1
|
Zhang T, Zhang R, Zhao C, Li Z, Wang L, Zhao H. Preparation, characterization, multidimensional applications and prospects of protein bio-based hydrogels: A review. Int J Biol Macromol 2025; 312:144199. [PMID: 40373903 DOI: 10.1016/j.ijbiomac.2025.144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Protein bio-based hydrogels have emerged as a versatile and functional class of biomaterials due to their unique properties, including biocompatibility, biodegradability, tunable mechanical strength, and environmental responsiveness (pH, enzymes, ions and light). This review comprehensively explores the preparation methods, physicochemical properties, and multidimensional applications of protein-based hydrogels. Various fabrication techniques, such as chemical crosslinking, physical gelation, and enzymatic reactions, are discussed, highlighting their impact on the structure and functionality of hydrogels. The intrinsic properties of protein hydrogels are summarized in detail, including mechanical properties, swelling resistance, frost resistance, adhesion, biocompatibility and degradability. Furthermore, this review delves into their diverse applications, which span tissue engineering, drug delivery, wound healing, food preservation, biosensing, and environmental remediation. Finally, the challenges and future prospects of protein-based hydrogels are addressed, emphasizing the necessity for scalable production, enhanced stability, and multifunctional integration to meet the growing demands of advanced biomedical and industrial applications. This review aims to provide a comprehensive understanding of protein-based hydrogels and to inspire innovative research in this rapidly evolving field.
Collapse
Affiliation(s)
- Tianhao Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Ruihan Zhang
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhenchun Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| | - Hang Zhao
- Department of Hyperbaric Oxygen Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Xiao W, Wang F, Wang X, Wang N. A mitochondrion-targeted poly(N-isopropylacrylamide-coacrylic acid) nanohydrogel with a fluorescent bioprobe for ferrous ion imaging in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125725. [PMID: 39809013 DOI: 10.1016/j.saa.2025.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
An imbalance in iron homeostasis contributes to mitochondrial dysfunction, which is closely linked to the pathogenesis of various diseases. Herein, we developed a nanosensor for detecting mitochondrial ferrous ions in vitro and in vivo. A poly(N-isopropylacrylamine)-coacrylic acid nanohydrogel was synthesized, and ferrous ions were detected using the fluorescent probe FeRhonox-1 embedded within it. (3-Carboxypropyl)-triphenylphosphonium bromide was chemically conjugated to the hydrogel matrix to enable mitochondrial targeting. The developed nanosensor showed a narrow particle size distribution, high sensitivity and selectivity for ferrous ions, and low cytotoxicity, enabling the nanosensor to sense and image ferrous ions in mitochondria with high spatial resolution. Changes in ferrous ion concentrations in human umbilical vein endothelial cells were measured and imaged after lipopolysaccharide (LPS) or iron dextran treatment. Moreover, the nanosensor was successfully used for ferrous ion imaging in live mice. The in vivo results showed that LPS injection induced the accumulation of mitochondrial ferrous ions. The proposed nanosensor could serve as a powerful tool for monitoring ferrous ions in mitochondria, providing strong support for studying disorders of iron metabolism.
Collapse
Affiliation(s)
- Wenlong Xiao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Fang Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Xuchen Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China
| | - Nani Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
3
|
Zhu Y, Su Y, Guo Y, Wang X, Zhang Z, Lu Y, Yang H, Pang H. Current state of cancer immunity cycle: new strategies and challenges of using precision hydrogels to treat breast cancer. Front Immunol 2025; 16:1535464. [PMID: 40124373 PMCID: PMC11926806 DOI: 10.3389/fimmu.2025.1535464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
The cancer-immunity cycle provides a framework for a series of events in anti-cancer immune responses, initiated by T cell-mediated tumor cell killing, which leads to antigen presentation and T cell stimulation. Current immunomodulatory therapies for breast cancer are often associated with short duration, poor targeting to sites of action, and severe side effects. Hydrogels, with their extracellular matrix-mimicking properties, tunable characteristics, and diverse bioactivities, have garnered significant attention for their ability to locally deliver immunomodulators and cells, providing an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. This review focuses on the design considerations of hydrogel platforms, including polymer backbone, crosslinking mechanisms, physicochemical properties, and immunomodulatory components. The immunomodulatory effects and therapeutic outcomes of various hydrogel systems in breast cancer treatment and tissue regeneration are highlighted, encompassing hydrogel depots for immunomodulator delivery, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels dependent on inherent material properties. Finally, the challenges that persist in current systems and future directions for immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlin Su
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaxin Guo
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyue Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuoqi Zhang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yige Lu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hang Yang
- Department of Gastroenterology and Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Hui Pang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Chae YJ, Lee KG, Oh D, Lee SK, Park Y, Kim J. Antibody-Conjugated Nanogel with Two Immune Checkpoint Inhibitors for Enhanced Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400235. [PMID: 38569198 DOI: 10.1002/adhm.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.
Collapse
Affiliation(s)
- Yun Jin Chae
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Doogie Oh
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Oh D, Chae YJ, Teoh JY, Yim B, Yoo D, Park Y, Kim J. Detection of α-Thrombin with Platelet Glycoprotein Ibα (GP1bα) for the Development of a Coagulation Marker. ACS OMEGA 2024; 9:13418-13426. [PMID: 38524497 PMCID: PMC10956406 DOI: 10.1021/acsomega.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
The detection of prothrombotic markers is crucial for understanding thromboembolism and assessing the effectiveness of anticoagulant drugs. α-Thrombin is a marker that plays a critical role in the coagulation cascade process. However, the detection of this enzymatic molecule was hindered by the absence of an efficient modality in the clinical environment. Previously, we reported that one α-thrombin interacts with two α-chains of glycoprotein Ib (GPIbα), i.e., multivalent protein binding (MPB), using bioresponsive hydrogel nanoparticles (nanogels) and optical microscopy. In this study, we demonstrated that GPIbα-mediated platforms led to the highly sensitive and quantitative detection of α-thrombin in various diagnostic systems. Initially, a bioresponsive nanogel-based surface plasmon resonance (nSPR) assay was developed that responds to the MPB of α-thrombin to GPIbα. The use of GPIbα for the detection of α-thrombin was further validated using the enzyme-linked immunosorbent assay, which is a gold-standard protein detection technique. Additionally, GPIbα-functionalized latex beads were developed to perform latex agglutination (LA) assays, which are widely used with hospital diagnostic instruments. Notably, the nSPR and LA assays exhibited a nearly 1000-fold improvement in sensitivity for α-thrombin detection compared to our previous optical microscopy method. The superiority of our GPIbα-mediated platforms lies in their stability for α-thrombin detection through protein-protein interactions. By contrast, assays relying on α-thrombin enzymatic activity using substrates face the challenge of a rapid decrease in postsample collection. These results suggested that the MPB of α-thrombin to GPIbα is an ideal mode for clinical α-thrombin detection, particularly in outpatient settings.
Collapse
Affiliation(s)
- Doogie Oh
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| | - Yun Jin Chae
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
| | - Jie Ying Teoh
- Department
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Yim
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
| | - Dongwon Yoo
- Department
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic
of Korea
| | - Yongdoo Park
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| | - Jongseong Kim
- R&D
Center, Scholar Foxtrot Co. Ltd., Seoul 02796, Republic of Korea
- Department
of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic
of Korea
| |
Collapse
|
6
|
Lee SK, Yim B, Park J, Kim NG, Kim BS, Park Y, Yoon YK, Kim J. Method for the Rapid Detection of SARS-CoV-2-Neutralizing Antibodies Using a Nanogel-Based Surface Plasmon Resonance Biosensor. ACS APPLIED POLYMER MATERIALS 2023; 5:2195-2202. [PMID: 37552750 PMCID: PMC9969888 DOI: 10.1021/acsapm.2c02187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 06/10/2023]
Abstract
The efficacy of coronavirus disease 2019 (COVID-19) vaccination is closely related to the serum levels of SARS-CoV-2-neutralizing antibodies (NAb) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Therefore, the rapid and quantitative measurement of SARS-CoV-2 NAb in the sera of vaccinated individuals is essential to develop an effective vaccine and further achieve population immunity, that is, herd immunity. The plaque reduction neutralization test, the gold standard for NAb effectiveness in serological tests, is accurate but requires biosafety level 3 facilities because of the use of the virus, which hampers its application in common laboratories and clinical practice. Here, we developed a bioresponsive nanogel-based surface plasmon resonance (nSPR) platform that detects SARS-CoV-2 NAb in clinical samples without complicated pretreatment. We found that multivalent protein binding (MPB) between the nanogel-conjugated RBD protein and SARS-CoV-2 NAb yields significantly enhanced SPR signals compared to the nonspecific interference from serum proteins in the nSPR assay. The excellence of our nanogel-based SARS-CoV-2 NAb test is due to its selectivity for NAb, with resistance to all other proteins, allowing the rapid detection and quantification of NAbs in each individual. Importantly, this nSPR assay provides a NAb detection platform for easier and safer COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Bora Yim
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Jinseul Park
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
| | - Nam-Gun Kim
- Seoul Metropolitan Government Research
Institute of Public Health and Environment, Seoul 13818, Republic
of Korea
| | - Byung-Soo Kim
- Division of Hematology, Department of Internal
Medicine, Anam Hospital Korea University Medical Center, Seoul
02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of
Internal Medicine, Anam Hospital Korea University Medical
Center, Seoul 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co.
Ltd., Seoul 02796, Republic of Korea
- Department of Biomedical Sciences, College of
Medicine, Korea University, Seoul 02841, Republic of
Korea
| |
Collapse
|
7
|
Quazi MZ, Kim T, Yang J, Park N. Tuning Plasmonic Properties of Gold Nanoparticles by Employing Nanoscale DNA Hydrogel Scaffolds. BIOSENSORS 2022; 13:20. [PMID: 36671855 PMCID: PMC9855890 DOI: 10.3390/bios13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Noble metals have always fascinated researchers due to their feasible and facile approach to plasmonics. Especially the extensive utilization of gold (Au) has been found in biomedical engineering, microelectronics, and catalysis. Surface plasmonic resonance (SPR) sensors are achievable by employing plasmonic nanoparticles. The past decades have seen colossal advancement in noble metal nanoparticle research. Surface plasmonic biosensors are advanced in terms of sensing accuracy and detection limit. Likewise, gold nanoparticles (AuNPs) have been widely used to develop distinct biosensors for molecular diagnosis. DNA nanotechnology facilitates advanced nanostructure having unique properties that contribute vastly to clinical therapeutics. The critical element for absolute control of materials at the nanoscale is the engineering of optical and plasmonic characteristics of the polymeric and metallic nanostructure. Correspondingly, AuNP's vivid intense color expressions are dependent on their size, shape, and compositions, which implies their strong influence on tuning the plasmonic properties. These plasmonic properties of AuNPs have vastly exerted the biosensing and molecular diagnosis applications without any hazardous effects. Here, we have designed nanoscale X-DNA-based Dgel scaffolds utilized for tuning the plasmonic properties of AuNPs. The DNA nanohydrogel (Dgel) scaffolds engineered with three different X-DNAs of distinct numbers of base pairs were applied. We have designed X-DNA base pair-controlled size-varied Dgel scaffolds and molar ratio-based nano assemblies to tune the plasmonic properties of AuNPs. The nanoscale DNA hydrogel's negatively charged scaffold facilitates quaternary ammonium ligand-modified positively charged AuNPs to flocculate around due to electrostatic charge attractions. Overall, our study demonstrates that by altering the DNA hydrogel scaffolds and the physical properties of the nanoscale hydrogel matrix, the SPR properties can be modulated. This approach could potentially benefit in monitoring diverse therapeutic biomolecules.
Collapse
|