layered double hydroxides functionalized by carbonaceous materials: from preparation to energy and environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30865-30891. [PMID: 35094279 DOI: 10.1007/s11356-021-18179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Along with the exponential demand for energy and pollution-free-environment, layered double hydroxides (LDHs) have gained extensive explorations because of their diverse nanostructures and tunable elemental compositions. However, the applications of LDHs are hindered by their poor activity, sluggish mass transfer, and aggregation. LDHs functionalized by carbonaceous materials (CMs) (LDH-CM) are expected to overcome the above disadvantages and even generate more excellent performance. This review first analyzes the research evolvement of LDH-CM composites during the past 25 years. Next, the advantages of LDH-CM composites are highlighted, such as morphology optimization, high electrical conductivity, more stable, good heat, and mass transfer performance. Following the synthetic strategies, including chemical assembly of LDHs and CMs, direct growth of LDH on CMs (two-step nucleation and growth and surface-confined growth) and direct CM formation on LDHs are fully discussed. Then, the recent progress achieved in LDH-CM composites for the application of energy storage and environmental protection is summarized in detail. In particular, the review illustrates the reasons why these constructing strategies can improve the performance of LDH-CM composites. Finally, challenges and future research prospects of LDH-CM composites are highlighted.
Collapse
Affiliation(s)
- Dong Lv
- National Natural Science Foundation of China, Beijing, 100085, People's Republic of China.
| |
Collapse
|
22
|
Simultaneous adsorption of As(III) and Cd(II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects. Sci Rep 2022; 12:5918. [PMID: 35396518 PMCID: PMC8993855 DOI: 10.1038/s41598-022-09648-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
A simply synthetic ferrihydrite-modified biochar (Fh@BC) was applied to simultaneously remove As(III) and Cd(II) from the aqueous solution, and then to explore the mutual effects between As(III) and Cd(II) and the corresponding mechanisms. The Langmuir maximum adsorption capacities of As(III) and Cd(II) in the single adsorbate solution were 18.38 and 18.18 mg g−1, respectively. It demonstrated that Fh@BC was a potential absorbent material for simultaneous removal of As(III) and Cd(II) in aqueous solution. According to the XRF, SEM–EDS, FTIR, XRD, and XPS analysis, the mechanisms of simultaneous removal of As(III) and Cd(II) by Fh@BC could be attributable to the cation exchange, complexation with R-OH and Fe-OH, and oxidation. Moreover, the mutual effect experiment indicated that Cd(II) and As(III) adsorption on Fh@BC in the binary solution exhibited competition, facilitation and synergy, depending on their ratios and added sequences. The mechanisms of facilitation and synergy between Cd(II) and As(III) might include the electrostatic interaction and the formation of both type A or type B ternary surface complexes on the Fh@BC.
Collapse
|
23
|
Amin MT, Alazba AA, Shafiq M. Ethylenediaminetetraacetate functionalized MgFe layered double hydroxide/biochar composites for highly efficient adsorptive removal of lead ions from aqueous solutions. PLoS One 2022; 17:e0265024. [PMID: 35239747 PMCID: PMC8893710 DOI: 10.1371/journal.pone.0265024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
The application of layered double hydroxides (LDHs) of MgFe and its composites with biochar of Eucalyptus camdulensis (Eb) and ethylenediaminetetraacetic acid (EDTA) was explored in a batch study to mitigate toxic lead ions (Pb2+) from synthetic wastewater solutions. SEM images revealed that MgFe/LDH composites with Eb were successfully formed, while FTIR spectra confirmed the successful adsorption of Pb2+ onto the MgFe/LDH and composite adsorbents. Batch equilibrium was attained after 60 min, then the adsorption capacity gradually increased. An increase in adsorption capacity (and a 60% decrease in the percentage removal) was observed by increasing the initial Pb2+ concentration, and the highest value was 136 mg g-1 for MgFe/LDH-Eb_EDTA. A 50–60% increase in both the adsorption capacities and percent removal was seen in the pH range of 2–6. The second-order kinetic model had a nearly perfect fitting, suggesting that chemisorption was the mechanism controlling adsorption. The Langmuir isotherm model best presented the adsorption data, suggesting that the Pb2+ adsorption was monolayer, and predicted a better affinity between the adsorbent surface and absorbed Pb2+ for MgFe/LDH-Eb_EDTA in comparison to the other two adsorbents. The D–R isotherm suggested that the adsorption system was physical based on E values for all three adsorbents, while the Temkin isotherm model suggested that Pb2+ adsorption was heterogeneous. Finally, the Sips and R–P isotherms predicted that the adsorption of Pb2+ on the surface of the adsorbents was homogeneous and heterogeneous.
Collapse
Affiliation(s)
- M. T. Amin
- Alamoudi Water Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
- * E-mail:
| | - A. A. Alazba
- Alamoudi Water Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Agricultural Engineering Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - M. Shafiq
- Alamoudi Water Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Li A, Zhang Y, Ge W, Zhang Y, Liu L, Qiu G. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: Mechanism and application. BIORESOURCE TECHNOLOGY 2022; 347:126425. [PMID: 34838973 DOI: 10.1016/j.biortech.2021.126425] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
This study reports a MgAl-LDH rice husk biochar composite (MgAl-LDH@RHB) with a regular hydrotalcite structure synthesized by a simple hydrothermal method, which was then used to remove Cd(II) and Cu(II) from water. The influencing factors on the adsorption performance were determined through batch adsorption experiments, and the adsorption characteristics and cycling capacity were evaluated with eight models and adsorption-desorption experiments. The results showed that the adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB conformed to the Langmuir-Freundlich model and PSO kinetics model, indicating single-layer chemical adsorption. In addition, the experimental maximum adsorption capacities for Cd(II) and Cu(II) were 125.34 and 104.34 mg g-1, respectively. The adsorption of Cd(II) and Cu(II) by MgAl-LDH@RHB was dominated by surface precipitation and ion exchange. The findings reveal the mechanism for the heavy metal removal by MgAl-LDH@RHB and provide a theoretical reference for agricultural waste disposal and water pollution control.
Collapse
Affiliation(s)
- Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yue Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Wenzhan Ge
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yutong Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
26
|
Jellali S, El-Bassi L, Charabi Y, Uaman M, Khiari B, Al-Wardy M, Jeguirim M. Recent advancements on biochars enrichment with ammonium and nitrates from wastewaters: A critical review on benefits for environment and agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114368. [PMID: 34968937 DOI: 10.1016/j.jenvman.2021.114368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
During the last decade, biochars have been considered as attractive and eco-friendly materials with various applications including wastewater treatment, energy production and soil amendments. However, the important nitrogen losses during biochars production using the pyrolysis process have limited their potential use in agriculture as biofertilizer. Therefore, it seems necessary to enrich these biochars with nitrogen sources before their use in agricultural soils. This paper is the first comprehensive review on the assessment of biomass type and the biochars' properties effects on N recovery efficiency from aqueous solutions as well as its release and availability for plants when applying the N-enriched chars in soils. In particular, the N recovery efficiency by raw biochars versus the type of the raw feedstock is summarized. Then, correlations between the adsorption performance and the main physico-chemical properties are established. The main mechanisms involved during ammonium (NH4-N) and nitrates (NO3-N) recovery process are thoroughly discussed. A special attention is given to the assessment of the biochars physico-chemical modification impact on their N recovery capacities improvement. After that, the application of these N-enriched biochars in agriculture and their impacts on plants growth as well as methane and nitrous oxide greenhouse gas emissions reduction are also discussed. Finally, the main future development and challenges of biochars enrichment with N from wastewaters and their valorization as biofertilizers for plants growth and greenhouse gas (GHG) emissions reduction are provided. This systematic review is intended to promote the real application of biochars for nutrients recovery from wastewaters and their reuse as eco-friendly fertilizers.
Collapse
Affiliation(s)
- Salah Jellali
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Leila El-Bassi
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Muhammad Uaman
- Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| | - Besma Khiari
- Wastewaters and Environment Laboratory, Water Research and Technologies Center (CERTE), Technopark Borj Cedria, University of Carthage, P.O.Box 273, Soliman, 8020, Tunisia.
| | - Malik Al-Wardy
- Department of Soils, Water and Agricultural Engineering, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Mejdi Jeguirim
- The Institute of Materials Science of Mulhouse (IS2M), University of Haute Alsace, University of Strasbourg, CNRS, UMR 7361, F-68100, Mulhouse, France.
| |
Collapse
|
27
|
Liao J, Ding L, Zhang Y, Zhu W. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127190. [PMID: 34844340 DOI: 10.1016/j.jhazmat.2021.127190] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, three kinds of biochars (PMBC-H2O, PMBC-PP and PMBC-HP) with excellent adsorption performance were obtained by carbonizing pig manure pre-treated with different agents. These biochars had the ordered mesoporous structures and possessed abundant active functional groups on their surface. The adsorption behaviors of the biochars towards UVI under various conditions were evaluated by batch experiment. The results showed that KMnO4 and H2O2 could enormously improve the adsorption performance of PMBC to UVI. After KMnO4 and H2O2 pretreatment, the maximum adsorption capacities of PMBC-PP (979.3 mg/g) and PMBC-HP (661.7 mg/g) were about 2.6 and 1.8 times higher than that of PMBC-H2O (369.9 mg/g), respectively, which was much higher than previously reported biochar-based materials. Obviously, KMnO4 pretreatment leaded to a higher enhancement than that of H2O2. The removal mechanism of UVI on PMBC-PP was discussed in-depth. The interaction between UVI species and PMBC-PP was mainly ascribed to the abundant active sites on the surface of PMBC-PP. In a word, conversion of pig manure pre-treated with KMnO4 into biochar not only demonstrates that PMBC-PP has great potential in the treatment of actual uranium-containing wastewater, but also provides a method for the rational utilization of pig manure to reduce the pollution.
Collapse
Affiliation(s)
- Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Ling Ding
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China; Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
28
|
Li H, Cui S, Tan Y, Peng Y, Gao X, Yang X, Ma Y, He X, Fan B, Yang S, Chen Q. Synergistic effects of ball-milled biochar-supported exfoliated LDHs on phosphate adsorption: Insights into role of fine biochar support. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118592. [PMID: 34856246 DOI: 10.1016/j.envpol.2021.118592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Although biochar supports were widely adopted to fabricate the biochar (BC) supported layered double hydroxides (LDHs) composites (LDH-BC) for efficient environmental remediation, few studies focus on the important role of biochar support in alleviating the stacking of LDHs and enhancing LDH-BC's performance. Through the analysis of the material structure-performance relationship, the "support effect" of fine biochar prepared by ball milling was carefully explored. Compared with the original LDHs on LDH-BC, the LDHs on ball milled biochar (LDH-BMBC) had smaller particle size (from 1123 nm to 586 nm), crystallite size (from 20.5 nm to 6.56 nm), more abundant O-containing functional groups, and larger surface area (370 m2 g-1) and porous structure. The Langmuir model revealed that the maximum theoretical phosphate adsorption capacity of LDH-BMBC (56.2 mg P g-1) was significantly higher than that of LDH-BC (27.6 mg P g-1). The leaching experiment proved that the addition of LDH-BMBC in calcareous soil could significantly reduce the release of soil total phosphate (46.1%) and molybdate reactive phosphate (40.4%), even though pristine BC and BMBC significantly enhanced the soil phosphate leaching. This work fabricated high-performance and eco-friendly LDH-BMBC for phosphate adsorption in solution and phosphate retention in soil and also provide valuable insights into fine biochar support effect on LDHs exfoliation, extending the practical use of the engineered ball milled biochars in environment remediation.
Collapse
Affiliation(s)
- Hangyu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Tan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Xing Gao
- State Key Laboratory for Pollution Control and Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue He
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Beibei Fan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
29
|
Liu M, Almatrafi E, Zhang Y, Xu P, Song B, Zhou C, Zeng G, Zhu Y. A critical review of biochar-based materials for the remediation of heavy metal contaminated environment: Applications and practical evaluations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150531. [PMID: 34844313 DOI: 10.1016/j.scitotenv.2021.150531] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The contamination of heavy metals (HMs) in the environment has aroused a global concern. The valid remediation of HM contaminated environment is a highly significant issue. As alternative to carbon materials, biochar has been vastly documented for the remediation of HM contaminated environment. However, there are some possible imperfections to meet the actual remediation tasks as the finite properties of raw biochar, and the remediation process is complex and unexpectedly. This review focuses on the progress made on environmental HM remediation by biochar-based materials within the past six years. The property analysis and key modifications of biochar are summarized inspired by their applicability or necessity for HM decontamination, and the environmental remediation as well as the implicated mechanisms are thoroughly elaborated from multiple pivotal sides. The evaluations of practical application associated with biochar amendment are also presented. Finally, some pertinent improvements and research directions are proposed. To our knowledge, this article is the first time to make a systematic summary on the reliability and practicability of biochar-based materials for environmental HM remediation, and critically pointed out the existing issues to facilitate the judicious design of biochar-based materials and understanding the research trends. It is also aims to provide reference for subsequent research and propel the practical applications.
Collapse
Affiliation(s)
- Mengsi Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yi Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Yuan Zhu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
30
|
Liang J, Hu ZN, Zhang X, Ai Y, Wang Y, Ding K, Gao J, Wang J, Niu D, Sun HB. Recovery of antimony using biological waste and stepwise resourcization as catalysts for both polyesterification and transfer hydrogenation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Qi F, Zhu G, Zhang Y, Hou X, Li S, Yang C, Zhang J, Li H. Eco − utilization of silicon − rich lye: Synthesis of amorphous calcium silicate hydrate and its application for recovering heavy metals. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Osman AI, Fawzy S, Farghali M, El-Azazy M, Elgarahy AM, Fahim RA, Maksoud MIAA, Ajlan AA, Yousry M, Saleem Y, Rooney DW. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2385-2485. [PMID: 35571983 PMCID: PMC9077033 DOI: 10.1007/s10311-022-01424-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/06/2023]
Abstract
In the context of climate change and the circular economy, biochar has recently found many applications in various sectors as a versatile and recycled material. Here, we review application of biochar-based for carbon sink, covering agronomy, animal farming, anaerobic digestion, composting, environmental remediation, construction, and energy storage. The ultimate storage reservoirs for biochar are soils, civil infrastructure, and landfills. Biochar-based fertilisers, which combine traditional fertilisers with biochar as a nutrient carrier, are promising in agronomy. The use of biochar as a feed additive for animals shows benefits in terms of animal growth, gut microbiota, reduced enteric methane production, egg yield, and endo-toxicant mitigation. Biochar enhances anaerobic digestion operations, primarily for biogas generation and upgrading, performance and sustainability, and the mitigation of inhibitory impurities. In composts, biochar controls the release of greenhouse gases and enhances microbial activity. Co-composted biochar improves soil properties and enhances crop productivity. Pristine and engineered biochar can also be employed for water and soil remediation to remove pollutants. In construction, biochar can be added to cement or asphalt, thus conferring structural and functional advantages. Incorporating biochar in biocomposites improves insulation, electromagnetic radiation protection and moisture control. Finally, synthesising biochar-based materials for energy storage applications requires additional functionalisation.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Samer Fawzy
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| | - Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Marwa El-Azazy
- Department of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Ramy Amer Fahim
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M. I. A. Abdel Maksoud
- National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abbas Abdullah Ajlan
- Department of Chemistry -Faculty of Applied Science, Taiz University, P.O.Box 6803, Taiz, Yemen
| | - Mahmoud Yousry
- Faculty of Engineering, Al-Azhar University, Cairo, 11651 Egypt
- Cemart for Building Materials and Insulation, postcode 11765, Cairo, Egypt
| | - Yasmeen Saleem
- Institute of Food and Agricultural Sciences, Soil and Water Science, The University of Florida, Gainesville, FL 32611 USA
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
33
|
Ren L, Hao B, Fang W, Zhang D, Cheng H, Li Q, Yan D, Li Y, Wang Q, Zhou Z, Jin X, Cao A. Combination of modified biochar and polyurea microcapsules to co-encapsulate a fumigant via interface polymerization for controlled release and enhanced bioactivity. PEST MANAGEMENT SCIENCE 2022; 78:73-85. [PMID: 34432938 DOI: 10.1002/ps.6609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Soil fumigants-the most effective agrochemicals for managing soil-borne diseases-have been used extensively. However, high volatility, moderate toxicity and insufficient effective duration considerably limit their application. In the present study, interface polymerization was used to combine modified biochar (BC) and polyurea microcapsules (MCs) to co-encapsulate allyl isothiocyanate (AITC), developing a model fumigant for controlled release (AITC@BC-MCs). RESULTS The physical characteristics of BC modified by sand-milling were significantly improved. In addition, chemical properties and morphological features of AITC@BC-MCs characterized by integrated methods revealed successful preparation of BC-MCs. Compared with monolayer MCs, BC-MCs could significantly delay AITC release owing to the composite obstruction effect. Moreover, modifying BC endowed the cargo molecules with a pH-responsive release property. Additionally, this composite showed a longer persistent duration by prolonging AITC degradation half-life, which was 3.2-3.5-fold greater than that of the AITC technical concentrate under different soil conditions. Finally, the control efficacy of the AITC@BC-MC against pathogens, including nematodes and fungi, as well as against weeds was significantly enhanced at the same dose, but the composite did not inhibit seed germination and growth after 10 days when fumigated soil was aerated. CONCLUSION Construction of a composite encapsulation system enhanced pesticide efficacy, reduced dose via controlled release and delayed fumigant degradation in soil, indicating the great potential of this strategy for developing an effective and environmentally friendly fumigant formulation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Science, China Agricultural University, Beijing, China
| | - Baoqiang Hao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyan Cheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjie Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Zhou
- College of Science, China Agricultural University, Beijing, China
| | - Xi Jin
- Joint Center of Soil Remediation of Baoding University and Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Baoding, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Fang Q, Ye S, Yang H, Yang K, Zhou J, Gao Y, Lin Q, Tan X, Yang Z. Application of layered double hydroxide-biochar composites in wastewater treatment: Recent trends, modification strategies, and outlook. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126569. [PMID: 34280719 DOI: 10.1016/j.jhazmat.2021.126569] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In recent years, layered double hydroxide-biochar (LDH-BC) composites as adsorbents and catalysts for contaminants removal (inorganic anions, heavy metals, and organics) have received increasing attention and became a new research point. It is because of the good chemical stability, abundant surface functional groups, excellent anion exchange ability, and good electronic properties of LDH-BC composites. Hence, we offer an overall review on the developments and processes in the synthesis of LDH-BC composites as adsorbents and catalysts. Special attention is devoted to the strategies for enhancing the properties of LDH-BC composites, including (1) magnetic treatment, (2) acid treatment, (3) alkali treatment, (4) controlling metal ion ratios, (5) LDHs intercalation, and (6) calcination. In addition, further studies are called for LDH-BC composites and potential areas for future application of LDH-BC composites are also proposed.
Collapse
Affiliation(s)
- Qianzhen Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kaihua Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junwu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yue Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qinyi Lin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
35
|
Li S, Li S, Wen N, Wei D, Zhang Y. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Zhang L, Jiang SC, Guan Y. Efficient removal of selenate in water by cationic poly(allyltrimethylammonium) grafted chitosan and biochar composite. ENVIRONMENTAL RESEARCH 2021; 194:110667. [PMID: 33400948 DOI: 10.1016/j.envres.2020.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The discovery of cheap and eco-friendly functional materials for the removal of anionic heavy metal ions is still challenging in the treatment of heavy metal-contaminated water. Herein, a new poly(allyltrimethylammonium) grafted chitosan and biochar composite (PATMAC-CTS-BC) was introduced for the removal of selenate (SeO42-) in water. Results suggest that the PATMAC-CTS-BC showed a rapid removal of SeO42- with efficiency of >97% within 10 min and it followed a pseudo-second-order model. High capacity of SeO42- adsorption by the composite was achieved, with maximum value of 98.99 mg g-1 based on Langmuir model, considerably higher than most of reported adsorbents. The thermodynamic results reflected the spontaneous and exothermic nature of SeO42- adsorption onto the composite. The composite could be applied at a wide initial pH range (2-10) with high removal efficiency of SeO42- because of permanent positive charges of quaternary ammonium groups (=N+-). The removal mechanisms of SeO42- were mainly attributed to electrostatic interactions with =N+- and protonated -NH3+ groups, and redox-complexation interactions with -NH2, -NH-, and -OH groups. Besides SeO42-, the hexavalent chromium (Cr2O72-) was considered as example to further demonstrate the anion removal capability of cationic hydrogel-BC composite. The study outcomes open up new opportunities to efficiently remove anionic heavy metal ions (e.g., SeO42- and Cr2O72-) in water using these materials.
Collapse
Affiliation(s)
- Lixun Zhang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States; Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92612, United States
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
37
|
Enhanced Arsenic Removal from Aqueous Solution by Fe/Mn-C Layered Double Hydroxide Composite. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/8891643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel material named Fe/Mn-C layered double hydroxide composite (Fe/Mn-C-LDH) was synthesized to remove arsenic from an aqueous solution. The removal performance of the composite toward arsenic ions was studied through the batch experiments. The experiment results showed that Fe/Mn-C-LDH exhibited a high adsorption capacity of 46.47 mg/g for As(III) and 37.84 mg/g for As(V) at 318 K, respectively. In addition, the investigation of the release of Fe3+ and Mn2+ in the process of arsenic adsorption revealed that the Fe/Mn-C-LDH exhibited better stability than Fe/Mn-layer double hydroxide (Fe/Mn-LDH) with fewer Mn2+ and Fe3+ releasing under the same condition. The BET results showed that the specific surface area of Fe/Mn-C-LDH decreased after adsorption of As (III) and As (V). Furthermore, the Density Functional Theory (DFT) calculation results proved that the adsorbent combining arsenic by T-site to produce a better adsorption effect for arsenic. Possessing better stability and adsorption capacity, Fe/Mn-C-LDH could potentially serve as a perfect adsorbent for arsenic removal from an aqueous environment. It would provide a promising approach for removing heavy metal from the aquatic environment in the future.
Collapse
|
38
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
39
|
Engineered Biochar Production and Its Potential Benefits in a Closed-Loop Water-Reuse Agriculture System. WATER 2020. [DOI: 10.3390/w12102847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biochar’s potential to remove various contaminants from aqueous solutions has been widely discussed. The rapid development of engineered biochar produced using different feedstock materials via various methods for wastewater treatment in recent years urges an up-to-date review on this topic. This article centers on summarizing state-of-the-art methods for engineered biochar production and discussing the multidimensional benefits of applying biochar for water reuse and soil amendment in a closed-loop agriculture system. Based on numerous recent articles (<5 years) published in journals indexed in the Web of Science, engineered biochar’s production methods, modification techniques, physicochemical properties, and performance in removing inorganic, organic, and emerging contaminants from wastewater are reviewed in this study. It is concluded that biochar-based technologies have great potential to be used for treating both point-source and diffuse-source wastewater in agricultural systems, thus decreasing water demand while improving crop yields. As biochar can be produced using crop residues and other biomass wastes, its on-farm production and subsequent applications in a closed-loop agriculture system will not only eliminate expensive transportation costs, but also create a circular flow of materials and energy that promotes additional environmental and economic benefits.
Collapse
|
40
|
Vithanage M, Ashiq A, Ramanayaka S, Bhatnagar A. Implications of layered double hydroxides assembled biochar composite in adsorptive removal of contaminants: Current status and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139718. [PMID: 32526569 DOI: 10.1016/j.scitotenv.2020.139718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
In recent years, biochar composites have received considerable attention for environmental applications. This paper reviews the current state of research on Layered Double Hydroxides (LDHs) tailored biochar composites in terms of their synthesis methods, characteristics, and their use as adsorbents for the removal of various pollutants from water, highlighting and discussing the key advancement in this area. The adsorption potential of LDHs-biochar composites for different inorganic and organic contaminants, important factors affecting composites' properties and the adsorption process, and the mechanisms involved in adsorption are discussed in this review. Though the adsorption capacities are high for the composites studied, partition coefficient which suggest the performance of composites remain low for most adsorbents. Despite the recent progress in the synthesis of LDHs-biochar composites, further research is needed to improve the performance of composites for different classes of aquatic pollutants, and to test their applicability in pilot-scale with real wastewater under real environmental conditions.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka.
| | - Ahmed Ashiq
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
41
|
Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH). WATER 2020. [DOI: 10.3390/w12082303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Occurrence of heavy metals in freshwater sources is a grave concern due to their severe impacts on public health and aquatic life. Cadmium (Cd2+) is one of the most dangerous heavy metals, and can cause serious diseases even at low concentrations. Hence, a wide range of treatment technologies exist, such as nanofiltration and biological reactors. In this context, the present investigation aims at the development of a new adsorption medium, made from chicken bones coated with iron (Fe) and magnesium (Mg) hydroxides, to remove cadmium from water. This novel chicken bone functional substance was manufactured by applying layered double hydroxides (LDH) into the chicken bones. Initially, the new adsorption medium was characterized using Fourier-transform infrared spectroscopy (FTIR technology), then it was applied to remove cadmium from water under different conditions, including pH of water (3–7.5), agitation speed (50–200 rpm), adsorbent dose (1–20 g per 100 mL), and contact time (30–120 min). Additionally, the reaction kinetics were studied using a pseudo-first order kinetic model. The results obtained from the present study proved that the new adsorption medium removed 97% of cadmium after 120 min at an agitation speed of 150 rpm, pH of 5, and adsorption dose of 10 g per 100 mL. The results also showed that the new adsorption medium contains a significant number of functional groups, including hydroxyl groups. According to the outcomes of the kinetic study, the mechanism of removing metal is attributed to surface precipitation, ion exchange, complexation, hydrogen binding between pollutants, and the LDH-chicken bone substance.
Collapse
|
42
|
Zhang L, He F, Mao W, Guan Y. Fast and efficient removal of Cr(VI) to ppb level together with Cr(III) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138701. [PMID: 32334229 DOI: 10.1016/j.scitotenv.2020.138701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
It is still a great challenge to find an eco-friendly, easy-to-synthesize, and cheap adsorbent to rapidly remove Cr(VI) to ppb level in the Cr(VI)-polluted water. Herein, a new layered double hydroxide nanocage intercalated with diethyldithiocarbamate (DDTC-LDH) was fabricated via a facile calcination-rehydration method. The DDTC-LDH rapidly decreased Cr(VI) concentration from 5 to <0.05 mg/L within 35 min, and only a few seconds were required to completely remove it at an initial concentration of 0.5-1 mg/L, primarily attributed to the effective adsorption-reduction of Cr(VI) to Cr(III) by sulfur atoms in CS and CS groups. Attractively, the generated Cr(III) was also quickly removed to below 0.1 mg/L via an opportune Lewis hard-hard interaction with C-SOx groups produced through CS oxidation. Additionally, Cr(VI) could be removed by DDTC-LDH at a wide pH application range (3.17-10.78) and with weak effects by coexisting anions (Cl-, NO3-, CO32-, SO42-, and PO43-). We systematically analyzed and proposed the mechanisms for Cr(VI) removal by the DDTC-LDH, orderly containing electrostatic attraction, Cr(VI) complexation by sulfur atoms in CS and CS groups, reduction of the Cr(VI) to Cr(III) by the CS and CS groups, and Cr(III) complexation by sulfur atoms in C-SOx groups. Our results provide new insights into the Cr(VI) removal using organosulfur compounds, that is to say, the organosulfur group Lewis hardness increased (from C-S to C-SOx) as the Cr species Lewis hardness increased (from Cr(VI) to Cr(III)), so as to opportunely ensure fast and efficient capture of both Cr(VI) and Cr(III) via Lewis acid-base interactions.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Wei Mao
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
43
|
Abstract
The mechanisms of soil Cd and Pb alterations and distribution following biochar (BC; 0 to 40 t ha−1) amendments applied (in either 2009 [long-term] or in 2016 [short-term]) to a contaminated rice paddy soil, and subsequent plant Cd and Pb tissue distribution over time was investigated. Water-soluble Cd and Pb concentrations decreased by 6.7–76.0% (short-term) and 10.3–88.1% (long-term) with biochar application compared to the control. The soil exchangeable metal fractions (i.e., considered more available) decreased, and the residual metal fractions (i.e., considered less available) increased with short- and long-term biochar amendments, the latter likely a function of biochar increasing pH and forcing Cd and Pb to form crystal mineral lattice associations. Biochar application reduced Cd (16.1–84.1%) and Pb (4.1–40.0%) transfer from root to rice grain, with rice Cd and Pb concentrations lowered to nearly Chinese national food safety standards. Concomitantly, soil organic matter (SOM), pH and soil water content increased by 3.9–49.3%, 0.05–0.35 pH units, and 3.8–77.4%, respectively, with increasing biochar application rate. Following biochar applications, soil microbial diversity (Shannon index) also increased (0.8–46.2%) and soil enzymatic activities were enhanced. Biochar appears to play a pivotal role in forcing Cd and Pb sequestration in contaminated paddy soils, reducing heavy metal transfer to rice grain, and potentially leading to reduced heavy metal consumption by humans.
Collapse
|
44
|
Medyńska-Juraszek A, Ćwieląg-Piasecka I, Jerzykiewicz M, Trynda J. Wheat Straw Biochar as a Specific Sorbent of Cobalt in Soil. MATERIALS 2020; 13:ma13112462. [PMID: 32481699 PMCID: PMC7321302 DOI: 10.3390/ma13112462] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 01/27/2023]
Abstract
There is an urgent need to search for new sorbents of pollutants presently delivered to the environment. Recently biochar has received much attention as a low-cost, highly effective heavy metal adsorbent. Biochar has been identified as an efficient material for cobalt (Co) immobilization from waters; however, little is known about the role of Co immobilization in soil. Hence, in this study, a batch experiment and a long-term incubation experiment with biochar application to multi-contaminated soil with distinct properties (sand, loam) were conducted to provide a brief explanation of the potential mechanisms of Co (II) sorption on wheat straw biochar and to describe additional processes that modify material efficiency for metal sorption in soil. The soil treatments with 5% (v/w) wheat straw biochar proved to be efficient in reducing Co mobility and bioavailability. The mechanism of these processes could be related to direct and indirect effects of biochar incorporation into soil. The FT-IR analysis confirmed that hydroxyl and carboxyl groups present on the biochar surface played a dominant role in Co (II) surface complexation. The combined effect of pH, metal complexation capacity, and the presence of Fe and Mn oxides added to wheat straw biochar resulted in an effective reduction of soluble Co (II), showing high efficiency of this material for cobalt sorption in contaminated soils.
Collapse
Affiliation(s)
- Agnieszka Medyńska-Juraszek
- Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland;
- Correspondence:
| | - Irmina Ćwieląg-Piasecka
- Institute of Soil Science and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland;
| | - Maria Jerzykiewicz
- Faculty of Chemistry, Wroclaw University, Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Justyna Trynda
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27b, 50-375 Wrocław, Poland;
| |
Collapse
|
45
|
Luo M, Lin H, He Y, Zhang Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137014. [PMID: 32065885 DOI: 10.1016/j.scitotenv.2020.137014] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Biochar plays a significant role in soil remediation. However, the simultaneous immobilization mechanism and relationship of biochar to cations and anions have never been clear. We designed a batch incubation experiment to investigate the impact of corncob-based biochars to cadmium (Cd) and arsenic (As) contaminations in yellow soil and cinnamon soil, and analyze the relationships among biochars physicochemical characteristics (surface area: SA, total pore volume: TV, average pore size: AV and the C/O rate), soil properties, metals immobilization and microbial diversity indices. Results showed that the modified biochars (inorganic-modified biochar: BCTD) had a good effect on heavy metals immobilization and transformed acid extractable and reducible fraction into the residual fraction. Total nitrogen, organic matter and available potassium increased in both soils after biochar application. The principal component analysis presented that the smaller C/O rate was favorable to As stabilization; the SA and TV of biochar were negatively correlated with the leaching concentration of Cd. The larger surface area, higher porosity and organic matters of biochar were more beneficial to soil microbial diversity. This work not only can demonstrate remediation mechanisms of heavy metals contaminated soil by biochars, but also gain an application of biochars technology in the recycling and reutilize of agricultural waste, and provide a clear strategy for heavy metals contaminated soil, especially As and Cd.
Collapse
Affiliation(s)
- Mingke Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| | - Ye Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, Beijing 100083, China
| |
Collapse
|
46
|
Adsorption of heavy metals by l-cysteine intercalated layered double hydroxide: Kinetic, isothermal and mechanistic studies. J Colloid Interface Sci 2020; 562:149-158. [DOI: 10.1016/j.jcis.2019.12.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
47
|
Wang L, Shi C, Wang L, Pan L, Zhang X, Zou JJ. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. NANOSCALE 2020; 12:4790-4815. [PMID: 32073021 DOI: 10.1039/c9nr09274a] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shortage of water resources and increasingly serious water pollution have driven the development of high-efficiency water treatment technology. Among a variety of technologies, adsorption is widely used in environmental remediation. As a class of typical adsorbents, metal oxides have been developed for a long time and continued to attract widespread attention, since they have unique physicochemical properties, including abundant surface active sites, high chemical stability, and adjustable shape and size. In this review, the basic principles of the adsorption process will be first elucidated, including affecting factors, evaluation index, adsorption mechanisms, and common kinetic and isotherm models. Then, the adsorption properties of several typical metal oxides, and key parameters affecting the adsorption performance such as particle/pore size, morphology, functionalization and modification, supports and calcination temperature will be discussed, as well as their application in the removal of various inorganic and organic contaminants. In addition, desorption and recycling of the spent adsorbent are summarized. Finally, the future development of metal oxide based adsorbents is also discussed.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
48
|
Yang W, Shi X, Wang J, Chen W, Zhang L, Zhang W, Zhang X, Lu J. Fabrication of a Novel Bifunctional Nanocomposite with Improved Selectivity for Simultaneous Nitrate and Phosphate Removal from Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35277-35285. [PMID: 31465193 DOI: 10.1021/acsami.9b08826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorus and nitrogen compounds are both the main sources of eutrophication and coexist in some municipal effluents or eutrophic waters; elimination of phosphorus and nitrogen from wastewater is becoming an imperative but also a hard task. Herein, an innovative bifunctional nanocomposite HFO@TPR was developed for synchronous nitrate/phosphate elimination from water. A macroporous polystyrene microspheres modified with triethylamine functional groups was synthesized as the host of HFO@TPR for selective nitrate removal, and Fe(III) hydroxide (HFO) nanoparticles were implanted inside as the active species for specific phosphate removal. Compared to other commercial adsorbents, HFO@TPR exhibited outstanding selectivity and preference toward nitrates and phosphates, and the coexisting anions exert an insignificant effect on adsorption performance. Such exceptional bifuntionality of HFO@TPR was achieved through two pathways, that is, nitrate was preferentially adsorbed by the fixed triethylamine groups through the electrostatic attraction, and phosphate was preferentially captured by the encapsulated HFO nanoparticles through the inner-sphere complexation. The exhausted HFO@TPR could be effectively regenerated by using a NaOH-NaCl mixed reagent for cyclic use with a relative constant efficiency. In addition, column adsorption experiments demonstrated that HFO@TPR could eliminate nitrate from 18 to <10 mg N/L with the treatment capacity of ∼600 bed volume (BV), and meanwhile remove phosphate from 2.5 to <0.2 mg P/L with the treatment capacity of ∼750 BV. We believe what we found in this study could advance the method on how to develop bifunctional adsorbents for synchronous removal of coexisting contaminants from water.
Collapse
Affiliation(s)
- Wenlan Yang
- School of the Environmental Science and Engineering , Yangzhou University , Yangzhou 225000 , P. R. China
| | - Xinxing Shi
- School of the Environmental Science and Engineering , Yangzhou University , Yangzhou 225000 , P. R. China
| | - Jicheng Wang
- School of the Environmental Science and Engineering , Yangzhou University , Yangzhou 225000 , P. R. China
| | - Wenjing Chen
- School of the Environmental Science and Engineering , Yangzhou University , Yangzhou 225000 , P. R. China
| | - Lili Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials , Huaiyin Normal University , Huaian 223300 , P. R. China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Jilai Lu
- Jiangsu Provincial Key Laboratory of Environmental Engineering , Nanjing 210036 , P. R. China
| |
Collapse
|
49
|
Sun R, Wang J, Yang T, He R, Xue K, Wang L, Yu X, Wang J, Yang T, Wang W. Electron beam irradiation treatment of Ag/Bi2WO6/CdWO4 heterogeneous material with enhanced photocatalytic activity. NEW J CHEM 2019. [DOI: 10.1039/c9nj02571e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ag/Bi2WO6/CdWO4 ternary heterostructure materials treated by electron beam irradiation are used for the highly efficient degradation of inorganic and organic pollutants.
Collapse
Affiliation(s)
- Renrui Sun
- College of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Jing Wang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Tianli Yang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Ren He
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Kehui Xue
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Lin Wang
- College of Materials Science and Engineering
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Xianglin Yu
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Juntao Wang
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
- P. R. China
| | - Ting Yang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| | - Wenlei Wang
- College of Science
- Central South University of Forestry and Technology
- Changsha 410004
- P. R. China
| |
Collapse
|