1
|
Mei T, Chen F, Huang T, Feng Z, Wan T, Han Z, Li Z, Hu L, Lin CH, Lu Y, Cheng W, Qi DC, Chu D. Ion-Electron Interactions in 2D Nanomaterials-Based Artificial Synapses for Neuromorphic Applications. ACS NANO 2025; 19:17140-17172. [PMID: 40297996 DOI: 10.1021/acsnano.5c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
With the increasing limitations of conventional computing techniques, particularly the von Neumann bottleneck, the brain's seamless integration of memory and processing through synapses offers a valuable model for technological innovation. Inspired by biological synapse facilitating adaptive, low-power computation by modulating signal transmission via ionic conduction, iontronic synaptic devices have emerged as one of the most promising candidates for neuromorphic computing. Meanwhile, the atomic-scale thickness and tunable electronic properties of van der Waals two-dimensional (2D) materials enable the possibility of designing highly integrated, energy-efficient devices that closely replicate synaptic plasticity. This review comprehensively analyzes advancements in iontronic synaptic devices based on 2D materials, focusing on electron-ion interactions in both iontronic transistors and memristors. The challenges of material stability, scalability, and device integration are evaluated, along with potential solutions and future research directions. By highlighting these developments, this review offers insights into the potential of 2D materials in advancing neuromorphic systems.
Collapse
Affiliation(s)
- Tingting Mei
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tianxu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zijian Feng
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhaojun Han
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Zhi Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 0200, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Dong-Chen Qi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Bag SP, Lee S, Song J, Kim J. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. BIOSENSORS 2024; 14:150. [PMID: 38534257 DOI: 10.3390/bios14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Hydrogel-gated synaptic transistors offer unique advantages, including biocompatibility, tunable electrical properties, being biodegradable, and having an ability to mimic biological synaptic plasticity. For processing massive data with ultralow power consumption due to high parallelism and human brain-like processing abilities, synaptic transistors have been widely considered for replacing von Neumann architecture-based traditional computers due to the parting of memory and control units. The crucial components mimic the complex biological signal, synaptic, and sensing systems. Hydrogel, as a gate dielectric, is the key factor for ionotropic devices owing to the excellent stability, ultra-high linearity, and extremely low operating voltage of the biodegradable and biocompatible polymers. Moreover, hydrogel exhibits ionotronic functions through a hybrid circuit of mobile ions and mobile electrons that can easily interface between machines and humans. To determine the high-efficiency neuromorphic chips, the development of synaptic devices based on organic field effect transistors (OFETs) with ultra-low power dissipation and very large-scale integration, including bio-friendly devices, is needed. This review highlights the latest advancements in neuromorphic computing by exploring synaptic transistor developments. Here, we focus on hydrogel-based ionic-gated three-terminal (3T) synaptic devices, their essential components, and their working principle, and summarize the essential neurodegenerative applications published recently. In addition, because hydrogel-gated FETs are the crucial members of neuromorphic devices in terms of cutting-edge synaptic progress and performances, the review will also summarize the biodegradable and biocompatible polymers with which such devices can be implemented. It is expected that neuromorphic devices might provide potential solutions for the future generation of interactive sensation, memory, and computation to facilitate the development of multimodal, large-scale, ultralow-power intelligent systems.
Collapse
Affiliation(s)
- Sankar Prasad Bag
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Suyoung Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeyoon Song
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Jinsink Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Awate S, Xu K, Liang J, Katz B, Muzzio R, Crespi VH, Katoch J, Fullerton-Shirey SK. Strain-Induced 2H to 1T' Phase Transition in Suspended MoTe 2 Using Electric Double Layer Gating. ACS NANO 2023; 17:22388-22398. [PMID: 37947443 PMCID: PMC10690768 DOI: 10.1021/acsnano.3c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
MoTe2 can be converted from the semiconducting (2H) phase to the semimetallic (1T') phase by several stimuli including heat, electrochemical doping, and strain. This type of phase transition, if reversible and gate-controlled, could be useful for low-power memory and logic. In this work, a gate-controlled and fully reversible 2H to 1T' phase transition is demonstrated via strain in few-layer suspended MoTe2 field effect transistors. Strain is applied by the electric double layer gating of a suspended channel using a single ion conducting solid polymer electrolyte. The phase transition is confirmed by simultaneous electrical transport and Raman spectroscopy. The out-of-plane vibration peak (A1g)─a signature of the 1T' phase─is observed when VSG ≥ 2.5 V. Further, a redshift in the in-plane vibration mode (E2g) is detected, which is a characteristic of a strain-induced phonon shift. Based on the magnitude of the shift, strain is estimated to be 0.2-0.3% by density functional theory. Electrically, the temperature coefficient of resistance transitions from negative to positive at VSG ≥ 2 V, confirming the transition from semiconducting to metallic. The approach to gate-controlled, reversible straining presented here can be extended to strain other two-dimensional materials, explore fundamental material properties, and introduce electronic device functionalities.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Jierui Liang
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin Katz
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ryan Muzzio
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Vincent H. Crespi
- Department
of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jyoti Katoch
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Wan Q, Chen Q, Freithaler MA, Velagala SR, Liu Y, To AC, Mahajan A, Mukkamala R, Xiong F. Toward Real-Time Blood Pressure Monitoring via High-Fidelity Iontronic Tonometric Sensors with High Sensitivity and Large Dynamic Ranges. Adv Healthc Mater 2023; 12:e2202461. [PMID: 36942993 PMCID: PMC11061714 DOI: 10.1002/adhm.202202461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Continuous, noninvasive blood pressure (CNIBP) monitoring provides valuable hemodynamic information that renders detection of the early onset of cardiovascular diseases. Wearable mechano-electric pressure sensors that mount on the skin are promising candidates for monitoring continuous blood pressure (BP) pulse waveforms due to their excellent conformability, simple sensing mechanisms, and convenient signal acquisition. However, it is challenging to acquire high-fidelity BP pulse waveforms since it requires highly sensitive sensors (sensitivity larger than 4 × 10-5 kPa-1 ) that respond linearly with pressure change over a large dynamic range, covering the typical BP range (5-25 kPa). Herein, this work introduces a high-fidelity, iontronic-based tonometric sensor (ITS) with high sensitivity (4.82 kPa-1 ), good linearity (R2 > 0.995), and a large dynamic range (up to 180% output change) over a broad working range (0 to 38 kPa). Additionally, the ITS demonstrates a low limit of detection at 40 Pa, a fast load response time (35 ms) and release time (35 ms), as well as a stable response over 5000 load per release cycles, paving ways for potential applications in human-interface interaction, electronic skins, and robotic haptics. This work further explores the application of the ITS in monitoring real-time, beat-to-beat BP by measuring the brachial and radial pulse waveforms. This work provides a rational design of a wearable pressure sensor with high sensitivity, good linearity, and a large dynamic range for real-time CNIBP monitoring.
Collapse
Affiliation(s)
- Qingzhou Wan
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Qian Chen
- Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mark A Freithaler
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Sridhar Reddy Velagala
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Yihan Liu
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Albert C. To
- Department of Mechanical Engineering and Materials Science University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Ramakrishna Mukkamala
- Department of BioEngineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Feng Xiong
- Department of Electrical and Computer Engineering University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
5
|
Awate S, Mostek B, Kumari S, Dong C, Robinson JA, Xu K, Fullerton-Shirey SK. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15785-15796. [PMID: 36926818 PMCID: PMC10064313 DOI: 10.1021/acsami.2c13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 μF cm-2) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage (VG) that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied VG without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which VG is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 1013 cm-2 for electrons and 1.4 × 1013 cm-2 for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO4, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.
Collapse
Affiliation(s)
- Shubham
Sukumar Awate
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brendan Mostek
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shalini Kumari
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chengye Dong
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Joshua A. Robinson
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center
for 2D and Layered Materials and Center for Atomically Thin Multifunctional
Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional
Crystal Consortium, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Ke Xu
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Physics and Astronomy, Rochester Institute
of Technology, Rochester, New York 14623, United States
- Microsystems
Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School
of Chemistry and Materials Science, Rochester
Institute of Technology, Rochester, New York 14623, United States
| | - Susan K. Fullerton-Shirey
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Sun Z, Xu K, Liu C, Beaumariage J, Liang J, Fullerton-Shirey SK, Shi ZY, Wu J, Snoke D. Photoluminescence Switching Effect in a Two-Dimensional Atomic Crystal. ACS NANO 2021; 15:19439-19445. [PMID: 34878266 DOI: 10.1021/acsnano.1c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional materials are an emerging class of materials with a wide range of electrical and optical properties and potential applications. Single-layer structures of semiconducting transition metal dichalcogenides are gaining increasing attention for use in field-effect transistors. Here, we report a photoluminescence switching effect based on single-layer WSe2 transistors. Dual gates are used to tune the photoluminescence intensity. In particular, a side-gate is utilized to control the location of ions within a solid polymer electrolyte to form an electric double layer at the interface of electrolyte and WSe2 and induce a vertical electric field. Additionally, a back-gate is used to apply a second vertical electric field. An on-off ratio of the light emission up to 90 was observed under constant pump light intensity. In addition, a blue shift of the photoluminescence line up to 36 meV was observed. We attribute this blue shift to the decrease of exciton binding energy due to the change of nonlinear in-plane dielectric constant and use it to determine the third-order off-diagonal susceptibility χ(3) = 3.50 × 10-19 m2/V2.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, United States
- Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Chang Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Jonathan Beaumariage
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jierui Liang
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Susan K Fullerton-Shirey
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhe-Yu Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - David Snoke
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
7
|
Bai H, Ai H, Li B, Liu D, Lo KH, Ng KW, Shi X, Kawazoe Y, Pan H. CNSi/MXene/CNSi: Unique Structure with Specific Electronic Properties for Nanodevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101482. [PMID: 34151516 DOI: 10.1002/smll.202101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/09/2021] [Indexed: 06/13/2023]
Abstract
2D materials have been interesting for applications into nanodevices due to their intriguing physical properties. In this work, four types of unique structures are designed that are composed of MXenes and C/N-Si layers (CNSi), where MXene is sandwiched by the CNSi layers with different thicknesses, for their practical applications into integrated devices. The systematic calculations on their elastic constants, phonon dispersions, and thermodynamic properties show that these structures are stable, depending on the composition of MXene. It is found: 1) different from MXene or N-functionalized MXene (M2 CN2 ), SiN2 /M2 X/SiN2 possess new electronic properties with free carriers only in the middle, leading to 2D free electron gas; 2) CNSi/MXene/CNSi shows an intrinsic Ohmic semiconductor-metal-semiconductor (S-M-S) contact, which is potential for applications into nanodevices; and 3) O/M2 C/SiN2 and N/M2 C/OSiN are also stable and show different electronic properties, which can be semiconductor or metal as a whole depending on the interface. A method is further proposed to fabricate the 2D structures based on the industrial availability. The findings may provide a novel strategy to design and fabricate the 2D structures for their application into nanodevices and integrated circuits.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Haoqiang Ai
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, China
| | - Bowen Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Dong Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, China
| | - Kar Wei Ng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
| | - Xingqiang Shi
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8577, Japan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- School of Physics, Suranaree University of Technology, 111 University Avenue Muang, Nakhon Ratchasima, 30000, Thailand
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, China
| |
Collapse
|
8
|
Peltekoff A, Brixi S, Niskanen J, Lessard BH. Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds. JACS AU 2021; 1:1044-1056. [PMID: 34467348 PMCID: PMC8395628 DOI: 10.1021/jacsau.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6 - or BF4 -), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI+ in the poly(VBBI+[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T g) between -7 and 55 °C for that block. When VBBI+ composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C DL) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T g of the poly(VBBI+[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5-1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C DL is not strictly proportional to OTFT output currents.
Collapse
Affiliation(s)
- Alexander
J. Peltekoff
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Samantha Brixi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Jukka Niskanen
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
9
|
Woeppel A, Xu K, Kozhakhmetov A, Awate S, Robinson JA, Fullerton-Shirey SK. Single- versus Dual-Ion Conductors for Electric Double Layer Gating: Finite Element Modeling and Hall-Effect Measurements. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40850-40858. [PMID: 32805846 DOI: 10.1021/acsami.0c08653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electric double layer (EDL) gating using a single-ion conductor is compared to a dual-ion conductor using both finite element modeling and Hall-effect measurements. Modified Nernst-Planck Poisson (mNPP) equations are used to calculate the ion density per unit area in a parallel plate capacitor geometry with a bulk ion concentration of 215 ≤ cbulk ≤ 1782 mol/m3. With electrodes of equal size at a 2 V potential difference, the EDL ion density of the single-ion conductor is ∼7 × 1013 ions/cm2, which is approximately 50% of the ion density induced in the dual-ion conductor. However, this difference is reduced to 8% when the electrode at which the cationic EDL forms is 10 times smaller than the counter electrode. Thus, for a field-effect transistor gated by a single-ion conductor, it is especially important to have a large gate-to-channel size ratio to achieve strong ion doping. The modeled ion densities are validated by Hall-effect measurements on graphene Hall bars gated by a polyethylene oxide (PEO)-based single-ion conductor. The sheet carrier density, nS, is ∼2 × 1013 cm-2 at Vg = 2 V, which is 3.5 times smaller than the predicted value and has the same order of magnitude as the ns measured for a PEO-based, dual-ion conductor on the same graphene. The numerical modeling results can be approximated by a simple analysis of capacitors in series, where the EDLs are modeled as capacitors with thickness estimated by the sum of the Debye screening length and the Stern layer. The series of capacitor estimate agrees with the numerical modeling of the dual-ion conductor to within 10% and the single-ion conductor to within 30% from 0.25 to 2 V (cbulk = 925 mol/m3); similar agreement is observed in the concentration range of 353-1650 mol/m3 for both single- and dual-ion conductors.
Collapse
Affiliation(s)
- Aaron Woeppel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ke Xu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Azimkhan Kozhakhmetov
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shubham Awate
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2D and Layered Materials, Center for Atomically Thin Multifunctional Materials, and the Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Susan K Fullerton-Shirey
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Beck ME, Hersam MC. Emerging Opportunities for Electrostatic Control in Atomically Thin Devices. ACS NANO 2020; 14:6498-6518. [PMID: 32463222 DOI: 10.1021/acsnano.0c03299] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrostatic control of charge carrier concentration underlies the field-effect transistor (FET), which is among the most ubiquitous devices in the modern world. As transistors and related electronic devices have been miniaturized to the nanometer scale, electrostatics have become increasingly important, leading to progressively sophisticated device geometries such as the finFET. With the advent of atomically thin materials in which dielectric screening lengths are greater than device physical dimensions, qualitatively different opportunities emerge for electrostatic control. In this Review, recent demonstrations of unconventional electrostatic modulation in atomically thin materials and devices are discussed. By combining low dielectric screening with the other characteristics of atomically thin materials such as relaxed requirements for lattice matching, quantum confinement of charge carriers, and mechanical flexibility, high degrees of electrostatic spatial inhomogeneity can be achieved, which enables a diverse range of gate-tunable properties that are useful in logic, memory, neuromorphic, and optoelectronic technologies.
Collapse
Affiliation(s)
- Megan E Beck
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Ion-Locking in Solid Polymer Electrolytes for Reconfigurable Gateless Lateral Graphene p-n Junctions. MATERIALS 2020; 13:ma13051089. [PMID: 32121528 PMCID: PMC7084918 DOI: 10.3390/ma13051089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/25/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
A gateless lateral p-n junction with reconfigurability is demonstrated on graphene by ion-locking using solid polymer electrolytes. Ions in the electrolytes are used to configure electric-double-layers (EDLs) that induce p- and n-type regions in graphene. These EDLs are locked in place by two different electrolytes with distinct mechanisms: (1) a polyethylene oxide (PEO)-based electrolyte, PEO:CsClO4, is locked by thermal quenching (i.e., operating temperature < Tg (glass transition temperature)), and (2) a custom-synthesized, doubly-polymerizable ionic liquid (DPIL) is locked by thermally triggered polymerization that enables room temperature operation. Both approaches are gateless because only the source/drain terminals are required to create the junction, and both show two current minima in the backgated transfer measurements, which is a signature of a graphene p-n junction. The PEO:CsClO4 gated p-n junction is reconfigured to n-p by resetting the device at room temperature, reprogramming, and cooling to T < Tg. These results show an alternate approach to locking EDLs on 2D devices and suggest a path forward to reconfigurable, gateless lateral p-n junctions with potential applications in polymorphic logic circuits.
Collapse
|