1
|
Bentaleb M, Abdulrahman M, Ribeiro Jr MAF. Nanomedicine and Its Role in Surgical Wound Infections: A Practical Approach. Bioengineering (Basel) 2025; 12:137. [PMID: 40001657 PMCID: PMC11852320 DOI: 10.3390/bioengineering12020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Surgical wound infections are a major cause of postoperative complications, contributing to surgical morbidity and mortality. With the rise of antibiotic-resistant pathogens, it is crucial to develop new innovative wound materials to manage surgical wound infections using methods that facilitate drug delivery agents and rely on materials other than antimicrobials. Nanoparticles, in particular, have captured researchers' interest in recent years due to their effectiveness in wound care. They can be classified into three main types: inorganic nanoparticles, lipid-based nanoparticles, and polymeric nanoparticles. Several studies have demonstrated the effectiveness of these new technologies in enhancing wound-healing times and reducing bacterial burden. However, further research is essential to thoroughly evaluate the safety and toxicity of these materials before they can be integrated into routine surgical practice.
Collapse
Affiliation(s)
- Malak Bentaleb
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (M.B.); (M.A.)
| | - Mohammed Abdulrahman
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (M.B.); (M.A.)
| | - Marcelo A. F. Ribeiro Jr
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
3
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Xiao H, Zhou S. Synergistic antibacterial effect and mechanism between Cu 2O nanoparticles and quaternary ammonium salt in moisture-curable acrylic coatings. Colloids Surf B Biointerfaces 2024; 238:113914. [PMID: 38663310 DOI: 10.1016/j.colsurfb.2024.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.
Collapse
Affiliation(s)
- Haofeng Xiao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Shi Z, Yang F, Hu Y, Pang Q, Shi L, Du T, Cao Y, Song B, Yu X, Cao Z, Ye Z, Liu C, Yu R, Chen X, Zhu Y, Pang Q. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym 2024; 327:121666. [PMID: 38171658 DOI: 10.1016/j.carbpol.2023.121666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Self-healing coatings have shown promise in controlling the degradation of scaffolds and addressing coating detachment issues. However, developing a self-healing coating for magnesium (Mg) possessing multiple biological functions in infectious environments remains a significant challenge. In this study, a self-healing coating was developed for magnesium scaffolds using oxidized dextran (OD), 3-aminopropyltriethoxysilane (APTES), and nano-hydroxyapatite (nHA) doped micro-arc oxidation (MHA), named OD-MHA/Mg. The results demonstrated that the OD-MHA coating effectively addresses coating detachment issues and controls the degradation of Mg in an infectious environment through self-healing mechanisms. Furthermore, the OD-MHA/Mg scaffold exhibits antibacterial, antioxidant, and anti-apoptotic properties, it also promotes bone repair by upregulating the expression of osteogenesis genes and proteins. The findings of this study indicate that the OD-MHA coated Mg scaffold possessing multiple biological functions presents a promising approach for addressing infectious bone defects. Additionally, the study showcases the potential of polysaccharides with multiple biological functions in facilitating tissue healing even in challenging environments.
Collapse
Affiliation(s)
- Zewen Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China; Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lin Shi
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Baiyang Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xueqiang Yu
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315000, China
| | - Zhaoxun Cao
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhewei Ye
- Department of Orthopaedics, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Liu
- Ningbo Branch of Chinese Academy of Ordnance Science, Ningbo 315100, China
| | - Rongyao Yu
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianjun Chen
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Qingjiang Pang
- Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo 315000, China; Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Aboelmahasen MMF, Othman SS, Dena ASA, Zhran M, Ma M, El-Destawy MT, Bilal AM. Histomorphometric and CBCT comparison of osseointegration around orthodontic titanium miniscrews coated with different nanoparticles: An in-vivo animal study. Int Orthod 2024; 22:100823. [PMID: 37992473 DOI: 10.1016/j.ortho.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Temporarily installed titanium orthodontic miniscrews are usually used for many orthodontic applications, especially those cases that need high force, such as skeletally anchored orthodontic appliance cases. Surface modification of titanium miniscrews has proved success in preventing failure and overcoming their limitations. OBJECTIVE The present study aims at the assessment of the quality of osseointegration of surface modified titanium miniscrews installed in the maxilla of albino rabbits with cone-beam computed tomography (CBCT) imaging as well as histomorphometric investigations. MATERIAL AND METHODS The orthodontic titanium miniscrews (TMSs) were coated with silver/hydroxyapatite (Ag/HA) nanoparticles (NPs) or zinc oxide (ZnO) NPs via electrochemical deposition. The coating nanomaterials were then characterized with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) imaging. Moreover, the antimicrobial activity of the coated titanium miniscrews were evaluated in the rabbits' oral cavity to investigate their ability to prevent biofilm formation. RESULTS It was found that the Ag/HA-coated TMSs demonstrated the highest antimicrobial activity and bone area fill, followed by the ZnO NPs-coated TMSs when compared to their uncoated counterparts. In the anterior area surrounding the installed TMSs, the highest osseointegration was demonstrated by ZnO NPs-coated TMSs. However, Ag/HA-coated TMSs showed the highest osseointegration values in the posterior peri-implant area. CONCLUSIONS Ag/HA- and ZnO NPs-coated TMSs may provide a promising solution to overcome the 30% probable failure in temporarily installed orthodontic miniscrews, as they can enhance the osseointegration process and prevent biofilm formation.
Collapse
Affiliation(s)
| | - Samer Salim Othman
- Department of Clinical Dental Sciences, College of Dentistry, Ibnsina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo, Egypt
| | - Monira Zhran
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ma
- Oral pathology Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Taha El-Destawy
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Mohamed Bilal
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
7
|
Zhang Z, Cui Z, Zhang J, Zheng H, Zhou Z, Wu Z, Wang Z, Fu B. Remineralizing effects of hydroxypropyl methylcellulose film-loaded amorphous calcium phosphate nanoprecursors on enamel artificial caries lesions. J Mech Behav Biomed Mater 2024; 151:106408. [PMID: 38244421 DOI: 10.1016/j.jmbbm.2024.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES This study was to investigate hydroxypropyl methylcellulose (HPMC) film as a carrier for amorphous fluorinated calcium phosphate (AFCP) nanoprecursors to continuously deliver biomimetic remineralization of enamel artificial caries lesions (ACL). MATERIALS AND METHODS The AFCP/HPMC films were comprised of 25 wt% AFCP nanoparticles and 75 wt% HPMC. They were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and biocompatibility tests. Forty enamel ACL were prepared and randomly divided into four groups (n = 10): The enamel surfaces were covered with a pure HPMC film, Tooth Mousse Plus (contains 10% CPP-ACP and 0.2% NaF), and AFCP/HPMC film, or without any things (serving as negative control). Subsequently, all samples were alternatively kept in artificial saliva and a modified pH-cycling before they were characterized by Micro-CT, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance (ATR)-FTIR, XRD, and nanoindentation. RESULTS After the enamel ACL was challenged by pH cycling, Tooth Mousse Plus and AFCP/HPMC film groups exhibited less lesion depth and mineral loss than the negative control and pure HPMC film groups. Additionally, the AFCP/HPMC film group revealed a highest remineralization rate of 55.34 ± 3.10 % among the all groups (p < 0.001). The SEM findings showed that the enamel ACL were densely deposited with minerals in the AFCP/HPMC film group, and the EDX results suggested a higher content of fluorine in the remineralized tissues. In particular, the AFCP/HPMC film group exhibited the best nanomechanical performance after 2 weeks of pH cycling (p < 0.05), with the hardness (H) restored from 0.29 ± 0.19 to 2.69 ± 0.70 GPa, and elastic modulus (Er) restored from 10.77 ± 5.30 to 68.83 ± 12.72 GPa. CONCLUSION The AFCP/HPMC film might be used as a promising strategy for arresting or reversing incipient enamel caries lesions.
Collapse
Affiliation(s)
- Zhixin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China; Department of Stomatology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Zihan Cui
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Jianping Zhang
- Department of Orthopaedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, 363000, Fujian, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Siva Prasad P, Byram PK, Hazra C, Chakravorty N, Sen R, Das S, Das K. Biosurfactant-Assisted Cu Doping of Brushite Coatings: Enhancing Structural, Electrochemical, and Biofunctional Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10601-10622. [PMID: 38376231 DOI: 10.1021/acsami.3c15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.
Collapse
Affiliation(s)
- Pakanati Siva Prasad
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Siddhartha Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Shao H, Zhang T, Gong Y, He Y. Silver-Containing Biomaterials for Biomedical Hard Tissue Implants. Adv Healthc Mater 2023; 12:e2300932. [PMID: 37300754 DOI: 10.1002/adhm.202300932] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Bacterial infection caused by biomaterials is a very serious problem in the clinical treatment of implants. The emergence of antibiotic resistance has prompted other antibacterial agents to replace traditional antibiotics. Silver is rapidly developing as an antibacterial candidate material to inhibit bone infections due to its significant advantages such as high antibacterial timeliness, high antibacterial efficiency, and less susceptibility to bacterial resistance. However, silver has strong cytotoxicity, which can cause inflammatory reactions and oxidative stress, thereby destroying tissue regeneration, making the application of silver-containing biomaterials extremely challenging. In this paper, the application of silver in biomaterials is reviewed, focusing on the following three issues: 1) how to ensure the excellent antibacterial properties of silver, and not easy to cause bacterial resistance; 2) how to choose the appropriate method to combine silver with biomaterials; 3) how to make silver-containing biomaterials in hard tissue implants have further research. Following a brief introduction, the discussion focuses on the application of silver-containing biomaterials, with an emphasis on the effects of silver on the physicochemical properties, structural properties, and biological properties of biomaterials. Finally, the review concludes with the authors' perspectives on the challenges and future directions of silver in commercialization and in-depth research.
Collapse
Affiliation(s)
- Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Zhejiang Guanlin Machinery Limited Company, Anji, Hangzhou, 313300, China
| | - Tao Zhang
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Liu P, An M, He T, Li P, Ma F. Recent Advances in Antibiofouling Materials for Seawater-Uranium Extraction: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6451. [PMID: 37834588 PMCID: PMC10573904 DOI: 10.3390/ma16196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Nuclear power has experienced rapid development as a green energy source due to the increasing global demand for energy. Uranium, as the primary fuel for nuclear reactions, plays a crucial role in nuclear energy production, and seawater-uranium extraction has gained significant attention. However, the extraction of uranium is usually susceptible to contamination by microorganisms, such as bacteria, which can negatively affect the adsorption performance of uranium adsorption materials. Therefore, an important challenge lies in the development of new antibacterial and antiadhesion materials to inhibit the attachment of marine microorganisms. These advancements aim to reduce the impact on the adsorption capability of the adsorbent materials. This paper reviews the antibiofouling materials used for extracting seawater uranium, and corresponding mechanisms are discussed.
Collapse
Affiliation(s)
- Peng Liu
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Minyan An
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Teng He
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Fuqiu Ma
- Yantai Research Institute and Graduate School, Harbin Engineering University, Yantai 264000, China; (P.L.); (M.A.); (T.H.)
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
11
|
Huang X, Zhang M, Chang L, Zheng D, Lin W, Feng Y, Lu Y. Application Study of Novel Eggshell/Ag Combined with Pit and Fissure Sealants. Int J Nanomedicine 2023; 18:2911-2922. [PMID: 37283713 PMCID: PMC10241214 DOI: 10.2147/ijn.s403974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Objective The study aims to enhance the anti-caries performance of pit and fissure sealants through the synthesis of novel silver nanocomposites, and to evaluate their mechanical properties and biological safety in vitro and in vivo. Methods The antibacterial properties of synthetic eggshell/Ag were detected by bacterial inhibition zone, minimum bacteriostatic concentration, fluorescence staining and scanning electron microscopy. The synthetic products were then combined with pit and fissure sealants to prepare specimens, and their effects on mechanical properties, antibacterial properties and cytotoxicity were evaluated. Furthermore, an oral mucosal contact model of golden hamsters was established according to the ISO10933 standard to evaluate local stimulation and systemic effects. Results The novel nanocomposite eggshell/Ag was confirmed to exhibit strong broad-spectrum antibacterial activity, and that the eggshell/Ag-modified pit and fissure sealant had strong antibacterial properties against common dental caries bacterial biofilms, without any significant change in mechanical properties. The gradient dilution extract showed acceptable cytotoxicity, and in the golden hamster oral contact model, there were no visible abnormalities in local mucosal tissues, blood indices, or liver and kidney histopathology. Conclusions These findings suggest that eggshell/Ag combined with pit and fissure sealants has strong antibacterial activity and excellent biosafety in vitro and in vivo, making it a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Ming Zhang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Department of Conservative and Endodontic Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Lin Chang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yan Feng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
12
|
Srikhao N, Theerakulpisut S, Chindaprasirt P, Okhawilai M, Narain R, Kasemsiri P. Green synthesis of nano silver-embedded carboxymethyl starch waste/poly vinyl alcohol hydrogel with photothermal sterilization and pH-responsive behavior. Int J Biol Macromol 2023; 242:125118. [PMID: 37263326 DOI: 10.1016/j.ijbiomac.2023.125118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Bacterial wound infections remain a significant health issue of great concern. Hence, there is a need to develop a novel material with antibacterial properties and smart functions. In this study, the effects of silver nanoparticles content (AgNPs) on properties of photothermal and pH-responsive nanocomposite hydrogels were investigated. The nanocomposite hydrogel samples were prepared using cassava starch waste modified by carboxymethylation (CMS), and mixed with poly vinly alcohol (PVA) and tannic acid (TA). The presence of AgNPs in the hydrogel samples enhanced antibacterial activities and photothermal conversion ability. The use of as-prepared hydrogel using 200 mM silver nitrate (H-AgNPs-200) combined with near infrared (NIR) radiation produced 100 % antibacterial efficiency for Escherichia coli (E.coli) and 98.2 % for Staphylococcus aureus (S.aureus). Furthermore, the H-AgNPs-200 also provided the highest storage modulus at 87.9 kPa. The obtained nanocomposite hydrogel was shown to exhibit pH-responsive release of TA. Under NIR radiation, higher release of TA at different pH was observed. The cytotoxicity study indicated that the nanocomposite hydrogels had good biocompatibility. Hence, the development of nanocomposite hydrogel-based CMS from cassava starch waste/PVA/AgNPs is a promising and sustainable approach where agro-waste product is used as the base material for medical application in wound dressing.
Collapse
Affiliation(s)
- Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| | - Manunya Okhawilai
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6, Canada
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
13
|
Fosca M, Streza A, Antoniac IV, Vadalà G, Rau JV. Ion-Doped Calcium Phosphate-Based Coatings with Antibacterial Properties. J Funct Biomater 2023; 14:jfb14050250. [PMID: 37233360 DOI: 10.3390/jfb14050250] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Ion-substituted calcium phosphate (CP) coatings have been extensively studied as promising materials for biomedical implants due to their ability to enhance biocompatibility, osteoconductivity, and bone formation. This systematic review aims to provide a comprehensive analysis of the current state of the art in ion-doped CP-based coatings for orthopaedic and dental implant applications. Specifically, this review evaluates the effects of ion addition on the physicochemical, mechanical, and biological properties of CP coatings. The review also identifies the contribution and additional effects (in a separate or a synergistic way) of different components used together with ion-doped CP for advanced composite coatings. In the final part, the effects of antibacterial coatings on specific bacteria strains are reported. The present review could be of interest to researchers, clinicians, and industry professionals involved in the development and application of CP coatings for orthopaedic and dental implants.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alexandru Streza
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
| | - Iulian V Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Research Unit of Orthopaedic, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Operative Research Unit of Orthopaedics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
14
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
15
|
Fathy Abo-Elmahasen MM, Abo Dena AS, Zhran M, Albohy SAH. Do silver/hydroxyapatite and zinc oxide nano-coatings improve inflammation around titanium orthodontic mini-screws? In vitro study. Int Orthod 2023; 21:100711. [PMID: 36463787 DOI: 10.1016/j.ortho.2022.100711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Overcoming the failure percentage of orthodontic mini-screws (OMSs), which is about 30% of overall orthodontic cases, especially in malocclusion treatment that requires orthopaedic heavy forces, is a great challenge. Bacterial infections, soft tissue and bone inflammation, and weak connections between bones and the OMS surface are among the main causalities of this failure. OBJECTIVE The aim of the study is to evaluate in vitro the microbiological activities of the deposited nanomaterials (Silver/hydroxyapatite nanoparticles (Ag/HA NPs) and zinc oxide nanoparticles (ZnO NPs)) in terms of microbial inhibition. In addition, the in-vitro cytotoxicity and cytocompatibility of the synthesized nano-coatings prior to their in-vivo application in animal models were tested on four types of cells, namely, fibroblasts, osteocytes, osteoblasts, and oral epithelial cells. MATERIALS AND METHODS Ag/HA NPs and ZnO NPs were built up onto the surface of titanium OMSs by electrochemical deposition. This electrochemical deposition was performed on 50 orthodontic mini screws and the deposited materials were characterized with the aid of scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) analysis, X-ray Diffraction (XRD) and nano-scratch test. In addition, the microbiological activities of the deposited nanomaterials were explored in vitro in terms of microbial inhibition. Furthermore, the cytotoxicity and cytocompatibility were tested on four types of cells, namely, fibroblasts, osteocytes, osteoblasts and oral epithelial cells. RESULTS SEM images revealed spherical Ag NPs in the range of 40-70nm in diameter, rod-shaped HA NPs and porous scaly ZnO NPs on the surface of the OMSs. XRD analysis confirmed the crystal structures of AgNPs, HA NPs, and ZnO NPs. ZnO NPs coated OMS had the highest antimicrobial activity than Ag/HA coated OMS against Gram-positive, Gram-negative and fungal strains. Moreover, after incubation, the decrease in the number of bacterial colonies was significant with ZnO and Ag/HA nanoparticles (with the greatest decrease for the former), due to the potent antibacterial effect of nanoparticles against Escherichia coli and Enterococcus faecalis. Moreover, ZnO NPs-coated OMSs showed a better cytocompatibility with oral epithelium, bone cells, and fibroblasts compared to Ag/HA NPs. CONCLUSION The suggested nanocoating is a promising strategy to overcome the development of an inflammatory zone around the fixed OMSs.
Collapse
Affiliation(s)
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo, Egypt
| | - Monira Zhran
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Salwa A H Albohy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
Wang H, Huang X, Liang H, Sun X, Meng N, Zhou N. Synthesis and Characterization of Polydopamine‐Modified Montmorillonite Loaded with Silver Nanoparticles for Antibacterial Functionalization. ChemistrySelect 2023. [DOI: 10.1002/slct.202204371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Huiyan Wang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Xinrong Huang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Han Liang
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Xuemei Sun
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing 210046 China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Engineering Research Center for Biomedical Function Materials Nanjing 210023 China
- Nanjing Zhou Ninglin Advanced Materials Technology Company Limited Nanjing 211505 China
| |
Collapse
|
17
|
Chen J, Gai K, He Y, Xu Y, Guo W. Generating bioactive and antiseptic interfaces with nano-silver hydroxyapatite-based coatings by pulsed electrochemical deposition for long-term efficient cervical soft tissue sealing. J Mater Chem B 2023; 11:345-358. [PMID: 36484404 DOI: 10.1039/d2tb02098j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Infections related to osseointegrated implants have sparked the interest in studying titanium modification for long-term effective soft tissue sealing. Constructing a silver (Ag)-hydroxyapatite (HA) coating is regarded as an effective strategy for integrating antibiosis with osteanagenesis; however, the outcome for long-term cervical soft tissue sealing in vivo is compromised. It is challenging to construct an Ag-HA coating for long-term efficient soft tissue integration that instills a maximum antibacterial effect while retaining favorable bioactivity to normal gingival mesenchymal cells in vivo. In this study, we employed gradient concentrations of Ag/CaP by pulsed electrochemical deposition to fabricate optimal Ag-HA nanocoatings. By physicochemical analyses, these uniform coatings were mainly formed with spherical metallic and hydroxyapatite nanoparticles, which facilitated good hydrophilicity, moderate rough surfaces and corrosion protection. Furthermore, the nanocoating of the 1.5Ag/CaP group exhibited superior performances in dental follicle cells' proliferation, osteogenic differentiation and antibacterial properties mainly through direct contact inhibition and partially through sustained silver ion release, which resulted in functional cervical soft tissue sealing in beagles lasting for one year. Our investigations provide a feasible strategy to balance the long-term antibacterial demand and bioactive induction around osseointegrated implants for long-term efficient cervical soft tissue sealing.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kuo Gai
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yuchan Xu
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
He X, Jia H, Sun N, Hou M, Tan Z, Lu X. Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag . Int J Biol Macromol 2022; 213:955-966. [PMID: 35690162 DOI: 10.1016/j.ijbiomac.2022.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal contamination in water and soil are harmful and destructive to the environment, it has always been regarded as a big problem. Herein, we developed a self-healing fluorescent hydrogel based on oxidized carboxymethyl cellulose with excellent sensing and adsorption abilities for Ag+. The detection and adsorption effects of hydrogels on heavy metal ions were studied. It turned out that the fluorescent hydrogel has sensitive detection and high adsorption capacity for Ag+, the detection limit was 3.798 μM, and the maximum adsorption capacity was 407 mg/g. The adsorption isotherm fitted the Langmuir model well, and the pseudo-secondary model for adsorption kinetics fitted well. The hydrogel could heal itself without external stimulus, it could be easily regenerated 7 times without loss of adsorption performance. In short, the prepared hydrogel has capability of self-healing, detecting and adsorbing heavy metal ions at the same time, good mechanical strength, these all made it a promising long-life adsorbent and provided a new way for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Hui Jia
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nan Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Miaomiao Hou
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zheping Tan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
19
|
Electrochemical and electrophoretic coatings of medical implants by nanomaterials. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Preparation and in vivo bacteriostatic application of PPDO-coated Ag loading TiO 2 nanoparticles. Sci Rep 2022; 12:10585. [PMID: 35732700 PMCID: PMC9217793 DOI: 10.1038/s41598-022-14814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections limit the clinical application of implants therapy; hence, exploiting strategies to prevent biomaterial-associated infections has become important. Therefore, in this study, a series of poly (p-dioxanone) (PPDO)-coated Ag loading TiO2 nanoparticles (Ag@TiO2-PPDO) was synthesized to be applied as bacteriostatic coating materials that could be easily dispersed in organic solvent and coated onto implantable devices via temperate methods such as electrospraying. The lattice parameters of TiO2 were a = 0.504 nm, b = c = 1.05 nm, alpha = beta = gamma = 90 degree and the size of crystallite was about 13 nm, indicating that part of Ag has been embedded into crystal defects of TiO2. Both XRD and TEM determinations indicated the successful grating of PPDO on the surface of Ag@TiO2. Among Ag@TiO2 nanoparticles with various Ag loading quantities, 12% Ag@TiO2 nanoparticles exhibited relatively higher grafting efficiency and Ag contents on the surface of grafted composites. In addition, 12% Ag@TiO2-PPDO exhibited the best bacteriostatic effect in vitro owing to its higher grafted efficiency and relatively short length of PPDO segments. Subsequently, Ag@TiO2-PPDO was coated on the surface of a poly lactic-co-glycolic acid (PLGA) electrospun membrane via the electrospraying method. Finally, the in vivo bacteriostatic effect of 12% Ag@TiO2-PPDO coating was verified by implanting 12% Ag@TiO2-PPDO-coated PLGA membrane into a rat subcutaneously combined with an injection of Staphylococcus aureus at implanting sites.
Collapse
|
21
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
22
|
Wei H, Song X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating strategy to prevent orthopaedic device-related infections: recent advances and future perspectives. BIOMATERIALS ADVANCES 2022; 135:212739. [PMID: 35929213 DOI: 10.1016/j.bioadv.2022.212739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria and biofilm-related infections (BRIs) has urgently called for new strategies to combat severe orthopaedic device-related infections (ODRIs). Antimicrobial coating has emerged as a promising strategy in halting the incidence of ODRIs and treating ODRIs in long term. With the advancement of material science and biotechnology, numerous antimicrobial coatings have been reported in literature, showing superior antimicrobial and osteogenic functions. This review has specifically discussed the currently developed antimicrobial coatings in the perspective of drug release from the coating system, focusing on their realization of controlled and on demand antimicrobial agents release, as well as multi-functionality. Acknowledging the multidisciplinary nature of antimicrobial coating, the conceptual design, the deposition method and the therapeutic effect of the antimicrobial coatings have been described in detail and discussed critically. Particularly, the challenges and opportunities on the way toward the clinical translation of antimicrobial coatings have been highlighted.
Collapse
Affiliation(s)
- Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
23
|
Novikov AA, Sayfutdinova AR, Gorbachevskii MV, Filatova SV, Filimonova AV, Rodrigues-Filho UP, Fu Y, Wang W, Wang H, Vinokurov VA, Shchukin DG. Natural Nanoclay-Based Silver-Phosphomolybdic Acid Composite with a Dual Antimicrobial Effect. ACS OMEGA 2022; 7:6728-6736. [PMID: 35252668 PMCID: PMC8892630 DOI: 10.1021/acsomega.1c06283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.
Collapse
Affiliation(s)
- Andrei A. Novikov
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Adeliya R. Sayfutdinova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Maksim V. Gorbachevskii
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Sofya V. Filatova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Alla V. Filimonova
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | | | - Ye Fu
- School
of Materials Science and Engineering, Beijing
Technology and Business University, Beijing 100048, People Republic of China
| | - Wencai Wang
- Key
Laboratory of Beijing City for Preparation and Processing of Novel
Polymer Materials, Beijing University of
Chemical Technology, Beijing 100029, People Republic of China
| | - Hongqiang Wang
- State
Key Laboratory of Solidification Processing, Center for Nano Energy
Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People Republic of China
| | - Vladimir A. Vinokurov
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
| | - Dmitry G. Shchukin
- Physical
and Colloid Chemistry Department, Gubkin
University, 65/1 Leninsky
Prospect, Moscow 119991, Russian Federation
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Chadwick Building, Peach Street, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
24
|
Zuo K, Wang L, Wang Z, Yin Y, Du C, Liu B, Sun L, Li X, Xiao G, Lu Y. Zinc-Doping Induces Evolution of Biocompatible Strontium-Calcium-Phosphate Conversion Coating on Titanium to Improve Antibacterial Property. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7690-7705. [PMID: 35114085 DOI: 10.1021/acsami.1c23631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implant-associated infections (IAI) remains a common and devastating complication in orthopedic surgery. To reduce the incidence of IAI, implants with intrinsic antibacterial activity have been proposed. The surface functionalization and structure optimization of metallic implants can be achieved by surface modification using the phosphate chemical conversion (PCC) technique. Zinc (Zn) has strong antibacterial behavior toward a broad-spectrum of bacteria. Herein, Zn was incorporated into strontium-calcium-phosphate (SrCaP) coatings on titanium (Ti) via PCC method, and the influence of its doping amount on the phase, microstructure, antibacterial activity, and biocompatibility of the composite coating was researched. The results indicated that traces of Zn doping produced grain refinement of SrCaP coating with no significant effect on its phase and surface properties, while a higher Zn content induced its phase and microstructure transformed into zinc-strontium-phosphate (SrZn2(PO4)2). SrCaP-Zn1 and SrCaP-Zn4 represented trace and high content Zn-doped coatings, respectively, which exhibited a similar bacterial attachment for a short time but showed inhibition of biofilm formation after continuous incubation up to 24 h. The killing rates of SrCaP-Zn1 coating for Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) reached 61.25% and 55.38%, respectively. While that data increased to 83.01% and 71.28% on SrCaP-Zn4 coating due to the more-releasing Zn2+. Furthermore, in vitro culture of MC3T3-E1 cells proved that the Zn-doped coatings also possessed excellent biocompatibility. This study provides a new perception for the phase and microstructural optimization of phosphate coatings on implant surfaces, as well as fabricating promising coatings with excellent biocompatibility and antimicrobial properties against IAI.
Collapse
Affiliation(s)
- Kangqing Zuo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lili Wang
- Department of Stomatology, The People's Hospital of Zhaoyuan City, Yantai 264500, China
| | - Zhanghan Wang
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Yixin Yin
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Chunmiao Du
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Bing Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Lanying Sun
- Oral Implantology Center, Ji Nan Stomatological Hospital, Jinan 250001, China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, China
| | - Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
25
|
Wang Z, Zhou Z, Fan J, Zhang L, Zhang Z, Wu Z, Shi Y, Zheng H, Zhang Z, Tang R, Fu B. Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization. J Nanobiotechnology 2021; 19:385. [PMID: 34809623 PMCID: PMC8607665 DOI: 10.1186/s12951-021-01133-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Demineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3-4 µm) after 72-96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability.
Collapse
Affiliation(s)
- Zhe Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Jiayan Fan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Leiqing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhixin Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhengyi Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Engineering Research Center for Oral Biomaterials and Devices, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
26
|
Djošić M, Janković A, Mišković-Stanković V. Electrophoretic Deposition of Biocompatible and Bioactive Hydroxyapatite-Based Coatings on Titanium. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5391. [PMID: 34576615 PMCID: PMC8472014 DOI: 10.3390/ma14185391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023]
Abstract
Current trends in biomaterials science address the issue of integrating artificial materials as orthopedic or dental implants with biological materials, e.g., patients' bone tissue. Problems arise due to the simple fact that any surface that promotes biointegration and facilitates osteointegration may also provide a good platform for the rapid growth of bacterial colonies. Infected implant surfaces easily lead to biofilm formation that poses a major healthcare concern since it could have destructive effects and ultimately endanger the patients' life. As of late, research has centered on designing coatings that would eliminate possible infection but neglected to aid bone mineralization. Other strategies yielded surfaces that could promote osseointegration but failed to prevent microbial susceptibility. Needless to say, in order to assure prolonged implant functionality, both coating functions are indispensable and should be addressed simultaneously. This review summarizes progress in designing multifunctional implant coatings that serve as carriers of antibacterial agents with the primary intention of inhibiting bacterial growth on the implant-tissue interface, while still promoting osseointegration.
Collapse
Affiliation(s)
- Marija Djošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia;
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| |
Collapse
|
27
|
Cui J, Shao Y, Zhang H, Zhang H, Zhu J. Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127633. [PMID: 33173406 PMCID: PMC7644439 DOI: 10.1016/j.cej.2020.127633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 05/27/2023]
Abstract
Applying silver into coatings has become a prevalent method in fabricating antimicrobial surfaces. However, the concerns about durability always exist and limit its applications. Here, a highly inhibitory, active, durable, and easy-to-use silver ions-nanosilver antimicrobial additive for powder coatings was fabricated in this study. Silver nanoparticles were chemically bonded to the Ag, Cu, and Zn-ternary ion-exchanged zeolite by α -lipoic acid, which was then encapsulated by hydrophilic polymers. The fabricated silver ions and silver nanoparticles (Ag+-AgNPs) complementary structure provides a synergistic effect. Ag+ is the main antimicrobial agent, while AgNPs act as a supplementary reservoir of Ag+. As well, the formed thin layer of silver nanoparticles and hydrophilic film prolongs the release of active Ag+ from zeolite, and Ag+ facilitates the activation of AgNPs. The results show that this additive indicates excellent antimicrobial activity to E. coli, S. aureus, P. aeruginosa, and C. albicans, and that the coatings with the additive exhibit over 99.99% reduction rate for the tested bacteria and fungi. The coating film is able to maintain over 99% antimicrobial reduction even after 1200 repeated solution wipings, or over 30 wash cycles of artificial sweat solution, indicating high durability. Furthermore, the yellowness of the coating is not evident (Δb < 2) despite the high loading of silver, and the silver nanoparticles have little impact on gloss, haze, and distinctness of the coating film image.
Collapse
Affiliation(s)
- Jixing Cui
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuanyuan Shao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haiping Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Jesse Zhu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
28
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
29
|
Zhou S, Xu W, Zhang P, Tang K. Highly efficient adsorption of Ag(I) from aqueous solution by Zn‐NDC metal–organic framework. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuxian Zhou
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| |
Collapse
|
30
|
Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 2021; 54:e11055. [PMID: 34133539 PMCID: PMC8208772 DOI: 10.1590/1414-431x2021e11055] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.
Collapse
Affiliation(s)
- J Girón
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - E Kerstner
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Medeiros
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Oliveira
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - G M Machado
- Programa de Gradução em Odontologia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - C F Malfatti
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células Tronco, Porto Alegre, RS, Brasil
| |
Collapse
|
31
|
Effect of Precursor Deficiency Induced Ca/P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity. MATERIALS 2021; 14:ma14123158. [PMID: 34201287 PMCID: PMC8227255 DOI: 10.3390/ma14123158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Ag-containing hydroxyapatite (HA) can reduce risks associated with bacterial infections which may eventually require additional surgical operations to retrieve a failed implant. The biological properties of HA in such applications are strongly affected by its composition in terms of dopants as well as Ca/P stoichiometry, which can be easily controlled by altering processing parameters, such as precursor concentrations. The objective of this in vitro study was to understand the effect of variations in HA precursor solutions on antibacterial properties against Escherichia coli (E. coli) and for promoting osteoblast (bone-forming cell) adhesion on Ag incorporated HA (AgHA) which has not yet been investigated. For this, two groups of AgHAs were synthesized via a precipitation method by adjusting precursor reactants with a stoichiometric value of 1.67, being either (Ca + Ag)/P (Ca-deficient) or Ca/(P + Ag) (P-deficient), and were characterized by XRD, FTIR, and SEM-EDS. Results showed that Ag+ incorporated into the Ca2+ sites was associated with a corresponding OH− vacancy. Additional incorporation of CO32− into PO43− sites occurred specifically for the P-deficient AgHAs. While antibacterial properties increased, osteoblast adhesion decreased with increasing Ag content for the Ca-deficient AgHAs, as anticipated. In contrast, significant antibacterial properties with good osteoblast behavior were observed on the P-deficient AgHAs even with a lower Ag content, owing to carbonated HA. Thus, this showed that by synthesizing AgHA using P-deficient precursors with carbonate substitution, one can keep the antibacterial properties of Ag in HA while reducing its toxic effect on osteoblasts.
Collapse
|
32
|
García I, Trobajo C, Amghouz Z, Alonso-Guervos M, Díaz R, Mendoza R, Mauvezín-Quevedo M, Adawy A. Ag- and Sr-enriched nanofibrous titanium phosphate phases as potential antimicrobial cement and coating for a biomedical alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112168. [PMID: 34082969 DOI: 10.1016/j.msec.2021.112168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Biomaterials and their surfaces regulate the biological response and ultimately the quality of healing at a possible site of implantation. The physical, chemical and topographical properties of implants' surfaces play a decisive role in the biological integration process for their immediate loading and long-term success. Since at this level of biological interaction nano-dimensionality is basically entailed, bio-functional nanostructured composites either as filling/cement or coating to metallic implants are required. This study shows the possibility of synthesizing two phases of nanostructured titanium phosphate (π and ρ polymorphs) and enriching them with silver nanoparticles and strontium. More importantly, Ag-Sr-enriched nanostructured π‑titanium phosphate is induced to grow on a commercially available titanium alloy (Ti-6Al-4V), widely used in orthopedic and dental implants, under highly controlled conditions. Structural and microscopic studies, using XRD, HRTEM and SEM altogether confirm the resultant phases and their enrichment with strontium and silver nanoparticles with an average particle size around 6 nm. Using confocal laser scanning microscopy, the surface roughness was measured and is found to lay at the interface between the nanosized and microsized topologies. Ion release assessments showed that the presence of strontium controlled the release rate of silver ions and this could be beneficial in terms of decreasing the accompanied cytotoxicity that is usually encountered at high concentrations of silver release. Antimicrobial and cell proliferation assays have proved that enriching titanium phosphate with strontium and silver nanoparticles has improved their antimicrobial properties, while the cytotoxicity could be controlled.
Collapse
Affiliation(s)
- Inés García
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Camino Trobajo
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain; Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Zakariae Amghouz
- Department of Material Science and Metallurgical Engineering, University of Oviedo, 33203 Gijón, Spain
| | - Marta Alonso-Guervos
- Optical Microscopy and Image Processing Unit, Institute for Scientific and Technological Resources (SCTs), University of Oviedo, 33006 Oviedo, Spain
| | - Raquel Díaz
- Nanomaterials and Nanotechnology Research Centre - CINN (CSIC), 33940, El Entrego, Asturias, Spain
| | - Rafael Mendoza
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Mario Mauvezín-Quevedo
- Department of Prosthodontics and Occlusion, School of Dentistry, University of Oviedo, 33006 Oviedo, Spain
| | - Alaa Adawy
- Laboratory of High-Resolution Transmission Electron Microscopy, Institute for Scientific and Technological Resources (SCTs), University of Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
33
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
34
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
35
|
Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. COATINGS 2021. [DOI: 10.3390/coatings11010110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.
Collapse
|
36
|
Zu G, Steinmüller M, Keskin D, van der Mei HC, Mergel O, van Rijn P. Antimicrobial Nanogels with Nanoinjection Capabilities for Delivery of the Hydrophobic Antibacterial Agent Triclosan. ACS APPLIED POLYMER MATERIALS 2020; 2:5779-5789. [PMID: 33345194 PMCID: PMC7737311 DOI: 10.1021/acsapm.0c01031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 05/25/2023]
Abstract
With the ever-growing problem of antibiotic resistance, developing antimicrobial strategies is urgently needed. Herein, a hydrophobic drug delivery nanocarrier is developed for combating planktonic bacteria that enhances the efficiency of the hydrophobic antimicrobial agent, Triclosan, up to a 1000 times. The poly(N-isopropylacrylamide-co-N-[3-(dimethylamino)propyl]methacrylamide), p(NIPAM-co-DMAPMA), based nanogel is prepared via a one-pot precipitation polymerization, followed by quaternization with 1-bromododecane to form hydrophobic domains inside the nanogel network through intraparticle self-assembly of the aliphatic chains (C12). Triclosan, as the model hydrophobic antimicrobial drug, is loaded within the hydrophobic domains inside the nanogel. The nanogel can adhere to the bacterial cell wall via electrostatic interactions and induce membrane destruction via the insertion of the aliphatic chains into the cell membrane. The hydrophobic antimicrobial Triclosan can be actively injected into the cell through the destroyed membrane. This approach dramatically increases the effective concentration of Triclosan at the bacterial site. Both the minimal inhibitory concentration and minimal bactericidal concentration against the Gram-positive bacteria S. aureus and S. epidermidis decreased 3 orders of magnitude, compared to free Triclosan. The synergy of physical destruction and active nanoinjection significantly enhances the antimicrobial efficacy, and the designed nanoinjection delivery system holds great promise for combating antimicrobial resistance as well as the applications of hydrophobic drugs delivery for many other possible applications.
Collapse
|
37
|
Antimicrobial nanoparticle coatings for medical implants: Design challenges and prospects. Biointerphases 2020; 15:060801. [DOI: 10.1116/6.0000625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Osteoconductive and Osteoinductive Surface Modifications of Biomaterials for Bone Regeneration: A Concise Review. COATINGS 2020. [DOI: 10.3390/coatings10100971] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The main aim of bone tissue engineering is to fabricate highly biocompatible, osteoconductive and/or osteoinductive biomaterials for tissue regeneration. Bone implants should support bone growth at the implantation site via promotion of osteoblast adhesion, proliferation, and formation of bone extracellular matrix. Moreover, a very desired feature of biomaterials for clinical applications is their osteoinductivity, which means the ability of the material to induce osteogenic differentiation of mesenchymal stem cells toward bone-building cells (osteoblasts). Nevertheless, the development of completely biocompatible biomaterials with appropriate physicochemical and mechanical properties poses a great challenge for the researchers. Thus, the current trend in the engineering of biomaterials focuses on the surface modifications to improve biological properties of bone implants. This review presents the most recent findings concerning surface modifications of biomaterials to improve their osteoconductivity and osteoinductivity. The article describes two types of surface modifications: (1) Additive and (2) subtractive, indicating biological effects of the resultant surfaces in vitro and/or in vivo. The review article summarizes known additive modifications, such as plasma treatment, magnetron sputtering, and preparation of inorganic, organic, and composite coatings on the implants. It also presents some common subtractive processes applied for surface modifications of the biomaterials (i.e., acid etching, sand blasting, grit blasting, sand-blasted large-grit acid etched (SLA), anodizing, and laser methods). In summary, the article is an excellent compendium on the surface modifications and development of advanced osteoconductive and/or osteoinductive coatings on biomaterials for bone regeneration.
Collapse
|
39
|
Interleukin-4 assisted calcium-strontium-zinc-phosphate coating induces controllable macrophage polarization and promotes osseointegration on titanium implant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111512. [PMID: 33255069 PMCID: PMC7493725 DOI: 10.1016/j.msec.2020.111512] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Titanium (Ti) and its alloys are believed to be promising scaffold materials for dental and orthopedic implantation due to their ideal mechanical properties and biocompatibility. However, the host immune response always causes implant failures in the clinic. Surface modification of the Ti scaffold is an important factor in this process and has been widely studied to regulate the host immune response and to further promote bone regeneration. In this study, a calcium-strontium-zinc-phosphate (CSZP) coating was fabricated on a Ti implant surface by phosphate chemical conversion (PCC) technique, which modified the surface topography and element constituents. Here, we envisioned an accurate immunomodulation strategy via delivery of interleukin (IL)-4 to promote CSZP-mediated bone regeneration. IL-4 (0 and 40 ng/mL) was used to regulate immune response of macrophages. The mechanical properties, biocompatibility, osteogenesis, and anti-inflammatory properties were evaluated. The results showed that the CSZP coating exhibited a significant enhancement in surface roughness and hydrophilicity, but no obvious changes in proliferation or apoptosis of bone marrow mesenchymal stem cells (BMMSCs) and macrophages. In vitro, the mRNA and protein expression of osteogenic related factors in BMMSCs cultured on a CSZP coating, such as ALP and OCN, were significantly higher than those on bare Ti. In vivo, there was no enhanced bone formation but increased macrophage type 1 (M1) polarization on the CSZP coating. IL-4 could induce M2 polarization and promote osteogenesis of BMMSCs on CSZP in vivo and in vitro. In conclusion, the CSZP coating is an effective scaffold for BMMSCs osteogenesis, and IL-4 presents the additional advantage of modulating the immune response for bone regeneration on the CSZP coating in vivo. A chemical conversion calcium-strontium-zinc-phosphate (CSZP) coating is prepared on titanium. The CSZP coating exhibits micellar lamellar crystal morphology in micro-nano scale. The CSZP coating has an optimal topography and element composition for osteogenesis. Interleukin-4 assisted CSZP coating can obtain better osteoimmunomodulation properties.
Collapse
|
40
|
Zhang B, Li J, He L, Huang H, Weng J. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomater 2020; 114:431-448. [PMID: 32682055 DOI: 10.1016/j.actbio.2020.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
In view of the fact that titanium (Ti)-based implants still face the problem of loosening and failure of the implants caused by the slow biological response, the low osseointegration rate and the implant bacterial infection in clinical application, we designed a cancellous bone-like biomimetic Ti scaffold using the template accumulated by sugar spheres as a pore-forming agent. And based on a modified surface mineralization process and mussel-like adhesion mechanism, a silicon-doped calcium phosphate composite coating (Van-pBNPs/pep@pSiCaP) with Vancomycin (Van)-loaded polydopamine (pDA)-modified albumin nanoparticles (Van-pBNPs) and cell adhesion peptides (GFOGER) was constructed on the surface of Ti scaffold for mimicking the extracellular matrix (ECM) microenvironment of natural bone matrix to induce greater tissue regeneration. The in vitro study demonstrated that this porous Ti scaffold with functional bio-surface could distinctly facilitate cell early adhesion and spreading, and activate the expression of α2β1 integrin receptor on the cell membrane through promoting the formation of focal adhesions (FAs) in bone marrow stromal cells (BMSCs), thus mediating greater osteogenic cell differentiation. And it could also effectively inhibit the adhesion and growth of Staphylococcus epidermidis, exhibiting good antibacterial properties. Moreover, the Van-pBNPs/pep@pSiCaP-Ti scaffolds showed enhanced in vivo bone-forming ability due to the contributions of bioactive chemical components and the natural cancellous bone-like macrostructure. This work offers a promising structural and functional bio-inspired strategy for designing metal implants with desirable ability of osteoinduction synergistically with antibacterial efficacy for promoting bone regeneration and infection prevention simultaneously. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making porous Ti scaffolds with a natural cancellous bone-like structure. Besides, a functional bio-surface was constructed on the bionic structure, mimicking some of the functions of the collagen-rich organic matrix and inorganic CaP nanocrystallites of native ECM of bone in chemical components and biological activities. This interconnected inter-pore opening structure encouraged the migration of cells among open macro-pores within the scaffold. In addition, the functionalized surface not only improved early cell adhesion, spreading, stimulated greater osteogenic differentiation of bone-forming cells, but also endowed the scaffold with excellent antibacterial effect. The biomimetic metal implant with multiple biomedical functions designed in this study has a great clinical application potential. This study represents a feasible method for the preparation of biomimetic structure of metal implants and the improvement of their surface biological activity.
Collapse
Affiliation(s)
- Bingjun Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jia Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lei He
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.
| |
Collapse
|
41
|
Kumar V, Chopra A, Bisht B, Bhalla V. Colorimetric and electrochemical detection of pathogens in water using silver ions as a unique probe. Sci Rep 2020; 10:11986. [PMID: 32686720 PMCID: PMC7371729 DOI: 10.1038/s41598-020-68803-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
The manuscript highlights the efficacy of silver ions to act as a unique probe for the detection of bacterial contamination in water samples. The bacterial cell membrane adherence property of the silver ions was employed to develop two different bacterial detection assays employing colorimetric and electrochemical techniques. In one of the schemes, silver ion was used directly as a detector of bacteria in a colorimetric assay format, and in the other scheme surface-functionalized antibodies were used as a primary capture for specific detection of Salmonella enterica serovar Typhi. The colorimetric detection is based on silver-induced inhibition of urease activity and silver ion utilization by bacteria for the rapid screening of enteric pathogens in water. The specific detection of bacteria uses an antibody-based electrochemical method that employs silver as an electrochemical probe. The ability of silver to act as an electrochemical probe was investigated by employing Anodic Stripping Voltammetry (ASV) for targeted detection of Salmonella Typhi. For further insights into the developed assays, inductively coupled plasma mass spectrometry (ICP-MS) and transmission electron microscopy (TEM) studies were performed. The sensitivity of the developed assay was found to be 100 cfu mL−1 for colorimetric and 10 cfu mL−1 for electrochemical assay respectively.
Collapse
Affiliation(s)
- Virendra Kumar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Adity Chopra
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Bhawana Bisht
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Vijayender Bhalla
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
42
|
Khatoon Z, Guzmán-Soto I, McTiernan CD, Lazurko C, Simpson F, Zhang L, Cortes D, Mah TF, Griffith M, Alarcon EI. Nanoengineering the surface of corneal implants: towards functional anti-microbial and biofilm materials. RSC Adv 2020; 10:23675-23681. [PMID: 35517329 PMCID: PMC9054791 DOI: 10.1039/d0ra03659e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
We report the development and use of a light-mediated in situ grafting technology for the surface modification of biosynthetic corneal implants with peptide-capped nanoparticles (15–65 nm). The resulting materials have antimicrobial properties in bacterial suspension and also reduced the extent of biofilm formation. Our in situ grafting technology offers a rapid route for the introduction of antimicrobial properties to premoulded corneal implants, and potentially other soft implant targets. A rapid and precise route to graft a nano-bactericidal barrier is reported.![]()
Collapse
Affiliation(s)
- Zohra Khatoon
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada
| | - Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada
| | - Christopher D McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada
| | - Caitlin Lazurko
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada
| | - Fiona Simpson
- Centre de Recherche Hôpital Maisonneuve-Rosemont Montréal QC Canada
| | - Li Zhang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa Ottawa Canada
| | - David Cortes
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa Ottawa Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont Montréal QC Canada .,Département d'ophtalmologie, Université de Montréal Montréal QC Canada
| | - Emilio I Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute 40 Ruskin Street Ottawa Canada .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa Ottawa Canada
| |
Collapse
|