1
|
Liu J, Gu P, Song Y, Xie J, Wan X, Wang R, Meng X, Wang C, Li Z, Yuan B, Chang H, Zou J. Tuning the electronic state of CoFe alloy via in-situ partial Co nitridation for enhanced oxygen electrocatalysis in zinc-air battery. J Colloid Interface Sci 2025; 689:137222. [PMID: 40048852 DOI: 10.1016/j.jcis.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/26/2025]
Abstract
The low catalytic activity and high susceptibility to corrosion of CoFe alloys limit their efficiency and stability in oxygen evolution and reduction reactions (OER/ORR). Here, via a partial nitridation strategy, Co5.47N is in-situ formed adjacent to CoFe alloy to construct a well-defined heterointerface within N-doped bamboo-like carbon nanotube (Co5.47N-CoFe/NCNT). As indicated by computational calculations, the interfacial electrons are transferred from Fe atom to Co5.47N in the Co5.47N-CoFe heterojunction, optimizing the adsorption of O-intermediates and accelerating the rate-determining steps (*O to *OH in ORR and *O to *OOH in OER). X-ray absorption spectra confirm that Fe atom loses electrons, increasing its oxidation state. The Fe site in the heterojunction is identified as the primary active site for both ORR and OER, while the Co site in Co5.47N plays an auxiliary role. Thus, Co5.47N-CoFe/NCNT exhibits promising bifunctional activity with a very-low potential difference between ORR and OER (ΔE = 0.645 V). Interestingly, hydroxyl radical primarily induces corrosion of active species (FeOOH/CoOOH) and the structural framework during OER. Co5.47N-CoFe/NCNT-based zinc-air battery shows excellent open-circuit potential (1.56 V) and charge/discharge stability (500 h). This study provides a new strategy to overcome the challenges posed by alloy-based catalysts and pave the way for highly-efficient energy conversion.
Collapse
Affiliation(s)
- Jin Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Gu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yidong Song
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jiahao Xie
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiangyu Wan
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ruihong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Xin Meng
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Cheng Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhouguanwei Li
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bowen Yuan
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Haiyang Chang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinlong Zou
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology and Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Tao JGL, Chen J, Zhao B, Feng R, Shakouri M, Chen F. Ni 3C/Ni 3S 2 Heterojunction Electrocatalyst for Efficient Methanol Oxidation via Dual Anion Co-modulation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402492. [PMID: 39109574 DOI: 10.1002/smll.202402492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Indexed: 11/21/2024]
Abstract
Enhancing active states on the catalyst surface by modulating the adsorption-desorption properties of reactant species is crucial to optimizing the electrocatalytic activity of transition metal-based nanostructured materials. In this work, an efficient optimization strategy is proposed by co-modulating the dual anions (C and S) in Ni3C/Ni3S2, the heterostructured electrocatalyst, which is prepared via a simple hot-injection method. The presence of Ni3C/Ni3S2 heterojunctions accelerates the charge carrier transfer and promotes the generation of active sites, enabling the heterostructured electrocatalyst to achieve current densities of 10/100 mA cm-2 at 1.37 V/1.53 V. The Faradaic efficiencies for formate production coupled with hydrogen evolution approach 100%, accompanied with a stability record of 350 h. Additionally, operando electrochemical impedance spectroscopy (EIS), in situ Raman spectroscopy, and density functional theory (DFT) calculations further demonstrate that the creation of Ni3C/Ni3S2 heterointerfaces originating from dual anions' (C and S) differentiation is effective in adjusting the d-band center of active Ni atoms, promoting the generation of active sites, as well as optimizing the adsorption and desorption of reaction intermediates. This dual anions co-modulation strategy to stable heterostructure provides a general route for constructing high-performance transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Jin-Gang-Lu Tao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jiaxu Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Bin Zhao
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Renfei Feng
- Senior Scientist and Beamline Responsible in charge of a hard X-ray microprobe facility at the Canadian Light Source, Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Mohsen Shakouri
- Senior Scientist and Beamline Responsible in charge of a hard X-ray microprobe facility at the Canadian Light Source, Canadian Light Source Inc., Saskatoon, Saskatchewan, S7N 0X4, Canada
| | - Feng Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
3
|
Zhang C, Li Z, Zhou B, Zhang W, Lu L. Coupling methanol oxidation with CO 2 reduction: A feasible pathway to achieve carbon neutralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174288. [PMID: 38945233 DOI: 10.1016/j.scitotenv.2024.174288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
The energy consumption of up to 90 % of the total power input in the anodic oxygen evolution reaction (OER) slows down the implementation of electrochemical CO2 reduction reaction (CO2RR) to generate valuable chemicals. Herein, we present an alternative strategy that utilizes methanol oxidation reaction (MOR) to replace OER. The iron single atom anchored on nitrogen-doped carbon support (Fe-N-C) use as the cathode catalyst (CO2RR), low-loading platinum supported on the composites of tungsten phosphide and multiwalled carbon nanotube (Pt-WP/MWCNT) use as the anode catalyst (MOR). Our results show that the Fe-N-C exhibits a Faradaic selectivity as high as 94.93 % towards CO2RR to CO, and Pt-WP/MWCNT exhibits a peak mass activity of 544.24 mA mg-1Pt, which is 5.58 times greater than that of PtC (97.50 mA mg-1Pt). The well-established MOR||CO2RR reduces the electricity consumption up to 52.4 % compared to conventional OER||CO2RR. Moreover, a CO2 emission analysis shows that this strategy not only saves energy but also achieves carbon neutrality without changing the existing power grid structure. Our findings have crucial implications for advancing CO2 utilization and lay the foundation for developing more efficient and sustainable technologies to address the rising atmospheric CO2 levels.
Collapse
Affiliation(s)
- Chunyue Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhida Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Baiqin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Wei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Zhang X, Xu H, Shi Q, Sun W, Han X, Jiang D, Cao Y, He D, Cui X. Interfacial engineering layered bimetallic oxyhydroxides for efficient oxygen evolution reaction. J Colloid Interface Sci 2024; 670:142-151. [PMID: 38761567 DOI: 10.1016/j.jcis.2024.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Transition metal-based oxyhydroxides (MOOH) have garnered significant attention as promising catalyst for the Oxygen Evolution Reaction (OER). However, the direct synthesis of MOOH poses challenges due to the instability of trivalent cobalt and nickel salts, attrivuted to their high oxidation states. In this study, theoretical computations predicted that Co(OH)2 nanosheets are exclusively formed on carbon structures, owing to the stronger binding energy between CoOOH and CC compared to Co(OH)2. Furthermore, the presence of FeOOH interface reduces the binding energy between CoOOH and carbon structure. Experiment evidence confirms that CoOOH can be directly synthesized through controlled epitaxial growth on an FeOOH interface using a hydrothermal method. Moreover, the in-situ doping of iron leads to the formation of high-quality Fe0.35Co0.65OOH with exceptional OER performance, displaying a low overpotential of 240 mV at 10 mA cm-2 and a small Tafel slope of 43 mV dec-1. Density functional theory (DFT) calculations uncover the substantial enhancement of oxygen-containing species adsorption abilities by Fe0.35Co0.65OOH, resulting in improved OER activity. This work presents a promising strategy for the efficient preparation of layered cobalt oxyhydroxides, enabling efficient energy conversion and storage.
Collapse
Affiliation(s)
- Xiaolin Zhang
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
| | - Huanjun Xu
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
| | - Qiang Shi
- China Coal Energy Company Limited Hainan Branch, Haikou 570100, China
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xu Han
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
| | - Dan Jiang
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
| | - Yang Cao
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China
| | - Danfeng He
- College of Science, Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou 571127, China.
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science and Key Laboratory of Automobile Materials of MOE, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
5
|
Cao M, Li Y, Cao Y, Wen Y, Li B, Shen Q, Gu W. Rational Construction of a 3D Self-Supported Electrode Based on ZIF-67 and Amorphous NiCoP for an Enhanced Oxygen Evolution Reaction. Inorg Chem 2024; 63:14062-14073. [PMID: 39014989 DOI: 10.1021/acs.inorgchem.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of efficient and Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is an urgent requirement in the field of electrochemical water splitting. The electrocatalytic performance of the OER can be greatly enhanced by the synergistic combination of zeolite imidazolate frameworks (ZIFs) and transition-metal phosphides, both of which individually exhibit promising capabilities in this regard. In this study, a novel amorphous NiCoP deposited on ZIF-67 sheets supported on Ni foam (labeled as NiCoP/ZIF-67/NF) as an OER electrocatalytic material was successfully synthesized using a simple, secure, and time-efficient two-step strategy. The experimental results demonstrate that NiCoP/ZIF-67/NF possesses a large active surface area with abundant active sites. Also, the synergistic effect and interaction between NiCoP and ZIF-67, as well as between Ni and Co within NiCoP, effectively enhance its electrochemical performance under alkaline conditions. Consequently, NiCoP/ZIF-67/NF exhibits outstanding catalytic activity for OER with an overpotential (η) of 175 mV at a current density of 10 mA cm-2 and a long-term stability over 40 h at 20 mA cm-2 in a 1.0 M KOH electrolyte. The corresponding analyses suggest that the real active sites responsible for the OER are identified as NiOOH and CoOOH species within the structure of NiCoP/ZIF-67/NF. Additionally, the catalytic function and stability of ZIF-67 toward the OER under alkaline conditions were also briefly discussed. This work provides a novel catalytic material for the OER along with a facile strategy to fabricate superior, efficient, and noble metal-free catalysts suitable for energy-related applications.
Collapse
Affiliation(s)
- Mengya Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijia Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yusong Wen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Shen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen Gu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Wu F, Wu B, Chen L, Wang Y, Li J, Zhang Q. Dual-site OER mechanism exploration through regulating asymmetric multi-site NiOOH. NANOSCALE 2024; 16:13694-13702. [PMID: 38967458 DOI: 10.1039/d4nr01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Asymmetric nickel oxyhydroxide (NiOOH) possesses multi-OH and O active sites on different surfaces, (001) and (001̄), which possibly causes a complicated catalytic process. Density functional theory (DFT) calculations reveal that the unconventional dual-site mechanism (UDSM) of the oxygen evolution reaction (OER) on NiOOH (001) and (001̄) exhibits significantly lower overpotentials of 0.80 and 0.77 V, compared to 1.24 and 1.62 V for the single-site mechanism (SSM), respectively. Through chemical doping or heterojunction modifications, the constructed NiOOH@FeOOH (001̄) heterojunction reduces the thermodynamic overpotential to 0.49 V from original 0.77 V undergoing the UDSM. Although Fe/Co-doping or physical compression yield similar or slightly higher overpotentials and are not conductive to facilitating the OER process by the UDSM, all dual-site paths exhibit obviously lower overpotentials than the SSM for pristine and regulated NiOOH (001) and (001̄) from the whole viewpoint. This work identifies a more reasonable and efficient dual-site OER mechanism, which is expected to help the rational design of highly-efficient electrocatalysts.
Collapse
Affiliation(s)
- Fei Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
| | - Biao Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiejie Li
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hao X, Wang R, Tan X, Zhang X, Liu X, Wu Z, Yuan D. Fabricating Spinel-Type High-Entropy Oxides of (Co, Fe, Mn, Ni, Cr) 3O 4 for Efficient Oxygen Evolution Reaction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3415. [PMID: 39063707 PMCID: PMC11277610 DOI: 10.3390/ma17143415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Fabricating efficient oxygen evolution reaction (OER) electrocatalysts is crucial for water electrocatalysis. Herein, the spinel-type high-entropy oxides of (Co, Fe, Mn, Ni, Cr)3O4 were synthesized through the high-temperature calcination approach. The influences of calcination temperatures on structures and electrochemical properties were investigated. The optimized catalyst of HEO-900 contains the hybrid structure of regular polyhedrons and irregular nanoparticles, which is beneficial for the exposure of electrochemically active sites. It was identified that the abundant high-valence metal species of Ni3+, Co3+, Fe3+, Mn4+, and Cr3+ are formed during the OER process, which is generally regarded as the electrochemically active sites for OER. Because of the synergistic effect of multi-metal active sites, the optimized HEO-900 catalyst indicates excellent OER activity, which needs the overpotential of 366 mV to reach the current density of 10 mA cm-2. Moreover, HEO-900 reveals the prominent durability of running for 24 h at the current density of 10 mA cm-2 without clear delay. Therefore, this work supplies a promising route for preparing high-performance multi-metal OER electrocatalysts for water electrocatalysis application.
Collapse
Affiliation(s)
- Xiaofei Hao
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; (X.T.); (X.Z.); (Z.W.); (D.Y.)
| | - Ran Wang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China;
| | - Xiumin Tan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; (X.T.); (X.Z.); (Z.W.); (D.Y.)
| | - Xiufeng Zhang
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; (X.T.); (X.Z.); (Z.W.); (D.Y.)
| | - Xupo Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China;
| | - Zhaoyang Wu
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; (X.T.); (X.Z.); (Z.W.); (D.Y.)
| | - Dongli Yuan
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Zhengzhou 450006, China; (X.T.); (X.Z.); (Z.W.); (D.Y.)
| |
Collapse
|
8
|
Mao S, Ye L, Jin S, Zhou C, Pang J, Xu W. Enhanced Electrocatalytic Oxygen Evolution by In Situ Growth of Tetrametallic Metal-Organic Framework Electrocatalyst FeCoNiMn-MOF on Nickel Foam. Inorg Chem 2024; 63:6005-6015. [PMID: 38507712 DOI: 10.1021/acs.inorgchem.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Developing highly efficient, cost-effective, non-noble-metal-based electrocatalysts with superior performance and stability for oxygen evolution reactions is of immense challenge as well as great importance for the upcoming sustainable and green energy conversion technologies. The multivariate metal-organic frameworks with hierarchical porous structures and unsaturated coordination modes are considered to be promising emerging energy materials. In this work, a series of multimetallic MOFs were directly grown on nickel foam (NF) through the solvothermal method. Notably, the optimized tetrametallic FeCoNiMn-MOF/NF shows a low overpotential of 239 mV to achieve a current density of 50 mA cm-2 with a Tafel slope of 62.05 mV dec-1 for OER in 1 M KOH. It also exhibits excellent stability and durability over 100 h in chronoamperometric studies. The enhanced performance is closely tied to the high activity of iron and nickel ions and the decomposed and reconstructed Ni/Fe-OOH intermediates of the FeCoNiMn-MOF/NF during the OER process, which are revealed by XPS analysis and in situ Raman spectroscopy. This present work demonstrates the feasibility and advantage of utilizing highly efficient and durable multimetallic MOFs for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Shengbin Mao
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
9
|
Huo J, Chang Y, Xu A, Jia M, Jia J. NiSe 2/CeO 2 catalysts from Ce-UiO-66 metal-organic skeletons and their electrocatalytic oxidation of methanol, urea and glycerol. Phys Chem Chem Phys 2024; 26:9413-9423. [PMID: 38446037 DOI: 10.1039/d3cp06273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Hydrogen is a viable alternative energy source to fossil fuels. In order to manufacture enough hydrogen to meet the needs of social growth, finding an alternate energy source that is more effective is essential. Electrochemical water cracking is a more appropriate method for producing hydrogen. The methanol oxidation reaction (MOR), urea oxidation reaction (UOR) and glycerol oxidation reaction (GOR) can be used to replace the anodic oxygen evolution reaction (OER) and indirectly accelerate the hydrogen evolution reaction (HER), which has the advantages of saving energy and reducing environmental pollution. In this study, Ni/CeO2 catalysts were prepared by thermal annealing of MOFs (Ce-UiO-66) containing nickel species and NiSe2/CeO2 nanocrystalline catalysts were obtained through the selenation reaction at different temperatures. The NiSe2/CeO2-450 °C catalysts exhibited superior catalytic performance for the MOR, UOR, and GOR. The MOR showed a peak current density of roughly 186.68 mA cm-2 and a low oxidation potential of around 1.34 V. Similarly, the UOR demonstrated a peak current density of approximately 142.28 mA cm-2 and a low oxidation potential of around 1.32 V. Furthermore, the GOR exhibited a peak current density of approximately 82.56 mA cm-2 and a low oxidation potential of around 1.37 V. NiSe2/CeO2-450 °C could improve electrocatalytic performance for the MOR, UOR, and GOR, which is attributed to the more active sites that were exposed as a result of utilizing MOFs (Ce-UiO-66) as a precursor. Additionally, selenation increased the ability to transfer electrons. This research is crucial for the production of inexpensive, easily accessible transition metals in place of expensive noble metals, for the reduction of wastewater pollution from methanol and urea, and for the creation of effective anodic oxidation electrocatalysts.
Collapse
Affiliation(s)
- Jiaqi Huo
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Aiju Xu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
10
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
11
|
Xu X, Wang X, Huo S, Liu X, Ma X, Liu M, Zou J. Modulation of Phase Transition in Cobalt Selenide with Simultaneous Construction of Heterojunctions for Highly-Efficient Oxygen Electrocatalysis in Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306844. [PMID: 37813107 DOI: 10.1002/adma.202306844] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Phase transformation of cobalt selenide (CoSe2 ) can effectively modulate its intrinsic electrocatalytic activity. However, enhancing electroconductivity and catalytic activity/stability of CoSe2 still remains challenging. Heterostructure engineering may be feasible to optimize interfacial properties to promote the kinetics of oxygen electrocatalysis on a CoSe2 -based catalyst. Herein, a heterostructure consisting of CoSe2 and cobalt nitride (CoN) embedded in a hollow carbon cage is designed via a simultaneous phase/interface engineering strategy. Notably, the phase transition of orthorhombic-CoSe2 to cubic-CoSe2 (c-CoSe2 ) accompanied by in situ CoN formation is realized to build the c-CoSe2 /CoN heterointerface, which exhibits excellent/highly stable activities for oxygen reduction/evolution reactions (ORR/OER). Notably, heterostructure can modulate the local coordination environment and increase Co-Se/N bond lengths. Theoretical calculations show that Co-site (c-CoSe2 ) with an electronic state near Fermi energy level is the main active site for ORR/OER.Energetical tailoring of the d-orbital electronic structure of the Co atom of c-CoSe2 in heterostructure by in situ CoN incorporation lowers thermodynamic barriers for ORR/OER. Attractively, a zinc-air battery with a c-CoSe2 -CoN cathode displays excellent cycling stability (250 h) and charge/discharge voltage loss (0.953/0.96 V). It highlights that heterointerface engineering provides an option for modulating the bifunctional activity of metal selenides with controlled phase transformation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Sichen Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaofeng Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
12
|
Yue T, Shi Y, Ji Y, Jia J, Chang Y, Chen J, Jia M. Interfacial engineering of nickel selenide with CeO 2 on N-doped carbon nanosheets for efficient methanol and urea electro-oxidation. J Colloid Interface Sci 2024; 653:1369-1378. [PMID: 37801847 DOI: 10.1016/j.jcis.2023.09.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
The design of low cost, high efficiency electrocatalysts for methanol oxidation reactions (MOR) and urea oxidation reactions (UOR) is a pressing need to address the energy crisis and water pollution. In the present work, we developed Cerium dioxide (CeO2) and nickel selenide (Ni0.85Se) nanoparticles integrated into three-dimensional N-doped carbon nanosheets to be used as efficient and stable bifunctional electrocatalysts for MOR and UOR. By optimizing the selenization temperature, the CeO2-modified Ni0.85Se obtained at selenization temperature of 550 °C (CeO2-Ni0.85Se-550-NC) has the best MOR and UOR electrochemical performance. The CeO2-Ni0.85Se-550-NC potential only requires 1.309 V (MOR) and 1.294 V (UOR) to reach 10 mA cm-2, respectively. The DFT study reveals that CeO2-Ni0.85Se-550-NC has the best reaction path with the synergistic effect between CeO2 and Ni0.85Se. The outstanding catalytic performance of CeO2-Ni0.85Se-550-NC may be due to the cointeraction between CeO2 and Ni0.85Se, allowing more defects that function as catalytic sites while promoting fast electron transfer in the N-doped carbon substrate.
Collapse
Affiliation(s)
- Tingting Yue
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China
| | - Yue Shi
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China
| | - Yaxin Ji
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jingchun Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| | - Ying Chang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China
| | - Junxiang Chen
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis and Inner Mongolia Collaborative Innovation Center for Water Environment Safety, Inner Mongolia Normal University, China; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education Hohhot, 010022, China.
| |
Collapse
|
13
|
Lu B, Lv C, Xie Y, Gao L, Yan J, Zhu K, Wang G, Cao D, Ye K. Exploring The Synergistic Effect Of CoSeP/CoP Interface Catalyst For Efficient Urea Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302923. [PMID: 37312657 DOI: 10.1002/smll.202302923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Electrocatalytic oxidation of urea (UOR) is a potential energy-saving hydrogen production technology that can replace oxygen evolution reaction (OER). Therefore, CoSeP/CoP interface catalyst is synthesized on nickel foam using hydrothermal, solvothermal, and in situ template methods. The strong interaction of tailored CoSeP/CoP interface promotes the hydrogen production performance of electrolytic urea. During the hydrogen evolution reaction (HER), the overpotential can reach 33.7 mV at 10 mA cm-2 . The cell voltage can reach 1.36 V at 10 mA cm-2 in the overall urea electrolytic process. Notably, the overall urine electrolysis performance of the catalyst in the human urine medium can reach 1.40 V at 10 mA cm-2 and can exhibit durable cycle stability at 100 mA cm-2 . Density functional theory (DFT) proves that the CoSeP/CoP interface catalyst can better adsorb and stabilize reaction intermediates CO* and NH* on its surface through a strong synergistic effect, thus enhancing the catalytic activity.
Collapse
Affiliation(s)
- Borong Lu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Chunmei Lv
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Lianxin Gao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Yan
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ke Ye
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Su H, Wang S, Liao W, Gan R, Ran Y, Zhao Q, Fang L, Zhang Y. Synergistic Activation of Inert Iron Oxide Basal Planes through Heterostructure Formation and Doping for Efficient Hydrogen Evolution. Chemistry 2023:e202302774. [PMID: 37682016 DOI: 10.1002/chem.202302774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Iron oxides have emerged as a very promising and cost-effective alternative to precious metal catalysts for hydrogen production. However, the inert basal plane of iron oxides needs to be activated to enhance their catalytic efficiency. In this study, we employed heterostructure engineering and doped nickel to cooperatively activate the basal planes of iron oxide (Ni-Fe2 O3 /CeO2 HSs) to achieve high hydrogen evolution reaction (HER) activity. The Ni-Fe2 O3 /CeO2 HSs electrocatalyst demonstrates excellent basic HER activity and stability, such as an extremely low overpotential of 43 mV at 10 mA cm-2 current density and corresponding Tafel slope of 58.6 mV dec-1 . The increase in electrocatalyst activity and acceleration of hydrogen precipitation kinetics arises from the dual modulation of Ni doping and heterostructure, which not only modulates the electrocatalyst's electronic structure, but also increases the number and exposure of active sites. Remarkably, the generation of heterogeneous structure makes the catalyst se. The Ni-doped catalyst has not only increased HER activity but also low-temperature resistance. These results suggest that the synergistic activation of inert iron oxide basal planes through heterostructure formation and doping is a feasible strategy. Furthermore, for efficient electrocatalytic water splitting, this technique can be extended to other non-noble metal oxides.
Collapse
Affiliation(s)
- Hong Su
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Shanshan Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Wanyi Liao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Rong Gan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Yiling Ran
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Qin Zhao
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266, Fangzheng Avenue, Beibei District, Chongqing, 400714, China
| | - Yan Zhang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
15
|
Wang T, Zhao S, Ji Z, Hao L, Umer S, Liu J, Hu W. Fe-Ni Diatomic Sites Coupled with Pt Clusters to Boost Methanol Electrooxidation via Free Radical Relaying. CHEMSUSCHEM 2023; 16:e202300411. [PMID: 37186222 DOI: 10.1002/cssc.202300411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Pt-based catalysts for direct methanol fuel cells (DMFCs) are still confronted with the challenge of over-oxidation of Pt and poisoning effect of intermediates; therefore, a spatial relay strategy was adopted to overcome these issues. Herein, Pt clusters were creatively fixed on the N-doped carbon matrix with rich Fe-Ni diatoms, which can provide independent reaction sites for methanol oxidation reaction (MOR) and enhance the catalytic activity due to the electronic regulation effect between Pt cluster and atomic-level metal sites. The optimized Pt/FeNi-NC catalyst shows MOR electrocatalytic activity of 2.816 A mgPt -1 , 2.6 times that of Pt/C (1.115 A mgPt -1 ). Experiments combined with DFT study reveal that Fe-Ni diatoms and Pt clusters take charge of hydroxyl radical (⋅OH) generation and methanol activation, respectively. The free radical relaying of ⋅OH could prevent the over-oxidation of Pt. Meanwhile, ⋅OH from Fe-Ni sites accelerates the elimination of intermediates, thus improving the durability of catalysts.
Collapse
Affiliation(s)
- Tianqi Wang
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shenghao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhijiao Ji
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lu Hao
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Sundus Umer
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Yulin University, Yulin, 719000, Shanxi Province, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronics Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
16
|
Zhang Y, Wang R, Zhu L, Li X, Sun C, Liu H, Zhu L, Wang K. Carbon Quantum Dots-Doped Ni 3Se 4/Co 9Se 8/Fe 3O 4 Multilayer Nanosheets Prepared Using the One-Step Solvothermal Method to Boost Electrocatalytic Oxygen Evolution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5115. [PMID: 37512388 PMCID: PMC10383042 DOI: 10.3390/ma16145115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Oxygen evolution reaction is a momentous part of electrochemical energy storage and conversion devices such as rechargeable metal-air batteries. It is particularly urgent to develop low-cost and efficient electrocatalysts for oxygen evolution reactions. As a potential substitute for noble metal electrocatalysts, transition metal selenides still prove challenging in improving the activity of oxygen evolution reaction and research into reaction intermediates. In this study, a simple one-step solvothermal method was used to prepare a polymetallic compound carbon matrix composite (Co9Se8/Ni3Se4/Fe3O4@C) with a multilayered nanosheets structure. It exhibited good OER activity in an alkaline electrolyte solution, with an overpotential of 268 mV at 10 mA/cm2. In addition, this catalyst also showed excellent performance in the 24 h stability test. The composite presents a multi-layer sheet structure, which effectively improves the contact between the active site and the electrolyte. The selenide formed by Ni and Co has a synergistic effect, and Fe3O4 and Co9Se8 form a heterojunction structure which can effectively improve the reaction activity by initiating the electronic coupling effect through the interface modification. In addition, carbon quantum dots have rich heteroatoms and electron transferability, which improves the electrochemical properties of the composites. This work provides a new strategy for the preparation of highly efficient OER electrocatalysts utilizing the multi-metal synergistic effect.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Runze Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Longqi Zhu
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xu Li
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
| | - Caixia Sun
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Haizhen Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao 266555, China
| | - Kuikui Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
17
|
Sun Y, Wu CR, Ding TY, Gu J, Yan JW, Cheng J, Zhang KHL. Direct observation of the dynamic reconstructed active phase of perovskite LaNiO 3 for the oxygen-evolution reaction. Chem Sci 2023; 14:5906-5911. [PMID: 37293652 PMCID: PMC10246674 DOI: 10.1039/d2sc07034k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Ni-based transition metal oxides are promising oxygen-evolution reaction (OER) catalysts due to their abundance and high activity. Identification and manipulation of the chemical properties of the real active phase on the catalyst surface is crucial to improve the reaction kinetics and efficiency of the OER. Herein, we used electrochemical-scanning tunnelling microscopy (EC-STM) to directly observe structural dynamics during the OER on LaNiO3 (LNO) epitaxial thin films. Based on comparison of dynamic topographical changes in different compositions of LNO surface termination, we propose that reconstruction of surface morphology originated from transition of Ni species on LNO surface termination during the OER. Furthermore, we showed that the change in surface topography of LNO was induced by Ni(OH)2/NiOOH redox transformation by quantifying STM images. Our findings demonstrate that in situ characterization for visualization and quantification of thin films is very important for revealing the dynamic nature of the interface of catalysts under electrochemical conditions. This strategy is crucial for in-depth understanding of the intrinsic catalytic mechanism of the OER and rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| |
Collapse
|
18
|
Nie Y, Xu X, Wang X, Liu M, Gao T, Liu B, Li L, Meng X, Gu P, Zou J. CoNi Alloys Encapsulated in N-Doped Carbon Nanotubes for Stabilizing Oxygen Electrocatalysis in Zinc-Air Battery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111788. [PMID: 37299692 DOI: 10.3390/nano13111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow nanosphere (NiCo@NCNTs/HN) using dicyandiamide. NiCo@NCNTs/HN exhibited better ORR activity (half-wave potential (E1/2) of 0.87 V) and stability (E1/2 shift of only -13 mV after 5000 cycles) than commercial Pt/C. NiCo@NCNTs/HN displayed a lower OER overpotential (330 mV) than RuO2 (390 mV). The NiCo@NCNTs/HN-assembled zinc-air battery exhibited high specific-capacity (847.01 mA h g-1) and cycling-stability (291 h). Synergies between NiCo alloys and NCNTs facilitated the charge transfer to promote 4e- ORR/OER kinetics. The carbon skeleton inhibited the corrosion of NiCo alloys from surface to subsurface, while inner cavities of CNTs confined particle growth and the aggregation of NiCo alloys to stabilize bifunctional activity. This provides a viable strategy for the design of alloy-based catalysts with confined grain-size and good structural/catalytic stabilities in oxygen electrocatalysis.
Collapse
Affiliation(s)
- Yao Nie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Xinyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Bin Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150080, China
| | - Xin Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
19
|
Xu Z, Jiang Y, Chen JL, Lin RYY. Heterostructured Ultrathin Two-Dimensional Co-FeOOH Nanosheets@1D Ir-Co( OH)F Nanorods for Efficient Electrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16702-16713. [PMID: 36972398 DOI: 10.1021/acsami.2c22632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is highly desirable to develop high-performance and robust electrocatalysts for overall water splitting, as the existing electrocatalysts exhibit poor catalytic performance toward hydrogen and oxygen evolution reactions (HER and OER) in the same electrolytes, resulting in high cost, low energy conversion efficiency, and complicated operating procedures. Herein, a heterostructured electrocatalyst is realized by growing Co-ZIF-67-derived 2D Co-doped FeOOH on 1D Ir-doped Co(OH)F nanorods, denoted as Co-FeOOH@Ir-Co(OH)F. The Ir-doping couples with the synergy between Co-FeOOH and Ir-Co(OH)F effectively modulate the electronic structures and induce defect-enriched interfaces. This bestows Co-FeOOH@Ir-Co(OH)F with abundant exposed active sites, accelerated reaction kinetics, improved charge transfer abilities, and optimized adsorption energies of reaction intermediates, which ultimately boost the bifunctional catalytic activity. Consequently, Co-FeOOH@Ir-Co(OH)F exhibits low overpotentials of 192/231/251 and 38/83/111 mV at current densities of 10/100/250 mA cm-2 toward the OER and HER in a 1.0 M KOH electrolyte, respectively. When Co-FeOOH@Ir-Co(OH)F is used for overall water splitting, cell voltages of 1.48/1.60/1.67 V are required at current densities of 10/100/250 mA cm-2. Furthermore, it possesses outstanding long-term stability for OER, HER, and overall water splitting. Our study provides a promising way to prepare advanced heterostructured bifunctional electrocatalysts for overall alkaline water splitting.
Collapse
Affiliation(s)
- Zichen Xu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 Liaoning, China
| | - Yuanjuan Jiang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024 Liaoning, China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Ryan Yeh-Yung Lin
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
20
|
Liu B, Yuan B, Wang C, You S, Liu J, Meng X, Xu X, Cai Z, Xie J, Zou J. Highly-dispersed NiFe alloys in-situ anchored on outer surface of Co, N co‑doped carbon nanotubes with enhanced stability for oxygen electrocatalysis. J Colloid Interface Sci 2023; 635:208-220. [PMID: 36587574 DOI: 10.1016/j.jcis.2022.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Transition metal alloys have emerged as promising catalysts for oxygen reduction/evolution reactions (ORR/OER) because of their intermetallic synergy and tunable redox properties. However, for alloy nanoparticles, it is quite challenging to suppress the self-aggregation and promote the bifunctional activity. Anchoring alloys in heteroatoms-doped carbon matrix with excellent electro-conductibility is a powerful strategy to form strongly-coupled alloy-carbon nanohybrids. Here, highly-dispersed NiFe alloys are evenly in-situ anchored on the surface of Co, N co-doped carbon nanotubes (NiFe/Co-N@CNTs) via a gravity-guided chemical vapor deposition and self-assembly strategy. Stably-structured NiFe/Co-N@CNTs possesses a tubular skeleton with diameters of 80-100 nm and a hydrophilic surface. For ORR, half-wave potential of NiFe/Co-N@CNTs (0.87 V vs RHE) is higher than that of Pt/C (0.85 V). Strong synergies between NiFe alloys and Co-Nx species facilitate the charge transfer on one-dimensional conductive structure to boost the 4e- ORR kinetics. For OER, NiFe/Co-N@CNTs has a lower overpotential (300 mV) than RuO2 (400 mV) at 10 mA cm-2 due to in-situ formation of highly-active NiOOH/FeOOH species (as indicated by in-situ X-ray diffraction) at the catalytic sites on NiFe alloy. Rechargeable Zn-air battery (ZAB) with NiFe/Co-N@CNTs-based air-cathode exhibits promising open-circuit potential (1.52 V) and charge-discharge cycling stability (350 h). This alloy-carbon integrating strategy is meaningful for promoting dispersion, activity and stability of non-noble metal alloys for oxygen electrocatalysis.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Bowen Yuan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Cheng Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jin Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xin Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| | - Jiahao Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
21
|
Jia H, Yao N, Zhu J, Luo W. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry 2023; 29:e202203073. [PMID: 36367365 DOI: 10.1002/chem.202203073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The development of electrocatalysts with high-efficiency and clear structure-activity relationship towards the sluggish oxygen evolution reaction (OER) is essential for the wide application of water electrolyzers. Recently, the dynamic reconstruction phenomenon of the catalysts' surface structures during the OER process has been discovered. With the help of various advanced ex situ and in situ characterization, it is demonstrated that such surface reconstruction could yield actual active species to catalyze the water oxidation process. However, the attention and studies of potential interaction between reconstructed species and substrate are lacking. This review summarizes the recent development of typical reconstructed electrocatalysts and the substrate effect. First, the advanced characterization for electrocatalytic reconstruction is briefly discussed. Then, typical reconstructed electrocatalysts are comprehensively summarized and the key role of substrate effects during the OER process is emphasized. Finally, the future challenges and perspectives of surface reconstructed catalysts for water electrolysis are discussed.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
22
|
Zhang S, Chang Y, Xu A, Jia J, Jia M. Preparation of 3D Nd 2O 3-NiSe-Modified Nitrogen-Doped Carbon and Its Electrocatalytic Oxidation of Methanol and Urea. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:814. [PMID: 36903691 PMCID: PMC10005539 DOI: 10.3390/nano13050814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Developing renewable energy sources and controlling water pollution are critical but challenging problems. Urea oxidation (UOR) and methanol oxidation (MOR), both of which have high research value, have the potential to effectively address wastewater pollution and energy crisis problems. A three-dimensional neodymium-dioxide/nickel-selenide-modified nitrogen-doped carbon nanosheet (Nd2O3-NiSe-NC) catalyst is prepared in this study by using mixed freeze-drying, salt-template-assisted technology, and high-temperature pyrolysis. The Nd2O3-NiSe-NC electrode showed good catalytic activity for MOR (peak current density ~145.04 mA cm-2 and low oxidation potential ~1.33 V) and UOR (peak current density ~100.68 mA cm-2 and low oxidation potential ~1.32 V); the catalyst has excellent MOR and UOR characteristics. The electrochemical reaction activity and the electron transfer rate increased because of selenide and carbon doping. Moreover, the synergistic action of neodymium oxide doping, nickel selenide, and the oxygen vacancy generated at the interface can adjust the electronic structure. The doping of rare-earth-metal oxides can also effectively adjust the electronic density of nickel selenide, allowing it to act as a cocatalyst, thus improving the catalytic activity in the UOR and MOR processes. The optimal UOR and MOR properties are achieved by adjusting the catalyst ratio and carbonization temperature. This experiment presents a straightforward synthetic method for creating a new rare-earth-based composite catalyst.
Collapse
|
23
|
Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. J Colloid Interface Sci 2023; 629:33-43. [DOI: 10.1016/j.jcis.2022.08.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
24
|
Kamyabi MA, Jadali S, Sharifi Khangheshlaghi L, Hashemi Heris MK. A high-performance Pt-based catalyst for the methanol oxidation reaction: effect of electrodeposition mode and cocatalyst on electrocatalytic activity. NEW J CHEM 2023. [DOI: 10.1039/d2nj05164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of supporting material, cocatalyst, and electrodeposition mode on MOR activity.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Salma Jadali
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Leila Sharifi Khangheshlaghi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Mir Karim Hashemi Heris
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| |
Collapse
|
25
|
Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting. Int J Mol Sci 2022; 23:ijms232315405. [PMID: 36499732 PMCID: PMC9737096 DOI: 10.3390/ijms232315405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The development of non-noble metal-based electrocatalysts with high performance for hydrogen evolution reaction and oxygen evolution reaction is highly desirable in advancing electrocatalytic water-splitting technology but proves to be challenging. One promising way to improve the catalytic activity is to tailor the d-band center. This approach can facilitate the adsorption of intermediates and promote the formation of active species on surfaces. This review summarizes the role and development of the d-band center of materials based on iron-series metals used in electrocatalytic water splitting. It mainly focuses on the influence of the change in the d-band centers of different composites of iron-based materials on the performance of electrocatalysis. First, the iron-series compounds that are commonly used in electrocatalytic water splitting are summarized. Then, the main factors affecting the electrocatalytic performances of these materials are described. Furthermore, the relationships among the above factors and the d-band centers of materials based on iron-series metals and the d-band center theory are introduced. Finally, conclusions and perspectives on remaining challenges and future directions are given. Such information can be helpful for adjusting the active centers of catalysts and improving electrochemical efficiencies in future works.
Collapse
|
26
|
Song S, Mu L, Jiang Y, Sun J, Zhang Y, Shi G, Sun H. Turning Electrocatalytic Activity Sites for the Oxygen Evolution Reaction on Brownmillerite to Oxyhydroxide. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47560-47567. [PMID: 36240505 DOI: 10.1021/acsami.2c11418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One of the major challenges that hinder the practical application of water electrolysis lies in the design of advanced electrocatalysts toward the anodic oxygen evolution reaction (OER). In this work, a pure Co-based precatalyst of CoOOH/brownmillerite derived from the surface activation of brownmillerite by a surface acid etching method exhibits high activity and stable electrical properties toward the OER. Different from oxyhydroxide derived from in situ surface reconstruction during the electrochemical process, the growth of highly crystalline CoOOH from the brownmillerite surface enables rational control over the surface/bulk structure as well as the concentration of active sites, and this structure can be well maintained and serve as highly active sites. The catalyst shows a low overpotential of 320 mV to obtain 10 mA cm-2 and high stability in an alkaline electrolyte for the OER, which is comparable to the majority of Co-based electrocatalysts. Moreover, the appropriate interfacial interaction of the composite catalysts greatly contributes to the hydroxide insertion to improve water oxidation ability. This work proposes an effective strategy to develop high-performance metal oxide-based materials for the OER.
Collapse
Affiliation(s)
- Sanzhao Song
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Liuhua Mu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Jiang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Jian Sun
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yao Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Guosheng Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800, China
| | - Hainan Sun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
27
|
Li Y, Wu X, Wu Z, Zhong M, Su X, Ye Y, Liu Y, Tan L, Liang Y. Colorimetric sensor array based on CoOOH nanoflakes for rapid discrimination of antioxidants in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2754-2760. [PMID: 35781305 DOI: 10.1039/d2ay00692h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of synthetic antioxidants has considerable significance in food safety. Here, we described the development of a colorimetric sensor array for rapid detection of eight antioxidants in food through the redox reaction between CoOOH and antioxidants in the presence of colorimetric signal indicators. The CoOOH nanoflakes exhibited high catalytic oxidation activity and can independently catalyze oxidation signal indicators showing different colors. The color reaction was inhibited to different degrees in the presence of antioxidants, which resulted in distinct signal response patterns for their discrimination. The method showed good linearity in the range from 50 to 1000 nM for butylated hydroxytoluene (BHT), butylhydroxyanisole (BHA), propyl gallate (PG) and tert-butyl hydroquinone (TBHQ). Moreover, different proportions of antioxidants were located in the middle pattern of each single antioxidant, and showed certain linear relationships among different concentration ratios. Finally, the proposed colorimetric sensor array was used for practical applications where TBHQ and BHT were detected in biscuits and sausages, and BHA and PG were detected in fried pork kebabs, respectively. The results were further confirmed by high-performance liquid chromatography, which demonstrated the great potential of the colorimetry sensor array for practical applications.
Collapse
Affiliation(s)
- Yuling Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaotong Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zixuan Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingmin Zhong
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoping Su
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Youai Ye
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yan Liu
- Guangdong Centre for Agricultural Products Quality and Safety, Guangzhou, 510230, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China.
| | - Yong Liang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Li N, Zhang X, Zhao S, Li C, Li X, Wang T, Xing Y, Qu G, Xu X. Amorphous nickel borate nanosheets as cathode material with high capacity and better cycling performance for zinc ion battery. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Badreldin A, Youssef K, El Ghenymy A, Wubulikasimu Y, Ghouri ZK, Elsaid K, Kumar D, Abdel-Wahab A. Solution Combustion Synthesis of Novel S,B-Codoped CoFe Oxyhydroxides for the Oxygen Evolution Reaction in Saline Water. ACS OMEGA 2022; 7:5521-5536. [PMID: 35187367 PMCID: PMC8851632 DOI: 10.1021/acsomega.1c06968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 05/13/2023]
Abstract
Green hydrogen presents itself as a clean energy vector, which can be produced by electrolysis of water by utilizing renewable energy such as solar or wind. While current technologies are sufficient to support commercial deployment of fresh water electrolyzers, there remain a few well-defined challenges in the path of commercializing direct seawater electrolyzers, predominantly related to the sluggish oxygen evolution reaction (OER) kinetics and the competing chlorine evolution reaction (CER) at the anode. Herein, we report the facile and swift fabrication of an S,B-codoped CoFe oxyhydroxide via solution combustion synthesis for the OER with apparent CER suppression abilities. The as-prepared S,B-(CoFe)OOH-H attained ultralow overpotentials of 161 and 278 mV for achieving current densities of 10 and 1000 mA cm-2, respectively, in an alkaline saline (1 M KOH + 0.5 M NaCl) electrolyte, with a low Tafel slope of 46.7 mV dec-1. Chronoamperometry testing of the codoped bimetallic oxyhydroxides showed very stable behavior in harsh alkaline saline and in neutral pH saline environments. S,B-(CoFe)OOH-H oxyhydroxide showed a notable decrease in CER production in comparison to the other S,B-codoped counterparts. Selectivity measurements through online FE calculations showed high OER selectivity in alkaline (FE ∼ 97%) and neutral (FE ∼ 91%) pH saline conditions under standard 10 mA cm-2 operation. Moreover, systematic testing in electrolytes at pH values of 14 to 7 yielded promising results, thus bringing direct seawater electrolysis at near-neutral pH conditions closer to realization.
Collapse
Affiliation(s)
- Ahmed Badreldin
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Karim Youssef
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | | | - Yiming Wubulikasimu
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Zafar Khan Ghouri
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
- International
Center for Chemical and Biological Sciences, HEJ Research Institute
of Chemistry, University of Karachi, 75270 Karachi, Pakistan
| | - Khaled Elsaid
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| | - Dharmesh Kumar
- Qatar
Shell Service Company W.L.L., P.O. Box 3747 Doha, Qatar
| | - Ahmed Abdel-Wahab
- Chemical
Engineering Program, Texas A&M University
at Qatar, P.O. 23874 Doha, Qatar
| |
Collapse
|
30
|
Yi Y, Li J, Cui C. Trimetallic FeCoNi disulfide nanosheets for CO2-emission-free methanol conversion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Cu(OH)2-Ni(OH)2 engulfed by zeolite-Y hydroxyl nest and multiwalled carbon nanotube for effective methanol oxidation reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Xu J, Li Z, Chen D, Yang S, Zheng K, Ruan J, Wu Y, Zhang H, Chen J, Xie F, Jin Y, Wang N, Meng H. Porous Indium Tin Oxide-Supported NiFe LDH as a Highly Active Electrocatalyst in the Oxygen Evolution Reaction and Flexible Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48774-48783. [PMID: 34628856 DOI: 10.1021/acsami.1c14469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The oxygen evolution reaction (OER) is crucial for hydrogen production from water splitting and rechargeable metal-air batteries. However, the four-electron mechanism results in slow reaction kinetics, which needed to be accelerated by efficient catalysts. Herein, a hybrid catalyst of novel nickel-iron layered double hydroxide (NiFe LDH) on porous indium tin oxide (ITO) is presented to lower the overpotential of the OER. The as-prepared NiFe LDH@ITO catalyst showed superior catalytic activity toward the OER with an overpotential of only 240 mV at a current density of 10 mA/cm2. The catalyst also offered high stability with almost no activity decay after more than 200 h of chronopotentiometry test. Furthermore, the applications of NiFe LDH@ITO in (flexible) rechargeable zinc-air batteries exhibited a better performance than commercial RuO2 and can remain stable in cycling tests. It is supposed that the superior catalytic behavior originates from the ITO conductive framework, which prevents the agglomeration and facilitates the electron transfer during the OER process.
Collapse
Affiliation(s)
- Jinchang Xu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zilong Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Di Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sanxi Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kaiwei Zheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiaxi Ruan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yinlong Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hao Zhang
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yanshuo Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Nan Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hui Meng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
33
|
Tian W, Zheng D, Sun X, Guan X, Feng H, Li C, Yan M, Yao Y. Structural and Interfacial Engineering of Ni 2P/Fe 3O 4 Porous Nanosheet Arrays for Efficient Oxygen Evolution Reaction. Inorg Chem 2021; 60:14786-14792. [PMID: 34543021 DOI: 10.1021/acs.inorgchem.1c02028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rational design of transition-metal phosphide (TMPs)-based electrocatalysts can effectively promote oxygen evolution reaction (OER). Herein, the novel efficient Ni2P/Fe3O4 porous nanosheets arrays supported on Ni foam (Ni2P/Fe3O4/NF) as alkaline OER catalysts were synthesized using structural and interfacial engineering. The three-dimensional (3D) porous hierarchical structure of Ni2P/Fe3O4/NF provides abundant active sites for OER and facilitates the electrolyte diffusion of ions and O2 liberation. Furthermore, the strong interfacial coupling and synergistic effect between Ni2P and Fe3O4 modify the electronic structure, resulting in the enhanced intrinsic activity. Consequently, the optimized Ni2P/Fe3O4/NF exhibits excellent OER performance with low overpotentials of 213 and 240 mV at 60 and 100 mA cm-2 in 1.0 M KOH, respectively, better than the RuO2/NF and most Ni/Fe-based OER catalysts. Impressively, it can maintain its catalytic activity for at least 20 h at 60 mA cm-2. In addition, the relationship between the structure and performance is fully elucidated by the experimental characterizations, indicating that the metal oxyhydroxides in situ generated on the surface of catalysts are responsible for the high OER activity.
Collapse
Affiliation(s)
- Wenli Tian
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dengchao Zheng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xun Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Xin Guan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hao Feng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengyi Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| | - Minglei Yan
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yadong Yao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
34
|
In situ evolution of surface Co2CrO4 to CoOOH/CrOOH by electrochemical method: Toward boosting electrocatalytic water oxidation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63730-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Li S, Yang Z, Liu Z, Ma Y, Gu Y, Zhao L, Zhou Q, Xu W. Bimetal zeolite imidazolate framework derived Mo 0.84Ni 0.16-Mo 2C@NC nanosphere for overall water splitting in alkaline solution. J Colloid Interface Sci 2021; 592:349-357. [PMID: 33677195 DOI: 10.1016/j.jcis.2021.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022]
Abstract
The bifunctional efficient electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are in urgent need for the advanced overall water splitting (OWS) device. Restricted by the thermodynamic limitations of the catalytic active center for OER and the reaction kinetics limitations induced by the structure of the electrocatalysts, the development of OWS catalysts requires more effort. Herein, a porous carbon-based bimetal electrocatalyst of Mo0.84Ni0.16-Mo2C@NC nanosphere is prepared by hydrothermal treatment of PMo12@PVP@Zn/Ni-ZIF which is synthesized via one-pot self-assembled hydrothermal method. Our study confirms that the Mo-Ni alloy and Mo2C nanoparticles homogeneously distribute in nitrogen-rich carbon-based materials. Furthermore, the porous structure exposes rich active sites and increases the effective specific area for redox reactions. The obtained Mo0.84Ni0.16-Mo2C@NC catalyst requires low overpotentials of 151 and 285 mV to reach a current density of 10 mA cm-2 towards the water reduction and oxidation in 1 M KOH solution, respectively, and possesses good catalytic stability for one day. This work introduces an advanced method for the synthesis of the bimetal electrocatalyst.
Collapse
Affiliation(s)
- Shunli Li
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhixiong Yang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zhen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yaping Ma
- Department of Physics, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yu Gu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Long Zhao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiulan Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weijian Xu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
36
|
Wang B, Wu T, Chen G, Liu X, Li W, He Q, Li DS, Guan BY, Liu Y. General Synthesis of Hierarchically Macro/Mesoporous Fe,Ni-Doped CoSe/N-Doped Carbon Nanoshells for Enhanced Electrocatalytic Oxygen Evolution. Inorg Chem 2021; 60:6782-6789. [DOI: 10.1021/acs.inorgchem.1c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binhang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingxia He
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
37
|
Hai Y, Liu L, Gong Y. Iron Coordination Polymer, Fe(oxalate)(H2O)2 Nanorods Grown on Nickel Foam via One-Step Electrodeposition as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorg Chem 2021; 60:5140-5152. [DOI: 10.1021/acs.inorgchem.1c00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Hai
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Li Liu
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
38
|
Recent Developments for the Application of 3D Structured Material Nickel Foam and Graphene Foam in Direct Liquid Fuel Cells and Electrolyzers. Catalysts 2021. [DOI: 10.3390/catal11020279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platinum and platinum-based catalysts are some of the most effective catalysts used in fuel cells. However, electrocatalysts used for direct liquid fuel cells (DLFCs) and electrolyzers are high cost and suffer from several other problems, thus hindering their commercialization as power sources to produce clean energy. Common issues in electrocatalysts are low stability and durability, slow kinetics, catalyst poisoning, high catalyst loading, high cost of the catalytic materials, poisoning of the electrocatalysts, and formation of intermediate products during electrochemical reactions. The use of catalyst supports can enhance the catalytic activity and stability of the power sources. Thus, nickel foam and graphene foam with 3D structures have advantages over other catalyst supports. This paper presents the application of nickel foam and graphene foam as catalyst supports that enhance the activities, selectivity, efficiency, specific surface area, and exposure of the active sites of DLFCs. Selected recent studies on the use of foam in electrolyzers are also presented.
Collapse
|
39
|
Zhu L, Liao Y, Jia Y, Zhang X, Ma R, Wang K. Solid-solution hexagonal Ni 0.5Co 0.5Se nanoflakes toward boosted oxygen evolution reaction. Chem Commun (Camb) 2020; 56:13113-13116. [PMID: 32996971 DOI: 10.1039/d0cc05247g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen evolution reaction (OER) with sluggish kinetics is a bottleneck for the large-scale application of water electrolysis. Herein, solid-solution hexagonal Ni0.5Co0.5Se nanoflakes are designed and successfully synthesized via a facile hydrothermal method with a much lower overpotential of 216 mV at 10 mA cm-2 and a Tafel slope of 37.08 mV dec-1.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
40
|
Zhao J, Zhang Y, Kang X, Li Y. The preparation of NiO/Ni–N/C nanocomposites and its electrocatalytic performance for methanol oxidation reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj02045a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The NiO/Ni–N/C nanocomposites were prepared through hydrothermal method and further carbonization. The NiO/Ni–N/C500 displays the highest MA (1043 mA mgNi−1) and SA (18.57 mA cm−2) for methanol oxidation reaction.
Collapse
Affiliation(s)
- Jingchuang Zhao
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yingzhen Zhang
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Xianyu Kang
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| | - Yancai Li
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
- P. R. China
| |
Collapse
|