1
|
Chen J, Yu H, Zheng T, Zhang X, Chen C, Sun P. Recent advancements and perspectives of photoresponsive inorganic nanomaterials for cancer phototherapy and diagnosis. RSC Adv 2025; 15:15450-15475. [PMID: 40365197 PMCID: PMC12067058 DOI: 10.1039/d5ra01153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
PTT (photothermal therapy)/PDT (photodynamic therapy) has unique advantages, such as its minimally invasive nature and clinical relative safety, and is considered a promising approach for cancer diagnosis and treatment. However, the therapeutic efficacy of phototherapy is often limited by the limited depth of light penetration and the low targeting of phototherapeutic agents. Recently, photoresponsive inorganic nanomaterials have flourished in the fields of PTT and PDT in cancer, providing a possible approach to enhance phototherapeutic potency. This review summarizes the recent research progress of common photoresponsive inorganic nanomaterials in the field of PTT and PDT and their diagnosis in cancer, involving noble metal nanoparticles, sulfide nanomaterials, oxide nanomaterials, and carbon nanomaterials. It focuses on the therapeutic and diagnostic performance of PTT and PDT of these inorganic nanomaterials and provides strategy improvements for expanding the drug delivery application of PTT/PDT. Finally, the future research and development of photoresponsive inorganic nanosystems for the treatment and diagnosis of PTT/PDT in cancer are discussed, and the possible opportunities and challenges are discussed.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Hongyu Yu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
2
|
Yong GY, Kamkaew A, Kue CS. Synergistic approach of PEGylated photothermal agent and immunomodulator in cancer immunotherapy. Nanomedicine (Lond) 2025; 20:967-983. [PMID: 40214079 PMCID: PMC12051527 DOI: 10.1080/17435889.2025.2489342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to generate heat at the local tumor site that leads to ablation upon photoirradiation at a specific wavelength of light. Currently, most of the available PTAs have weak tumor selectivity and depositing ability, which leads to poor therapeutic outcomes. PEGylation of PTAs improves therapeutic outcomes, prolongs systemic circulation time, enhances tumor accumulation, and reduces the risk of clearance by the immune system. This paper reviews the recent developments of PEGylated PTAs in photothermal cancer therapy from 2019 to 2023, highlighting their antitumour efficacy and immune response post-therapy with immune agents, current challenges and strategies. This review aims to foster knowledge dissemination on the application of nanomedicine in photothermal cancer therapy from an immunological perspective and to encourage the clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Gong Yi Yong
- School of Graduate Studies, Management and Science University, Shah Alam, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
3
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
4
|
Liu N, Wang X, Wang Z, Kan Y, Fang Y, Gao J, Kong X, Wang J. Nanomaterials-driven in situ vaccination: a novel frontier in tumor immunotherapy. J Hematol Oncol 2025; 18:45. [PMID: 40247328 PMCID: PMC12007348 DOI: 10.1186/s13045-025-01692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
In situ vaccination (ISV) has emerged as a promising strategy in cancer immunotherapy, offering a targeted approach that uses the tumor microenvironment (TME) to stimulate an immune response directly at the tumor site. This method minimizes systemic exposure while maintaining therapeutic efficacy and enhancing safety. Recent advances in nanotechnology have enabled new approaches to ISV by utilizing nanomaterials with unique properties, including enhanced permeability, retention, and controlled drug release. ISV employing nanomaterials can induce immunogenic cell death and reverse the immunosuppressive and hypoxic TME, thereby converting a "cold" tumor into a "hot" tumor and facilitating a more robust immune response. This review examines the mechanisms through which nanomaterials-based ISV enhances anti-tumor immunity, summarizes clinical applications of these strategies, and evaluates its capacity to serve as a neoadjuvant therapy for eliminating micrometastases in early-stage cancer patients. Challenges associated with the clinical translation of nanomaterials-based ISV, including nanomaterial metabolism, optimization of treatment protocols, and integration with other therapies such as radiotherapy, chemotherapy, and photothermal therapy, are also discussed. Advances in nanotechnology and immunotherapy continue to expand the possible applications of ISV, potentially leading to improved outcomes across a broad range of cancer types.
Collapse
Affiliation(s)
- Naimeng Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yonemori Kan
- Department of Medical Oncology, National Cancer Center Hospital (NCCH), 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518127, China.
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Lu F, Jang MS, Jiang W, Liu C, Wang B, Lee JH, Fu Y, Yang HY. A multifunctional hyaluronic acid-engineered mesoporous nanoreactor with H 2O 2/O 2 self-sufficiency for pH-triggered endo-lysosomal escape and synergetic cancer therapy. BIOMATERIALS ADVANCES 2025; 169:214161. [PMID: 39721571 DOI: 10.1016/j.bioadv.2024.214161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA). This nanoreactor efficiently targets tumor sites, enhances cellular internalization, and swiftly escapes from endo-lysosomes after intravenous injection. Subsequently, GOx@HCuS@HA was activated in hyaluronidase and H + -rich TME to produce H2O2 and gluconic acid through the oxidation of glucose, which not only blocks the energy supply of cancer cells, executing starvation treatment (ST), but also bolsters hydroxyl radicals (•OH)-based chemodynamic therapy (CDT) by Fenton-like reaction between HCuS and H2O2. Furthermore, reductive Cu ions could catalyze H2O2 to produce O2 to alleviate the limitation of photodynamic therapy (PDT) for tumor hypoxia. Additionally, the photothermal effect of HCuS under NIR irradiation could increase the temperature of tumor tissues to perform photothermal therapy (PTT). This synergistic antitumor strategy could ultimately achieve precise tumor cell destruction and maintain excellent biosafety. Hence, this nanoreactor offer promising prospects for efficient tumor treatment.
Collapse
Affiliation(s)
- Fei Lu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Wei Jiang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Bo Wang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
6
|
Qian Y, Wang C, Xu R, Wang J, Chen Q, Zhu Z, Hu Q, Shen Q, Shen JW. Copper-based metal-organic frameworks for antitumor application. J Nanobiotechnology 2025; 23:135. [PMID: 39987136 PMCID: PMC11847370 DOI: 10.1186/s12951-025-03220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
It is urgent to exploit multifunctional materials and combined approaches for efficient antitumor effects. Copper-based metal-organic frameworks (Cu-MOFs) have excellent performances in catalysis, biocompatibility, photothermal conversion, and regulate metabolism, which make them attract more and more attention in antitumor application. Therefore, in this review, representative ligands, synthetic methods, antitumor mechanism, and antitumor applications of Cu-MOFs were provided. Special emphasis is placed on the recent antitumor applications of Cu-MOFs in drug carriers, antitumor therapy, tumor imaging, and theranostic, which are summarized with examples. Finally, we presented the dilemma faced by Cu-MOFs and offered a new perspective for future antitumor application. Hopefully, this review may serve as a reference for further development and application of Cu-MOFs.
Collapse
Affiliation(s)
- Yangwei Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chenxi Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Jin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Qinyue Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| |
Collapse
|
7
|
Kampaengsri S, Yong GY, Aryamueang S, Ouengwanarat B, Pewklang T, Chansaenpak K, Jitrapakdee S, Kue CS, Kamkaew A. Heptamethine cyanine-based polymeric nanoparticles for photothermal therapy in HCT116 human colon cancer model. Sci Rep 2025; 15:884. [PMID: 39762372 PMCID: PMC11704253 DOI: 10.1038/s41598-024-83249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
In this work, we synthesize a quinoline-based heptamethine cyanine, QuCy7, with sulfonate groups to enhance water solubility. This dye demonstrates exceptional near-infrared absorption beyond 750 nm, accompanied by photothermal properties but low photostability. Encapsulating QyCy7 with polyethylene glycol to form nanopolymer, QuCy7@mPEG NPs, addresses the issue of its photoinstability. TEM showed that QuCy7@mPEG NPs possess a spherical morphology, featuring a core-shell structure with a size of around 120 nm in diameter. Upon irradiation with an 808 nm laser for 10 min, a significant increase in temperature up to 24 °C can be achieved with a photothermal conversion (PTC) rate of approximately 35%. QuCy7@mPEG NPs exhibit remarkable photothermal stability as compared to QuCy7. The efficiency of QuCy7@mPEG NPs was demonstrated by the in vitro PTT studies. Finally, the nanoparticles' acute toxicity and effectiveness were assessed using the chick embryo model. The results provide compelling evidence that QuCy7@mPEG NPs are safe without inducing hemolysis, inhibit angiogenesis when exposed to light, and exhibit anti-tumor activity with a 76% reduction in tumor size compared to QuCy7 (40%). Thus suggesting the sulfonate groups can enhance water solubility, and its nanopolymer is biocompatible and possesses superior anti-tumor efficacy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Gong Yi Yong
- School of Graduate Studies, Management and Science University, Seksyen 13, Shah Alam, 40100, Selangor, Malaysia
| | - Sirimongkon Aryamueang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Bongkot Ouengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Pewklang
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kantapat Chansaenpak
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chin-Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
8
|
Zhu J, Li M, Zhang Y, Lv Z, Zhao Z, Guo Y, Chen Y, Ren X, Cheng X, Shi H. S-Sulfenylation Driven Antigen Capture Boosted by Radiation for Enhanced Cancer Immunotherapy. ACS NANO 2024. [PMID: 39066710 DOI: 10.1021/acsnano.4c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Radiotherapy (RT)-induced in situ vaccination greatly promotes the development of personalized cancer vaccines owing to the massive release of antigens initiated by tumor-localized RT eliciting the tumor-specific immune response. However, its broad application in cancer treatment is seriously impeded by poor antigen cross-presentation, low response rate, and short duration of efficacy. Herein, the tumor-antigen-capturing nanosystem dAuNPs@CpG consisting of gold nanoparticles, 3,5-cyclohexanedione (CHD), and immunoadjuvant CpG were fabricated to enhance RT-induced vaccination. Taking advantage of the specific covalent binding between CHD and sulfenic acids of antigen proteins, we show that this nanoplatform has an unexpected potential to capture the sulfenylated tumor-derived protein antigens (TDPAs) induced by RT to in situ generate a vaccination effect, achieving significant growth suppression of both primary and distant tumors in combination with PD-1 blockade. We thus believe that our work presents a powerful and effective means to improve the synergistic tumor radioimmunotherapy.
Collapse
Affiliation(s)
- Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma 00133, Italy
| | - Miao Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xingxiang Ren
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
9
|
Wu L, He C, Zhao T, Li T, Xu H, Wen J, Xu X, Gao L. Diagnosis and treatment status of inoperable locally advanced breast cancer and the application value of inorganic nanomaterials. J Nanobiotechnology 2024; 22:366. [PMID: 38918821 PMCID: PMC11197354 DOI: 10.1186/s12951-024-02644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Locally advanced breast cancer (LABC) is a heterogeneous group of breast cancer that accounts for 10-30% of breast cancer cases. Despite the ongoing development of current treatment methods, LABC remains a severe and complex public health concern around the world, thus prompting the urgent requirement for innovative diagnosis and treatment strategies. The primary treatment challenges are inoperable clinical status and ineffective local control methods. With the rapid advancement of nanotechnology, inorganic nanoparticles (INPs) exhibit a potential application prospect in diagnosing and treating breast cancer. Due to the unique inherent characteristics of INPs, different functions can be performed via appropriate modifications and constructions, thus making them suitable for different imaging technology strategies and treatment schemes. INPs can improve the efficacy of conventional local radiotherapy treatment. In the face of inoperable LABC, INPs have proposed new local therapeutic methods and fostered the evolution of novel strategies such as photothermal and photodynamic therapy, magnetothermal therapy, sonodynamic therapy, and multifunctional inorganic nanoplatform. This article reviews the advances of INPs in local accurate imaging and breast cancer treatment and offers insights to overcome the existing clinical difficulties in LABC management.
Collapse
Affiliation(s)
- Linxuan Wu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tingting Zhao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tianqi Li
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xiaoqian Xu
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Lin Gao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
10
|
Jiang K, Wu J, Wang Q, Chen X, Zhang Y, Gu X, Tang K. Nanoparticles targeting the adenosine pathway for cancer immunotherapy. J Mater Chem B 2024; 12:5787-5811. [PMID: 38845588 DOI: 10.1039/d4tb00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| | - Qing Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Qiaokou District, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Vaid P, Saini AK, Gupta RK, Sinha ES, Sharma D, Alsanie WF, Thakur VK, Saini RV. Sustainable Nanoparticles from Stephania glabra and Analysis of Their Anticancer Potential on 2D and 3D Models of Prostate Cancer. Appl Biochem Biotechnol 2024; 196:3511-3533. [PMID: 37682510 DOI: 10.1007/s12010-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
In pursuit of a novel effective treatment for prostate cancer, methanolic extract of Stephania glabra tubers (Sg-ME) was utilized to fabricate silver (Sg-AgNP), copper oxide (Sg-CuONP), and silver-copper bimetallic nanoparticles (Sg-BNP). The characterization of the nanoparticles confirmed spherical shape with average diameters of 30.72, 32.19, and 25.59 nm of Sg-AgNP, Sg-CuONP, and Sg-BNP, respectively. Interestingly, these nanoparticles exhibited significant cytotoxicity toward the prostate cancer (PC3) cell line while being non-toxic toward normal cells. The nanoparticles were capable of inducing apoptosis in PC3 cells by enhancing reactive oxygen species (ROS) generation and mitochondrial depolarization. Furthermore, the shrinkage of 3D prostate tumor spheroids was observed after 4 days of treatment with these green nanoparticles. The 3D model system was less susceptible to nanoparticles as compared to the 2D model system. Sg-BNP showed the highest anticancer potential on 2D and 3D prostate cancer models.
Collapse
Affiliation(s)
- Prachi Vaid
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, 173229, H, Solan, .P, India
| | - Adesh K Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, U, Kanpur, .P, India
| | - Eshu Singhal Sinha
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK
| | - Reena V Saini
- Central Research Laboratory and Department of Bio-sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
12
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
13
|
Gowsalya K, Rithisa B, Haldorai Y, Shanthi K, Vivek R. Engineered photonic near-infrared light activated photothermal theranostic nanovaccine induced targeted remodeling of tumor microenvironment. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102738. [PMID: 38341011 DOI: 10.1016/j.nano.2024.102738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.
Collapse
Affiliation(s)
- Karunanidhi Gowsalya
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Babu Rithisa
- Department of Chemistry, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu 641048, India
| | - Yuvaraj Haldorai
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeonbuk 38541, Republic of Korea
| | - Krishnamurthy Shanthi
- Department of Biochemistry, Kalinga University, Nava Raipur 492101, Chhattisgarh, India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
14
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
15
|
Manikantan V, Varalakshmi GS, Kennedy MMR, Pillai AS, Alexander A, Mathew N, Kathiravan E, Enoch IVMV. Engineered praseodymium sulfide nanocarrier and supramolecular association of anticancer drug for effective delivery to breast cancer cells. J Biotechnol 2024; 381:100-108. [PMID: 38181982 DOI: 10.1016/j.jbiotec.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Metal sulfide nanoparticles are synthesized for their biomedical applications, including cancer drug targeting. This paper reports a novel nanocomposite made of praseodymium sulfide nanoparticles and poly-cyclodextrin. The praseodymium sulfide nanoparticles were synthesized hydrothermal, autoclaving the nitrate precursors at 150 °C for 18 hours. The material is characterized using XRD and shows an orthorhombic crystal system with high crystallinity. The size and morphology of the nanomaterial were optimized. The material shows a rod-shaped morphology, as seen in the TEM image, with 150 ± 3 nm length and 25 ± 5 nm width. Particle size analysis supports this size range. The colloidal particles were stable in the aqueous medium without precipitation at neutral pH. The elements in the material in the polymer-coated form and their electronic states are studied by X-ray photoelectron spectroscopy. Thermogravimetry confirms that the material contains about 18.5% of the weight of the polymer. The material has an observable magnetic property at room temperature due to the praseodymium element. The UV-vis-NIR absorption spectrum of the material shows a long absorption range that extends to 1200 nm. The drug 5-fluorouracil is encapsulated in the nanoparticles through host: guest association, and its release profile is analyzed. The release is modulated at a slightly acidic pH, indicating the pH-tunability. The nanoparticles and 5-fluorouracil were taken in the w/w ratio of 2:1 (2/1 mg in 1 mL of deionized water). Further, the in vitro anticancer activity of the drug-encapsulated material is screened on breast cancer and non-cancerous cell lines. The IC50 values are reported, and the advantageous properties of the material as drug carriers are discussed.
Collapse
Affiliation(s)
- Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Mano Magdalin Rubella Kennedy
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Nikhil Mathew
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Elackia Kathiravan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu 641114, India.
| |
Collapse
|
16
|
Miao Z, Li J, Zeng S, Lv Y, Jia S, Ding D, Li W, Liu Q. Endoplasmic Reticulum-Targeting AIE Photosensitizers to Boost Immunogenic Cell Death for Immunotherapy of Bladder Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:245-260. [PMID: 38113527 DOI: 10.1021/acsami.3c14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bladder cancer is characterized by high rates of recurrence and multifocality. Immunogenic cell death (ICD) of cancer cells has emerged as a promising strategy to improve the immunogenicity of tumor cells for enhanced cancer immunotherapy. Although photosensitizer-based photodynamic therapy (PDT) has been validated as capable of inducing ICD in cancer cells, the photosensitizers with a sufficient ICD induction ability are still rare, and there have been few reports on the development of advanced photosensitizers to strongly evoke the ICD of bladder cancer cells for eliciting potent antitumor immune responses and eradicating bladder carcinoma in situ. In this work, we have synthesized a new kind of endoplasmic reticulum (ER)-targeting aggregation-induced emission (AIE) photosensitizer (named DPASCP-Tos), which could effectively anchor to the cellular ER and trigger focused reactive oxygen species (ROS) production within the ER, thereby boosting ICD in bladder cancer cells. Furthermore, we have demonstrated that bladder cancer cells killed by ER-targeted PDT could serve as a therapeutic cancer vaccine to elicit a strong antitumor immunity. Prophylactic vaccination of the bladder cancer cells killed by DPASCP-Tos under light irradiation promoted the maturation of dendritic cells (DCs) and the expansion of tumor antigen-specific CD8+ T cells in vivo and protected mice from subsequent in situ bladder tumor rechallenge and extended animal survival. In summary, the ER-targeted AIEgens developed here significantly amplified the ICD of bladder cells through focused ROS-based ER oxidative stress and transformed bladder cancer cells into the therapeutic vaccine to enhance immunogenicity against orthotopic bladder cancer, providing valuable insights for bladder carcinoma treatment.
Collapse
Affiliation(s)
- Zhizhao Miao
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| | - Jisen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin 300384, China
| | - Yonghui Lv
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qian Liu
- Tianjin First Central Hospital, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Wu D, Huang Q, Sha S, Xue F, Huang G, Tian Q. Engineering of copper sulfide mediated by phototherapy performance. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1932. [PMID: 37853634 DOI: 10.1002/wnan.1932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Copper sulfide based phototherapy, including photothermal therapy and photodynamic therapy, is an emerging minimally invasive treatment of tumor, which the light was converted to heat or reactive oxygen to kill the tumor cells. Compared with conventional chemotherapy and radiation therapy, Cu2-x S based phototherapy is more efficient and has fewer side effects. However, considering the dose-dependent toxicity of Cu2-x S, the performance of Cu2-x S based phototherapy still cannot meet the requirement of the clinical application to now. To overcome this limitation, engineering of Cu2-x S to improve the phototherapy performance by increasing light absorption has attracted extensive attention. For better guidance of Cu2-x S engineering, we outline the currently engineering method being explored, including (1) structural engineering, (2) compositional engineering, (3) functional engineering, and (4) performance engineering. Also, the relationship between the engineering method and phototherapy performance was discussed in this review. In addition, the further development of Cu2-x S based phototherapy is prospected, including smart materials based phototherapy, phototherapy induced immune microenvironment modulation et al. This review will provide new ideas and opportunities for engineering of Cu2-x S with better phototherapy performance. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dan Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuang Sha
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
18
|
Viswanath D, Park J, Misra R, Pizzuti VJ, Shin SH, Doh J, Won YY. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1924. [PMID: 37632203 DOI: 10.1002/wnan.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Rahul Misra
- Analytical Sciences, Sanofi, Toronto, Ontario, Canada
| | - Vincenzo J Pizzuti
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sung-Ho Shin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Junsang Doh
- SOFT Foundry Institute, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, Republic of Korea
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
20
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
21
|
Chen W, Zhang M, Wang C, Zhang Q. PEI-Based Nanoparticles for Tumor Immunotherapy via In Situ Antigen-Capture Triggered by Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55433-55446. [PMID: 37976376 DOI: 10.1021/acsami.3c13405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Activating a tumor antigen-specific immune response is key to the success of tumor immunotherapy and the development of personalized antitumor therapy. Nanocarriers can capture, enrich, and protect in situ produced tumor antigens due to immunogenic cell death (ICD), thus enhancing the tumor-specific immune response. Developing multifunctional nanocarriers that combine multiple antigen capturing mechanisms is crucial to the activation of tumor-specific immune responses. In this study, polyethylenimine (PEI) was employed as a main building block to construct a series of multifunctional indocyanine green (ICG)-loaded nanoparticles to capture antigens via multiple mechanisms: electrostatic interactions with PEI, hydrophobic interactions with the thermosensitive segment (POEGMA300), and covalent bonding with the pyridyl disulfide (PDS) groups, respectively. Their capacity of ICD induction, tumor antigen-capture, and antitumor immune responses were evaluated. Both the intrinsic toxicity of PEI and the ICG-mediated photothermal effect were responsible for inducing ICD. The positively charged PEI segment exhibited the best antigen-capturing ability via electrostatic interactions, promoted bone marrow-derived dendritic cell maturation and CD8+ T cell proliferation, and elicited antitumor immune responses in vivo. PDS groups bonded antigens covalently and significantly contributed to the suppression of distant tumor growth. Although the thermosensitive hydrophobic polymer segment did not contribute positively to antigen capture or tumor growth inhibition, NPs containing all of the functional modules prolonged the survival of tumor-bearing mice more than other treatments. This study provides more chemical insights into the design of polymer-based in situ nanovaccines against cancer.
Collapse
Affiliation(s)
- Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
22
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
23
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
24
|
Ma J, Li N, Wang J, Liu Z, Han Y, Zeng Y. In vivo synergistic tumor therapies based on copper sulfide photothermal therapeutic nanoplatforms. EXPLORATION (BEIJING, CHINA) 2023; 3:20220161. [PMID: 37933283 PMCID: PMC10582616 DOI: 10.1002/exp.20220161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Tumor cells may be eliminated by increasing their temperature. This is achieved via photothermal therapy (PTT) by penetrating the tumor tissue with near-infrared light and converting light energy into heat using photothermal agents. Copper sulfide nanoparticles (CuS NPs) are commonly used as PTAs in PTT. In this review, we aimed to discuss the synergism between tumor PTT with CuS NPs and other therapies such as chemotherapy, radiotherapy, dynamic therapies (photodynamic, chemodynamic, and sonodynamic therapy), immunotherapy, gene therapy, gas therapy, and magnetic hyperthermia. Furthermore, we summarized the results obtained with a combination of two treatments and at least two therapies, with PTT as one of the included therapies. Finally, we summarized the benefits and drawbacks of various therapeutic options and state of the art CuS-based PTT and provided future directions for such therapies.
Collapse
Affiliation(s)
- Jingwen Ma
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Na Li
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Jingjian Wang
- Radiology DepartmentCT and MRI RoomNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Zhe Liu
- Department of PathologyNinth Hospital of Xi'anNinth Affiliated Hospital of Medical College of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceP. R. China
| | - Yulong Han
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Yun Zeng
- School of Life Science and TechnologyXidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi'anShaanxi ProvinceP. R. China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans‐Scale Life Information, School of Life Science and TechnologyXidian UniversityXi'anShaanxi ProvinceP. R. China
| |
Collapse
|
25
|
Kim S, Ahn JH, Jeong DI, Yang M, Jeong JH, Choi YE, Kim HJ, Han Y, Karmakar M, Ko HJ, Cho HJ. Alum-tuned hyaluronic acid-based hydrogel with immune checkpoint inhibition for immunophoto therapy of cancer. J Control Release 2023; 362:1-18. [PMID: 37595669 DOI: 10.1016/j.jconrel.2023.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/25/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Alum-crosslinked hyaluronic acid-dopamine (HD) hydrogel containing indocyanine green (ICG) with anti-programmed cell death-1 (PD-1) antibody (Ab) administration was developed for immunophoto therapy of cancer. Alum modulates the rheological characteristics of hydrogel for enabling syringe injection, shear-thinning feature, and slower biodegradation. In addition, alum in HD-based hydrogel provided CD8+ T cell-mediated immune responses for cancer therapy. ICG in the hydrogel under near-infrared (NIR) light exposure may induce hyperthermia and generate singlet oxygen for selective cancer cell killing. HD/alum/ICG hydrogel injection with NIR laser irradiation elevated PD-1 level in CD8+ T cells. Administration of PD-1 Ab aiming at highly expressed PD-1 in T cells may amplify the anticancer efficacies of HD/alum/ICG hydrogel along with NIR laser. HD/alum/ICG hydrogel with NIR light may have both CD8+ T cell-linked immune responses and ICG-related photodynamic/photothermal effects. Additional injection of immune checkpoint inhibitor can ultimately suppress primary and distant tumor growth by combination with those therapeutic actions.
Collapse
Affiliation(s)
- Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingyu Yang
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Hyeon Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yeoung Eun Choi
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Youngjoo Han
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
26
|
Wang D, Yu Z, Qi Y, Hu K, Zhou T, Liu J, Rao W. Liquid Metal Nanoplatform Based Autologous Cancer Vaccines. ACS NANO 2023; 17:13278-13295. [PMID: 37253081 DOI: 10.1021/acsnano.3c00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Therapeutic cancer vaccines have been vigorously sought to bolster host adaptive immunity against metastatic cancers, but tumor heterogeneity, ineffective antigen utilization, and immunosuppressive tumor microenvironment hinder their clinical applications. Autologous antigen adsorbability and stimulus-release carrier coupling with immunoadjuvant capacity are urgent for personalized cancer vaccines. Here, we propose a perspective strategy of using a multipotent gallium-based liquid metal (LM) nanoplatform for personalized in situ cancer vaccines (ISCVs). The antigen-capturing and immunostimulatory LM nanoplatform can not only effectively destroy orthotopic tumors to generate multifarious autologous antigens upon external energy stimulation (photothermal/photodynamic effect) but also capture and transport antigens into dendritic cells (DCs) to enhance antigen utilization (adequate DCs uptake, antigen-endo/lysosomal escape) and facilitate DCs activation (mimic alum immunoadjuvant capacity), which ultimately awaken systemic antitumor immunity (expand cytotoxic T lymphocytes and modulate tumor microenvironment). With immune checkpoint blockade (anti-PD-L1) to further relieve the immunosuppressive tumor microenvironment, the positive tumoricidal immunity feedback loop was established to effectively eliminate orthotopic tumors, inhibit abscopal tumor growth, relapse, and metastasis as well as tumor-specific prevention. Collectively, this study demonstrates the potential of a multipotent LM nanoplatform for personalized ISCVs, which will open frontier exploration of LM-based immunostimulatory biomaterials and may encourage further investigation of precise individualized immunotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yuxia Qi
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Kaiwen Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tian Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Li Y, Li S, Jiang Z, Tan K, Meng Y, Zhang D, Ma X. Targeting lymph node delivery with nanovaccines for cancer immunotherapy: recent advances and future directions. J Nanobiotechnology 2023; 21:212. [PMID: 37415161 PMCID: PMC10327386 DOI: 10.1186/s12951-023-01977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although cancer immunotherapy is a compelling approach against cancer, its effectiveness is hindered by the challenge of generating a robust and durable immune response against metastatic cancer cells. Nanovaccines, specifically engineered to transport cancer antigens and immune-stimulating agents to the lymph nodes, hold promise in overcoming these limitations and eliciting a potent and sustained immune response against metastatic cancer cells. This manuscript provides an in-depth exploration of the lymphatic system's background, emphasizing its role in immune surveillance and tumor metastasis. Furthermore, it delves into the design principles of nanovaccines and their unique capability to target lymph node metastasis. The primary objective of this review is to provide a comprehensive overview of the current advancements in nanovaccine design for targeting lymph node metastasis, while also discussing their potential to enhance cancer immunotherapy. By summarizing the state-of-the-art in nanovaccine development, this review aims to shed light on the promising prospects of harnessing nanotechnology to potentiate cancer immunotherapy and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Yueyi Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Shen Li
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Keqin Tan
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China
| | - Yuanling Meng
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dingyi Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
28
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
29
|
Zhao Y, Wen M, Yu N, Tao C, Ren Q, Qiu P, Zhang Y, Wang Y, Xia J, Chen Z. Design and synthesis of cancer-cell-membrane-camouflaged hemoporfin-Cu 9S 8 nanoagents for homotypic tumor-targeted photothermal-sonodynamic therapy. J Colloid Interface Sci 2023; 637:225-236. [PMID: 36701868 DOI: 10.1016/j.jcis.2023.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Multimodal therapies have aroused great interest in tumor therapy due to their highly effective antitumor effect. However, immune clearance limits the practical application of nanoagents-based multimodal therapies. To solve this problem, we have designed hemoporfin-Cu9S8 hollow nanospheres camouflaged with the CT26 cell membrane (CCM) as a model of multifunctional agents, achieving homologous-targeted synergistic photothermal therapy (PTT) and sonodynamic therapy (SDT). Hollow Cu9S8 as photothermal agents and carriers have been obtained through sulfurizing cuprous oxide (Cu2O) nanoparticles through "Kirkendall effect", and they exhibit hollow nanospheres structure with a size of ∼200 nm. Then, Cu9S8 nanospheres could be used to load with hemoporfin sonosensitizers, and then hemoporfin-Cu9S8 nanospheres (abbreviated as H-Cu9S8) can be further surface-camouflaged with CCM. H-Cu9S8@CCM nanospheres exhibit a broad photoabsorption in the range of 700-1100 nm and high photothermal conversion efficiency of 39.8% under 1064 nm laser irradiation for subsequent PTT. In addition, under the excitation of ultrasound, the loaded hemoporfin could generate 1O2 for subsequent SDT. Especially, H-Cu9S8@CCM NPs are featured with biocompatibility and homologous targeting capacity. When intravenously (i.v.) injected into mice, H-Cu9S8@CCM NPs display a higher blood circulation half-life (3.17 h, 6.47 times) and tumor accumulation amount (18.75% ID/g, 1.94 times), compared to H-Cu9S8 NPs (0.49 h, 9.68% ID/g) without CCM. In addition, upon 1064 nm laser and ultrasound irradiation, H-Cu9S8@CCM NPs can inhibit tumor growth more efficiently due to high accumulation efficiency and synergistic PTT-SDT functions. Therefore, the present study provides some insight into the design of multifunctional efficient agents for homotypic tumor-targeted therapy.
Collapse
Affiliation(s)
- Yaoyu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Wang
- Department of Radiology, Songjiang Hospital Affiliated To Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai 201600, China.
| | - Jindong Xia
- Department of Radiology, Songjiang Hospital Affiliated To Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai 201600, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
30
|
Yi Y, Yu M, Li W, Zhu D, Mei L, Ou M. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release 2023; 355:760-778. [PMID: 36822241 DOI: 10.1016/j.jconrel.2023.02.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
The successful clinical application of immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapeutics has attracted extensive attention to immunotherapy, however, their drawbacks such as limited specificity, persistence and toxicity haven't met the high expectations on efficient cancer treatments. Therapeutic cancer vaccines which instruct the immune system to capture tumor specific antigens, generate long-term immune memory and specifically eliminate cancer cells gradually become the most promising strategies to eradicate tumor. However, the disadvantages of some existing vaccines such as weak immunogenicity and in vivo instability have restricted their development. Nanotechnology has been recently incorporated into vaccine fabrication and exhibited promising results for cancer immunotherapy. Nanoparticles promote the stability of vaccines, as well as enhance antigen recognition and presentation owing to their nanometer size which promotes internalization of antigens by phagocytic cells. The surface modification with targeting units further permits the delivery of vaccines to specific cells. Meanwhile, nanocarriers with adjuvant effect can improve the efficacy of vaccines. In addition to classic vaccines composed of antigens and adjuvants, the nanoparticle-mediated chemotherapy, radiotherapy and certain other therapeutics could induce the release of tumor antigens in situ, which therefore effectively simulate antitumor immune responses. Such vaccine-like nanomedicine not only kills primary tumors, but also prevents tumor recurrence and helps eliminate metastatic tumors. Herein, we introduce recent developments in nanoparticle-based delivery systems for antigen delivery and in situ antitumor vaccination. We will also discuss the remaining opportunities and challenges of nanovaccine in clinical translation towards cancer treatment.
Collapse
Affiliation(s)
- Yunfei Yi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Meitong Ou
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
31
|
Shen S, Gao Y, Ouyang Z, Jia B, Shen M, Shi X. Photothermal-triggered dendrimer nanovaccines boost systemic antitumor immunity. J Control Release 2023; 355:171-183. [PMID: 36736909 DOI: 10.1016/j.jconrel.2023.01.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Tumor vaccine that can effectively activate or strengthen the body's antitumor immune response to kill and eliminate tumor cells has attracted widespread attention. Currently developed tumor vaccines have severe shortcomings such as low bioavailability and lack of dual or multiple functions, resulting in poor antitumor efficacy. Herein, we report the development of an advanced nanosystem integrated with phenylboronic acid (PBA)-functionalized poly(amidoamine) dendrimers of generation 5 (G5), copper sulfide nanoparticles, and cyclic GMP-AMP (cGAMP), an immune adjuvant (for short, G5-PBA@CuS/cGAMP) to act as a photothermal-triggered nanovaccine. We show that the prepared functional nanosystem possesses an average CuS core size of 3.6 nm, prominent near-infrared absorption feature to have an excellent photothermal conversion efficiency of 44.0%, and good protein adsorption characteristics due to the PBA modification. With these features, the developed nanosystem can be adopted for photothermal therapy of primary melanoma tumors and simultaneously absorb the whole tumor cell antigens, thus creating photothermal-triggered dendrimeric nanovaccine of G5-PBA@CuS/cGAMP/antigen in situ to induce antitumor immune response to inhibit the distal tumors as well. Meanwhile, melanoma cells treated with the G5-PBA@CuS in vitro under laser irradiation allowed the creation of G5-PBA@CuS/antigen complexes that could be further integrated with cGAMP to form preformed nanovaccine for effective primary tumor inhibition and tumor occurrence prevention. The designed photothermal-triggered dendrimeric nanovaccine may represent an advanced nanomedicine formulation to effectively inhibit the growth of primary and distal tumors, and prevent tumor occurrence through the stimulated systemic antitumor immunity.
Collapse
Affiliation(s)
- Siyan Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Bingyang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
32
|
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. MATERIALS HORIZONS 2023; 10:361-392. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Therapeutic cancer vaccines, which are designed to amplify tumor-specific T cell responses, have been envisioned as one of the most powerful tools for effective cancer immunotherapy. However, increasing the potency, quality and durability of the vaccine response remains a big challenge. In recent years, materials-based delivery systems focusing on the co-delivery of antigens and adjuvants to enhance cancer vaccination therapy have attracted increasing interest. Among various materials, polymeric nanoparticles (NPs) with different physicochemical properties which can incorporate multiple immunological cues are of great interest. In this review, the recent progress in the design and construction of both ex vivo subunit and in situ cancer vaccines using polymeric NPs is summarized. Especially, we will focus on how these NPs improve the adjuvanticity of vaccines. The design principles of polymeric NPs for ex vivo subunit cancer vaccines and in situ cancer vaccination are also discussed. Finally, we want to briefly discuss molecular chaperones in cancer immunity and the applications of our unique self-assembly mixed shell polymeric micelle-based nanochaperones for cancer vaccines.
Collapse
Affiliation(s)
- Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Jiajing Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
| |
Collapse
|
33
|
Rodà F, Caraffi R, Picciolini S, Tosi G, Vandelli MA, Ruozi B, Bedoni M, Ottonelli I, Duskey JT. Recent Advances on Surface-Modified GBM Targeted Nanoparticles: Targeting Strategies and Surface Characterization. Int J Mol Sci 2023; 24:ijms24032496. [PMID: 36768820 PMCID: PMC9916841 DOI: 10.3390/ijms24032496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor, associated with low long-term survival. Nanoparticles (NPs) developed against GBM are a promising strategy to improve current therapies, by enhancing the brain delivery of active molecules and reducing off-target effects. In particular, NPs hold high potential for the targeted delivery of chemotherapeutics both across the blood-brain barrier (BBB) and specifically to GBM cell receptors, pathways, or the tumor microenvironment (TME). In this review, the most recent strategies to deliver drugs to GBM are explored. The main focus is on how surface functionalizations are essential for BBB crossing and for tumor specific targeting. We give a critical analysis of the various ligand-based approaches that have been used to target specific cancer cell receptors and the TME, or to interfere with the signaling pathways of GBM. Despite the increasing application of NPs in the clinical setting, new methods for ligand and surface characterization are needed to optimize the synthesis, as well as to predict their in vivo behavior. An expert opinion is given on the future of this research and what is still missing to create and characterize a functional NP system for improved GBM targeting.
Collapse
Affiliation(s)
- Francesca Rodà
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giovanni Tosi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, TE.FAR.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0592058573
| |
Collapse
|
34
|
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D, Liu J. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 2023:1-15. [PMID: 36622894 DOI: 10.1080/15548627.2023.2165323] [Citation(s) in RCA: 272] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ferroptosis is a type of iron-dependent regulated cell death characterized by unrestricted lipid peroxidation and membrane damage. Although GPX4 (glutathione peroxidase 4) plays a master role in blocking ferroptosis by eliminating phospholipid hydroperoxides, the regulation of GPX4 remains poorly understood. Here, we report an unexpected role for copper in promoting ferroptotic cell death, but not cuproptosis, by inducing macroautophagic/autophagic degradation of GPX4. Copper chelators reduce ferroptosis sensitivity but do not inhibit other types of cell death, such as apoptosis, necroptosis, and alkaliptosis. Conversely, exogenous copper increases GPX4 ubiquitination and the formation of GPX4 aggregates by directly binding to GPX4 protein cysteines C107 and C148. TAX1BP1 (Tax1 binding protein 1) then acts as an autophagic receptor for GPX4 degradation and subsequent ferroptosis in response to copper stress. Consequently, copper enhances ferroptosis-mediated tumor suppression in a mouse model of pancreatic cancer tumor, whereas copper chelators attenuate experimental acute pancreatitis associated with ferroptosis. Taken together, these findings provide new insights into the link between metal stress and autophagy-dependent cell death.Abbreviations: CALCOCO2, calcium binding and coiled-coil domain 2; GPX4, glutathione peroxidase 4; MAP1LC3A/B, microtubule associated protein 1 light chain 3 alpha/beta; MPO, myeloperoxidase; NCOA4, nuclear receptor coactivator 4; OPTN, optineurin; PDAC, pancreatic ductal adenocarcinoma; RIPK1, receptor interacting serine/threonine kinase 1; ROS, reactive oxygen species; SLC40A1, solute carrier family 40 member 1; SQSTM1, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TM, tetrathiomolybdate.
Collapse
Affiliation(s)
- Qian Xue
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ding Yan
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xi Chen
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaofen Li
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Xin Chen
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Guo HL, Xie XY, Xu M. Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:829-837. [DOI: 10.11569/wcjd.v30.i19.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thermal ablation is one of the important treatments for liver tumors, but the postoperative recurrence rate is high. Thermal ablation has been reported to trigger the release of tumor-associated antigens, which in turn initiates antitumor immune response. However, this anti-tumor immune effect cannot effectively suppress tumor recurrence due to the obstacles of antigen presentation, the formation of tumor-suppressive immune microenvironment, and the hypoxic and hypovascular tumor microenvironment. Therefore, using immunotherapy to enhance the antitumor immune effect after thermal ablation is a potential strategy to improve the prognosis of tumor patients. However, free immune drugs have the disadvantages of poor targeting and short half-life. Nanomaterials have the advantages of strong modifiability, controllable drug ratio, and excellent targeting. Based on the characteristics of the tumor immune microenvironment after thermal ablation, scholars have designed nano-immunopharmaceuticals that can increase the tumor permeability of immune drugs, stimulate antigen presentation, and reshape the tumor immune microenvironment. This review focuses on the role of nanomaterials in tumor ablation combined with immunotherapy for liver tumors.
Collapse
Affiliation(s)
- Huan-Ling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| |
Collapse
|
37
|
Liu Y, Huang J, Liu J. Single laser activated photothermal/photodynamic dual-modal cancer phototherapy by using ROS-responsive targeting flower-like ruthenium nanoparticles. J Mater Chem B 2022; 10:7760-7771. [PMID: 36069420 DOI: 10.1039/d2tb01276f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phototherapy, which mainly includes photothermal therapy (PTT) and photodynamic therapy (PDT), is one of the most promising strategies for cancer therapeutics. Ruthenium as a metal nanomaterial shows great potential as a phototherapy agent. Herein, we developed flower-like ruthenium nanoparticles (FRuNPs) to enhance cancer phototherapy. Compared with spherical ruthenium nanoparticles (SRuNPs) of a similar size, FRuNPs exhibited more enhanced near-infrared (NIR) absorption. FRuNPs exhibited a superior photothermal effect, which significantly improved the efficiency of PTT. Intracellular reactive oxide species (ROS) generation was recognized as the primary mechanism of PDT treatment. FRuNPs mediated the generation of ROS when exposed to 808 nm laser irradiation. Moreover, with the synergistic effect of PTT and PDT in FRuNPs, the phototherapeutic effects were obviously enhanced. In vitro phototherapy of MCF-7 cells in the presence of FRuNPs led to nearly 100% cell death under irradiation with an 808 nm laser. And in vivo FRuNPs further showed the capacity of in completely clearing the tumor tissues and improving the hypoxia environment with 14 days for interval laser irradiation. These results indicate that FRuNPs have versatile potential for tumor phototherapy.
Collapse
Affiliation(s)
- Yanan Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China. .,Shenzhen Longhua Maternity and Childcare Hospital, Shenzhen, China
| | - Junfang Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
38
|
Ouyang F, Zhang X, Zhang L, Liu Y, Shuai Q. Enhanced photo-hypoxia-activated combination therapy traced by AIE photosensitizer and targeted by hyaluronic acid: Disulphide bond interference of detoxification barrier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112535. [PMID: 35930948 DOI: 10.1016/j.jphotobiol.2022.112535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The treatment efficacy of anticancer drugs in complex physiological environments is still restricted by multi-drug resistance. To overcome this issue, a nanodrug system of HA-SS@CuS@ZIF-8@TPZ&TBMACN (HSCZTT) that breaks through the detoxification barrier for tirapazamine (TPZ) delivery was developed in this manuscript. In addition to the photothermal effect aroused by CuS in HSCZTT, which can damage tumour cells, TBMACN with photostable fluorescence in the aggregate state can also generate sufficient reactive oxygen species (ROS) to destroy tumour cells. The continuous consumption of oxygen in PDT aggravates the hypoxic environment of tumours, which further activates the TPZ released in the acidic microenvironment of the tumour to achieve apoptosis of the tumour cells. The HSCZTT can not only target the CD44 receptor overexpressed on the surface of the cancer cell, but can also effectively consume a large amount of glutathione (GSH) through the disulphide bond-modified hyaluronic acid, which serves as a targeted disulphide bond, interfering with the detoxification barrier. Our finding presents a rational strategy to overcome multidrug resistance for the improved efficacy of anticancer drugs by the targeting of Hyaluronic acid (HA), release of the drug by the acid response of ZIF-8, breakthrough of the detoxification barrier, precise positioning of the drug release and combined treatment with phototherapy and hypoxia-activated chemotherapy.
Collapse
Affiliation(s)
- Feng Ouyang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
39
|
Yang X, Gao M, Xu R, Tao Y, Luo W, Wang B, Zhong W, He L, He Y. Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors. Front Immunol 2022; 13:969447. [PMID: 36032103 PMCID: PMC9412234 DOI: 10.3389/fimmu.2022.969447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
According to the difference in temperature, thermotherapy can be divided into thermal ablation and mild hyperthermia. The main advantage of thermal ablation is that it can efficiently target tumors in situ, while mild hyperthermia has a good inhibitory effect on distant metastasis. There are some similarities and differences between the two therapies with respect to inducing anti-tumor immune responses, but neither of them results in sustained systemic immunity. Malignant tumors (such as breast cancer, pancreatic cancer, nasopharyngeal carcinoma, and brain cancer) are recurrent, highly metastatic, and highly invasive even after treatment, hence a single therapy rarely resolves the clinical issues. A more effective and comprehensive treatment strategy using a combination of hyperthermia and immune checkpoint inhibitor (ICI) therapies has gained attention. This paper summarizes the relevant preclinical and clinical studies on hyperthermia combined with ICI therapies and compares the efficacy of two types of hyperthermia combined with ICIs, in order to provide a better treatment for the recurrence and metastasis of clinically malignant tumors.
Collapse
Affiliation(s)
- Ximing Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Miaozhi Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yangyang Tao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Luo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binya Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenliang Zhong
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
| | - Lan He
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- *Correspondence: Yingchun He,
| |
Collapse
|
40
|
Ahmad MZ, Alasiri AS, Alasmary MY, Abdullah MM, Ahmad J, Abdel Wahab BA, M Alqahtani SA, Pathak K, Mustafa G, Khan MA, Saikia R, Gogoi U. Emerging advances in nanomedicine for breast cancer immunotherapy: opportunities and challenges. Immunotherapy 2022; 14:957-983. [PMID: 35852105 DOI: 10.2217/imt-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is one of the most common causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and an appropriate therapeutic approach for all cancers are climacterics for a favorable prognosis. Targeting the immune system in breast cancer is already a clinical reality with notable successes, specifically with checkpoint blockade antibodies and chimeric antigen receptor T-cell therapy. However, there have been inevitable setbacks in the clinical application of cancer immunotherapy, including inadequate immune responses due to insufficient delivery of immunostimulants to immune cells and uncontrolled immune system modulation. Rapid advancements and new evidence have suggested that nanomedicine-based immunotherapy may be a viable option for treating breast cancer.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Ali S Alasiri
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Medical Department, College of Medicine, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - M M Abdullah
- Advanced Materials & Nano-Research Centre, Department of Physics, Faculty of Science & Arts, Najran University, Najran, 11001, Kingdom Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Saif Aboud M Alqahtani
- Internal Medicine Department, College of Medicine, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gulam Mustafa
- College of Pharmacy, Shaqra University, Ad-Dawadmi Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Ahmad Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
41
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
42
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
43
|
Xin Y, Hou Y, Cong X, Tan H, Wang J, Mao K, Wang X, Liu F, Yang YG, Sun T. Kidney functional stages influence the role of PEG end-group on the renal accumulation and distribution of PEGylated nanoparticles. NANOSCALE 2022; 14:9379-9391. [PMID: 35727088 DOI: 10.1039/d2nr02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modification with polyethylene glycol (PEG), or PEGylation, has become a popular method to improve the efficiency of drug delivery in vivo using nanoparticle-based delivery systems. The PEG end-group plays an important role in the in vivo fate of PEGylated nanoparticles through its interactions with proteins in the serum and the cell membrane. However, the effects of PEG end-groups on the renal clearance of PEGylated nanoparticles remain unclear. Kidney function may also affect the renal accumulation and distribution of nanoparticles. Herein, we demonstrate that the accumulation and distribution of PEGylated nanoparticles in kidneys are significantly affected by both the PEG end-group and kidney function damage. Interestingly, compared to PEG with an amino or methoxy end-group, PEG with maleimide as the end-group markedly enhanced the accumulation of PEGylated nanoparticles in normal kidneys, which may improve renal clearance. However, obvious enhancements in the renal accumulation and medullary distribution of PEGylated nanoparticles are detected in kidneys with functional impairment. Damage to renal function further affects how the PEG end-group influences the accumulation and distribution of PEGylated nanoparticles in kidneys in vivo. Collectively, the findings provide deep insights into the interactions between PEGylated nanoparticles and kidneys in vivo.
Collapse
Affiliation(s)
- Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yue Hou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| |
Collapse
|
44
|
Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1797. [PMID: 35419993 DOI: 10.1002/wnan.1797] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
Abstract
Copper-based nanomaterials (Cu-based NMs) with favorable biocompatibility and unique properties have attracted the attention of many biomedical researchers. Cu-based NMs are one of the most widely studied materials in cancer treatment. In recent years, great progress has been made in the field of biomedicine, especially in the treatment and diagnosis of tumors. This review begins with the classification of Cu-based NMs and the recent synthetic strategies of Cu-based NMs. Then, according to the abundant and special properties of Cu-based NMs, their application in biomedicine is summarized in detail. For biomedical imaging, such as photoacoustic imaging, positron emission tomography imaging, and multimodal imaging based on Cu-based NMs are summarized, as well as strategies to improve the diagnostic effectiveness. Moreover, a series of unique structures and functions as well as the underlying property activity relationship of Cu-based NMs were shown to highlight their promising therapeutic performance. Cu-based NMs have been widely used in monotherapies, such as photothermal therapy (PTT) and chemodynamic therapy (CDT). Moreover, the sophisticated design in composition, structure, and surface fabrication of Cu-based NMs can endow these NMs with more modalities in cancer diagnosis and therapy. To further improve the efficiency of cancer treatment, combined therapy based on Cu-based NMs was introduced in detail. Finally, the challenges, critical factors, and future prospects for the clinical translation of Cu-based NMs as multifunctional theranostic agents were also considered and discussed. The aim of this review is to provide a better understanding and key consideration for the rational design of this increasingly important new paradigm of Cu-based NMs as theranostic agents. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Xiaoyan Zhong
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Multifunctional Doxorubicin@Hollow-Cu9S8 nanoplatforms for Photothermally-Augmented Chemodynamic-Chemo therapy. J Colloid Interface Sci 2022; 615:38-49. [DOI: 10.1016/j.jcis.2022.01.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
|
46
|
Li Y, Zhang P, Tang W, McHugh KJ, Kershaw SV, Jiao M, Huang X, Kalytchuk S, Perkinson CF, Yue S, Qiao Y, Zhu L, Jing L, Gao M, Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS NANO 2022; 16:8076-8094. [PMID: 35442624 DOI: 10.1021/acsnano.2c01153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Improving the effectiveness of cancer therapy will require tools that enable more specific cancer targeting and improved tumor visualization. Theranostics have the potential for improving cancer care because of their ability to serve as both diagnostics and therapeutics; however, their diagnostic potential is often limited by tissue-associated light absorption and scattering. Herein, we develop CuInSe2@ZnS:Mn quantum dots (QDs) with intrinsic multifunctionality that both enable the accurate localization of small metastases and act as potent tumor ablation agents. By leveraging the growth kinetics of a ZnS shell on a biocompatible CuInSe2 core, Mn doping, and folic acid functionalization, we produce biocompatible QDs with high near-infrared (NIR)-II fluorescence efficiency up to 31.2%, high contrast on magnetic resonance imaging (MRI), and preferential distribution in 4T1 breast cancer tumors. MRI-enabled contrast of these nanoprobes is sufficient to timely identify small metastases in the lungs, which is critically important for preventing cancer spreading and recurrence. Further, exciting tumor-resident QDs with NIR light produces both fluorescence for tumor visualization through radiative recombination pathways as well as heat and radicals through nonradiative recombination pathways that kill cancer cells and initiate an anticancer immune response, which eliminates tumor and prevents tumor regrowth in 80% of mice.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Peisen Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Stephen V Kershaw
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 99077, Hong Kong SAR, China
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaodan Huang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Jing
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Buxing Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
47
|
Dai X, Li X, Liu Y, Yan F. Recent advances in nanoparticles-based photothermal therapy synergizing with immune checkpoint blockade therapy. MATERIALS & DESIGN 2022; 217:110656. [DOI: 10.1016/j.matdes.2022.110656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
48
|
Wang Z, Hou Z, Wang P, Chen F, Luo X. CuS-PNIPAm Nanoparticles with the Ability to Initiatively Capture Bacteria for Photothermal Treatment of Infected Skin. Regen Biomater 2022; 9:rbac026. [PMID: 35620190 PMCID: PMC9128540 DOI: 10.1093/rb/rbac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Copper sulfide nanoparticles (CuS NPs) have shown great potential in various application fields, especially in biomedical engineering fields. CuS NPs, with the ability to actively capture and kill bacteria and without the worry of biocompatibility, will greatly expand their applications. Herein, a four-arm star thermo-sensitive polyisopropylacrylamide (4sPNIPAm) was used to modify CuS NPs (CuS-PNIPAm NPs). The obtained nanoparticles displayed the controlled release of copper ions and higher photothermal conversion ability in comparison with contrast materials CuS-PEG NPs and CuS NPs. Aggregation of CuS-PNIPAm NPs at above 34 °C resulted in capturing bacteria by forming the aggregates of nanoparticles-bacteria. Both S. aureus and E. coli co-cultured with CuS-PNIPAm NPs were completely killed upon NIR irradiation in minutes. Furthermore, CuS-PNIPAm NPs were verified to be a photothermal agent without toxic effect. In in vivo experiment, the nanoparticles effectively killed the bacteria in the wound and accelerated the process of wound repairment. Overall, photothermal treatment by CuS-PNIPAm NPs demonstrates the ability to actively capture and kill bacteria, and has a potential in the treatment of infected skin and the regeneration of skin tissues. The therapy will exert a far-reaching impact on the regeneration of stubborn chronic wounds.
Collapse
Affiliation(s)
- Zizhen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Zishuo Hou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Peiwen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
49
|
Ouyang Z, Gao Y, Yang R, Shen M, Shi X. Genetic Engineering of Dendritic Cells Using Partially Zwitterionic Dendrimer-Entrapped Gold Nanoparticles Boosts Efficient Tumor Immunotherapy. Biomacromolecules 2022; 23:1326-1336. [PMID: 35235306 DOI: 10.1021/acs.biomac.1c01571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Effective processing and cross-priming of tumor neoantigen by dendritic cells (DCs) to T cells for spontaneous immune response generation to effectively kill cancer cells remain challenging in cancer immunotherapy. Here, we report a general approach to genetically engineer DCs through silencing their YTHDF1 protein (an important reader protein responsible for RNA m6A methylation) expression via a dendrimeric non-viral vector to boost effective tumor immunotherapy. Poly(amidoamine) dendrimers of generation 5 were partially decorated with mannose and 1,3-propanesultone and then entrapped with gold (Au) nanoparticles. The created dendrimer nanoplatform has an Au core size of 1.8 nm; possesses desired stability, good cytocompatibility, and excellent YTHDF1 siRNA compression ability; and enables targeted gene silencing of DCs overexpressing mannose receptors to upregulate the expression of CD80 and CD86, markers of DCs maturation, potentially leading to tumor antigen cross-presentation. With these properties owned, the combination of YTHDF1 silencing of DCs with programmed cell death-ligand 1 antibody can boost the best immunotherapy of a xenografted melanoma tumor model through the created antitumor immune responses. Findings in this study demonstrate a general approach of genetic engineering of DCs via a dendrimeric non-viral vector to effectively boost antitumor immunotherapy.
Collapse
Affiliation(s)
- Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| |
Collapse
|
50
|
Zhuang B, Chen T, Huang Y, Xiao Z, Jin Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm Sin B 2022; 12:1447-1459. [PMID: 35530148 PMCID: PMC9069317 DOI: 10.1016/j.apsb.2021.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.
Collapse
Key Words
- ALT, alanine aminotransferase
- Breast cancer
- CCK-8, cell counting kit-8
- CRE, creatinine
- Chemotherapy
- DOX, doxorubicin
- DOX@PDA, DOX-loaded PDA nanoparticles
- DTT, dithiothreitol
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- FDA, fluorescein diacetate
- H&E, Hematoxylin and Eosin
- HA, hyaluronic acid
- HA-SH, thiolated hyaluronic acid
- Hydrogel
- Immunotherapy
- Intratumoral injection
- LPS, lipopolysaccharide
- Metastasis
- NHS, N-hydroxysuccinimide
- NIR, near-infrared
- PDA, polydopamine
- PI, propidium iodide
- PTT, photothermal therapy
- Photothermal
- Polydopamine
- RBC, red blood cells
- SEM, scanning electron microscope
- Tunel, terminal deoxynucleotidyl transferase dUTP nick end labeling
- WBC, white blood cells
Collapse
|