1
|
Huang W, Wang J, Lai W, Guo M. MXene Surface Architectonics: Bridging Molecular Design to Multifunctional Applications. Molecules 2025; 30:1929. [PMID: 40363736 PMCID: PMC12073560 DOI: 10.3390/molecules30091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This review delves into the surface modification of MXenes, underscoring its pivotal role in improving their diverse physicochemical properties, including tailor MXenes' electrical conductivity, mechanical strength, and wettability. It outlines various surface modification strategies and principles, highlighting their contributions to performance enhancements across diverse applications, including energy storage and conversion, materials mechanics, electronic devices, biomedical sciences, environmental monitoring, and fire-resistant materials. While significant advancements have been made, the review also identifies challenges and future research directions, emphasizing the continued development of innovative materials, methods, and applications to further expand MXenes' utility and potential.
Collapse
Affiliation(s)
| | | | - Wei Lai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; (W.H.); (J.W.)
| | - Mengdi Guo
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; (W.H.); (J.W.)
| |
Collapse
|
2
|
Zeng J, Jing X, Lin L, Wang G, Zhang Y, Feng P. Smart sensing hydrogel actuators conferred by MXene gradient arrangement. J Colloid Interface Sci 2025; 677:816-826. [PMID: 39173514 DOI: 10.1016/j.jcis.2024.08.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Smart sensing and excellent actuation abilities of natural organisms have driven scientists to develop bionic soft-bodied robots. However, most conventional robots suffer from poor electrical conductivity, limiting their application in real-time sensing and actuation. Here, we report a novel strategy to enhance the electrical conductivity of hydrogels that integrated actuation and strain-sensing functions for bioinspired self-sensing soft actuators. Conductive hydrogels were synthesized in situ by copolymerizing MXene nanosheets with thermosensitive N-isopropylacrylamide and acrylamide under a direct current electric field. The resulting hydrogels exhibited high electrical conductivity (2.11 mS/cm), good sensitivity with a gauge factor of 4.79 and long-term stability. The developed hydrogels demonstrated remarkable capabilities in detecting human motions at subtle strains such as facial expressions and large strains such as knee bending. Additionally, the hydrogel electrode patch was capable of monitoring physiological signals. Furthermore, the developed hydrogel showed good thermally induced actuation effects when the temperature was higher than 30 °C. Overall, this work provided new insights for the design of sensory materials with integrated self-sensing and actuation capabilities, which would pave the way for the development of high-performance conductive soft materials for intelligent soft robots and automated machinery.
Collapse
Affiliation(s)
- Jiazhou Zeng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| | - Liya Lin
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Gangrong Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Yaoxun Zhang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Peiyong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
3
|
Teixeira H, Dias C, Silva AV, Ventura J. Advances on MXene-Based Memristors for Neuromorphic Computing: A Review on Synthesis, Mechanisms, and Future Directions. ACS NANO 2024; 18:21685-21713. [PMID: 39110686 PMCID: PMC11342387 DOI: 10.1021/acsnano.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Neuromorphic computing seeks to replicate the capabilities of parallel processing, progressive learning, and inference while retaining low power consumption by drawing inspiration from the human brain. By further overcoming the constraints imposed by the traditional von Neumann architecture, this innovative approach has the potential to revolutionize modern computing systems. Memristors have emerged as a solution to implement neuromorphic computing in hardware, with research based on developing functional materials for resistive switching performance enhancement. Recently, two-dimensional MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have begun to be integrated into these devices to achieve synaptic emulation. MXene-based memristors have already demonstrated diverse neuromorphic characteristics while enhancing the stability and reducing power consumption. The possibility of changing the physicochemical properties through modifications of the surface terminations, bandgap, interlayer spacing, and oxidation for each existing MXene makes them very promising. Here, recent advancements in MXene synthesis, device fabrication, and characterization of MXene-based neuromorphic artificial synapses are discussed. Then, we focus on understanding the resistive switching mechanisms and how they connect with theoretical and experimental data, along with the innovations made during the fabrication process. Additionally, we provide an in-depth review of the neuromorphic performance, making a connection with the resistive switching mechanism, along with a compendium of each relevant performance factor for nonvolatile and volatile applications. Finally, we state the remaining challenges in MXene-based devices for artificial synapses and the next steps that could be taken for future development.
Collapse
Affiliation(s)
- Henrique Teixeira
- IFIMUP, Departamento de Física
e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Catarina Dias
- IFIMUP, Departamento de Física
e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia Vieira Silva
- IFIMUP, Departamento de Física
e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - João Ventura
- IFIMUP, Departamento de Física
e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
4
|
Chen Y, Liu Y, Zhao P, Liang Y, Ma Y, Liu H, Hou J, Hou C, Huo D. Sulfhydryl-functionalized 3D MXene-AuNPs enabled electrochemical sensors for the selective determination of Pb 2+, Cu 2+ and Hg 2+ in grain. Food Chem 2024; 446:138770. [PMID: 38428079 DOI: 10.1016/j.foodchem.2024.138770] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Herein, we made 3D MXene-AuNPs by in situ growth of gold nanoparticles (AuNPs) on the surface of MXene by chemical reduction method, and then introduced three sulfhydryl (-SH) compounds as functionalized modifiers attached to the AuNPs to form a highly selective composite material for the detection of Pb2+, Cu2+, and Hg2+, respectively. The doping of AuNPs changes the microstructure of 2D MXene and generates more active sites. On a sensing platform based on ITO array electrodes, the detection system was optimised with sensitivities up to 1.157, 0.846 and 0.799 μA·μg-1Lcm-2 (Pb2+, Cu2+, and Hg2+). The selectivity of MXene@AuNPs was effectively improved by sulfhydryl group modification. In the range of 1-1300 μg L-1, the detection limits of three ions were 0.07, 0.13 and 0.21 μg L-1. In addition, this method can efficiently and accurately detect heavy metal ions in four cereal samples with consistent results with inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
5
|
Babamiri B, Sadri R, Farrokhnia M, Hassani M, Kaur M, Roberts EPL, Ashani MM, Sanati Nezhad A. Molecularly Imprinted Polymer Biosensor Based on Nitrogen-Doped Electrochemically Exfoliated Graphene/Ti 3 CNT X MXene Nanocomposite for Metabolites Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27714-27727. [PMID: 38717953 DOI: 10.1021/acsami.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Rapid and accurate quantification of metabolites in different bodily fluids is crucial for a precise health evaluation. However, conventional metabolite sensing methods, confined to centralized laboratory settings, suffer from time-consuming processes, complex procedures, and costly instrumentation. Introducing the MXene/nitrogen-doped electrochemically exfoliated graphene (MXene@N-EEG) nanocomposite as a novel biosensing platform in this work addresses the challenges associated with conventional methods, leveraging the concept of molecularly imprinted polymers (MIP) enables the highly sensitive, specific, and reliable detection of metabolites. To validate our biosensing technology, we utilize agmatine as a significant biologically active metabolite. The MIP biosensor incorporates electrodeposited Prussian blue nanoparticles as a redox probe, facilitating the direct electrical signaling of agmatine binding in the polymeric matrix. The MXene@N-EEG nanocomposite, with excellent metal conductivity and a large electroactive specific surface area, effectively stabilizes the electrodeposited Prussian blue nanoparticles. Furthermore, increasing the content of agmatine-imprinted cavities on the electrode enhances the sensitivity of the MIP biosensor. Evaluation of the designed MIP biosensor in buffer solution and plasma samples reveals a wide linear concentration range of 1.0 nM-100.0 μM (R2 = 0.9934) and a detection limit of 0.1 nM. Notably, the developed microfluidic biosensor offers low cost, rapid response time to the target molecule (10 min of sample incubation), good recovery results for detecting agmatine in plasma samples, and acceptable autonomous performance for on-chip detection. Moreover, its high reliability and sensitivity position this MIP-based biosensor as a promising candidate for miniaturized microfluidic devices with the potential for scalable production for point-of-care applications.
Collapse
Affiliation(s)
- Bahareh Babamiri
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Rad Sadri
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohammadreza Farrokhnia
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mohsen Hassani
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manpreet Kaur
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Edward P L Roberts
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mehdi Mohammadi Ashani
- Department of Biological Sciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Thomas A, Saha P, Sahad E M, Krishnan K N, Das BC. Versatile Titanium Carbide MXene Thin-Film Memristors with Adaptive Learning Behavior. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38594622 DOI: 10.1021/acsami.3c19177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advent of the modern era, there is a huge demand for memristor-based neuromorphic computing hardware to overcome the von Neumann bottleneck in traditional computers. Here, we have prepared two-dimensional titanium carbide (Ti3C2Tx) MXene following the conventional HF etching technique in solution. After confirmation of Ti3C2Tx properties by Raman scattering and crystallinity measurements, high-quality thin-film deposition is realized using an immiscible liquid-liquid interfacial growth technique. Following this, the memristor is fabricated by sandwiching a Ti3C2Tx layer with a thickness of 70 nm between two electrodes. Subsequently, current-voltage (I-V) characteristics are measured, revealing a nonvolatile resistive switching property characterized by a swift switching speed of 30 ns and an impressive current On/Off ratio of approximately 103. Furthermore, it exhibits endurance through 500 cycles and retains the states for at least 1 × 104 s without observable degradation. Additionally, it maintains a current On/Off ratio of about 102 while consuming only femtojoules (fJ) of electrical energy per reading. Systematic I-V results and conductive AFM-based current mapping image analysis are converged to support the electroforming mediated filamentary conduction mechanism. Furthermore, our Ti3C2Tx memristor was found to be truly versatile as an all-in-one device for demonstrating edge computation, logic gate operation, and classical conditioning of learning by the brain in Psychology.
Collapse
Affiliation(s)
- Athulya Thomas
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Puranjay Saha
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Muhammed Sahad E
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Navaneeth Krishnan K
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Bikas C Das
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| |
Collapse
|
7
|
Muñoz J. Rational Design of Stimuli-Responsive Inorganic 2D Materials via Molecular Engineering: Toward Molecule-Programmable Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305546. [PMID: 37906953 DOI: 10.1002/adma.202305546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The ability of electronic devices to act as switches makes digital information processing possible. Succeeding graphene, emerging inorganic 2D materials (i2DMs) have been identified as alternative 2D materials to harbor a variety of active molecular components to move the current silicon-based semiconductor technology forward to a post-Moore era focused on molecule-based information processing components. In this regard, i2DMs benefits are not only for their prominent physiochemical properties (e.g., the existence of bandgap), but also for their high surface-to-volume ratio rich in reactive sites. Nonetheless, since this field is still in an early stage, having knowledge of both i) the different strategies for molecularly functionalizing the current library of i2DMs, and ii) the different types of active molecular components is a sine qua non condition for a rational design of stimuli-responsive i2DMs capable of performing logical operations at the molecular level. Consequently, this Review provides a comprehensive tutorial for covalently anchoring ad hoc molecular components-as active units triggered by different external inputs-onto pivotal i2DMs to assess their role in the expanding field of molecule-programmable nanoelectronics for electrically monitoring bistable molecular switches. Limitations, challenges, and future perspectives of this emerging field which crosses materials chemistry with computation are critically discussed.
Collapse
Affiliation(s)
- Jose Muñoz
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
8
|
Nag R, Saha R, Layek RK, Bera A. Atomically thin MXene/WSe 2Schottky heterojunction towards enhanced photogenerated charge carrier. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:135703. [PMID: 38113646 DOI: 10.1088/1361-648x/ad172e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Two-dimensional materials garner increasing interest in next-generation electronics and optoelectronic devices due to their atomic-thin nature and distinctive physical properties. Building on these advances, we present the successful synthesis of a heterostructure composed of the semi-metallic Ti3C2-MXene and the semiconducting WSe2, in which the atomic layers are vertically aligned. The wet impregnation method effectively synthesizes an atomically thin Ti3C2-MXene/WSe2heterostructure characterized by atomic force microscopy, Raman and time-resolved photoluminescence (TRPL) analysis. In addition, the current-voltage characteristics at the heterostructure reveal the Schottky junction probed by the scanning tunnelling microscopy and the conductive atomic force microscopy tip. The Schottky heterojunction also exhibits enhanced photocatalytic properties by improving the photogenerated charge carriers and inhibiting recombination. This work demonstrates the unique 2D-2D Ti3C2-MXene/WSe2vertical heterojunction possesses superior photon trapping ability and can efficiently transport photogenerated charge carriers to the reaction sites to enhance photocatalysis performance.
Collapse
Affiliation(s)
- Riya Nag
- Department of Physics, Midnapore College (Autonomous), Raja Bazar Main Rd, 721101 Midnapore, India
| | - Raima Saha
- Department of Physics, Midnapore College (Autonomous), Raja Bazar Main Rd, 721101 Midnapore, India
| | - Rama Kanta Layek
- School of Engineering Science, Department of Separation Science, LUT University, FI-15210 Lahti, Finland
| | - Abhijit Bera
- Department of Physics, Midnapore College (Autonomous), Raja Bazar Main Rd, 721101 Midnapore, India
| |
Collapse
|
9
|
Huang J, Yang S, Tang X, Yang L, Chen W, Chen Z, Li X, Zeng Z, Tang Z, Gui X. Flexible, Transparent, and Wafer-Scale Artificial Synapse Array Based on TiO x /Ti 3 C 2 T x Film for Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303737. [PMID: 37339620 DOI: 10.1002/adma.202303737] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Indexed: 06/22/2023]
Abstract
A high-density neuromorphic computing memristor array based on 2D materials paves the way for next-generation information-processing components and in-memory computing systems. However, the traditional 2D-materials-based memristor devices suffer from poor flexibility and opacity, which hinders the application of memristors in flexible electronics. Here, a flexible artificial synapse array based on TiOx /Ti3 C2 Tx film is fabricated by a convenient and energy-efficient solution-processing technique, which realizes high transmittance (≈90%) and oxidation resistance (>30 days). The TiOx /Ti3 C2 Tx memristor shows low device-to-device variability, long memory retention and endurance, a high ON/OFF ratio, and fundamental synaptic behavior. Furthermore, satisfactory flexibility (R = 1.0 mm) and mechanical endurance (104 bending cycles) of the TiOx /Ti3 C2 Tx memristor are achieved, which is superior to other film memristors prepared by chemical vapor deposition. In addition, high-precision (>96.44%) MNIST handwritten digits recognition classification simulation indicates that the TiOx /Ti3 C2 Tx artificial synapse array holds promise for future neuromorphic computing applications, and provides excellent high-density neuron circuits for new flexible intelligent electronic equipment.
Collapse
Affiliation(s)
- Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Leilei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Physics, Guangxi Minzu University, Nanning, 530006, China
| | - Wenjun Chen
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Zibo Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinming Li
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zikang Tang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
10
|
Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim DK, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. NANOSCALE 2023; 15:9891-9926. [PMID: 37097309 DOI: 10.1039/d2nr06162g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.
Collapse
Affiliation(s)
- Ruhan E Ustad
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Kalyani D Kadam
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Harshada S Patil
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Sarita P Patil
- School of Physical Science, Sanjay Ghodawat University, Atigre, Kolhapur-416118, MH, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur-416004, India
- Dr Homi Bhabha State University, 15, Madam Cama Road, Mumbai-400032, India
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| |
Collapse
|
11
|
Zhou PK, Lin XL, Chee MY, Lew WS, Zeng T, Li HH, Chen X, Chen ZR, Zheng HD. Switching the memory behaviour from binary to ternary by triggering S 62- relaxation in polysulfide-bearing zinc-organic complex molecular memories. MATERIALS HORIZONS 2023. [PMID: 37070656 DOI: 10.1039/d3mh00037k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The use of crystalline metal-organic complexes with definite structures as multilevel memories can enable explicit structure-property correlations, which is significant for designing the next generation of memories. Here, four Zn-polysulfide complexes with different degrees of conjugation have been fabricated as memory devices. ZnS6(L)2-based memories (L = pyridine and 3-methylpyridine) can exhibit only bipolar binary memory performances, but ZnS6(L)-based memories (L = 2,2'-bipyridine and 1,10-phenanthroline) illustrate non-volatile ternary memory performances with high ON2/ON1/OFF ratios (104.22/102.27/1 and 104.85/102.58/1) and ternary yields (74% and 78%). Their ON1 states stem from the packing adjustments of organic ligands upon the injection of carriers, and the ON2 states are a result of the ring-to-chain relaxation of S62- anions. The lower conjugated degrees in ZnS6(L)2 result in less compact packing; consequently, the adjacent S62- rings are too long to trigger the S62- relaxation. The deep structure-property correlation in this work provides a new strategy for implementing multilevel memory by triggering polysulfide relaxation based on the conjugated degree regulation of organic ligands.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiao-Li Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hao-Hong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Zhi-Rong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Hui-Dong Zheng
- Fujian Engineering Research Centre of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
12
|
Song K, Du L, Yue G, Li T, Li H, Zheng S, Chen Z, Zheng H. Simultaneously elevating the resistive switching level and ambient-air-stability of 3D perovskite (TAZ-H)PbBr 3-based memory device by encapsulating into polyvinylpyrrolidone. J Colloid Interface Sci 2023; 642:408-420. [PMID: 37023513 DOI: 10.1016/j.jcis.2023.03.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
The study about simultaneously enhancing the resistive switching level and ambient-air-stability of perovskite-based memorizers will promote its commercialization. Here, a new 3D perovskite (TAZ-H)PbBr3 (TAZ-H+ = protonated thiazole) has been fabricated as FTO/(TAZ-H)PbBr3/Ag device, which only exhibits binary memory performance with the high tolerant temperature of 170 °C. After encapsulating by polyvinylpyrrolidone (PVP), the (TAZ-H)PbBr3@PVP composite-based device can demonstrate ternary resistive switching behavior with considerable ON2/ON1/OFF ratio (105.9: 103.9:1) and high ternary yield (68 %). Specially, this device presents good ambient-air stability at RH 80 % and thermal tolerance of 100 °C. The binary resistive switching mechanism can be ascribed to the halogen ion migration induced by bromine defects in the (PbBr3)nn- framework. But the ternary resistive switching phenomenon in the (TAZ-H)PbBr3@PVP-based device could be depicted as the carrier transport from filled traps of PVP to (PbBr3)nn- framework (ON1 state) and then carriers flowing in the re-arranged (TAZ-H)nn+ chain in 3D channels (ON2 state). The PVP treatment can not only modify the grain boundary defects, but also facilitate the transport of injected carriers to the perovskite films via Pb-O coordinated bonds and inhibition of order-disorder transformation. This facial strategy for implementing ternary perovskite-based memorizers with good ambient-air-stability is quite meaningful for high-density memory in harsh environments.
Collapse
Affiliation(s)
- Kaiyue Song
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingling Du
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guoli Yue
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Tao Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haohong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China; Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shoutian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhirong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huidong Zheng
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, China; Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
13
|
Facile synthesis of MXene−Polyvinyl alcohol hybrid material for robust flexible memristor. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Parra-Muñoz N, Soler M, Rosenkranz A. Covalent functionalization of MXenes for tribological purposes - a critical review. Adv Colloid Interface Sci 2022; 309:102792. [DOI: 10.1016/j.cis.2022.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/01/2022]
|
15
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
|
17
|
Damptey L, Jaato BN, Ribeiro CS, Varagnolo S, Power NP, Selvaraj V, Dodoo‐Arhin D, Kumar RV, Sreenilayam SP, Brabazon D, Kumar Thakur V, Krishnamurthy S. Surface Functionalized MXenes for Wastewater Treatment-A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100120. [PMID: 35712023 PMCID: PMC9189136 DOI: 10.1002/gch2.202100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Over 80% of wastewater worldwide is released into the environment without proper treatment. Whilst environmental pollution continues to intensify due to the increase in the number of polluting industries, conventional techniques employed to clean the environment are poorly effective and are expensive. MXenes are a new class of 2D materials that have received a lot of attention for an extensive range of applications due to their tuneable interlayer spacing and tailorable surface chemistry. Several MXene-based nanomaterials with remarkable properties have been proposed, synthesized, and used in environmental remediation applications. In this work, a comprehensive review of the state-of-the-art research progress on the promising potential of surface functionalized MXenes as photocatalysts, adsorbents, and membranes for wastewater treatment is presented. The sources, composition, and effects of wastewater on human health and the environment are displayed. Furthermore, the synthesis, surface functionalization, and characterization techniques of merit used in the study of MXenes are discussed, detailing the effects of a range of factors (e.g., PH, temperature, precursor, etc.) on the synthesis, surface functionalization, and performance of the resulting MXenes. Finally, the limits of MXenes and MXene-based materials as well as their potential future research directions, especially for wastewater treatment applications are highlighted.
Collapse
Affiliation(s)
- Lois Damptey
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Bright N. Jaato
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Camila Silva Ribeiro
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Silvia Varagnolo
- School of Engineering & InnovationThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Nicholas P. Power
- School of LifeHealth & Chemical SciencesThe Open UniversityWalton HallMilton KeynesMK7 6AAUK
| | - Vimalnath Selvaraj
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - David Dodoo‐Arhin
- Department of Materials Science & EngineeringUniversity of GhanaP.O. Box LG 77Legon‐AccraGhana
| | - R. Vasant Kumar
- Department of Materials Science & MetallurgyUniversity of Cambridge27 Charles Baggage RoadCambridgeCB3 0FSUK
| | - Sithara Pavithran Sreenilayam
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Dermot Brabazon
- I‐FormAdvanced Manufacturing Research Centreand Advanced Processing Technology Research CentreSchool of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinDublin‐9Ireland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterSRUCEdinburghEH9 3JGUK
| | | |
Collapse
|
18
|
Chen J, Ding J, Shan J, Wang T, Zhou R, Zhuang Q, Kong J. Recent advances in precursor-derived ceramics integrated with two-dimensional materials. Phys Chem Chem Phys 2022; 24:24677-24689. [DOI: 10.1039/d2cp02678c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review focused on the recent advances in precursor-derived ceramics integrated with two-dimensional materials. Their fabrication methods, structures and applications were discussed in detail and the perspectives in this field were presented.
Collapse
Affiliation(s)
- Jianxin Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jichao Ding
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jiahui Shan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Rui Zhou
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Zhuang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
19
|
Zhou PK, Zong LL, Song KY, Yang ZC, Li HH, Chen ZR. Embedding Azobenzol-Decorated Tetraphenylethylene into the Polymer Matrix to Implement a Ternary Memory Device with High Working Temperature/Humidity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50350-50357. [PMID: 34647456 DOI: 10.1021/acsami.1c14686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new high-density memories that can work in harsh environments such as high temperature and humidity will be significant for some special occasions such as oil and geothermal industries. Herein, a facial strategy for implementing a ternary memory device with high working temperature/humidity was executed. In detail, an asymmetric aggregation-induced-emission active molecule (azobenzol-decorated tetraphenylethylene, i.e., TPE-Azo) was embedded into flexible poly(ethylene-alt-maleic anhydride) (PEM) to prepare a TPE-Azo@PEM composite, which served as an active layer to fabricate the FTO/TPE-Azo@PEM/Ag device. This device can demonstrate excellent ternary memory performances with a current ratio of 1:104.2:101.6 for "OFF", "ON1", and "ON2" states. Specially, it can exhibit good environmental endurance at high working temperature (350 °C) and humidity (RH = 90%). The ternary memory mechanism can be explained as the combination of aggregation-induced current/conductance and conformational change-induced charge transfer in the TPE-Azo molecule, which was verified by Kelvin probe force microscopy, UV-vis spectra, X-ray diffraction, and single-crystal structural analysis. This strategy can be used as a universal method for the construction of high-density multilevel memristors with good environmental tolerance.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lu-Lu Zong
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai-Yue Song
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhen-Cong Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Hong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Rong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
20
|
Sun WJ, Ji HQ, Li LX, Zhang HY, Wang ZK, He JH, Lu JM. Built-in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia. Angew Chem Int Ed Engl 2021; 60:22933-22939. [PMID: 34431192 DOI: 10.1002/anie.202109785] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Indexed: 11/07/2022]
Abstract
A built-in electric field in electrocatalyst can significantly accumulate higher concentration of NO3 - ions near electrocatalyst surface region, thus facilitating mass transfer for efficient nitrate removal at ultra-low concentration and electroreduction reaction (NO3 RR). A model electrocatalyst is created by stacking CuCl (111) and rutile TiO2 (110) layers together, in which a built-in electric field induced from the electron transfer from TiO2 to CuCl (CuCl_BEF) is successfully formed . This built-in electric field effectively triggers interfacial accumulation of NO3 - ions around the electrocatalyst. The electric field also raises the energy of key reaction intermediate *NO to lower the energy barrier of the rate determining step. A NH3 product selectivity of 98.6 %, a low NO2 - production of <0.6 %, and mass-specific ammonia production rate of 64.4 h-1 is achieved, which are all the best among studies reported at 100 mg L-1 of nitrate concentration to date.
Collapse
Affiliation(s)
- Wu-Ji Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Hao-Qing Ji
- College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Lan-Xin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Hao-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Zhen-Kang Wang
- College of energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
21
|
Sun W, Ji H, Li L, Zhang H, Wang Z, He J, Lu J. Built‐in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra‐Low Concentration and Electroreduction to Ammonia. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wu‐Ji Sun
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Hao‐Qing Ji
- College of energy Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 China
| | - Lan‐Xin Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Hao‐Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Zhen‐Kang Wang
- College of energy Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province Soochow University Suzhou 215006 China
| | - Jing‐Hui He
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| | - Jian‐Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology National United Engineering Laboratory of, Functionalized Environmental Adsorption Materials Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
22
|
Hao F, Wang L, Chen B, Qiu L, Nie J, Ma G. Bifunctional Smart Hydrogel Dressing with Strain Sensitivity and NIR-Responsive Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46938-46950. [PMID: 34559507 DOI: 10.1021/acsami.1c15312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart response hydrogel has a broad application prospect in human health real-time monitoring due to its responses to a variety of stimuli. In this study, we developed a novel smart hydrogel dressing based on conductive MXene nanosheets and a temperature-sensitive PNIPAm polymer. γ-Methacryloxypropyltrimethoxysilane (KH570) was selected to functionalize the surface of MXene further to improve the interface compatibility between MXene and PNIPAm. Our prepared K-M/PNIPAm hydrogel was found to have a strain-sensitive property, as well as a respond to NIR phase change and volume change. When applied as a strain flexible sensor, this K-M/PNIPAm hydrogel exhibited a high strain sensitivity with a gauge factor (GF) of 4.491, a broad working strain range of ≈250%, a fast response of ∼160 ms, and good cycle stability (i.e., 3000 s at 20% strain). Besides, this K-M/PNIPAm hydrogel can be used as an efficient NIR light-controlled drug release carrier to achieve on-demand drug release. This work paved the way for the application of smart response hydrogel in human health real-time monitoring and NIR-controlled drug release functions.
Collapse
Affiliation(s)
- Fan Hao
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binling Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Xu YJ, Liu HY, Chen HL. Direct observation of electron-vibration coupling at MXene-solvent interface. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yan-jun Xu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He-yuan Liu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-long Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
24
|
Song Y, Feng G, Sun C, Liang Q, Wu L, Yu X, Lei S, Hu W. Ternary Conductance Switching Realized by a Pillar[5]arene-Functionalized Two-Dimensional Imine Polymer Film. Chemistry 2021; 27:13605-13612. [PMID: 34312929 DOI: 10.1002/chem.202101772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Nowadays, most manufacturing memory devices are based on materials with electrical bistability (i. e., "0" and "1") in response to an applied electric field. Memory devices with multilevel states are highly desired so as to produce high-density and efficient memory devices. Herein, we report the first multichannel strategy to realize a ternary-state memristor. We make use of the intrinsic sub-nanometer channel of pillar[5]arene and nanometer channel of a two-dimensional imine polymer to construct an active layer with multilevel channels for ternary memory devices. Low threshold voltage, long retention time, clearly distinguishable resistance states, high ON/OFF ratio (OFF/ON1/ON2=1 : 10 : 103 ), and high ternary yield (75 %) were obtained. In addition, the flexible memory device based on 2DPTPAZ+TAPB can maintain its stable ternary memory performance after being bent 500 times. The device also exhibits excellent thermal stability and can tolerate a temperature as high as 300 °C. It is envisioned that the results of this work will open up possibilities for multistate, flexible resistive memories with good thermal stability and low energy consumption, and broaden the application of pillar[n]arene.
Collapse
Affiliation(s)
- Yaru Song
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chenfang Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou, 730000, P. R. China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
25
|
Fang SL, Han CY, Liu WH, Li X, Wang XL, Huang XD, Wan J, Fan SQ, Zhang GH, Geng L. Multilevel resistive random access memory achieved by MoO 3/Hf/MoO 3stack and its application in tunable high-pass filter. NANOTECHNOLOGY 2021; 32:385203. [PMID: 34116525 DOI: 10.1088/1361-6528/ac0ac4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
In this work, the multilevel resistive random access memories (RRAMs) have been achieved by using the structure of Pt/MoO3/Hf/MoO3/Pt with four stable resistance states. The devices show good retention property of each state (>104s) and large memory window (>104). The simulation and experimental study reveal that the resistive switching mechanism is ascribed to combination of the conductive filament in the stack of MoO3/Hf next to the top electrode and redox reaction at the interface of Hf/MoO3next to bottom electrode. The fitting results of current-voltage characteristics under low sweep voltage indicate that the conduction of HRSs is dominated by the Poole-Frenkel emission and that of LRS is governed by the Ohmic conduction. Based on the RRAM, the tunable high-pass filter (HPF) with configurable filtering characteristics has been realized. The gain-frequency characteristics of the programmable HPF show that the filter has high resolution and wide programming range, demonstrating the viability of the multilevel RRAMs for future spiking neural network and shrinking the programmable filters with low power consumption.
Collapse
Affiliation(s)
- Sheng Li Fang
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chuan Yu Han
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Hua Liu
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xin Li
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Li Wang
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiao Dong Huang
- Key Laboratory of MEMS of the Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jun Wan
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China
- Advanced Materials Technology & Engineering, Inc., Wuxi 214000, People's Republic of China
| | - Shi Quan Fan
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Guo He Zhang
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an 710049, People's Republic of China
| | - Li Geng
- School of Microelectronics, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
26
|
Gong Y, Xing X, Wang Y, Lv Z, Zhou Y, Han ST. Emerging MXenes for Functional Memories. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yue Gong
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Xuechao Xing
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Yan Wang
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Ye Zhou
- Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
27
|
Fang Y, Zhai S, Chu L, Zhong J. Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17141-17157. [PMID: 33844908 DOI: 10.1021/acsami.1c03433] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Memristors have attracted considerable attention as one of the four basic circuit elements besides resistors, capacitors, and inductors. Especially, the nonvolatile memory devices have become a promising candidate for the new-generation information storage, due to their excellent write, read, and erase rates, in addition to the low-energy consumption, multistate storage, and high scalability. Among them, halide perovskite (HP) memristors have great potential to achieve low-cost practical information storage and computing. However, the usual lead-based HP memristors face serious problems of high toxicity and low stability. To alleviate the above issues, great effort has been devoted to develop lead-free HP memristors. Here, we have summarized and discussed the advances in HP memristors from lead-based to lead-free materials including memristive properties, stability, neural network applications, and memristive mechanism. Finally, the challenges and prospects of lead-free HP memristors have been discussed.
Collapse
Affiliation(s)
- Yuetong Fang
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Shuaibo Zhai
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Liang Chu
- New Energy Technology Engineering Laboratory of Jiangsu Province & College of Telecommunications and Information Engineering & College of Electronic and Optic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
28
|
Sun F, Lu Q, Feng S, Zhang T. Flexible Artificial Sensory Systems Based on Neuromorphic Devices. ACS NANO 2021; 15:3875-3899. [PMID: 33507725 DOI: 10.1021/acsnano.0c10049] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging flexible artificial sensory systems using neuromorphic electronics have been considered as a promising solution for processing massive data with low power consumption. The construction of artificial sensory systems with synaptic devices and sensing elements to mimic complicated sensing and processing in biological systems is a prerequisite for the realization. To realize high-efficiency neuromorphic sensory systems, the development of artificial flexible synapses with low power consumption and high-density integration is essential. Furthermore, the realization of efficient coupling between the sensing element and the synaptic device is crucial. This Review presents recent progress in the area of neuromorphic electronics for flexible artificial sensory systems. We focus on both the recent advances of artificial synapses, including device structures, mechanisms, and functions, and the design of intelligent, flexible perception systems based on synaptic devices. Additionally, key challenges and opportunities related to flexible artificial perception systems are examined, and potential solutions and suggestions are provided.
Collapse
Affiliation(s)
- Fuqin Sun
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Qifeng Lu
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Simin Feng
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Ting Zhang
- i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Khot AC, Dongale TD, Park JH, Kesavan AV, Kim TG. Ti 3C 2-Based MXene Oxide Nanosheets for Resistive Memory and Synaptic Learning Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5216-5227. [PMID: 33397081 DOI: 10.1021/acsami.0c19028] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MXene, a new state-of-the-art two-dimensional (2D) nanomaterial, has attracted considerable interest from both industry and academia because of its excellent electrical, mechanical, and chemical properties. However, MXene-based device engineering has rarely been reported. In this study, we explored Ti3C2 MXene for digital and analog computing applications by engineering the top electrode. For this purpose, Ti3C2 MXene was synthesized by a simple chemical process, and its structural, compositional, and morphological properties were studied using various analytical tools. Finally, we explored its potential application in bipolar resistive switching (RS) and synaptic learning devices. In particular, the effect of the top electrode (Ag, Pt, and Al) on the RS properties of the Ti3C2 MXene-based memory devices was thoroughly investigated. Compared with the Ag and Pt top electrode-based devices, the Al/Ti3C2/Pt device exhibited better RS and operated more reliably, as determined by the evaluation of the charge-magnetic property and memory endurance and retention. Thus, we selected the Al/Ti3C2/Pt memristive device to mimic the potentiation and depression synaptic properties and spike-timing-dependent plasticity-based Hebbian learning rules. Furthermore, the electron transport in this device was found to occur by a filamentary RS mechanism (based on oxidized Ti3C2 MXene), as determined by analyzing the electrical fitting curves. The results suggest that the 2D Ti3C2 MXene is an excellent nanomaterial for non-volatile memory and synaptic learning applications.
Collapse
Affiliation(s)
- Atul C Khot
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tukaram D Dongale
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416 004, India
| | - Ju Hyun Park
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Arul Varman Kesavan
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
30
|
Allen-Perry K, Straka W, Keith D, Han S, Reynolds L, Gautam B, Autrey DE. Tuning the Magnetic Properties of Two-Dimensional MXenes by Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2021; 14:694. [PMID: 33540805 PMCID: PMC7867348 DOI: 10.3390/ma14030694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Two-dimensional materials based on transition metal carbides have been intensively studied due to their unique properties including metallic conductivity, hydrophilicity and structural diversity and have shown a great potential in several applications, for example, energy storage, sensing and optoelectronics. While MXenes based on magnetic transition elements show interesting magnetic properties, not much is known about the magnetic properties of titanium-based MXenes. Here, we measured the magnetic properties of Ti3C2Tx MXenes synthesized by different chemical etching conditions such as etching temperature and time. Our magnetic measurements were performed in a superconducting quantum interference device (SQUID) vibrating sample. These data suggest that there is a paramagnetic-antiferromagnetic (PM-AFM) phase transition and the transition temperature depends on the synthesis procedure of MXenes. Our observation indicates that the magnetic properties of these MXenes can be tuned by the extent of chemical etching, which can be beneficial for the design of MXenes-based spintronic devices.
Collapse
Affiliation(s)
- Kemryn Allen-Perry
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Weston Straka
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (W.S.); (L.R.)
| | - Danielle Keith
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Shubo Han
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Lewis Reynolds
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (W.S.); (L.R.)
| | - Bhoj Gautam
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Daniel E. Autrey
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| |
Collapse
|
31
|
Recent Advanced on the MXene-Organic Hybrids: Design, Synthesis, and Their Applications. NANOMATERIALS 2021; 11:nano11010166. [PMID: 33440847 PMCID: PMC7826894 DOI: 10.3390/nano11010166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
With increasing research interest in the field of flexible electronics and wearable devices, intensive efforts have been paid to the development of novel inorganic-organic hybrid materials. As a newly developed two-dimensional (2D) material family, MXenes present many advantages compared with other 2D analogs, especially the variable surface terminal groups, thus the infinite possibility for the regulation of surface physicochemical properties. However, there is still less attention paid to the interfacial compatibility of the MXene-organic hybrids. To this end, this review will briefly summarize the recent progress on MXene-organic hybrids, offers a deeper understanding of the interaction and collaborative mechanism between the MXenes and organic component. After the discussion of the structure and surface characters of MXenes, strategies towards MXene-organic hybrids are introduced based on the interfacial interactions. Based on different application scenarios, the advantages of MXene-organic hybrids in constructing flexible devices are then discussed. The challenges and outlook on MXene-organic hybrids are also presented.
Collapse
|