1
|
Zakrzewska A, Nakielski P, Truong YB, Gualandi C, Velino C, Zargarian SS, Lanzi M, Kosik-Kozioł A, Król J, Pierini F. "Green" Cross-Linking of Poly(Vinyl Alcohol)-Based Nanostructured Biomaterials: From Eco-Friendly Approaches to Practical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70017. [PMID: 40411475 DOI: 10.1002/wnan.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/26/2025]
Abstract
Recently, a growing need for sustainable materials in various industries, especially biomedical, environmental, and packaging applications, has been observed. Poly(vinyl alcohol) (PVA) is a versatile and widely used polymer, valued for its biocompatibility, water solubility, and easy processing, e.g., forming nanofibers via electrospinning. As a result of cross-linking, PVA turns into a three-dimensional structure-hydrogel with unusual sorption properties and mimicry of biological tissues. However, traditional cross-linking methods often involve toxic chemicals and harsh conditions, which can limit its eco-friendly potential and raise concerns about environmental impact. "Green" cross-linking approaches, such as the use of natural cross-linkers, freeze-thawing, enzymatic processes, irradiation, heat treatment, or immersion in alcohol, offer an environmentally friendly alternative that aligns with global trends toward sustainability. These methods not only reduce the use of harmful substances but also enhance the biodegradability and safety of the materials. By reviewing and analyzing the latest advancements in "green" PVA cross-linking approaches, this review provides a comprehensive overview of current techniques, their advantages, limitations, and potential applications. The main emphasis is placed on PVA nanostructured forms and applications of PVA-based biomaterials in areas such as wound dressings, drug delivery systems, tissue engineering, biological filters, and biosensors. Moreover, this article will contribute to the broader scientific understanding of how the materials based on PVA can be optimized both in terms of "greener" and safer production, as well as adjusting the final platform properties.
Collapse
Affiliation(s)
- Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Yen Bach Truong
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
- INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy
| | - Cecilia Velino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, Italy
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Julia Król
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Jashrapuria K, Singh SP. Biofilm Inhibition by Laser-Induced Graphene: Impact of Surface Texture on Rod-Shaped E. coli and Coccus-Shaped Staphylococcus. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21819-21829. [PMID: 40143406 DOI: 10.1021/acsami.5c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Biofilm formation poses persistent challenges across various industrial sectors, such as food, marine, and membrane industries, often leading to reduced system performance. An antibiofilm strategy using nanotextured surfaces, such as laser-induced graphene (LIG), has emerged as a potent antibiofilm surface, particularly against rod-shaped bacteria. However, biofilms in nature consist of diverse bacterial species, necessitating a thorough evaluation of LIG efficacy against various bacterial species. Therefore, this study comprehensively analyzed the antibiofilm potential of LIG nanofibers fabricated on polyether sulfone (PES) film. The study focused on two bacterial species with distinct morphologies: rod-shaped Escherichia coli and coccus-shaped Staphylococcus epidermidis. The antibiofilm potential of LIG was studied under extended biofilm-promoting conditions for 10 days. The surface with crushed LIG nanofibers (C-LIG) showed substantial biofilm accumulation, with live biomass of ∼7 μm3 μm-2 for E. coli and ∼6 μm3 μm-2 for S. epidermidis. In contrast, LIG nanofibers prevented biofilm formation for both species. We also observed LIG-induced cell size alteration for rod- and coccus-shaped bacterial cells. Notably, there was an ∼39% reduction in E. coli cell size compared to the control PES, resulting in a morphological shift to an ovoid shape, likely due to activation of the General Stress Response (GSR). However, S. epidermidis did not exhibit any morphological changes. We also provided the first evidence that E. coli cells exposed to LIG-induced stress regained their original size when cultured in a stress-free environment, indicating these morphological changes were reversible. Further, whole-genome sequencing supported this observation by showing no single nucleotide polymorphism, indicating no permanent genetic alterations in stressed E. coli cells. Overall results showed that LIG nanofibers disrupted biofilm formation in both bacterial species. Thus, our findings highlight the potential of LIG as a robust antibiofilm surface that offers broader applicability in biofilm-prone environments.
Collapse
Affiliation(s)
- Kritika Jashrapuria
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre of Excellence on Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
3
|
Barbhuiya N, Nair AM, Dixit N, Singh SP. Iron Nanoparticle-Incorporated Laser-Induced Graphene Filters for Environmental Remediation via an In Situ Electro-Fenton Process. ACS OMEGA 2024; 9:22819-22830. [PMID: 38826522 PMCID: PMC11137694 DOI: 10.1021/acsomega.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Laser-induced graphene (LIG) has garnered much attention due to its facile and chemically free fabrication technique. Metal nanoparticle incorporation into the LIG matrix can improve its electrical and catalytical properties for environmental application. Here, we demonstrate the fabrication of nanoscale zerovalent iron (nZVI) nanoparticle-incorporated LIG (Fe-LIG) and sulfidized-nanoscale zerovalent iron (S-nZVI) nanoparticle-incorporated LIG (SFe-LIG) surfaces. The sheets were first fabricated to investigate nanoparticle loading, successful incorporation in the LIG matrix, and electrochemical performance as electrodes. Fe-LIG and SFe-LIG sheets showed ∼3-3.5 times more charge density as compared with the control LIG sheet. The XPS and its deconvolution confirmed the presence of nZVI and S-nZVI in the Fe-LIG and SFe-LIG surfaces, which can generate in situ hydroxyl radical (•OH) via iron activation of electrogenerated hydrogen peroxide (H2O2) in short in situ electro-Fenton process. After confirmation of the successful incorporation of iron-based nanoparticles in the LIG matrix, filters were fabricated to demonstrate the application in the flow-through filtration. The Fe-LIG and SFe-LIG filters showed ∼10-30% enhanced methylene blue removal under the application of 2.5 V at ∼1000 LMH flux. The Fe-LIG and SFe-LIG filters also showed complete 6-log bacteria and virus removal at 2.5 and 5 V, respectively, while the LIG filters showed only ∼4-log removal. Such enhanced removal by the Fe-LIG and SFe-LIG filters as compared to LIG filters is attributed to the improved charge density, electrochemical activity, and in situ electro-Fenton process. The study shows the potential to develop catalytic LIG-based surfaces for various applications, including contaminant removal and microbial inactivation.
Collapse
Affiliation(s)
- Najmul
Haque Barbhuiya
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Akhila M. Nair
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
- Centre
of Excellence on Membrane Technologies for Desalination, Brine Management,
and Water Recycling (DeSaltM), Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Thakur AK, Sengodu P, Jadhav AH, Malmali M. Manganese Carbonate/Laser-Induced Graphene Composite for Glucose Sensing. ACS OMEGA 2024; 9:7869-7880. [PMID: 38405531 PMCID: PMC10882677 DOI: 10.1021/acsomega.3c07642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
Laser-induced graphene (LIG) has received great interest as a potential candidate for electronic and sensing applications. In the present study, we report the enhanced performance of a manganese carbonate-decorated LIG (MnCO3/LIG) composite electrode material employed for electrochemical glucose detection. Initially, the porous LIG was fabricated by directly lasing poly(ether sulfone) membrane substrate. Then, the MnCO3/LIG composite was synthesized via a hydrothermal method. Later, MnCO3/LIG was immobilized onto a glassy carbon electrode surface and employed for glucose detection. The structure of the MnCO3/LIG composite was carefully characterized. The influence of the MnCO3/LIG composite on the performance of the electrode was investigated using cyclic voltammetry curves. The MnCO3/LIG composite exhibited an excellent sensitivity of 2731.2 μA mM-1 cm-2, and a limit of detection of 2.2 μM was obtained for the detection of glucose. Overall, the performance of the MnCO3/LIG composite was found to be superior to that of most of the MnCO3-based composites.
Collapse
Affiliation(s)
- Amit K. Thakur
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Prakash Sengodu
- Department
of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Arvind H. Jadhav
- Centre
for Nano and Material Science (CNMS), Jain
University, Bangalore 562112, India
| | - Mahdi Malmali
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
5
|
Zhang W, Chew NGP, Coronell O. Facile Synthesis of Electrically Conductive Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:1135-1141. [PMID: 38144434 PMCID: PMC10735243 DOI: 10.1021/acs.estlett.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
A facile and effective strategy that can be used to fabricate electrically conductive membranes (ECMs) of diverse filtration performance (i.e., water productivity and solute rejection) is not available yet. Herein, we report a facile method that enables the fabrication of ECMs of a broad performance range. The method is based on the use of polyethylenimine (PEI), glutaraldehyde, and any of a diverse set of conductive materials to cast an electrically conductive layer atop any of a diverse set of substrates (i.e., from microfiltration to reverse osmosis membranes). We developed the reported ECM fabrication method using graphite as the conductive material and PVDF membranes as substrates. We demonstrate that graphite-PVDF ECMs were stable and electrically conductive and could be successfully used for solute filtration and electrochemical degradation. We also confirmed that the PEI/glutaraldehyde-based ECM fabrication method is suitable for conductive materials other than graphite, including carbon nanotubes, reduced graphene oxide, activated charcoal, and silver nanoparticles. Compared with the substrates used for their fabrication, ECMs showed low electrical sheet resistances that varied with conductive material, increased solute rejection, and reduced water permeance. Taken together, this work presents a promising general strategy for the fabrication of ECMs for environmental applications from diverse substrates and conductive materials.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Misra U, Dixit N, Singh SP. Effect of Laser Parameters on Laser-Induced Graphene Filter Fabrication and Its Performance for Desalination and Water Purification. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7899-7910. [PMID: 36748439 DOI: 10.1021/acsami.2c17106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Laser-induced graphene (LIG) is a low-cost, chemical-free single-step fabrication process and has shown its potential in water treatment, electronics, and sensing. LIG fabrication optimization is mostly explored for dense polyimide (PI) polymers. However, LIG-based filters and membranes for water treatment need to be porous, and additional steps are required to get porous surfaces from PI-based surfaces. Polyethersulfone (PES) porous membranes are cost-effective and are common in water purification as compared to PI; further, the optimization of LIG fabrication on PES-based porous membranes is not explored. So, this study demonstrated the fabrication, optimization, and characterization of LIG with different laser parameters such as power, speed, image density (ID), focusing, laser platforms, and membrane support layer effect on porous PES commercial (UP010) and lab-casted 15% PES (PES15) membranes. The performance of optimized LIG filters was tested for interfacial evaporation (IE)-based desalination in single and stacked layer configuration and water purification applications such as dye removal and disinfection. IE was done in Joule heating (JH) and solar heating (SH) modes, and the UP010-ID7 LIG filter showed the highest JH evaporation rates of ∼1.1, 1.8, and 2.82 kg m-2 h-1 in single, double, and triple stacked configurations, respectively. Using a JH IE setup, the best-performing UP010-ID7 LIG filters have also shown ∼100% removal of methylene blue dye from the contaminated water. Furthermore, all LIG filters showed a complete 6-log bacterial inhibition at the 5 V filtration experiments; at 2.5 V, the optimized LIG filters showed a higher removal than the non-optimized filters. Additionally, the LIGs obtained with the aluminum platform were the best quality. This work demonstrates that laser power, ID, platform, and membrane support are critical parameters for the best-performing PES-LIG filters, and they can be effectively utilized to fabricate PES-based LIG porous surfaces for various energy, environmental, and catalysis applications.
Collapse
Affiliation(s)
- Utkarsh Misra
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai400076, India
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Nandini Dixit
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
| | - Swatantra P Singh
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai400076, India
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
7
|
Kleinberg MN, Thamaraiselvan C, Powell CD, Arnusch CJ. Preserved subsurface morphology in NIPS and VIPS laser-induced graphene membranes affects electrically-dependent microbial decontamination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Gkika DA, Karmali V, Lambropoulou DA, Mitropoulos AC, Kyzas GZ. Membranes Coated with Graphene-Based Materials: A Review. MEMBRANES 2023; 13:127. [PMID: 36837630 PMCID: PMC9965639 DOI: 10.3390/membranes13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a popular material with outstanding properties due to its single layer. Graphene and its oxide have been put to the test as nano-sized building components for separation membranes with distinctive structures and adjustable physicochemical attributes. Graphene-based membranes have exhibited excellent water and gas purification abilities, which have garnered the spotlight over the past decade. This work aims to examine the most recent science and engineering cutting-edge advances of graphene-based membranes in regard to design, production and use. Additional effort will be directed towards the breakthroughs in synthesizing graphene and its composites to create various forms of membranes, such as nanoporous layers, laminates and graphene-based compounds. Their efficiency in separating and decontaminating water via different techniques such as cross-linking, layer by layer and coating will also be explored. This review intends to offer comprehensive, up-to-date information that will be useful to scientists of multiple disciplines interested in graphene-based membranes.
Collapse
Affiliation(s)
- Despina A. Gkika
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| | - Vasiliki Karmali
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Dimitra A. Lambropoulou
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
9
|
Zhao F, Quan H, Zhang S, Xu Y, Zhou Z, Chen G, Li Q. Watered-Based Graphene Dispersion Stabilized by a Graft Co-Polymer for Electrically Conductive Screen Printing. Polymers (Basel) 2023; 15:polym15020356. [PMID: 36679238 PMCID: PMC9860939 DOI: 10.3390/polym15020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Graphene conductive inks have attracted significant attention in recent years due to their high conductivity, corrosion resistance, and environmentally friendly nature. However, the dispersion of graphene in aqueous solution is still challenging. In this work, we synthesized an amphiphilic graft copolymer, polyvinyl alcohol-g-polyaniline (PVA-g-PANI), and studied the graphene dispersion prepared with the graft copolymer by high-speed shear dispersion. The amphiphilic graft copolymer can be used as a stabilizer and adhesive agent in graphene dispersion. Given the steric hindrance of the graft copolymer, the stability of graphene dispersion is improved by decreasing the probability of π-π stacking. PVA-g-PANI has a better stability on graphene dispersion than carboxymethylcellulose sodium (CMC-Na) and a mixture of PVA and PANI. The graft copolymer has only a slight effect on the conductivity of graphene dispersion due to the existence of conductive PANI, which is beneficial for preparing the graphene dispersion with good conductivity and adhesion. Graphene dispersion is well-adapted to screen printing and is very stable with regard to the sheet resistance bending cycle.
Collapse
Affiliation(s)
- Fengfeng Zhao
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Quan
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Shijun Zhang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yihui Xu
- Sinopec Group, Beijing 100728, China
| | - Zheng Zhou
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangxin Chen
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (G.C.); (Q.L.)
| | - Qifang Li
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (G.C.); (Q.L.)
| |
Collapse
|
10
|
Thaweeskulchai T, Schulte A. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices. MICROMACHINES 2022; 13:mi13122214. [PMID: 36557513 PMCID: PMC9785473 DOI: 10.3390/mi13122214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 05/27/2023]
Abstract
Wearable devices are a new class of healthcare monitoring devices designed for use in close contact with the patient's body. Such devices must be flexible to follow the contours of human anatomy. With numerous potential applications, a wide variety of flexible wearable devices have been created, taking various forms and functions. Therefore, different fabrication techniques and materials are employed, resulting in fragmentation of the list of equipment and materials needed to make different devices. This study attempted to simplify and streamline the fabrication process of all key components, including microfluidic chip and flexible electrode units. A combination of diode laser CNC machine and polyimide tape is used to fabricate flexible microfluidic chip and laser-induced graphene (LIG) electrodes, to create flexible microfluidic sensing devices. Laser ablation on polyimide tape can directly create microfluidic features on either PDMS substrates or LIG electrodes. The two components can be assembled to form a flexible microfluidic sensing device that can perform basic electrochemical analysis and conform to curved surfaces while undergoing microfluidic flow. This study has shown that simple, commonly available equipment and materials can be used to fabricate flexible microfluidic sensing devices quickly and easily, which is highly suitable for rapid prototyping of wearable devices.
Collapse
|
11
|
Thakur AK, Mahbub H, Nowrin FH, Malmali M. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46884-46895. [PMID: 36200611 DOI: 10.1021/acsami.2c09563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) materials have great potential in water treatment applications. Herein, we report the fabrication of a mechanically robust electroconductive LIG membrane with tailored separation properties for ultrafiltration (UF) applications. These LIG membranes are facilely fabricated by directly lasing poly(ether sulfone) (PES) membrane support. Control PES membranes were fabricated through a nonsolvent-induced phase separation (NIPS) technique. A major finding was that when PES UF membranes were treated with glycerol, the membrane porous structure remained almost unchanged upon drying, which also assisted with protecting the membrane's nanoscale features after lasing. Compared to the control PES membrane, the membrane fabricated with 8% laser power on the bottom layer of PES (PES (B)-LIG-HP) demonstrated 4 times higher flux (865 LMH) and 90.9% bovine serum albumin (BSA) rejection. Moreover, LIG membranes were found to be highly hydrophilic and exhibited excellent mechanical and chemical stability. Owing to their excellent permeance and separation efficiency, these highly robust electroconductive LIG membranes have a great potential to be used for designing functional membranes.
Collapse
Affiliation(s)
- Amit K Thakur
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Hasib Mahbub
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Fouzia Hasan Nowrin
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Mahdi Malmali
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| |
Collapse
|
12
|
Deng HT, Wen DL, Feng T, Wang YL, Zhang XR, Huang P, Zhang XS. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39681-39700. [PMID: 36006298 DOI: 10.1021/acsami.2c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics. Herein, we focus on the approach of composite engineering and the polymer matrix of silicone rubber (SR), and we summarize the state-of-the-art details of silicone rubber-based conductive composites (SRCCs), including a summary of their conductivity mechanisms and synthesis methods and SRCC applications for stretchable electronics. For conductivity mechanisms, two conductivity mechanisms of SRCC are emphasized: percolation theory and the quantum tunneling mechanism. For synthesis methods of SRCCs, four typical approaches to synthesize different kinds of SRCCs are investigated: mixing/blending, infiltration, ion implantation, and in situ formation. For SRCC applications, different functions of stretchable electronics based on SRCCs for interconnecting, sensing, powering, actuating, and transmitting are summarized, including stretchable interconnects, sensors, nanogenerators, antennas, and transistors. These functions reveal the feasibility of constructing a stretchable all-in-one self-powered microsystem based on SRCC-based stretchable electronics. As a prospect, this microsystem is expected to integrate the functional sensing modulus, the energy harvesting modulus, and the process and response modulus together to sense and respond to environmental stimulations and human physiological signals.
Collapse
Affiliation(s)
- Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Feng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi-Lin Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin-Ran Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
13
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
14
|
Kumar S, Shandilya M, Uniyal P, Thakur S, Parihar N. Efficacy of polymeric nanofibrous membranes for proficient wastewater treatment. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zhao W, Jiang Y, Yu W, Yu Z, Liu X. Wettability Controlled Surface for Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202906. [PMID: 35793418 DOI: 10.1002/smll.202202906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
To achieve clean and high-efficiency utilization of renewable energy, functional surfaces with controllable and patternable wettability are becoming a fast-growing research focus. In this work, a laser scribing strategy to fabricate patterned graphene surfaces that are capable of energy conversion in different forms is demonstrated. Using the laser raster-scanning and vector-scanning modes, two distinct surface structures are constructed on polybenzoxazine substrate, yielding a superhydrophilic (LSHL) surface and superhydrophobic (LSHB) surface, respectively. Of particular note is that the unique hierarchical structure of LSHB surface has endowed it with quite a robust superwetting behaviors. Further profiting from the flexibility of the processing method, wettability patterns with spatially resolved LSHL and LSHB regions are designed, achieving the conversion of surface energy to liquid kinetic energy. This also offers a tractable approach to fabricate wettability-engineered devices that enable the directional, pumpless transport of water by capillary pressure gradient and the selective surface cooling via jet impingement. In addition, the LSHB surface demonstrates the high conversion of electric-to-thermal energy (222 °C cm2 W-1 ) and light-to-thermal energy (88%). Overall, the material system and processing method present a promising step forward to developing easy-fabricated graphene surfaces with spatially controlled wettability for efficient energy utilization and conversion.
Collapse
Affiliation(s)
- Weiwei Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
| | - Ye Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjie Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zeqi Yu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqing Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai District, Ningbo, 315201, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| |
Collapse
|
16
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
17
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
18
|
Wang Z, Zhang Y, Li K, Guo J, Yang C, Liu H, Wang J. In situ coupling of electrochemical oxidation and membrane filtration processes for simultaneous decontamination and membrane fouling mitigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
21
|
Kumar A, Sood A, Han SS. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydr Polym 2022; 277:118881. [PMID: 34893284 DOI: 10.1016/j.carbpol.2021.118881] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Advances in polymers have made significant contribution in diverse application oriented fields. Multidisciplinary applicability of polymers generates a range of strategies, which is pertinent in a wide range of fields. Blends of natural and synthetic polymers have spawned a different class of materials with synergistic effects. Specifically, poly (vinyl alcohol) (PVA) and alginate (AG) blends (PVAG) have demonstrated some promising results in almost every segment, ranging from biomedical to industrial sector. Combination of PVAG with other materials, immobilization with specific moieties and physical and chemical crosslinking could result in amendments in the structure and properties of the PVAG matrices. Here, we provide an overview of the recent developments in designing PVAG based matrix and complexes with their structural and functional properties. The article also provides a comprehensive outline on the applicability of PVAG matrix in wastewater treatment, biomedical, photocatalysis, food packaging, and fuel cells and sheds light on the challenges that need to be addressed. Finally, the review elaborates the future prospective of PVAG matrices in other unexplored fields like aircraft industry, nuclear science and space exploration.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
22
|
Barbhuiya NH, Misra U, Singh SP. Biocatalytic membranes for combating the challenges of membrane fouling and micropollutants in water purification: A review. CHEMOSPHERE 2022; 286:131757. [PMID: 34371356 DOI: 10.1016/j.chemosphere.2021.131757] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over the last few years, the list of water contaminants has grown tremendously due to many anthropogenic activities. Various conventional technologies are available for water and wastewater treatment. However, micropollutants of emerging concern (MEC) are posing a great threat due to their activity at trace concentration and poor removal efficiency by the conventional treatment processes. Advanced technology like membrane technology can remove MEC to some extent. However, issues like the different chemical properties of MEC, selectivity, and fouling of membranes can affect the removal efficiency. Moreover, the concentrate from the membrane filtration may need further treatment. Enzymatic degradation of pollutants and foulants is one of the green approaches for removing various contaminants from the water as well as mitigating membrane fouling. Biocatalytic membranes (BCMs), in which enzymes are immobilized on membranes, combines the advantages of membrane separation and enzymatic degradation. This review article discussed various commonly used enzymes in BCMs for removing MEC and fouling. The majorly used enzymes were oxidoreductases and hydrolases for removing MEC, antifouling, and self-cleaning ability. The various BCM synthesis processes based on entrapment, crosslinking, and binding have been summarized, along with the effects of the addition of the nanoparticles on the performances of the BCMs. The scale-up, commercial viability, challenges, and future direction for improving BCMs have been discussed and shown bright possibilities for these new generation membranes.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Utkarsh Misra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
23
|
Gupta A, Sharma CP, Thamaraiselvan C, Pisharody L, Powell CD, Arnusch CJ. Low-Voltage Bacterial and Viral Killing Using Laser-Induced Graphene-Coated Non-woven Air Filters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59373-59380. [PMID: 34851621 DOI: 10.1021/acsami.1c20198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Laser-induced graphene (LIG) is uniquely positioned to advance applications in which electrically conductive carbon coatings are required. Recently, the antifouling, antiviral, and antibacterial properties of LIG have been proven in both air and water filtration applications. For example, an unsupported LIG based filter (pore size: ∼0.3 μm) demonstrated exceptional air filtration properties, while its joule heating effects successfully sterilized and removed unwanted biological components in air despite persisting challenges such as pressure drop, energy consumption, and lack of mechanical robustness. Here, we developed a polyimide (PI) non-woven supported LIG air filter with negligible pressure drop changes compared to the non-woven support material and showed that low electrical current density inactivates aerosolized bacteria. A current density of 4.5 mA/cm2 did not cause significant joule heating, and 97.2% bacterial removal was obtained. The low-voltage antibacterial mechanism was elucidated using bacterial inhibition experiments on a titanium surface and on an LIG surface fabricated on dense PI films. Complete sterilization was obtained using current densities of ∼8 mA/cm2 applied for 2 min or ∼ 6 mA/cm2 for 10 min upon the dense PI-LIG surface. Lastly, >98% bacterial removal was observed using a low-resistance LIG-coated non-woven polyimide air filter at 5 V. However, only very low voltages (∼0.3 V) were needed to remove ∼99% Pseudomonas aeruginosa bacteria and 100% of T4 virus when the LIG-coated filters were hybridized with a stainless steel mesh. Our results show that low current density levels at very low voltages are sufficient for substantial bacterial and viral inactivation, and that these principles might be effectively used in a wide number of air filtration applications such as air conditioners or other ventilation systems, which might limit the spread of infectious particles in hospitals, homes, workplaces, and the transportation industry.
Collapse
Affiliation(s)
- Abhishek Gupta
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Chetan Prakash Sharma
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Chidambaram Thamaraiselvan
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Lakshmi Pisharody
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Camilah D Powell
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Christopher J Arnusch
- Dept. of Desalination and Water Treatment, Zuckerberg Institute of Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| |
Collapse
|
24
|
Zhu J, Lua AC. Antibacterial ultrafiltration membrane with silver nanoparticle impregnation by interfacial polymerization for ballast water. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhua Zhu
- School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore Singapore
| | - Aik Chong Lua
- School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore Singapore
| |
Collapse
|
25
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14. [PMID: 34207716 DOI: 10.26434/chemrxiv.13489398.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 05/18/2023]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
26
|
Barbhuiya NH, Singh SP, Makovitzki A, Narkhede P, Oren Z, Adar Y, Lupu E, Cherry L, Monash A, Arnusch CJ. Virus Inactivation in Water Using Laser-Induced Graphene Filters. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3179. [PMID: 34207716 PMCID: PMC8226673 DOI: 10.3390/ma14123179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
Collapse
Affiliation(s)
- Najmul Haque Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Swatantra P. Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India;
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Arik Makovitzki
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Pradnya Narkhede
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel;
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Ziv Oren
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Yaakov Adar
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Edith Lupu
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Lilach Cherry
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Arik Monash
- Department of Biotechnology, Israel Institute for Biological Research, Ness Tiona 7410001, Israel; (A.M.); (Z.O.); (Y.A.); (E.L.); (L.C.); (A.M.)
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| |
Collapse
|
27
|
Thamaraiselvan C, Manderfeld E, Kleinberg MN, Rosenhahn A, Arnusch CJ. Superhydrophobic Candle Soot as a Low Fouling Stable Coating on Water Treatment Membrane Feed Spacers. ACS APPLIED BIO MATERIALS 2021; 4:4191-4200. [DOI: 10.1021/acsabm.0c01677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chidambaram Thamaraiselvan
- The Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Emily Manderfeld
- Analytical Chemistry—Biointerfaces, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Maurício Nunes Kleinberg
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
- Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Christopher J. Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
28
|
Straub AP, Bergsman DS, Getachew BA, Leahy LM, Patil JJ, Ferralis N, Grossman JC. Highly Conductive and Permeable Nanocomposite Ultrafiltration Membranes Using Laser-Reduced Graphene Oxide. NANO LETTERS 2021; 21:2429-2435. [PMID: 33689366 DOI: 10.1021/acs.nanolett.0c04512] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrically conductive membranes are a promising avenue to reduce water treatment costs due to their ability to minimize the detrimental impact of fouling, to degrade contaminants, and to provide other additional benefits during filtration. Here, we demonstrate the facile and low-cost fabrication of electrically conductive membranes using laser-reduced graphene oxide (GO). In this method, GO is filtered onto a poly(ether sulfone) membrane support before being pyrolyzed via laser into a conductive film. Laser-reduced GO composite membranes are shown to be equally as permeable to water as the underlying membrane support and possess sheet resistances as low as 209 Ω/□. Application of the laser-reduced GO membranes is demonstrated through greater than 97% removal of a surrogate water contaminant, 25 μM methyl orange dye, with an 8 V applied potential. Furthermore, we show that laser-reduced GO membranes can be further tuned with the addition of p-phenylenediamine binding molecules to decrease the sheet resistance to 54 Ω/□.
Collapse
Affiliation(s)
- Anthony P Straub
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bezawit A Getachew
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Liam M Leahy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jatin J Patil
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicola Ferralis
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Thamaraiselvan C, Thakur AK, Gupta A, Arnusch CJ. Electrochemical Removal of Organic and Inorganic Pollutants Using Robust Laser-Induced Graphene Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1452-1462. [PMID: 33390015 DOI: 10.1021/acsami.0c18358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The removal of emerging environmental pollutants in water and wastewater is essential for high drinking water quality or for discharge to the environment. Electrochemical treatment is a promising technology shown to degrade undesirable organic compounds or metals via oxidation and reduction, and carbon-based electrodes have been reported. Here, we fabricated a robust, porous laser-induced graphene (LIG) electrode on a commercial water treatment membrane using the multilasing technique and demonstrated the electrochemical removal of iohexol, an iodine contrast compound, and chromium(VI), a highly toxic heavy metal ion. Multiple lasing resulted in a more ordered graphitic lattice, a more physically robust carbon layer, and a 3-4-fold higher electrical conductivity. These properties ultimately led to a more efficient electrochemical process, and the optimized LIG electrodes showed a higher hydrogen peroxide (H2O2) generation. At 3 V, 90% of Cr(VI) was removed after 6 h and reached >95% removal after 8 h at pH 2. Cr(VI) was mainly reduced to Cr(III), with small amounts of Cr(I) and Cr(0), which were partially deposited on the electrode membrane surface, confirmed with X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy analysis. Under the same conditions, 50% of iohexol was degraded after 6 h and the transformation products (TPs) were identified using ultra-performance liquid chromatography coupled with mass spectroscopy. A total of seven main intermediates were identified including deiodinated TPs (m/z = 695, 570, and 443), probably occurring via three transformation pathways including oxidative deiodination, amide hydrolysis, and deacetylation. The electrical energy costs calculated for the removal of 2 mg L-1 Cr(VI) was ∼$0.08/m3 in this system. Taken together, the porous LIG electrodes might be utilized for electrochemical removal of emerging contaminants in multiple applications because they can be rapidly formed on flexible polymer substrates at low cost.
Collapse
Affiliation(s)
- Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Abhishek Gupta
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| |
Collapse
|
30
|
Ye K, Li Y, Zhang W, Chen W, Zhang Q, Wang D, Li L. Stretch-induced structural evolution of dichromatic substance with poly (vinyl alcohol) at different concentrations of boric acid: An in-situ synchrotron radiation small- and wide-angle X-ray scattering study. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
32
|
Bergsman DS, Getachew BA, Cooper CB, Grossman JC. Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat Commun 2020; 11:3636. [PMID: 32686666 PMCID: PMC7371709 DOI: 10.1038/s41467-020-17259-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature, enabling the formation of LIG without any changes to the membrane's underlying pore structure. These membranes are shown to have comparable sheet resistance to carbon-nanotube-composite membranes. They are electrochemically stable and maintain their permeability after lasing, demonstrating their competitive performance as electrically conductive membranes. These results demonstrate the immense versatility of SIS for modifying materials when combined with laser induced graphitization for a variety of applications.
Collapse
Affiliation(s)
- David S Bergsman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA
| | - Bezawit A Getachew
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA
| | - Christopher B Cooper
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA.
| |
Collapse
|
33
|
Properties Analysis and Preparation of Biochar–Graphene Composites Under a One-Step Dip Coating Method in Water Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to improve the adsorption efficiency of biochar in water treatment, biochar–graphene (BG) composites were prepared by the one-step dip coating method and applied to remove phthalates from water. Firstly, the materials and equipment needed for the experiment are introduced. The steps of preparing graphene oxide (GO) by the improved Hummers method and BG composites by one-step dip coating are discussed. Then, the morphology characterization, adsorption performance measurement, and isothermal model of BG composites are introduced. Finally, the structure characterization, adsorption kinetics, and adsorption isotherms of BG composites are analyzed. The results show that the properties of biochar could be changed by one-step dip coating, and the biochar could form composites with graphene. Compared with biochar, biochar–graphene composites have greater surface area and porosity. When the pyrolysis temperature was 600 °C, the specific surface area of biochar was 8.4 m2g−1, and the specific surface area of the biochar–graphene composite was 221.3 m2g−1. When the temperature was 300 °C, the specific surface area of biochar was 11.01 m2g−1, and the specific surface area of biochar–graphene composite was 251.82 m2g−1. The formation of graphene on the surface of biochar can increase the stability of the composite and acts as a very high potential active site. The porous structure and surface properties of biochar–graphene composites regulate the adsorption rate of pollutant molecules, thereby improving the adsorption performance. When the adsorption equilibrium was reached, the adsorption effect of phthalate esters on the biochar/graphene composite at the pyrolysis temperature of 600 °C was the best, and the adsorption capacity of Dimethyl phthalate (DMP)was 35.2 mg/g, that of Diethyl phthalate (DEP) was 26.4 mg/g, and that of Dibutyl phthalate (DBP) was 25.1 mg/g. The adsorption effect of DMP was the best. The results of the isotherm study indicate that the adsorption of phthalates by BG composites has great potential, which provides a good theoretical basis for the application of BG composites in environmental protection in China.
Collapse
|
34
|
Chaudhury S, Thakur AK, Gojman RS, Arnusch CJ, Nir O. Ion Transport in Laser-Induced Graphene Cation-Exchange Membrane Hybrids. J Phys Chem Lett 2020; 11:1397-1403. [PMID: 31997642 DOI: 10.1021/acs.jpclett.0c00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion-exchange membranes hybridized with laser-induced graphene (LIG) might lead to membranes with functional surface effects such as antifouling, antibacterial, or joule heating effects; however, understanding the change in the electrical properties of the membrane is essential. Here we studied LIG-modified ion-exchange polymeric membranes using electrochemical impedance spectroscopy (EIS). The conductivity of the anionic sulfonated poly(ether sulfone) membranes and the effective capacitance of the membrane-electrolyte interface were obtained by fitting the EIS spectra to an electrochemical equivalent circuit and compared with LIG-modified nonionic poly(ether sulfone) films. The transport selectivity (as the relative permeability) of counterions (K+, Na+, Mg2+, Ca2+) across the membrane was quantified using the membrane's conductivities obtained from the EIS measurements. The total ohmic resistance of the membrane was directly correlated to the polymer thickness (with negligible contribution from the conductive LIG layer), thereby establishing EIS as a rapid, low-cost, and noninvasive method to accurately probe substrate usage in LIG modification.
Collapse
Affiliation(s)
- Sanhita Chaudhury
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
- Department of Chemical Engineering , Texas Tech University , 807 Canton Avenue , Lubbock , Texas 79409 , United States
| | - Revital S Gojman
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research , Ben-Gurion University of the Negev , Sede-Boqer Campus, Midreshet Ben Gurion 84990 , Israel
| |
Collapse
|
35
|
Huang L, Su J, Song Y, Ye R. Laser-Induced Graphene: En Route to Smart Sensing. NANO-MICRO LETTERS 2020; 12:157. [PMID: 32835028 PMCID: PMC7396264 DOI: 10.1007/s40820-020-00496-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
The discovery of laser-induced graphene (LIG) from polymers in 2014 has aroused much attention in recent years. A broad range of applications, including batteries, catalysis, sterilization, and separation, have been explored. The advantages of LIG technology over conventional graphene synthesis methods are conspicuous, which include designable patterning, environmental friendliness, tunable compositions, and controllable morphologies. In addition, LIG possesses high porosity, great flexibility, and mechanical robustness, and excellent electric and thermal conductivity. The patternable and printable manufacturing process and the advantageous properties of LIG illuminate a new pathway for developing miniaturized graphene devices. Its use in sensing applications has grown swiftly from a single detection component to an integrated smart detection system. In this minireview, we start with the introduction of synthetic efforts related to the fabrication of LIG sensors. Then, we highlight the achievement of LIG sensors for the detection of a diversity of stimuli with a focus on the design principle and working mechanism. Future development of the techniques toward in situ and smart detection of multiple stimuli in widespread applications will be discussed.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
36
|
Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ. Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|