1
|
Chen C, Xiong L, Cui Y, Wang C. Preparation, Air Filtration Performance of a Fluorinated Polyimide/Polyacrylonitrile Nanofibrous Membrane by Electrospinning. Polymers (Basel) 2024; 16:1240. [PMID: 38732709 PMCID: PMC11085581 DOI: 10.3390/polym16091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This paper reports the successful fabrication of a new nanofibrous membrane, F-PI/PAN, through electrospinning of polyacrylonitrile (PAN) and fluorinated polyimide (F-PI). The nanofibrous membrane exhibits comprehensive properties for high-temperature filtration and robust PM2.5 (particulate matter with an aerodynamic equivalent diameter of 2.5 microns or less) removal. The introduction of F enhances the hydrophobicity of the PI. The relationship between the hydrophobic performance and the filtration performance of particles is investigated. The chemical group of the composite membrane was demonstrated using FITR, while the surface morphology was investigated using field emission scanning electron microscopy. The TGA results indicated good thermal stability at 300 °C. Various ratios of F-PI membranes were prepared to characterize the change in properties, with the optimal mass ratio of F-PI being 20 wt%. As the proportion of F-PI increases, its mechanical and filtration efficiency properties and hydrophobicity become stronger. The contact angle reaches its maximum of 128 ± 5.2° when PAN:F-PI = 6:4. Meanwhile, when PAN:F-PI = 8:2, the filtration efficiency reaches 99.4 ± 0.3%, and the elongation at break can reach 76%. The fracture strength can also reach 7.1 MPa, 1.63 times that of the pure PAN membrane.
Collapse
Affiliation(s)
- Chen Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Lulu Xiong
- Shanghai Dajue Packaging Products Co., Shanghai 201620, China
| | - Yahui Cui
- Energy Bureau of Xiangyuan County, Changzhi 046200, China
| | - Chaosheng Wang
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Liang C, Li J, Chen Y, Ke L, Zhu J, Zheng L, Li XP, Zhang S, Li H, Zhong GJ, Xu H. Self-Charging, Breathable, and Antibacterial Poly(lactic acid) Nanofibrous Air Filters by Surface Engineering of Ultrasmall Electroactive Nanohybrids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048182 DOI: 10.1021/acsami.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Despite the great promise in the development of biodegradable and ecofriendly air filters by electrospinning of poly(lactic acid) (PLA) nanofibrous membranes (NFMs), the as-electrospun PLA nanofibers are generally characterized by poor electroactivity and smooth surface, challenging the exploitation of electrostatic adsorption and physical interception that are in need for efficient removal of pathogens and particulate matters (PMs). Herein, a combined "electrospinning-electrospray" strategy was disclosed to functionalize the PLA nanofibers by direct anchoring of highly dielectric BaTiO3@ZIF-8 nanohybrids (BTO@ZIF-8), conferring simultaneous promotion of surface roughness, electret properties (surface potential as high as 7.5 kV), and self-charging capability (∼190% increase in tribo-output voltage compared to that of pure PLA). Benefiting from the well-tailored morphology and increased electroactivity, the electrospun-electrosprayed PLA/BTO@ZIF-8 exhibited excellent PM-capturing performance (up to 96.54% for PM0.3 and 99.49% for PM2.5) while providing desirable air resistance (only 87 Pa at 32 L/min) due primarily to the slip flow of air molecules over the nanohybrid protrusions. This was accompanied by excellent antibacterial properties (99.9% inhibition against both Staphylococcus aureus and Escherichia coli), arising presumably from the synergistic effects of enhanced reactive oxygen species (ROS) generation, plentiful ion release, and surface charges. Our proposed strategy opens up pathways to afford exceptional combination of high-efficiency and low-resistance filtration, excellent antibacterial performance, and mechanical robustness without sacrificing the biodegradation profiles of PLA NFMs, holding potential implications for efficient and long-term healthcare.
Collapse
Affiliation(s)
- Chenyu Liang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiaqi Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuyang Chen
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Lina Zheng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China
| |
Collapse
|
3
|
Kumar A, Gautam S, Atri S, Tafreshi HV, Pourdeyhimi B. Importance of Dipole Orientation in Electrostatic Aerosol Filtration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38019151 DOI: 10.1021/acs.langmuir.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Electrostatic charge is a major part of modern-day aerosol filtration media (e.g., N95 respirators and surgical facemasks) that has remained poorly understood due to its complicated physics. As such, charging a fibrous material has relied on empiricism in dire need of a mathematical foundation to further advance product design and optimization. In this concern, we have conducted a series of numerical simulations to improve our understanding of how an electrostatically charged fiber captures airborne particles and to quantify how the fiber's dipole orientation impacts its capture efficiency. Special attention was paid to the role of Coulomb and dielectrophoretic forces in the capture of particles of different charge polarities (e.g., particles having a Boltzmann charge distribution). Simulation results were compared with the predictions of the popular empirical correlations from the literature and discussed in detail. Predictions of the empirical correlations better agreed with the simulation results obtained for fibers with a dipole perpendicular to the flow direction rather than for fibers with a dipole parallel to the flow. This indicates that such empirical correlations are more suitable for filters charged via contact electrification (friction charging), where the dipoles are mostly perpendicular to the flow direction, and less suitable for corona-charged media, where the fiber dipoles are generally parallel to the flow direction.
Collapse
Affiliation(s)
- A Kumar
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - S Gautam
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - S Atri
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
| | - H V Tafreshi
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, North Carolina 27695-7910, United States
- The Nonwovens Institute, NC State University, Raleigh, North Carolina 27606, United States
| | - B Pourdeyhimi
- The Nonwovens Institute, NC State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Yang M, Gong X, Wang S, Tian Y, Yin X, Wang X, Yu J, Zhang S, Ding B. Two-Dimensional Nanofibrous Networks by Superspreading-Based Phase Inversion for High-Efficiency Separation. NANO LETTERS 2023; 23:10579-10586. [PMID: 37934045 DOI: 10.1021/acs.nanolett.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Two-dimensional (2D) nanomaterials have been widely applied as building blocks of nanoporous materials for high-precision separations. However, most existing 2D nanomaterials suffer from poor continuity and a lack of interior linking, resulting in deteriorated performance when assembled into macroscopic bulk structures. Here, a unique superspreading-based phase inversion technique is proposed to directly construct 2D nanofibrous networks (NFNs) from a polymer solution. By tailoring capillary behavior, polymer solution droplets evolve into ultrathin liquid films through superspreading; manipulating phase instability, subsequently, enables the liquid film to phase invert into continuous nanostructured networks. The assembled single-layered NFNs possess integrated structural superiorities of 1D nanoscale fiber diameter (∼40 nm) and 2D lateral infinity, exhibiting a weblike nanoarchitecture with extremely small through-pores (∼100 nm). Our NFNs show remarkable performances in air filtration (PM0.3 removal) and water purification (microfiltration level). This creation of such attractive 2D fibrous nanomaterials can pave the way for versatile high-performance separation applications.
Collapse
Affiliation(s)
- Ming Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Sai Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yucheng Tian
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xianfeng Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Hu R, Huang Q, Liu G, Jiao W, Yang Q, Wang X, Yu J, Ding B. Polylactic Acid/Calcium Stearate Hydrocharging Melt-Blown Nonwoven Fabrics for Respirator Applications. ACS APPLIED POLYMER MATERIALS 2023; 5:4372-4379. [PMID: 37552710 PMCID: PMC10231341 DOI: 10.1021/acsapm.3c00500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 08/05/2023]
Abstract
Non-biodegradable polypropylene, which poses a serious threat to the environment, is the most utilized material in air filtration systems. Moreover, under conditions of high temperature and high humidity, the electrostatic charge in melt-blown nonwoven fabrics treated with traditional corona electrets will quickly dissipate. Here, biodegradable polylactic acid, calcium stearate, and an innovative hydrocharging technique are reported to develop environmentally friendly polylactic acid/calcium stearate hydrocharging melt-blown nonwoven fabrics with high charge stability. Compared with polylactic acid melt-blown nonwoven fabrics, the crystallization structure and charge storage of polylactic acid/calcium stearate melt-blown nonwoven fabrics have been greatly improved due to the presence of calcium stearate. In PM0.3, it exhibited a high filtration efficiency (96.78%), a low pressure drop (65.20 Pa), and a good quality factor (0.053 Pa-1), which can meet the N95 respirator standard. Furthermore, it is worth mentioning that the filtration performance remained at a high level (>95.00%) after 2 months. Importantly, based on the test and analysis of surface electrostatic potential, crystallization, and charge storage and distribution, we proposed plausible charge generation and stable storage mechanisms. It demonstrated more potential for electret air filtration and smart respirators as the further possible step of research in the field.
Collapse
Affiliation(s)
| | | | | | - Wenling Jiao
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Qi Yang
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Xianfeng Wang
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Jianyong Yu
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| | - Bin Ding
- State Key Laboratory of Textile Science & Technology, Ministry of
Education, College of Textiles, Donghua University, Shanghai
201620, China
| |
Collapse
|
6
|
Su X, Jia C, Xiang H, Zhu M. Research progress in preparation, properties, and applications of medical protective fiber materials. APPLIED MATERIALS TODAY 2023; 32:101792. [PMID: 36937335 PMCID: PMC10001160 DOI: 10.1016/j.apmt.2023.101792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
A variety of public health events seriously threaten human life and health, especially the outbreak of COVID-19 at the end of 2019 has caused a serious impact on human production and life. Wearing personal protective equipment (PPE) is one of the most effective ways to prevent infection and stop the spread of the virus. Medical protective fiber materials have become the first choice for PPE because of their excellent barrier properties and breathability. In this article, we systematically review the latest progress in preparation technologies, properties, and applications of medical protective fiber materials. We first summarize the technological characteristics of different fiber preparation methods and compare their advantages and disadvantages. Then the barrier properties, comfort, and mechanical properties of the medical protective fiber materials used in PPE are discussed. After that, the applications of medical protective fibers in PPE are introduced, and protective clothing and masks are discussed in detail. Finally, the current status, future development trend, and existing challenges of medical protective fiber materials are summarized.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Yang Z, Zhen Y, Feng Y, Jiang X, Qin Z, Yang W, Qie Y. Polyacrylonitrile@TiO 2 nanofibrous membrane decorated by MOF for efficient filtration and green degradation of PM2.5. J Colloid Interface Sci 2023; 635:598-610. [PMID: 36621109 DOI: 10.1016/j.jcis.2022.12.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
A systematic study was performed on PM2.5 filtration and photodegradation performance of polyacrylonitrile @TiO2/ zeolitic imidazolate framework-8(PTZ)hybrid membrane. The hybrid membrane was prepared by electrospinning technique and in situ Metal-organic frameworks (MOFs) synthesis. The optimized membrane maintained a good PM2.5 capture efficiency (greater than 99%) and a pressure drop of 34 Pa. The larger specific surface area and higher pore structure enhance the filter interception effect and electrostatic interaction, which can have high applications for the filtering of PM2.5. In addition, zeolitic imidazolate framework-8 (ZIF-8) is uniformly coated on the surface of polyacrylonitrile @ TiO2 (PT) nanofiber to form N-Ti-O bonds, thus reducing the reorganization of electron-hole pairs and improving the efficiency of photodegradation. Compared with PT, the hybrid structure formed by PTZ has a higher degradation efficiency for PM2.5 (increased from 66% to 85%). The produced PTZ membrane exhibits a promising future in the collection and green degradation of PM2.5.
Collapse
Affiliation(s)
- Zhengren Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yuhua Zhen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yao Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Xiaolin Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Zheng Qin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Wenjie Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| | - Yuanyue Qie
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, PR China
| |
Collapse
|
8
|
Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal. Polymers (Basel) 2023; 15:polym15061459. [PMID: 36987239 PMCID: PMC10052305 DOI: 10.3390/polym15061459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus reduces the filtration efficiency. In this work, a kind of composite air-filter with high efficiency and low resistance was fabricated by alternating lamination of ultrathin electronspun nano-layer and melt-blown layer without corona charging treatment. The effects of fiber diameter, pore size, porosity, layer number, and weight on filtration performance were investigated. Meanwhile, the surface hydrophobicity, loading capacity, and storage stability of the composite filter were studied. The results indicate that the filters (18.5 gsm) laminated by 10 layers fiber-webs present excellent filtration efficiency (97.94%), low pressure drop (53.2 Pa), high quality factor (QF 0.073 Pa−1), and high dust holding capacity (9.72 g/m2) for NaCl aerosol particles. Increasing the layers and reducing individual layer weight can significantly improve filtration efficiency and reduce pressure drop of the filter. The filtration efficiency decayed slightly from 97.94% to 96.48% after 80 days storage. The alternate arrangement of ultra-thin nano and melt-blown layers constructed a layer-by-layer interception and collaborative filtering effect in the composite filter, realizing the high filtration efficiency and low resistance without high voltage corona charging. These results provided new insights for the application of nonwoven fabrics in air filtration.
Collapse
|
9
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
10
|
Wang AB, Zhang X, Gao LJ, Zhang T, Xu HJ, Bi YJ. A Review of Filtration Performance of Protective Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2346. [PMID: 36767714 PMCID: PMC9915213 DOI: 10.3390/ijerph20032346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Masks are essential and effective small protective devices used to protect the general public against infections such as COVID-19. However, available systematic reviews and summaries on the filtration performance of masks are lacking. Therefore, in order to investigate the filtration performance of masks, filtration mechanisms, mask characteristics, and the relationships between influencing factors and protective performance were first analyzed through mask evaluations. The summary of filtration mechanisms and mask characteristics provides readers with a clear and easy-to-understand theoretical cognition. Then, a detailed analysis of influencing factors and the relationships between the influencing factors and filtration performance is presented in. The influence of the aerosol size and type on filtration performance is nonlinear and nonconstant, and filtration efficiency decreases with an increase in the gas flow rate; moreover, fitness plays a decisive role in the protective effects of masks. It is recommended that the public should wear surgical masks to prevent COVID-19 infection in low-risk and non-densely populated areas. Future research should focus on fitness tests, and the formulation of standards should also be accelerated. This paper provides a systematic review that will be helpful for the design of masks and public health in the future.
Collapse
Affiliation(s)
- Ao-Bing Wang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Xin Zhang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li-Jun Gao
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui-Juan Xu
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Yan-Jun Bi
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| |
Collapse
|
11
|
Gao Y, Tian E, Mo J. Electrostatic Polydopamine-Interface-Mediated (e-PIM) filters with tuned surface topography and electrical properties for efficient particle capture and ozone removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129821. [PMID: 36067559 DOI: 10.1016/j.jhazmat.2022.129821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter (PM) poses severe environmental health risks to the public globally, and efficient filtration technologies are urgently needed for air ventilation. In this contribution, to overcome the efficiency-resistance trade-off for fibrous filtration, we introduced an electrostatic polydopamine-interface-mediated (e-PIM) filter utilizing a combined effect of particle pre-charging and filter polarizing. After delineating the PM-fiber interactions in electrostatic filtration, we designed a composite fiber structure and fabricated the filters by a two-step dip-coating. The surface topography and electrical potential of the polyester (PET) coarse substrates were regulated by successively coating polydopamine (PDA) layers and manganese oxide clusters. By this means, an 8-mm-thick Mn-P @ P-100 filter possessed improved efficiency of 96.05%, 97.60%, and 99.14% for 0.3-0.5 µm, 0.5-1 µm, and 1-3 µm particles, the ultralow air resistance of 10.4 Pa at a filtration velocity of 0.5 m/s, and steady ozone removal property. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. Compared with the pristine PET substrates, the efficiency for 0.3-0.5 µm particles expanded 12 times. We expect e-PIM filters and the filtration prototype will be potential candidates as effective and low-cost air cleaning devices for a sustainable and healthy environment.
Collapse
Affiliation(s)
- Yilun Gao
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China; Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing 100084, China.
| |
Collapse
|
12
|
Song Y, Shim E. 3D X-ray tomographic microstructure analysis of dust-clogging inside nonwoven fibrous filter media. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Park SJ, Cho JH, Ham MS, Seo SH, Ahn HH, Kim DH. What type of face mask should we choose in coronavirus disease 2019 pandemic considering photoprotective effectiveness? PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:548-554. [PMID: 35353391 PMCID: PMC9115536 DOI: 10.1111/phpp.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Wearing a face mask is one of the most effective personal protective strategies to diminish the spread of coronavirus disease 2019 (COVID-19). Several dermatological outcomes were reported because of the prolonged use of face masks, especially due to the constant mask-on policy, but the photoprotective effect of face masks has received less attention. OBJECTIVE The aim of this study was to provide guidance in the use of face masks by comparing the photoprotective effects of routinely used masks. METHODS A total of 12 frequently used face masks were tested, including certified respirators, Korea filter (KF)94, KF-anti-droplet (KF-AD), and KF80. The amount of light that penetrates each face mask was measured using a light sensor that can quantify Ultraviolet A (UVA), visible light (VL), and infrared A (IR-A) rays. RESULTS Black-colored KF94 masks and surgical masks reduced penetration of UVA, VL, and IR-A by approximately 100%. The UVA penetration decreased on average by 95.51%, 90.97%, 85.06%, and 86.41% with white-colored KF94, KF-AD, KF80, and surgical masks, respectively. The VL and IR-A were blocked by approximately 75.58%, 66.16%, 59.18%, and 64.48% with white-colored KF94, KF-AD, KF80, and surgical masks, respectively. CONCLUSION In conclusion, the different photoprotective effectiveness of face masks was mainly determined by colors, and therefore, black-colored, multi-layered respirators can be recommended in terms of photoprotection in the COVID-19 pandemic. The quantified comparative results will be helpful to the person with pre-existing photo-aggravated dermatosis, especially in the season of the high intensity of sunlight.
Collapse
Affiliation(s)
- Sung Jin Park
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
| | - Jun Hyuk Cho
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
| | - Min Seok Ham
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
| | - Soo Hong Seo
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
| | - Hyo Hyun Ahn
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
| | - Dai Hyun Kim
- Department of DermatologyKorea University College of MedicineSeoulSouth Korea
- Department of AnatomyKorea University College of MedicineSeoulSouth Korea
| |
Collapse
|
14
|
Su Q, Huang Y, Wei Z, Zhu C, Zeng W, Wang S, Long S, Zhang G, Yang J, Wang X. A novel multi-gradient PASS nanofibrous membranes with outstanding particulate matter removal efficiency and excellent antimicrobial property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Continuous air purification by aqueous interface filtration and absorption. Nature 2022; 610:74-80. [PMID: 36163287 DOI: 10.1038/s41586-022-05124-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The adverse impact of particulate air pollution on human health1,2 has prompted the development of purification systems that filter particulates out of air3-5. To maintain performance, the filter units must inevitably be replaced at some point, which requires maintenance, involves costs and generates solid waste6,7. Here we show that an ion-doped conjugated polymer-coated matrix infiltrated with a selected functional liquid enables efficient, continuous and maintenance-free air purification. As the air to be purified moves through the system in the form of bubbles, the functional fluid provides interfaces for filtration and for removal of particulate matter and pollutant molecules from air. Theoretical modelling and experimental results demonstrate that the system exhibits high efficiency and robustness: its one-time air purification efficiency can reach 99.6%, and its dust-holding capacity can reach 950 g m-2. The system is durable and resistant to fouling and corrosion, and the liquid acting as filter can be reused and adjusted to also enable removal of bacteria or odours. We anticipate that our purification approach will be useful for the development of specialist air purifiers that might prove useful in a settings such as hospitals, factories and mines.
Collapse
|
16
|
Thermal-resist hydro-charged air filters (HCAFs) with charge stability for long-term efficient fine particle removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Cheng Y, Li J, Chen M, Zhang S, He R, Wang N. Environmentally friendly and antimicrobial bilayer structured fabrics with integrated interception and sterilization for personal protective mask. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Dong T, Hua Y, Zhu X, Huang X, Chi S, Liu Y, Lou CW, Lin JH. Highly Efficient and Sustainable PM Filtration Using Piezo Nanofibrous Membrane with Gradient Shrinking Porous Network. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
19
|
He R, Li J, Chen M, Zhang S, Cheng Y, Ning X, Wang N. Tailoring moisture electroactive Ag/Zn@cotton coupled with electrospun PVDF/PS nanofibers for antimicrobial face masks. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128239. [PMID: 35030485 DOI: 10.1016/j.jhazmat.2022.128239] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 05/18/2023]
Abstract
Face mask has become an essential and effective apparatus to protect human beings from air pollution, especially the air-borne pathogens. However, most commercial face masks can hardly achieve good particulate matters (PMs) and high bactericidal efficacy concurrently. Herein, a bilayer structured composite filter medium with built-in antimicrobial activities was constructed by combining cotton woven modified by magnetron sputtered Ag/Zn coatings and electrospun poly(vinylidene fluoride)/polystyrene (PVDF/PS) nanofibers. With the benefit of external moisture, an electrical stimulation was generated inside the composite fabric and thus endowed the fabric antimicrobial function. The resultant composite fabric presented conspicuous performance for integrated air pollution control, high filtration performance towards PM0.3 (99.1%, 79.2 Pa) and exceptional interception ratio against Escherichia coli (99.64%) and Staphylococcus aureus (98.75%) within 20 min contact. The high efficiency contact sterilization function of the bilayer fabric could further potentially promote disinfection and reuse of the filter media. This work may provide a new perspective on designing high-performance face mask media for public health protection.
Collapse
Affiliation(s)
- Ruidong He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Meng Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Shaohua Zhang
- Department of Pediatrics, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yixin Cheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Na Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
20
|
Zhang X, Wang Y, Liu W, Jin X. Needle-punched electret air filters (NEAFs) with high filtration efficiency, low filtration resistance, and superior dust holding capacity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Xu K, Zhan L, Yan R, Ke Q, Yin A, Huang C. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. NANOSCALE 2022; 14:419-427. [PMID: 34937077 DOI: 10.1039/d1nr06159c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanofibre membranes with a small diameter and a large specific surface area are widely used in the filtration field due to their small pore size and high porosity. To date, aramid nanofibres (ANFs) have received extensive research interest because of their high stiffness and excellent temperature resistance. However, the preparation of ANFs usually takes a long time, which greatly hampers the practical application of these fibres. Herein, we report the preparation of ANFs by a modified deprotonation method at elevated temperature. Owing to the increase of temperature, the preparation cycle of ANFs was shortened to 8 hours. The resulting ANF dispersion was further coated on a polypropylene melt-blown nonwoven to form a composite nonwoven filter. With the submicron porous structure, the filtration efficiency, pressure drop and quality factor of the filter were 95.61%, 38.22 Pa and 0.082 Pa-1, respectively. Compared to the pristine nonwoven, the filtration, mechanical, and heat insulation properties of the composite filter were also significantly improved. This work may offer a simple and efficient way for enhancing the air filtration performances of current filters.
Collapse
Affiliation(s)
- Kangli Xu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Lei Zhan
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Rui Yan
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Qinfei Ke
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Anlin Yin
- College of Material and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing, 314001, China.
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Lakshmanan A, Sarngan PP, Sarkar D. Inorganic-organic nanofiber networks with antibacteria properties for enhanced particulate filtration: The critical role of amorphous titania. CHEMOSPHERE 2022; 286:131671. [PMID: 34352548 DOI: 10.1016/j.chemosphere.2021.131671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 05/29/2023]
Abstract
The demand for air filter media at indoor and outdoor is increasing tremendously due to air pollution and especially for problems related to airborne particulate matter (PM). To realize that, here a class nanofiber air filter media with strong antibacterial activity, hydrophobic nature, high filtration efficiency with low pressure drop is prepared. Novel organic-inorganic nanocomposite nanofibers used in this work benefited for the multifunctional performance. Amorphous titanium dioxide (mTiO2) is utilized for air filtration application which exhibits excellent enhancement of PM2.5 filtration properties and antibacterial activity. The unique Poly (vinylpyrrolidone) (PVP)-mTiO2 nanofiber air filter media acquired hydrophobic nature with a large increase in water contact angle of 127° from 36°. The resulting free-standing nanofiber filters exhibit high PM2.5 filtration efficiency of >99.9% and low pressure drop of 39 Pa. Antibacterial activity of nanofibrous membrane has been rationally engineered by titanium oxide as the barrier to bacterial ingression. A long term of 160 h filtration test has proved PVP-mTiO2 nanofibers air filter media holds outstanding 99% filtration efficiency for PM2.5. This work takes forward a significant lead in design and production of high performance and very low pressure drop air filter media with a wide range of functional properties.
Collapse
Affiliation(s)
- Agasthiyaraj Lakshmanan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Pooja P Sarngan
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Debabrata Sarkar
- Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
23
|
Luo Y, Shen Z, Ma Z, Chen H, Wang X, Luo M, Wang R, Huang J. A Cleanable Self-Assembled Nano-SiO 2/(PTFE/PEI) n/PPS Composite Filter Medium for High-Efficiency Fine Particulate Filtration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7853. [PMID: 34947457 PMCID: PMC8706235 DOI: 10.3390/ma14247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
A silicon dioxide/polytetrafluoroethylene/polyethyleneimine/polyphenylene sulfide (SiO2/PTFE/PEI/PPS) composite filter medium with three-dimensional network structures was fabricated by using PPS nonwoven as the substrate which was widely employed as a cleanable filter medium. The PTFE/PEI bilayers were firstly coated on the surfaces of the PPS fibers through the layer-by-layer self-assembly technique ten times, followed by the deposition of SiO2 nanoparticles, yielding the SiO2/(PTFE/PEI)10/PPS composite material. The contents of the PTFE component were easily controlled by adjusting the number of self-assembled PTFE/PEI bilayers. As compared with the pure PPS nonwoven, the obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits better mechanical properties and enhanced wear, oxidation and heat resistance. When employed as a filter material, the SiO2/(PTFE/PEI)10/PPS composite filter medium exhibited excellent filtration performance for fine particulate. The PM2.5 (particulate matter less than 2.5 μm) filtration efficiency reached up to 99.55%. The superior filtration efficiency possessed by the SiO2/(PTFE/PEI)10/PPS composite filter medium was due to the uniformly modified PTFE layers, which played a dual role in fine particulate filtration. On the one hand, the PTFE layers not only increase the specific surface area and pore volume of the composite filter material but also narrow the spaces between the fibers, which were conducive to forming the dust cake quickly, resulting in intercepting the fine particles more efficiently than the pure PPS filter medium. On the other hand, the PTFE layers have low surface energy, which is in favor of the detachment of dust cake during pulse-jet cleaning, showing superior reusability. Thanks to the three-dimensional network structures of the SiO2/(PTFE/PEI)10/PPS composite filter medium, the pressure drop during filtration was low.
Collapse
Affiliation(s)
- Yan Luo
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Zhongyun Shen
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Zhihao Ma
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Hongfeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Xiaodong Wang
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Minger Luo
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Ran Wang
- CAM-China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China;
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
24
|
Song J, Zhao Q, Meng C, Meng J, Chen Z, Li J. Hierarchical Porous Recycled PET Nanofibers for High-Efficiency Aerosols and Virus Capturing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49380-49389. [PMID: 34613694 DOI: 10.1021/acsami.1c17157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plastic crisis, especially for poly(ethylene terephthalate) (PET) bottles, has been one of the greatest challenges for the earth and human beings. Processing recycled PET (rPET) into functional materials has the dual significance of both sustainable development and economy. Providing more possibilities for the engineered application of rPET, porous PET fibers can further enhance the high specific surface area of electrospun membranes. Here, we use a two-step strategy of electrospinning and postprocessing to successfully control the surface morphology of rPET fibers. Through a series of optical and thermal characterizations, the porous morphology formation mechanism and crystallinity induced by solvents of rPET fibers were discussed. Then, this work further investigated both PM2.5 air pollutants and protein filtration performance of rPET fibrous membrane. The high capture capability of rPET membrane demonstrated its potential application as an integrated high-efficiency aerosol filtering solution.
Collapse
Affiliation(s)
- Jun Song
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Qi Zhao
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Chen Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jinmin Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Zhongda Chen
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
25
|
Lin JH, Shih YH, Huang CH, Lai MF, Lee SA, Shiu BC, Lou CW. Evaluations of Electrostatic Filtration Efficiency and Antibacterial Efficacy of Antibacterial Electret Polypropylene Filters: Effects of Using Low Molecular Antibacterial Agent as Additive. Polymers (Basel) 2021; 13:polym13193303. [PMID: 34641119 PMCID: PMC8512406 DOI: 10.3390/polym13193303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, air filtration has been gaining much attention, and now people are much more concerned about antibacterial filters due to the spreading of COVID-19. The electret polypropylene (PP) nonwoven fabrics possess excellent filtration efficiency but a limited antibacterial effect against S. aureus and E. coli, and therefore triclosan is used in this study. Serving as an antibacterial agent, triclosan with a low molecular weight is an effective additive for the test results, indicating that the presence of triclosan strengthens the antibacterial effects of the filters. In addition, triclosan also strengthens the PP’s crystallinity, which in turn betters the filtration efficiency of the filters concurrently. Demonstrating powerful filtration and antibacterial performances, the antibacterial electret PP filters are highly qualified for filter applications.
Collapse
Affiliation(s)
- Jia-Horng Lin
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.-H.L.); (B.-C.S.)
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
| | - Ying-Huei Shih
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: (C.-H.H.); (C.-W.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Y.-H.S.); (M.-F.L.)
| | - Shu-An Lee
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.-H.L.); (B.-C.S.)
| | - Ching-Wen Lou
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China
- Correspondence: (C.-H.H.); (C.-W.L.)
| |
Collapse
|
26
|
Peng Q, Yang K, Venkataraman M, Tan X, Xiong X, Novotna J, Karpiskova J, Hruza J, Stuchlík M, Militky J. Preparation of electrosprayed composite coated microporous filter for particulate matter capture. NANO SELECT 2021. [DOI: 10.1002/nano.202100186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Qingyan Peng
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Kai Yang
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Xiaodong Tan
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Xiaoman Xiong
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Jana Novotna
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| | - Jana Karpiskova
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Jakub Hruza
- Department of Nanotechnology and Informatics, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Martin Stuchlík
- Department of Nanomaterials in Natural Science, Institute for Nanomaterials, Advanced Technologies and Innovation Technical University of Liberec Liberec Czech Republic
| | - Jiri Militky
- Department of Material Engineering, Faculty of Textile Engineering Technical University of Liberec Liberec Czech Republic
| |
Collapse
|
27
|
Kasbe PS, Gade H, Liu S, Chase GG, Xu W. Ultrathin Polydopamine-Graphene Oxide Hybrid Coatings on Polymer Filters with Improved Filtration Performance and Functionalities. ACS APPLIED BIO MATERIALS 2021; 4:5180-5188. [PMID: 35007001 DOI: 10.1021/acsabm.1c00367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thin polymer fiber mats, in particular those made of nonwoven polypropylene (PP) fibers, are extensively used for medical and industrial filtration. The recent pandemic has increased the demand for the fabrication of protective masks. The nonwoven PP filter has limitations in filtration efficiency and lacks advanced functionalities. Here, we propose a simple, effective, and low-cost method to functionalize PP filters and endow antimicrobial and photothermal properties. Our approach is based on the deposition of an ultrathin hybrid coating composed of graphene oxide (GO) and polydopamine on the surface of PP filters by spray-coating. The complementary properties and synergic effects of GO and polydopamine in the ultrathin coating improved the filtration efficiency of the PP filter by 20% with little change in pressure drop. Single component coatings did not result in similar improvements in performance. The ultrathin coating also makes the surface of the filter more hydrophilic with negative charges. The photothermal property of GO enables a rapid temperature increase of the surface-coated filter upon light irradiation for easy sterilization. Furthermore, cationic polymer brushes can be grafted to the ultrathin hybrid coating, which adds the highly desired antimicrobial property to the PP filters for their more effective protection against microorganisms.
Collapse
Affiliation(s)
- Pratik S Kasbe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Harshal Gade
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Shan Liu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - George G Chase
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
28
|
Ogbuoji EA, Zaky AM, Escobar IC. Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review. Polymers (Basel) 2021; 13:1998. [PMID: 34207184 PMCID: PMC8235328 DOI: 10.3390/polym13121998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks.
Collapse
Affiliation(s)
- Ebuka A. Ogbuoji
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr M. Zaky
- BioMicrobics Inc., 16002 West 110th Street, Lenexa, KS 66219, USA;
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
29
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
30
|
DeAngelis HE, Grillet AM, Nemer MB, Wasiolek MA, Hanson DJ, Omana MA, Sanchez AL, Vehar DW, Thelen PM. Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. PLoS One 2021; 16:e0248859. [PMID: 33831014 PMCID: PMC8031388 DOI: 10.1371/journal.pone.0248859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
In response to personal protective equipment (PPE) shortages in the United States due to the Coronavirus Disease 2019, two models of N95 respirators were evaluated for reuse after gamma radiation sterilization. Gamma sterilization is attractive for PPE reuse because it can sterilize large quantities of material through hermetically sealed packaging, providing safety and logistic benefits. The Gamma Irradiation Facility at Sandia National Laboratories was used to irradiate N95 filtering facepiece respirators to a sterilization dose of 25 kGy(tissue). Aerosol particle filtration performance testing and electrostatic field measurements were used to determine the efficacy of the respirators after irradiation. Both respirator models exhibited statistically significant decreases in particle filtering efficiencies and electrostatic potential after irradiation. The largest decrease in capture efficiency was 40-50% and peaked near the 200 nm particle size. The key contribution of this effort is correlating the electrostatic potential change of individual filtration layer of the respirator with the decrease filtration efficiency after irradiation. This observation occurred in both variations of N95 respirator that we tested. Electrostatic potential measurement of the filtration layer is a key indicator for predicting filtration efficiency loss.
Collapse
Affiliation(s)
| | - Anne M. Grillet
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Martin B. Nemer
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | | | - Don J. Hanson
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Michael A. Omana
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Andres L. Sanchez
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - David W. Vehar
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Paul M. Thelen
- Sandia National Laboratories, Albuquerque, NM, United States of America
| |
Collapse
|
31
|
Cui J, Wang Y, Lu T, Liu K, Huang C. High performance, environmentally friendly and sustainable nanofiber membrane filter for removal of particulate matter 1.0. J Colloid Interface Sci 2021; 597:48-55. [PMID: 33866211 DOI: 10.1016/j.jcis.2021.03.174] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
Particulate matter (PM) air pollution is becoming more and more serious and dangerous to public health, especially in developing countries where industrialization is accelerating. The use of electrospun membrane-based materials for air filtration is a widespread and effective way to help individuals avoid air pollution. However, most electrospun membrane preparation processes require the use of organic solvents, resulting in secondary environmental pollution. In this study, an environmentally friendly polyvinyl alcohol (PVA) - tannic acid (TA) composite nanofiber membrane filter was prepared by the green electrospinning and the physical cross-linking method. The filtration efficiency of the membrane filter for PM1.0 reached 99.5%, and the pressure drop was only 35 Pa. In addition, due to the existence of intermolecular hydrogen bond between PVA and TA, the mechanical properties of the nanofiber membrane were improved to meet the requirements of practical application of the filter. Therefore, the PVA-TA composite nanofiber membrane is expected to provide a solution for the development of efficient and environmentally friendly air filter.
Collapse
Affiliation(s)
- Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) Nanjing Forestry, University (NFU), Nanjing 210037, China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) Nanjing Forestry, University (NFU), Nanjing 210037, China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) Nanjing Forestry, University (NFU), Nanjing 210037, China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) Nanjing Forestry, University (NFU), Nanjing 210037, China.
| |
Collapse
|
32
|
Grillet AM, Nemer MB, Storch S, Sanchez AL, Piekos ES, Leonard J, Hurwitz I, Perkins DJ. COVID-19 global pandemic planning: Performance and electret charge of N95 respirators after recommended decontamination methods. Exp Biol Med (Maywood) 2021; 246:740-748. [PMID: 33325749 PMCID: PMC7961645 DOI: 10.1177/1535370220976386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022] Open
Abstract
Shortages of N95 respirators for use by medical personnel have driven consideration of novel conservation strategies, including decontamination for reuse and extended use. Decontamination methods listed as promising by the Centers for Disease Control and Prevention (CDC) (vaporous hydrogen peroxide (VHP), wet heat, ultraviolet irradiation (UVI)) and several methods considered for low resource environments (bleach, isopropyl alcohol and detergent/soap) were studied for two commonly used surgical N95 respirators (3M™ 1860 and 1870+ Aura™). Although N95 filtration performance depends on the electrostatically charged electret filtration layer, the impact of decontamination on this layer is largely unexplored. As such, respirator performance following decontamination was assessed based on the fit, filtration efficiency, and pressure drop, along with the relationship between (1) surface charge of the electret layer, and (2) elastic properties of the straps. Decontamination with VHP, wet heat, UVI, and bleach did not degrade fit and filtration performance or electret charge. Isopropyl alcohol and soap significantly degraded fit, filtration performance, and electret charge. Pressure drop across the respirators was unchanged. Modest degradation of N95 strap elasticity was observed in mechanical fatigue testing, a model for repeated donnings and doffings. CDC recommended decontamination methods including VHP, wet heat, and UV light did not degrade N95 respirator fit or filtration performance in these tests. Extended use of N95 respirators may degrade strap elasticity, but a loss of face seal integrity should be apparent during user seal checks. NIOSH recommends performing user seal checks after every donning to detect loss of appropriate fit. Decontamination methods which degrade electret charge such as alcohols or detergents should not be used on N95 respirators. The loss of N95 performance due to electret degradation would not be apparent to a respirator user or evident during a negative pressure user seal check.
Collapse
Affiliation(s)
- Anne M Grillet
- Thermal/Fluid Component Sciences, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Martin B Nemer
- Diagnostic Science and Engineering, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Steven Storch
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Andres L Sanchez
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Edward S Piekos
- Thermal/Fluid Component Sciences, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jonathan Leonard
- Diagnostic Science and Engineering, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Douglas J Perkins
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
- University of New Mexico-Kenya Programs, Kisumu and Siaya 40100, Kenya
| |
Collapse
|
33
|
Zhang X, Liu J, Zhang H, Hou J, Wang Y, Deng C, Huang C, Jin X. Multi-Layered, Corona Charged Melt Blown Nonwovens as High Performance PM 0.3 Air Filters. Polymers (Basel) 2021; 13:485. [PMID: 33557037 PMCID: PMC7913826 DOI: 10.3390/polym13040485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022] Open
Abstract
Particulate matter (PM) and airborne viruses bring adverse influence on human health. As the most feasible way to prevent inhalation of these pollutants, face masks with excellent filtration efficiency and low press drop are in urgent demand. In this study, we report a novel methodology for producing high performance air filter by combining melt blown technique with corona charging treatment. Changing the crystal structure of polypropylene by adding magnesium stearate can avoid charge escape and ensure the stability of filtration performances. Particularly, the influence of fiber diameter, pore size, porosity, and charge storage on the filtration performances of the filter are thoroughly investigated. The filtration performances of the materials, including the loading test performance are also studied. The melt blown materials formed by four layers presented a significant filtration efficiency of 97.96%, a low pressure drop of 84.28 Pa, and a high quality factor (QF) of 0.046 Pa-1 for paraffin oil aerosol particles. Meanwhile, a robust filtration efficiency of 99.03%, a low pressure drop of 82.32 Pa, and an excellent QF of 0.056 Pa-1 for NaCl aerosol particles could be easily achieved. The multi-layered melt blown filtration material developed here would be potentially applied in the field of protective masks.
Collapse
Affiliation(s)
- Xing Zhang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| | - Jinxin Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| | - Haifeng Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China;
| | - Jue Hou
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| | - Yuxiao Wang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| | - Chao Deng
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China;
| | - Chen Huang
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; (X.Z.); (J.L.); (J.H.); (Y.W.); (C.H.)
| |
Collapse
|
34
|
Zhao C, Mark LH, Kim S, Chang E, Park CB, Lee PC. Recent progress in micro‐/nano‐fibrillar reinforced polymeric composite foams. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chongxiang Zhao
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Lun Howe Mark
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Sundong Kim
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Eunse Chang
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Chul B. Park
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Patrick C. Lee
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| |
Collapse
|
35
|
Aizawa T, Wakui Y. Correlation between the Porosity and Permeability of a Polymer Filter Fabricated via CO 2-Assisted Polymer Compression. MEMBRANES 2020; 10:E391. [PMID: 33287270 PMCID: PMC7761719 DOI: 10.3390/membranes10120391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
A porous filter was fabricated by plasticizing polymer fibers with CO2, followed by pressing and adhering; then, its gas permeability, a basic physical property of filters, was measured using N2. The as-obtained filter was well compressed and expected to approximate a sintered porous material. Therefore, the fabricated filter was analyzed by applying the Darcy law, and the correlation between its gas permeability and porosity was clarified. The gas permeability decreased owing to both pore size and porosity reduction upon increasing the degree of compression, which is a feature of the CO2-assisted polymer compression method. In particular, without any contradiction of pore size data previously reported, the gas permeability was clearly determined by the filter porosity and pore size. This study can serve as a guide for designing filters via CO2-assisted polymer compression.
Collapse
Affiliation(s)
- Takafumi Aizawa
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 4-2-1 Nigatake, Miyagino-ku, Sendai 983-8551, Japan;
| | | |
Collapse
|
36
|
Liu C, Dai Z, He B, Ke QF. The Effect of Temperature and Humidity on the Filtration Performance of Electret Melt-Blown Nonwovens. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4774. [PMID: 33114665 PMCID: PMC7662889 DOI: 10.3390/ma13214774] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
Electret melt-blown nonwovens are widely used for air purification due to their low pressure drop and high filtration efficiency. However, the charge stability could be affected by the ambient temperature and humidity, reducing the filtration efficiency, resulting in the electret melt blown filter not providing effective protection. Herein, we used corona charge to prepare electret melt-blown nonwovens and systematically studied the effects of different temperature and humidity on the structure, morphology, filtration performance, and surface potential within 24 h. The effect of treatment temperature and humidity on pressure drop was minimal because the fiber morphology and web structure of melt-blown nonwovens were not damaged. When the treatment temperature was lower than 70 °C, the effect on the filtration efficiency of the sample was small, but when the temperature increased to 90 or 110 °C, the filtration efficiency decreased significantly with the increase of the treatment time, and the surface potential also declined similarly. In conclusion, high temperatures will lead to charge escape and reduce the electrostatic adsorption effect. Furthermore, at the same temperature, increasing relative humidity can accelerate the charge release and make the filtration efficiency drop more. After the sample was treated at 110 °C and 90% relative humidity for 24 h, the filtration efficiency decreased from 95.49% to 38.16% at a flow rate of 14.16 cm s-1, and the surface potential dropped to the lowest value of -1.01 kV. This result shows that all links of electret melt-blown filter material from raw material to final use should be avoided in high temperature and high humidity conditions to ensure the protection effect.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China;
- Textile and Fashion Collage, Hunan Institute of Engineering, Xiangtan 411101, China;
| | - Zijian Dai
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China;
| | - Bin He
- Textile and Fashion Collage, Hunan Institute of Engineering, Xiangtan 411101, China;
| | - Qin-Fei Ke
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China;
| |
Collapse
|
37
|
Self-Powered Electrospun Composite Nanofiber Membrane for Highly Efficient Air Filtration. NANOMATERIALS 2020; 10:nano10091706. [PMID: 32872502 PMCID: PMC7557972 DOI: 10.3390/nano10091706] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
Abstract
Highly efficient air filtration with low pressure drop is the key to air purification. In this work, a self-powered electrospun nanofiber membrane with an electrostatic adsorption effect was prepared to improve the filtration efficiency of micro/nano particles. The composite membrane was comprised of polyvinyl chloride (PVC) nanofibers and polyamide-6 (PA6) nanofibers. The triboelectric effect between the two adjacent nanofiber membranes generated electrostatic charges under the action of air vibration, by which the electrostatic adsorption with the same pressure drop was enhanced. The electrostatic voltage on the self-powered nanofiber membrane was 257.1 mV when the flow velocity was 0.1 m/s. For sodium chloride (NaCl) aerosol particles with a diameter of 0.3 μm, the removal efficiency of the self-powered composite nanofiber membrane was 98.75% and the pressure drop was 67.5 Pa, which showed a higher quality factor than the membrane without electrostatic charges. This work provides an effective way to improve the filtration performance of air filter membranes.
Collapse
|
38
|
Cui J, Lu T, Li F, Wang Y, Lei J, Ma W, Zou Y, Huang C. Flexible and transparent composite nanofibre membrane that was fabricated via a "green" electrospinning method for efficient particulate matter 2.5 capture. J Colloid Interface Sci 2020; 582:506-514. [PMID: 32911399 DOI: 10.1016/j.jcis.2020.08.075] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
Air particulate pollution from ever-increasing industrialization poses an enormous threat to public health. Thus, the development of a green air filter with high efficiency and performance is of urgent necessity. In this study, we introduce a new effective air filtration membrane that can be used for outdoor protection. The air filter's composite nanofibre materials were prepared from polyvinyl alcohol (PVA)-sodium lignosulfonate (LS) via a "green" electrospinning method and thermal crosslinking. The addition of LS helped increase the PM2.5 removal efficiency compared to that of a pure PVA nanofibre membrane. The pressure drops of the electrospun PVA-LS membranes exceeded those of the pristine PVA air filter. The remarkable air filtration performance was maintained even after 10 cycles of circulation filtration. In addition, the PVA-LS composite nanofibre membrane exhibited excellent mechanical properties and transparency due to the introduction of LS. This study provides new insight into the design and development of high-performance and high-visibility green filter media, which include personal protection and building screens.
Collapse
Affiliation(s)
- Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Fanghua Li
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, and MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| | - Yan Zou
- Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, PR China.
| |
Collapse
|
39
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
40
|
Tian E, Xia F, Wu J, Zhang Y, Li J, Wang H, Mo J. Electrostatic Air Filtration by Multifunctional Dielectric Heterocaking Filters with Ultralow Pressure Drop. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29383-29392. [PMID: 32498504 DOI: 10.1021/acsami.0c07447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In air filtration, for creating healthy indoor air, there is an intrinsic conflict between high filtration efficiency and low wind pressure drop. In this study, we overcame this conflict by developing new dielectric heterocaking (HC) filters, in which high relative dielectric constant (εr) materials were heterogeneously loaded on traditional polymer fibers. The dielectric HC filters in an electrostatic polarizing field generate a great amount of charges on their surface, leading to a strong attraction to precharged aerosol particles, and result in high filtration efficiency. Observing via a charged coupled device camera, the migration speed of aerosol smoke particles toward the polarized HC fiber exceeded those toward the unpolarized HC fiber by a factor of 6. We loaded high-εr HCs including manganese dioxide (MnO2), activated carbon, zinc oxide (ZnO), copper oxide (CuO), and barium titanate (BaTiO3) on polyurethane foams using a fast and large-scale roll-to-roll gel squeezing method. Based on the experimental results, when HCs had a εr larger than 5.1, an increased εr did not benefit electrostatic filtration efficiency for aerosol particles much, but resulted in a larger net ozone production. We suggested a MnO2-HC filter for efficient and multifunctional filtration of indoor particles, ambient ozone, and formaldehyde with only 3.8 Pa pressure drop at 1.1 m/s filtration velocity. This efficient and cost-effective dielectric HC filter opens a new avenue for the design of multifunctional filters, which will facilitate its large-scale production and commercial application in the ventilation system for healthy buildings.
Collapse
Affiliation(s)
- Enze Tian
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Fanxuan Xia
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jiandong Wu
- College of Engineering, Peking University, Beijing 100871, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hao Wang
- College of Engineering, Peking University, Beijing 100871, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| |
Collapse
|
41
|
Wang Y, Xu Y, Wang D, Zhang Y, Zhang X, Liu J, Zhao Y, Huang C, Jin X. Polytetrafluoroethylene/Polyphenylene Sulfide Needle-Punched Triboelectric Air Filter for Efficient Particulate Matter Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:48437-48449. [PMID: 31790597 DOI: 10.1021/acsami.9b18341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The demand for air filtration materials in recent years has been substantially increasing on a worldwide scale because people are paying extensive attention to particulate matter (PM) pollution. In this work, we report a type of needle-punched triboelectric air filter (N-TAF) consisting of polytetrafluoroethylene (PTFE) fibers modified by silica nanoparticles and polyphenylene sulfide (PPS) fibers. Compared to conventional electrostatic precipitators, the N-TAF can be charged online by a unique nonwoven processing technology without additional energy consumption and toxic ozone emission. Owing to the triboelectrification effect, a large number of charges were generated during the process of carding and needle-punching, resulting in an increased filtration performance. Benefiting from the addition of silica nanoparticles, the PTFE fibers are endowed with many pores and grooves and substantial surface roughness, which contributes to the enhancement of triboelectrification. As a result, the N-TAF with 2 wt % silica nanoparticles (N-TAF-2) exhibited a high removal efficiency of 89.4% for PM, which is 45% higher than unmodified N-TAF (61.8%), and a low pressure drop of 18.6 Pa. Meanwhile, the decay of the removal efficiency for N-TAF-2 remained at a low level (6.4%) for 60 days. More importantly, N-TAF-2 could realize a high efficiency of 99.7% and a low pressure drop of 55.4 Pa at a high surface density. In addition, the washed N-TAF has an excellent charge regeneration performance via air blowing or manual rubbing, thus recovering the removal efficiency easily and rapidly. Ultimately, the powerful dust holding capacity (227 g m-2) for N-TAF-2 indicates that the filter has a long service life, which makes it a promising air purification material. The filter reported in this work has the potential to be practically applied to air purification fields because it has excellent filtration performance and is easy to be produced on a large industrial scale.
Collapse
Affiliation(s)
- Yuxiao Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yukang Xu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Dan Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yinjiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xing Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Jinxin Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yi Zhao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Chen Huang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xiangyu Jin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles , Donghua University , Shanghai 201620 , China
| |
Collapse
|