1
|
Cao X, Cui M, Fang K, Yan L, Gong H, Zhang Y, Zheng X, Yang R. Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium-oxygen batteries. J Colloid Interface Sci 2025; 679:234-242. [PMID: 39362148 DOI: 10.1016/j.jcis.2024.09.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS2) catalyst (designated as Ru/O-MoS2) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS2 substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS2 catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g-1), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.
Collapse
Affiliation(s)
- Xuecheng Cao
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
| | - Minghui Cui
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaiqi Fang
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyu Gong
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yu Zhang
- Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiangjun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Ruizhi Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Andreou EK, Vamvasakis I, Douloumis A, Kopidakis G, Armatas GS. Size Dependent Photocatalytic Activity of Mesoporous ZnIn 2S 4 Nanocrystal Networks. ACS Catal 2024; 14:14251-14262. [PMID: 39324050 PMCID: PMC11420945 DOI: 10.1021/acscatal.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn2S4) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn2S4 nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn2S4 mesostructure produces hydrogen at a 7.8 mmol gcat -1 h-1 release rate under ultraviolet (UV)-visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.
Collapse
Affiliation(s)
- Evangelos K Andreou
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Andreas Douloumis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Georgios Kopidakis
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Engineering, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
3
|
Mattinen M, Chen W, Dawley RA, Verheijen MA, Hensen EJM, Kessels WMM, Bol AA. Structural Aspects of MoS x Prepared by Atomic Layer Deposition for Hydrogen Evolution Reaction. ACS Catal 2024; 14:10089-10101. [PMID: 38988655 PMCID: PMC11232007 DOI: 10.1021/acscatal.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Molybdenum sulfides (MoS x ) in both crystalline and amorphous forms are promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER) in acid. Plasma-enhanced atomic layer deposition was used to prepare thin films of both amorphous MoS x with adjustable S/Mo ratio (2.8-4.7) and crystalline MoS2 with tailored crystallinity, morphology, and electrical properties. All the amorphous MoS x films transform into highly HER-active amorphous MoS2 (overpotential 210-250 mV at 10 mA/cm2 in 0.5 M H2SO4) after electrochemical activation at approximately -0.3 V vs reversible hydrogen electrode. However, the initial film stoichiometry affects the structure and consequently the HER activity and stability. The material changes occurring during activation are studied using ex situ and quasi in situ X-ray photoelectron spectroscopy. Possible structures of as-deposited and activated catalysts are proposed. In contrast to amorphous MoS x , no changes in the structure of crystalline MoS2 catalysts are observed. The overpotentials of the crystalline films range from 300 to 520 mV at 10 mA/cm2, being the lowest for the most defective catalysts. This work provides a practical method for deposition of tailored MoS x HER electrocatalysts as well as new insights into their activity and structure.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rebecca A. Dawley
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Marcel A. Verheijen
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - W. M. M. Kessels
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Harris-Lee TR, Turvey T, Jayamaha G, Kang M, Marken F, Johnson AL, Zhang J, Bentley CL. Optimizing Amorphous Molybdenum Sulfide Thin Film Electrocatalysts: Trade-Off between Specific Activity and Microscopic Porosity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33620-33632. [PMID: 38888466 DOI: 10.1021/acsami.4c06308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Amorphous molybdenum sulfide (a-MoSx) is a promising candidate to replace noble metals as electrocatalysts for the hydrogen evolution reaction (HER) in electrochemical water splitting. So far, understanding of the activity of a-MoSx in relation to its physical (e.g., porosity) and chemical (e.g., Mo/S bonding environments) properties has mostly been derived from bulk electrochemical measurements, which provide limited information about electrode materials that possess microscopic structural heterogeneities. To overcome this limitation, herein, scanning electrochemical cell microscopy (SECCM) has been deployed to characterize the microscopic electrochemical activity of a-MoSx thin films (ca. 200 nm thickness), which possess a significant three-dimensional structure (i.e., intrinsic porosity) when produced by electrodeposition. A novel two-step SECCM protocol is designed to quantitatively determine spatially resolved electrochemical activity and electrochemical surface area (ECSA) within a single, high-throughput measurement. It is shown for the first time that although the highest surface area (e.g., most porous) regions of the a-MoSx film possess the highest total activity (measured by the electrochemical current), they do not possess the highest specific activity (measured by the ECSA-normalized current density). Instead, the areas of highest specific activity are localized at/around circular structures, coined "pockmarks", which are tens to hundreds of micrometers in size and ubiquitous to a-MoSx films produced by electrodeposition. By coupling this technique with structural and elemental composition analysis techniques (scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy) and correlating ECSA with activity and specific activity across SECCM scans, this work furthers the understanding of structure-activity relations in a-MoSx and highlights the importance of local measurements for the systematic and rational design of thin film catalyst materials.
Collapse
Affiliation(s)
- Thom R Harris-Lee
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Tom Turvey
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Sydney NSW 2006, Australia
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Andrew L Johnson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | | |
Collapse
|
5
|
Xiao Y, Tan C, Zeng F, Liu W, Liu J. Structural regulation of amorphous molybdenum sulfide by atomic palladium doping for hydrogen evolution. J Colloid Interface Sci 2024; 665:60-67. [PMID: 38513408 DOI: 10.1016/j.jcis.2024.03.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Molybdenum sulfide materials have long been considered as attractive non-precious-metal electrocatalysts for the hydrogen evolution reaction (HER). However, comparing with the crystalline counterpart, amorphous MoSx has been less investigated previously. We here propose to increase the catalytical activity of a-MoSx by raising the reactant concentration at the catalytic interface via a chemical doping approach. The reconstruction of coordination structure of a-MoSx via Pd doping induces the formation of abundant unsaturated S atoms. Moreover, the reactant friendly catalytic interface is constructed through introducing hydrophilic groups to a-MoSx. The doped a-MoSx catalyst exhibits significantly enhanced HER activity in both acid and alkaline media.
Collapse
Affiliation(s)
- Yao Xiao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Cuiying Tan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fangui Zeng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wengang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
6
|
Wang Z, Wang QN, Ma W, Liu T, Zhang W, Zhou P, Li M, Liu X, Chang Q, Zheng H, Chang B, Li C. Hydrogen Sulfide Splitting into Hydrogen and Sulfur through Off-Field Electrocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10515-10523. [PMID: 38622088 DOI: 10.1021/acs.est.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hydrogen sulfide (H2S), a toxic gas abundant in natural gas fields and refineries, is currently being removed mainly via the Claus process. However, the emission of sulfur-containing pollutants is hard to be prevented and the hydrogen element is combined to water. Herein, we report an electron-mediated off-field electrocatalysis approach (OFEC) for complete splitting of H2S into H2 and S under ambient conditions. Fe(III)/Fe(II) and V(II)/V(III) redox mediators are used to fulfill the cycles for H2S oxidation and H2 production, respectively. Fe(III) effectively removes H2S with almost 100% conversion during its oxidation process. The H+ ions are reduced by V(II) on a nonprecious metal catalyst, tungsten carbide. The mediators are regenerated in an electrolyzer at a cell voltage of 1.05 V, close to the theoretical potential difference (1.02 V) between Fe(III)/Fe(II) and V(II)/V(III). In a laboratory bench-scale plant, the energy consumption for the production of H2 from H2S is estimated to be 2.8 kWh Nm-3 H2 using Fe(III)/Fe(II) and V(II)/V(III) mediators and further reduced to about 0.5 kWh Nm-3 H2 when employing well-designed heteropolyacid/quinone mediators. OFEC presents a cost-effective approach for the simultaneous production of H2 and elemental sulfur from H2S, along with the complete removal of H2S from industrial processes. It also provides a practical platform for electrochemical reactions involving solid precipitation and organic synthesis.
Collapse
Affiliation(s)
- Zijin Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-Nan Wang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiguang Ma
- Marine Engineering College, Clean Energy Center for Ship, Dalian Maritime University, Dalian 116026, China
| | - Tiefeng Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Zhang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Panwang Zhou
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyi Liu
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qingbo Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haibing Zheng
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ben Chang
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Fundamental Research Center of Artificial Photosynthesis (FReCAP), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Kety K, Namsrai T, Nawaz H, Rostami S, Seriani N. Amorphous MoS2 from a machine learning inter-atomic potential. J Chem Phys 2024; 160:204709. [PMID: 38804492 DOI: 10.1063/5.0211841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Amorphous molybdenum disulfide has shown potential as a hydrogen evolution catalyst, but the origin of its high activity is unclear, as is its atomic structure. Here, we have developed a classical inter-atomic potential using the charge equilibration neural network method, and we have employed it to generate atomic models of amorphous MoS2 by melting and quenching processes. The amorphous phase contains an abundance of molybdenum and sulfur atoms in low coordination. Besides the 6-coordinated molybdenum typical of the crystalline phases, a substantial fraction displays coordinations 4 and 5. The amorphous phase is also characterized by the appearance of direct S-S bonds. Density functional theory shows that the amorphous phase is metallic, with a considerable contribution of the 4-coordinated molybdenum to the density of states at the Fermi level. S-S bonds are related to the reduction of sulfur, with the excess electrons spread over several molybdenum atoms. Moreover, S-S bond formation is associated with a distinctive broadening of the 3s states, which could be exploited for experimental characterization of the amorphous phases. The large variety of local environments and the high density of electronic states at the Fermi level may play a positive role in increasing the electrocatalytic activity of this compound.
Collapse
Affiliation(s)
- Kossi Kety
- ICTP-East African Institute for Fundamental Research (EAIFR), University of Rwanda, Kigali, Rwanda
| | - Tsogbadrakh Namsrai
- Department of Physics, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Huma Nawaz
- The Abdus Salam ICTP, I-34151 Trieste, Italy
- Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Samare Rostami
- The Abdus Salam ICTP, I-34151 Trieste, Italy
- European Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, Chemin des étoiles 8, bte L07.03.01, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
8
|
Jiao H, Wang B, Zhang Y. Effect of DBD Plasma Treatment on Activity of Mo-Based Sulfur-Resistant Methanation Catalyst. Chemphyschem 2024; 25:e202301002. [PMID: 38443312 DOI: 10.1002/cphc.202301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
By combining the advantages of dielectric barrier discharge (DBD) low temperature plasma and fluidized bed, the effect of plasma on the performance of supported Mo-based catalyst was studied in this paper. The performance of the catalyst obtained by plasma treatment, calcined, plasma+calcined was compared, and the appropriate catalyst preparation scheme was explored. Comparing with the three catalysts, it was concluded that the catalyst average conversion after 30 W plasma treatment is 33.40 %, which was 8.94 % and 12.75 % higher than the other two, respectively. The structure and properties of the catalyst were characterized by N2-Physisorption, H2-chemisorption, XRD, TEM, XPS, Raman and NO-pulse adsorption. Then, by analyzing the characterization results, it can be seen that plasma can make the catalyst have a higher specific surface area and a more dispersed active metal with smaller grain size. Through the surface species identification characterization, it was found that plasma can produce more defective structures and expose more active sites, which is the main reason for the difference in conversion.
Collapse
Affiliation(s)
- Hao Jiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baowei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yingjie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Li C, Chen Q, Zheng R, Huan J, Bai J, Zhu L, Huang Y, Zhu X, Sun Y. Regulation of Sulfur Atoms in MoS x by Magneto-Electrodeposition for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308729. [PMID: 38078778 DOI: 10.1002/smll.202308729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Indexed: 05/25/2024]
Abstract
Compared with crystalline molybdenum sulfide (MoS2) employed as an efficient hydrogen evolution reaction (HER) catalyst, amorphous MoSx exhibits better activity. To synthesize amorphous MoSx, electrodeposition serving as a convenient and time-saving method is successfully applied. However, the loading mass is hindered by limited mass transfer efficiency and the available active sites require further improvement. Herein, magneto-electrodeposition is developed to synthesize MoSx with magnetic fields up to 9 T to investigate the effects of a magnetic field in the electrodeposition processing, as well as the induced electrochemical performance. Owing to the magneto-hydrodynamic effect, the loading mass of MoSx is obviously increased, and the terminal S2- serving as the active site is enhanced. The optimized MoSx catalyst delivers outstanding HER performance, achieving an overpotential of 50 mV at a current density of 10 mA cm-2 and the corresponding Tafel slope of 59 mV dec-1. The introduction of a magnetic field during the electrodeposition process will provide a novel route to prepare amorphous MoSx with improved electrochemical performance.
Collapse
Affiliation(s)
- Changdian Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qian Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ruobing Zheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Huan
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin Bai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lili Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yanan Huang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
10
|
Escalera-López D, Iffelsberger C, Zlatar M, Novčić K, Maselj N, Van Pham C, Jovanovič P, Hodnik N, Thiele S, Pumera M, Cherevko S. Allotrope-dependent activity-stability relationships of molybdenum sulfide hydrogen evolution electrocatalysts. Nat Commun 2024; 15:3601. [PMID: 38684654 PMCID: PMC11058198 DOI: 10.1038/s41467-024-47524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Molybdenum disulfide (MoS2) is widely regarded as a competitive hydrogen evolution reaction (HER) catalyst to replace platinum in proton exchange membrane water electrolysers (PEMWEs). Despite the extensive knowledge of its HER activity, stability insights under HER operation are scarce. This is paramount to ensure long-term operation of Pt-free PEMWEs, and gain full understanding on the electrocatalytically-induced processes responsible for HER active site generation. The latter are highly dependent on the MoS2 allotropic phase, and still under debate. We rigorously assess these by simultaneously monitoring Mo and S dissolution products using a dedicated scanning flow cell coupled with downstream analytics (ICP-MS), besides an electrochemical mass spectrometry setup for volatile species analysis. We observe that MoS2 stability is allotrope-dependent: lamellar-like MoS2 is highly unstable under open circuit conditions, whereas cluster-like amorphous MoS3-x instability is induced by a severe S loss during the HER and undercoordinated Mo site generation. Guidelines to operate non-noble PEMWEs are therefore provided based on the stability number metrics, and an HER mechanism which accounts for Mo and S dissolution pathways is proposed.
Collapse
Affiliation(s)
- Daniel Escalera-López
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| | - Christian Iffelsberger
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Matej Zlatar
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Katarina Novčić
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Chuyen Van Pham
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Simon Thiele
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Martin Pumera
- Future Energy and Innovation Technology, Central European Institute of Technology, Brno University of Technology, Purkiňova 656/123, 61200, Brno, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore, Singapore
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstrasse 1, 91058, Erlangen, Germany.
| |
Collapse
|
11
|
Wang C, Miao C, Han S, Yao H, Zhong Q, Ma S. Highly efficient capture of iodine vapor by [Mo 3S 13] 2- intercalated layered double hydroxides. J Colloid Interface Sci 2024; 659:550-559. [PMID: 38198932 DOI: 10.1016/j.jcis.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
From the swollen LDH, bulky [Mo3S13]2- anions are facilely introduced into the LDH interlayers to assemble the Mo3S13-LDH composite, which exhibits excellent iodine capture performance and good irradiation resistance. The positive-charged LDH layers may disperse the [Mo3S13]2- uniformly within the interlayers, providing abundant adsorption sites for effectively trapping iodine. The Mo-S bond serving as a soft Lewis base has strong affinity to I2 with soft Lewis acidic characteristic, which is conducive to improvement of iodine capture via physical sorption. Besides, chemisorption has a significant contribution to the iodine adsorption. The S22-/S2- in [Mo3S13]2- can reduce the I2 to [I3]- ions, which are facilely fixed within the LDH gallery in virtue of electrostatic attraction. Meanwhile, the S22-/S2- themselves are oxidized to S8 and SO42-, while Mo4+ is oxidized (by O2 in air) to Mo6+, which combines with SO42- forming amorphous Mo(SO4)3. With the collective interactions of chemical and physical adsorption, the Mo3S13-LDH demonstrates an extremely large iodine adsorption capacity of 1580 mg/g. Under γ radiation, the structure of Mo3S13-LDH well maintains and iodine adsorption capability does not deteriorate, indicating the good irradiation resistance. This work provides an important reference to tailor cost-effective sorbents for trapping iodine from radioactive nuclear wastes.
Collapse
Affiliation(s)
- Chaonan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Miao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Senkai Han
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Qiangqiang Zhong
- Third Institute of Oceanography, Ministry of Natural Resource, Xiamen 361005, China.
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
12
|
Saravanan L, Anand P, Fu YP, Ma YR, Yeh WC. Enhancing the Hydrogen Evolution Performance of Tungsten Diphosphide on Carbon Fiber through Ruthenium Modification. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38419190 DOI: 10.1021/acsami.3c17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Hydrogen-based energy systems hold promise for sustainable development and carbon neutrality, minimizing environmental impact with electrolysis as the preferred fossil-fuel-free hydrogen generation method. Effective electrocatalysts are required to reduce energy consumption and improve kinetics, given the need for additional voltage (overpotential, η) despite the theoretical water splitting potential of 1.23 V. To date, platinum has been acknowledged as the most effective but expensive hydrogen evolution reaction (HER) catalyst. Hence, we introduce a cost-effective (∼2-fold cheaper) ruthenium-modified tungsten diphosphide (Ru/WP2) catalyst on carbon fiber for HER in ∼0.5 M H2SO4, with η ≈ 34 mV at -10 mA cm-2 which can be comparable (only ∼2-fold higher) to benchmark Pt/C (η ≈ 17 mV). The HER performance of WP2 can be enhanced through the modification of ruthenium, as indicated by the electrochemical characterizations. Considering the Tafel value of ∼40 ± 0.2 mV dec-1, it can be inferred that Ru/WP2 follows the Volmer-Heyrovsky reaction pathway for hydrogen generation. Furthermore, the Faradaic efficiency estimation indicates that Ru/WP2 demonstrates a minimal loss of electrons during the electrochemical reaction with an estimated value of ∼98.7 ± 1.4%. Therefore, this study could emphasize the potential of the Ru/WP2 electrode in advancing sustainable hydrogen production through water splitting.
Collapse
Affiliation(s)
- Lokesh Saravanan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Pandiyarajan Anand
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Wang-Chi Yeh
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
13
|
Liu H, Tian X, Liu Y, Munir HA, Hu W, Fan X, Pang L. Rational design of hollow flower-like MoS 2/Mo 2C heterostructures in N-doped carbon substrate for synergistically accelerating adsorption-electrocatalysis of polysulfides in lithium sulfur batteries. NANOTECHNOLOGY 2024; 35:165402. [PMID: 38211327 DOI: 10.1088/1361-6528/ad1d7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
Lithium-sulfur (Li-S) batteries have been garnered significant attention in the energy storage field due to their high theoretical specific capacity and low cost. However, Li-S batteries suffer from issues like the shuttle effect, poor conductivity, and sluggish chemical reaction kinetics, which hinder their practical development. Herein, a novel hollow flower-like architecture composed of MoS2/Mo2C heterostructures in N-doped carbon substrate (H-Mo2S/Mo2C/NC NFs), which were well designed and prepared through a calcination-vulcanization method, were used as high-efficiency catalyst to propel polysulfide redox kinetics.Ex situelectrochemical impedance spectroscopy verify that the abundant heterojunctions could facilitate electron and ion transfer, revealed the excellent interface solid-liquid-solid conversion reaction. The adsorption test of Li2S6showed that Mo2S and Mo2C formed heterostructure generate the binding of polysulfide could be enhanced. And cyclic voltammetry test indicate boost the polysulfide redox reaction kinetics and ion transfer of H-Mo2S/Mo2C/NC/S NFs cathode. Benefiting from the state-of-the-art design, the H-Mo2S/Mo2C/NC/S NFs cathode demonstrates remarkable rate performance with a specific capacity of 1351.9 mAh g-1at 0.2 C, when the current density was elevated to 2 C and subsequently reverted to 0.2 C, the H-Mo2S/Mo2C/NC/S NFs cathode retained a capacity of 1150.4 mAh g-1, and it maintains exceptional long cycling stability (840 mA h g-1at 2 C after 500 cycles) a low capacity decay of 0.0073% per cycle. This work presents an effective approach to rapidly fabricating multifunctional heterostructures as an effective sulfur host in improving the polysulfide redox kinetics for lithium sulfur batteries.
Collapse
Affiliation(s)
- Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xin Tian
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hafiz Akif Munir
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Weihang Hu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xiuyi Fan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Lingyan Pang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| |
Collapse
|
14
|
Fu Q, Wong LW, Zheng F, Zheng X, Tsang CS, Lai KH, Shen W, Ly TH, Deng Q, Zhao J. Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media. Nat Commun 2023; 14:6462. [PMID: 37833368 PMCID: PMC10575887 DOI: 10.1038/s41467-023-42221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Surface amorphization provides electrocatalysts with more active sites and flexibility. However, there is still a lack of experimental observations and mechanistic explanations for the in situ amorphization process and its crucial role. Herein, we propose the concept that by in situ reconstructed amorphous surface, metal phosphorus trichalcogenides could intrinsically offer better catalytic performance for the alkaline hydrogen production. Trace Ru (0.81 wt.%) is doped into NiPS3 nanosheets for alkaline hydrogen production. Using in situ electrochemical transmission electron microscopy technique, we confirmed the amorphization process occurred on the edges of NiPS3 is critical for achieving superior activity. Comprehensive characterizations and theoretical calculations reveal Ru primarily stabilized at edges of NiPS3 through in situ formed amorphous layer containing bridging S22- species, which can effectively reduce the reaction energy barrier. This work emphasizes the critical role of in situ formed active layer and suggests its potential for optimizing catalytic activities of electrocatalysts.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Lok Wing Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Fangyuan Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Chi Shing Tsang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Ka Hei Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Wenqian Shen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, China.
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| | - Qingming Deng
- Phyics Department and Jiangsu Key Laboratory for Chemistry of Low-Demensional Materials, Huaiyin Normal University, Huaian, China.
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
15
|
Zhao Y, Zheng X, Gao P, Li H. Recent advances in defect-engineered molybdenum sulfides for catalytic applications. MATERIALS HORIZONS 2023; 10:3948-3999. [PMID: 37466487 DOI: 10.1039/d3mh00462g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion and storage driven by renewable energy sources is drawing ever-increasing interest owing to the needs of sustainable development. Progress in the related electrochemical reactions relies on highly active and cost-effective catalysts to accelerate the sluggish kinetics. A substantial number of catalysts have been exploited recently, thanks to the advances in materials science and engineering. In particular, molybdenum sulfide (MoSx) furnishes a classic platform for studying catalytic mechanisms, improving catalytic performance and developing novel catalytic reactions. Herein, the recent theoretical and experimental progress of defective MoSx for catalytic applications is reviewed. This article begins with a brief description of the structure and basic catalytic applications of MoS2. The employment of defective two-dimensional and non-two-dimensional MoSx catalysts in the hydrogen evolution reaction (HER) is then reviewed, with a focus on the combination of theoretical and experimental tools for the rational design of defects and understanding of the reaction mechanisms. Afterward, the applications of defective MoSx as catalysts for the N2 reduction reaction, the CO2 reduction reaction, metal-sulfur batteries, metal-oxygen/air batteries, and the industrial hydrodesulfurization reaction are discussed, with a special emphasis on the synergy of multiple defects in achieving performance breakthroughs. Finally, the perspectives on the challenges and opportunities of defective MoSx for catalysis are presented.
Collapse
Affiliation(s)
- Yunxing Zhao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | - Pingqi Gao
- School of Materials, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 637553, Singapore
- Centre for Micro-/Nano-electronics (NOVITAS), School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
16
|
Nguyen TD, Phung HTL, Nguyen DN, Nguyen AD, Tran PD. Fabrication of inverse opal molybdenum sulfide and its use as a catalyst for H 2 evolution. RSC Adv 2023; 13:27923-27933. [PMID: 37736559 PMCID: PMC10510047 DOI: 10.1039/d3ra02972g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Amorphous molybdenum sulfide (MoSx) and crystalline molybdenum disulfide (MoS2) are attractive noble-metal-free electrocatalysts for the H2 evolution reaction from water. Their actual activities depend on the quantity of active sites which are exposed to the electrolyte, which in turn, is influenced by their specific electrochemical surface area. Herein we report on the fabrication of regular inverse opal MoSx and MoS2 films by employing polystyrene nanoparticles with diameters in the range of 30-90 nm as hard templates. The use of these catalysts for the H2 evolution reaction in an acidic electrolyte solution is also presented. Impacts of the regular porous structure, the film thickness as well as the chemical nature of the catalyst (MoS2versus MoSx) are discussed. It shows a catalytically-effective-thickness of ca. 300 nm where the electrolyte can fully penetrate the catalyst macropores, thus all the catalytic active sites can be exposed to the electrolyte to achieve the maximal catalytic operation.
Collapse
Affiliation(s)
- Thai D Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Huong T L Phung
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Graduated University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Duc N Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Anh D Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
| |
Collapse
|
17
|
Yang D, Cao L, Huang J, Jiao G, Wang D, Liu Q, Li G, He C, Feng L. Reversible active bridging sulfur sites grafted on Ni 3S 2 nanobelt arrays for efficient hydrogen evolution reaction. J Colloid Interface Sci 2023; 649:194-202. [PMID: 37348339 DOI: 10.1016/j.jcis.2023.06.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Elaborate and rational design of cost-effective and high-efficiency non-noble metal electrocatalysts for pushing forward the sustainable hydrogen fuel production is of great significance. Herein, a novel VS4 nanoparticle decorated Ni3S2 nanobelt array in-situ grown on nickel foam (VS4/Ni3S2/NF NBs) was prepared by a self-templated synthesis strategy. Benefitting from the unique nanobelt array structure, abundant highly active bridge S22- sites and strong electronic interaction between VS4 and Ni3S2 on the heterointerface, the integrated VS4/Ni3S2/NF NBs exhibited excellent electrocatalytic hydrogen evolution activity and robust stability. The density functional theory (DFT) further revealed the reversible conversion catalysis mechanism of bridging S22- sites in VS4/Ni3S2/NF NBs during HER process. Notably, bidentate bridging SS bonds as the predominant catalytically active centers can spontaneously open once H adsorbed its surface, leading to the aggregation of negative charges on S atoms and thus facilitating the generation of H* intermediates, and spontaneously close when H* desorption is going to form H2. Our work provides fresh insights for developing potential polysulfides as high-performance hydrogen-evolving electrocatalysts for prospective clean energy production from water splitting.
Collapse
Affiliation(s)
- Dan Yang
- School of Material Science and Engineering, International S&T Cooperation, Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China; College of Chemistry and Materials Science, WeiNan Normal University, Weinan 714099, PR China
| | - Liyun Cao
- School of Material Science and Engineering, International S&T Cooperation, Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Jianfeng Huang
- School of Material Science and Engineering, International S&T Cooperation, Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Gengsheng Jiao
- College of Chemistry and Materials Science, WeiNan Normal University, Weinan 714099, PR China
| | - Donghua Wang
- College of Chemistry and Materials Science, WeiNan Normal University, Weinan 714099, PR China
| | - Qianqian Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Guodong Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Liangliang Feng
- School of Material Science and Engineering, International S&T Cooperation, Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
18
|
Labidi RJ, Faivre B, Carpentier P, Veronesi G, Solé-Daura A, Bjornsson R, Léger C, Gotico P, Li Y, Atta M, Fontecave M. Light-Driven Hydrogen Evolution Reaction Catalyzed by a Molybdenum-Copper Artificial Hydrogenase. J Am Chem Soc 2023. [PMID: 37307141 DOI: 10.1021/jacs.3c01350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Orange protein (Orp) is a small bacterial metalloprotein of unknown function that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoS2CuS2MoS2]3-. In this paper, the performance of Orp as a catalyst for the photocatalytic reduction of protons into H2 has been investigated under visible light irradiation. We report the complete biochemical and spectroscopic characterization of holo-Orp containing the [S2MoS2CuS2MoS2]3- cluster, with docking and molecular dynamics simulations suggesting a positively charged Arg, Lys-containing pocket as the binding site. Holo-Orp exhibits excellent photocatalytic activity, in the presence of ascorbate as the sacrificial electron donor and [Ru(bpy)3]Cl2 as the photosensitizer, for hydrogen evolution with a maximum turnover number of 890 after 4 h irradiation. Density functional theory (DFT) calculations were used to propose a consistent reaction mechanism in which the terminal sulfur atoms are playing a key role in promoting H2 formation. A series of dinuclear [S2MS2M'S2MS2](4n)- clusters, with M = MoVI, WVI and M'(n+) = CuI, FeI, NiI, CoI, ZnII, CdII were assembled in Orp, leading to different M/M'-Orp versions which are shown to display catalytic activity, with the Mo/Fe-Orp catalyst giving a remarkable turnover number (TON) of 1150 after 2.5 h reaction and an initial turnover frequency (TOF°) of 800 h-1 establishing a record among previously reported artificial hydrogenases.
Collapse
Affiliation(s)
- Raphaël J Labidi
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Philippe Carpentier
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Giulia Veronesi
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Ragnar Bjornsson
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS, Aix Marseille Université, 13009 Marseille, France
| | - Philipp Gotico
- Laboratoire des Mécanismes Fondamentaux de la Bioénergétique, DRF/JOLIOT/SB2SM, UMR 9198 CEA/CNRS/I2BC, 91191 Gif Sur Yvette, France
| | - Yun Li
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| | - Mohamed Atta
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000 Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229, Collège de France/CNRS/Sorbonne Université, 11 place Marcellin-Berthelot, 75231 Paris, France
| |
Collapse
|
19
|
Flexible electronics based on one-dimensional inorganic semiconductor nanowires and two-dimensional transition metal dichalcogenides. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
20
|
Venkateshwaran S, Ajith A, Duraisamy V, Krishnan A, Senthil Kumar SM. Tailoring of 1T Phase-Domain MoS 2 Active Sites with Bridging S 22-/Apical S 2- Phase-Selective Precursor Modulation for Enriched HER Kinetics. Inorg Chem 2023; 62:841-852. [PMID: 36599060 DOI: 10.1021/acs.inorgchem.2c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molybdenum disulfide (MoS2) is a promising alternative electrocatalyst for hydrogen evolution reaction (HER) due to its relatively near zero hydrogen adsorption free energy (ΔGH = 0.08) and availability as a metallic (1T) phase. The superior catalytic activity of the 1T phase over 2H is owing to the availability of dense active sites, 107 fold higher conductivity, and greater hydrophilicity. However, in the synthesis of 1T-MoS2, a highly controlled proficient method is indispensable due to its metastable nature. Besides, phase enrichment is greatly sensitive to experimental parameters such as precursor, temperature, reaction time, and solvent. In the context of precursors, to date, no single precursor has been recognized as a selective precursor for the synthesis of 1T-MoS2. In this work, MoS2 with high content of 1T phase (79.4%) and excessive bridging S22-/apical S2- sites has been formulated from a single precursor, that is, ammonium tetrathiomolybdate ((NH4)2MoS4), ATTM). In HER, it displayed an inspired activity, that is, achieving 10 mA cm-2 current density, it requires just 248 mV overpotential with a minimal Tafel slope value (56 mV/dec). The maximum enrichment of the 1T phase, abundant accumulation of catalytically active bridging S22-/apical S2- sites, and the complete reduction of Mo+6 to Mo+4 (absence of Mo+6) are root causes for the outstanding activity of the synthesized 1T phase-domain MoS2. To the best of our knowledge for the very first time, here, we declare that the single source, that is, ATTM is an exclusive precursor for the selective synthesis of 1T-MoS2 with advantageous structural features. Moreover, this expedient precursor could be more pertinent for the industrial-scale preparation of 1T phase-domain MoS2 in near future.
Collapse
Affiliation(s)
- Selvaraj Venkateshwaran
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akhila Ajith
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athira Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, Kerala, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Cao J, Fu Y, Wang Y, Wang J, Zheng Y, Pan J, Li C. Hierarchical structure of amorphous Co–P nanosheets decorated crystalline NiCo2S4 nanorods as a bifunctional catalyst for electrocatalytic water splitting. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Xi F, Bozheyev F, Han X, Rusu M, Rappich J, Abdi FF, Bogdanoff P, Kaltsoyannis N, Fiechter S. Enhancing Hydrogen Evolution Reaction via Synergistic Interaction between the [Mo 3S 13] 2- Cluster Co-Catalyst and WSe 2 Photocathode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52815-52824. [PMID: 36379472 PMCID: PMC9716521 DOI: 10.1021/acsami.2c14312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
A thiomolybdate [Mo3S13]2- nanocluster is a promising catalyst for hydrogen evolution reaction (HER) due to the high number of active edge sites. In this work, thiomolybdate cluster films are prepared by spin-coating of a (NH4)2Mo3S13 solution both on FTO glass substrates as hydrogen evolving electrodes and on highly 00.1-textured WSe2 for photoelectrochemical water splitting. As an electrocatalyst, [Mo3S13]2- clusters demonstrate a low overpotential of 220 mV at 10 mA cm-2 in 0.5 M H2SO4 electrolyte (pH 0.3) and remain structurally stable during the electrochemical cycling as revealed by in situ Raman spectroscopy. Moreover, as a co-catalyst on WSe2, [Mo3S13]2- clusters enhance the photocurrent substantially by more than two orders of magnitude (from 0.02 to 2.8 mA cm-2 at 0 V vs RHE). The synergistic interactions between the photoelectrode and catalyst, i.e., surface passivation and band bending modification by the [Mo3S13]2- cluster film, promoted HER catalytic activity of [Mo3S13]2- clusters influenced by the WSe2 support, are revealed by intensity-modulated photocurrent spectroscopy and density functional theory calculations, respectively. The band alignment of the WSe2/[Mo3S13]2- heterojunction, which facilitates the electron injection, is determined by correlating UV-vis with photoelectron yield spectroscopy results.
Collapse
Affiliation(s)
- Fanxing Xi
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
- PV
ComB, Helmholtz-Zentrum Berlin für
Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489Berlin, Germany
| | - Farabi Bozheyev
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
- Institute
of Photoelectrochemistry, Helmholtz-Zentrum
Hereon, 21502Geesthacht, Germany
- National
Nanolaboratory, al-Farabi Kazakh National
University, 71 al-Farabi
Ave., 050000Almaty, Kazakhstan
| | - Xiaoyu Han
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Marin Rusu
- Department
Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - Jörg Rappich
- Institute
Silicon Photovoltaics, Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Magnusstrasse 12, 12489Berlin, Germany
| | - Fatwa F. Abdi
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - Peter Bogdanoff
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| | - Nikolas Kaltsoyannis
- Department
of Chemistry, The University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Sebastian Fiechter
- Institute
for Solar Fuels, Helmholtz-Zentrum Berlin
für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| |
Collapse
|
23
|
Microwave Induced Rapid Surface Amorphization of Metal Oxide Nanowire into Sulfides Shell for Electronically Modulated Efficient Hydrogen Evolution Catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Cheng E, Notestein J. Molybdenum oxide and sulfide active sites for isobutane dehydrogenation with methanol as a probe molecule. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zhang D, Wang F, Zhao W, Cui M, Fan X, Liang R, Ou Q, Zhang S. Boosting Hydrogen Evolution Reaction Activity of Amorphous Molybdenum Sulfide Under High Currents Via Preferential Electron Filling Induced by Tungsten Doping. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202445. [PMID: 35876393 PMCID: PMC9507386 DOI: 10.1002/advs.202202445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Indexed: 05/23/2023]
Abstract
The lack of highly efficient, durable, and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) working at high current densities poses a significant challenge for the large-scale implementation of hydrogen production from renewable energy. Herein, amorphous molybdenum tungsten sulfide/nitrogen-doped reduced graphene oxide nanocomposites (a-MoWSx /N-RGO) are synthesized by plasma treatment for use as high-performance HER catalysts. By adjusting the plasma treatment duration and chemical composition, an optimal a-MoWSx /N-RGO catalyst is obtained, which exhibits a low overpotential of 348 mV at a current density of 1000 mA cm-2 and almost no decay after 24 h of working at this current density, outperforming commercial platinum/carbon (Pt/C) and previously reported heteroatom-doped MoS2 -based catalysts. Based on density functional theory (DFT) calculations, it is found that with a reasonable tungsten doping level, the catalytic active site (2S2 - ) shows excellent catalytic performance working at high current densities because extra electrons preferentially fill at 2S2 - . The introduction of tungsten tends to lower the electronic structure energy, resulting in a closer-to-zero positive Δ G H ∗ $\Delta {G}_{{{\rm{H}}}^{\rm{*}}}$ . Excessive tungsten introduction, however, can lead to structural damage and a worse HER performance under high current densities. The work provides a route towards rationally designing high-performance catalysts for the HER at industrial-level currents using earth-abundant elements.
Collapse
Affiliation(s)
- Dai Zhang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
| | - Feilong Wang
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Wenqi Zhao
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Minghui Cui
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Xueliang Fan
- Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy MaterialsFudan UniversityShanghai200433P.R. China
| | - Rongqing Liang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Qiongrong Ou
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| | - Shuyu Zhang
- Institute of Future LightingAcademy for Engineering and TechnologyFudan UniversityShanghai200433P.R. China
- Institute for Electric Light SourcesSchool of Information Science and TechnologyFudan UniversityShanghai200433P.R. China
| |
Collapse
|
26
|
Zhou S, Zeng HC. Boxlike Assemblages of Few-Layer MoS 2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO 2 to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
27
|
Wang D, Wu W, Fang S, Kang Y, Wang X, Hu W, Yu H, Zhang H, Liu X, Luo Y, He JH, Fu L, Long S, Liu S, Sun H. Observation of polarity-switchable photoconductivity in III-nitride/MoS x core-shell nanowires. LIGHT, SCIENCE & APPLICATIONS 2022; 11:227. [PMID: 35853856 PMCID: PMC9296537 DOI: 10.1038/s41377-022-00912-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 05/13/2023]
Abstract
III-V semiconductor nanowires are indispensable building blocks for nanoscale electronic and optoelectronic devices. However, solely relying on their intrinsic physical and material properties sometimes limits device functionalities to meet the increasing demands in versatile and complex electronic world. By leveraging the distinctive nature of the one-dimensional geometry and large surface-to-volume ratio of the nanowires, new properties can be attained through monolithic integration of conventional nanowires with other easy-synthesized functional materials. Herein, we combine high-crystal-quality III-nitride nanowires with amorphous molybdenum sulfides (a-MoSx) to construct III-nitride/a-MoSx core-shell nanostructures. Upon light illumination, such nanostructures exhibit striking spectrally distinctive photodetection characteristic in photoelectrochemical environment, demonstrating a negative photoresponsivity of -100.42 mA W-1 under 254 nm illumination, and a positive photoresponsivity of 29.5 mA W-1 under 365 nm illumination. Density functional theory calculations reveal that the successful surface modification of the nanowires via a-MoSx decoration accelerates the reaction process at the electrolyte/nanowire interface, leading to the generation of opposite photocurrent signals under different photon illumination. Most importantly, such polarity-switchable photoconductivity can be further tuned for multiple wavelength bands photodetection by simply adjusting the surrounding environment and/or tailoring the nanowire composition, showing great promise to build light-wavelength controllable sensing devices in the future.
Collapse
Affiliation(s)
- Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Wentiao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230029, China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Xiaoning Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230029, China
| | - Wei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230029, China.
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Haochen Zhang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Lan Fu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China
| | - Sheng Liu
- School of Microelectronics, Wuhan University, Wuhan, 430072, China.
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, China.
- The CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei, 230029, China.
| |
Collapse
|
28
|
Zhang Y, Huang H, Cui L, Han Y. Size Control of MoS x Catalysts by Diffusion Limitation for Electrocatalytic Hydrodesulfurization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Huang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijie Cui
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongsheng Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Science and Technology on Particle Materials, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Hydrodesulfurization on Supported CoMoS2 Catalysts Ex Ammonium Tetrathiomolybdate: Effects of Support Morphology and Al Modification Method. Top Catal 2022. [DOI: 10.1007/s11244-022-01647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
Pulsed Laser Phosphorus Doping and Nanocomposite Catalysts Deposition in Forming a-MoS x/NP-Mo//n +p-Si Photocathodes for Efficient Solar Hydrogen Production. NANOMATERIALS 2022; 12:nano12122080. [PMID: 35745419 PMCID: PMC9227624 DOI: 10.3390/nano12122080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Pulsed laser deposition of nanostructured molybdenum sulfide films creates specific nonequilibrium growth conditions, which improve the electrocatalytic properties of the films in a hydrogen evolution reaction (HER). The enhanced catalytic performance of the amorphous a-MoSx (2 ≤ x ≤ 3) matrix is due to the synergistic effect of the Mo nanoparticles (Mo-NP) formed during the laser ablation of a MoS2 target. This work looks at the possibility of employing a-MoSx/NP-Mo films (4 and 20 nm thickness) to produce hydrogen by photo-stimulated HER using a p-Si cathode. A simple technique of pulsed laser p-Si doping with phosphorus was used to form an n+p-junction. Investigations of the energy band arrangement at the interface between a-MoSx/NP-Mo and n+-Si showed that the photo-HER on an a-MoSx/NP-Mo//n+p-Si photocathode with a 20 nm thick catalytic film proceeded according to a Z-scheme. The thickness of interfacial SiOy(P) nanolayer varied little in photo-HER without interfering with the effective electric current across the interface. The a-MoSx/NP-Mo//n+p-Si photocathode showed good long-term durability; its onset potential was 390 mV and photocurrent density was at 0 V was 28.7 mA/cm2. The a-MoSx/NP-Mo//n+p-Si photocathodes and their laser-based production technique offer a promising pathway toward sustainable solar hydrogen production.
Collapse
|
31
|
Mo3+ hydride as the common origin of H2 evolution and selective NADH regeneration in molybdenum sulfide electrocatalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00781-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Bozheyev F, Fengler S, Kollmann J, Klassen T, Schieda M. Transient Surface Photovoltage Spectroscopy of (NH 4) 2Mo 3S 13/WSe 2 Thin-Film Photocathodes for Photoelectrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22071-22081. [PMID: 35512324 DOI: 10.1021/acsami.2c01623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen produced from solar energy has the potential to replace petroleum in the future. To this respect, there is a need in the abandoned and efficient materials that can continuously split water molecules using solar energy. In this report, an ammonium thiomolybdate (ATM: (NH4)2Mo3S13) is evaluated as a p-type semiconductor film photocathode for hydrogen evolution reaction. The ATM thin films are prepared by spin-coating on fluorine-doped tin oxide substrates, and their structural, morphological, optical, photoelectrical, and photoelectrochemical (PEC) properties are studied. Transient surface photovoltage (TSPV) spectroscopy and spectroscopic ellipsometry indicate the band gap Eg = 1.9 eV for the ATM thin films. Furthermore, the photovoltage of the ATM thin films measured by TSPV is correlated to the photocurrents measured by the PEC characterization that can be used to evaluate the material potential for hydrogen generation. The films exhibit a low photocurrent density of 46 μA cm-2 at 0 VRHE. However, its combination with WSe2 thin-film photocathodes results in a significant increase in photocurrent density up to 4.6 mA cm-2 at 0 VRHE (100 times). The reason for such a strong charge carrier transfer effect for ATM/WSe2 heterojunction photocathodes is studied by TSPV spectroscopy that allows a comprehensive evaluation of potential photovoltaic materials toward PEC hydrogen production. Furthermore, the photovoltage generated by a WSe2 thin film is 30 times lower than that of its single crystal, which indicates that the quality of WSe2 thin films should be improved for faster PEC hydrogen evolution.
Collapse
Affiliation(s)
- Farabi Bozheyev
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
- National Nanolaboratory, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050000, Kazakhstan
| | - Steffen Fengler
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Jiri Kollmann
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Thomas Klassen
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| | - Mauricio Schieda
- Institute of Photoelectrochemistry, Helmholtz-Zentrum Hereon GmbH, Max-Planck-Street 1, Geesthacht D-21502, Germany
| |
Collapse
|
33
|
Ding YM, Li NW, Yuan S, Yu L. Surface engineering strategies for MoS2 towards electrochemical hydrogen evolution. Chem Asian J 2022; 17:e202200178. [PMID: 35438831 DOI: 10.1002/asia.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Water splitting driven by renewable energy sources is an environmentally friendly and sustainable way to produce hydrogen as an ideal energy source in the future. Electrocatalysts can promote the water splitting performance at the both ends. Therefore, the development of cost-effective, high-performance electrocatalysis is a key factor in promoting water decomposition and renewable energy conversion. Among candidates, layered molybdenum disulfide (MoS 2 ) is considered as a most promising electrocatalyst to replace Pt for hydrogen evolution reaction (HER). Surface atomic engineering and interface engineering can induce new physicochemical properties for MoS 2 to greatly enhance HER activity. In this report, we summarize the latest improvement strategies and research progress to improve the catalytic activity of MoS 2 -based material catalysts through the surface and interface atomic and molecular engineering, thus effectively improving HER process. In addition, some unsolved problems in the large-scale application of modified MoS 2 catalyst are also discussed.
Collapse
Affiliation(s)
- Yi Ming Ding
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Nian Wu Li
- Beijing University of Chemical Technology, State Key Lab of Organic-Inorganic Composites, CHINA
| | - Shuai Yuan
- Shanghai University, Research Center of Nanoscience and Nanotechnology, CHINA
| | - Le Yu
- Beijing University of Chemical Technology, College of Chemical Engineering, No. 15 North Third Ring Road East Road, 100029, Beijing, CHINA
| |
Collapse
|
34
|
Rodenes M, Gonell F, Martín S, Corma A, Sorribes I. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. JACS AU 2022; 2:601-612. [PMID: 35373204 PMCID: PMC8965831 DOI: 10.1021/jacsau.1c00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Developing more sustainable catalytic processes for preparing N-heterocyclic compounds in a less costly, compact, and greener manner from cheap and readily available reagents is highly desirable in modern synthetic chemistry. Herein, we report a straightforward synthesis of benzimidazoles by reductive coupling of o-dinitroarenes with aldehydes in the presence of molecular hydrogen. An innovative molecular cluster-based synthetic strategy that employs Mo3S4 complexes as precursors have been used to engineer a sulfur-deficient molybdenum disulfide (MoS2)-type material displaying structural defects on both the naturally occurring edge positions and along the typically inactive basal planes. By applying this catalyst, a broad range of functionalized 2-substituted benzimidazoles, including bioactive compounds, can be selectively synthesized by such a direct hydrogenative coupling protocol even in the presence of hydrogenation-sensitive functional groups, such as double and triple carbon-carbon bonds, nitrile and ester groups, and halogens as well as diverse types of heteroarenes.
Collapse
Affiliation(s)
- Miriam Rodenes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Francisco Gonell
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Avelino Corma
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| | - Iván Sorribes
- Instituto
de Tecnología Química-Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas
(UPV-CSIC), Avenida de los Naranjos, s/n, 46022 Valencia, Spain
| |
Collapse
|
35
|
Liu H, Wang P, Jiang J, Cheng G, Wu T, Zhang Y. Construction of stable Mo xS y/CeO 2 heterostructures for the electrocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:4891-4898. [PMID: 35137755 DOI: 10.1039/d1cp05466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique structures of polynuclear MoxSy clusters make it possible to maximize the number of their active sites and for them to be good candidates for HER catalysts. An appropriate support is highly necessary not only to avoid the desorption of MoxSy clusters in a working environment, but also to improve their HER activity. Our work here shows that the CeO2 support could provide strong support for interaction with various MoxSy clusters and the formed MoxSy/CeO2 hetero-structures also have modest ΔGH* for the HER. The electronic features of MoxSy clusters are regulated by the CeO2 support, which leads to charge redistribution on edge atoms and plays a key role in H adsorption. Our studies provide instructive predictions on efficient candidates of molybdenum-sulfur based catalysts for the HER.
Collapse
Affiliation(s)
- Hongxian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Pai Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jinxiu Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Gang Cheng
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
36
|
Wang Q, Li X, Ma X, Li Z, Yang Y. Activation of the MoS 2 Basal Plane to Enhance CO Hydrogenation to Methane Activity Through Increasing S Vacancies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7741-7755. [PMID: 35112567 DOI: 10.1021/acsami.1c18291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The active site of MoS2 is usually located at the edge of crystalline MoS2, which has a lower proportion than that from the basal plane, limiting the hydrogenation activity. Therefore, activating the basal plane of MoS2 is expected to greatly enhance the hydrogenation activity. Herein, we prepared a series of MoS2 catalysts by acidolysis of ammonium tetrathiomolybdate and subsequently pyrolyzing at high temperature with different atmospheres. Through analysis, we found that the prepared MoS2 catalysts were curved, which was different from commercial MoS2. Through X-ray diffraction, transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy characterization, it was found that the MoS2 catalyst pyrolyzed under a N2 atmosphere had a larger number of S-vacancies than the MoS2 catalysts under a H2 atmosphere. In addition, temperature-programmed reduction results showed that the Mo-S bond energy was decreased with the increasing content of S-vacancies, which might be related to bending. Sulfur-resistant methanation results indicated that the curved MoS2 exhibited increased CO conversion with the increasing S vacancies. Furthermore, density functional theory calculation was used to simulate the generation of S vacancy and numbers of S vacancies. It was found that with the generation of S vacancy, three unsaturated coordination Mo atoms were exposed around one S vacancy and became new active sites, resulting in enhanced activity. What is more, the higher methanation activity was attributed not only from more S vacancies but also from the decreased activation energy for CO hydrogenation activation.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xin Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhenhua Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | | |
Collapse
|
37
|
Patriarchea C, Vamvasakis I, Koutsouroubi ED, Armatas GS. Enhancing interfacial charge transfer in mesoporous MoS2/CdS nanojunction architectures for highly efficient visible-light photocatalytic water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01278a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesoporous MoS2-modified CdS nanojunction networks possessing advantageous electronic connectivity and charge transfer behavior at the interfaces deliver highly efficient visible-light photocatalytic H2 production activity from water splitting.
Collapse
Affiliation(s)
- Chrysanthi Patriarchea
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Ioannis Vamvasakis
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Eirini D. Koutsouroubi
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| | - Gerasimos S. Armatas
- Department of Materials Science and Technology, University of Crete, Heraklion 70013, Greece
| |
Collapse
|
38
|
Wang Q, Yin Z, Wang B, Xu Y, Ma X, Li Z. Enhancing stability of MoS2 catalysts for sulfur-resistant methanation by tuning interlayer interaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Huang Q, Zhang Y, Zhou W, Huang X, Chen Y, Tan X, Yu T. Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Hierarchical Ni3S2-CoMoS on the nickel foam as an advanced electrocatalyst for overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Giuffredi G, Asset T, Liu Y, Atanassov P, Di Fonzo F. Transition Metal Chalcogenides as a Versatile and Tunable Platform for Catalytic CO 2 and N 2 Electroreduction. ACS MATERIALS AU 2021; 1:6-36. [PMID: 36855615 PMCID: PMC9888655 DOI: 10.1021/acsmaterialsau.1c00006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group VI transition metal chalcogenides are the subject of increasing research interest for various electrochemical applications such as low-temperature water electrolysis, batteries, and supercapacitors due to their high activity, chemical stability, and the strong correlation between structure and electrochemical properties. Particularly appealing is their utilization as electrocatalysts for the synthesis of energy vectors and value-added chemicals such as C-based chemicals from the CO2 reduction reaction (CO2R) or ammonia from the nitrogen fixation reaction (NRR). This review discusses the role of structural and electronic properties of transition metal chalcogenides in enhancing selectivity and activity toward these two key reduction reactions. First, we discuss the morphological and electronic structure of these compounds, outlining design strategies to control and fine-tune them. Then, we discuss the role of the active sites and the strategies developed to enhance the activity of transition metal chalcogenide-based catalysts in the framework of CO2R and NRR against the parasitic hydrogen evolution reaction (HER); leveraging on the design rules applied for HER applications, we discuss their future perspective for the applications in CO2R and NRR. For these two reactions, we comprehensively review recent progress in unveiling reaction mechanisms at different sites and the most effective strategies for fabricating catalysts that, by exploiting the structural and electronic peculiarities of transition metal chalcogenides, can outperform many metallic compounds. Transition metal chalcogenides outperform state-of-the-art catalysts for CO2 to CO reduction in ionic liquids due to the favorable CO2 adsorption on the metal edge sites, whereas the basal sites, due to their conformation, represent an appealing design space for reduction of CO2 to complex carbon products. For the NRR instead, the resemblance of transition metal chalcogenides to the active centers of nitrogenase enzymes represents a powerful nature-mimicking approach for the design of catalysts with enhanced performance, although strategies to hinder the HER must be integrated in the catalytic architecture.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,Department
of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milano, Italy
| | - Tristan Asset
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Yuanchao Liu
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Plamen Atanassov
- Department
of Chemical & Biomolecular Engineering and National Fuel Cell
Research Center, University of California, Irvine, California 92697-2580, United States
| | - Fabio Di Fonzo
- Center
for Nano Science and Technology, Istituto
Italiano di Tecnologia (IIT@Polimi), Via Pascoli 70/3, 20133 Milano, Italy,
| |
Collapse
|
42
|
Enhanced Hydrogen Evolution Reaction of Amorphous MoSx via Carbon Depositing of TiO2 Nanotube Arrays. Catal Letters 2021. [DOI: 10.1007/s10562-021-03628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Rao T, Wang H, Zeng Y, Guo Z, Zhang H, Liao W. Phase Transitions and Water Splitting Applications of 2D Transition Metal Dichalcogenides and Metal Phosphorous Trichalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002284. [PMID: 34026429 PMCID: PMC8132069 DOI: 10.1002/advs.202002284] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/24/2021] [Indexed: 06/02/2023]
Abstract
2D layered materials turn out to be the most attractive hotspot in materials for their unique physical and chemical properties. A special class of 2D layered material refers to materials exhibiting phase transition based on environment variables. Among these materials, transition metal dichalcogenides (TMDs) act as a promising alternative for their unique combination of atomic-scale thickness, direct bandgap, significant spin-orbit coupling and prominent electronic and mechanical properties, enabling them to be applied for fundamental studies as catalyst materials. Metal phosphorous trichalcogenides (MPTs), as another potential catalytic 2D phase transition material, have been employed for their unusual intercalation behavior and electrochemical properties, which act as a secondary electrode in lithium batteries. The preparation of 2D TMD and MPT materials has been extensively conducted by engineering their intrinsic structures at the atomic scale. In this study, advanced synthesis methods of preparing 2D TMD and MPT materials are tested, and their properties are investigated, with stress placed on their phase transition. The surge of this type of report is associated with water-splitting catalysis and other catalytic purposes. This study aims to be a guideline to explore the mentioned 2D TMD and MPT materials for their catalytic applications.
Collapse
Affiliation(s)
- Tingke Rao
- College of Electronic and Information EngineeringInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Huide Wang
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yu‐Jia Zeng
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zhinan Guo
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Institute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Wugang Liao
- College of Electronic and Information EngineeringInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
44
|
Baloglou A, Plattner M, Ončák M, Grutza M, Kurz P, Beyer MK. [Mo 3 S 13 ] 2- as a Model System for Hydrogen Evolution Catalysis by MoS x : Probing Protonation Sites in the Gas Phase by Infrared Multiple Photon Dissociation Spectroscopy. Angew Chem Int Ed Engl 2021; 60:5074-5077. [PMID: 33332676 PMCID: PMC7986116 DOI: 10.1002/anie.202014449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Indexed: 11/08/2022]
Abstract
Materials based on molybdenum sulfide are known as efficient hydrogen evolution reaction (HER) catalysts. As the binding site for H atoms on molybdenum sulfides for the catalytic process is under debate, [HMo3 S13 ]- is an interesting molecular model system to address this question. Herein, we probe the [HMo3 S13 ]- cluster in the gas phase by coupling Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) with infrared multiple photon dissociation (IRMPD) spectroscopy. Our investigations show one distinct S-H stretching vibration at 2450 cm-1 . Thermochemical arguments based on DFT calculations strongly suggest a terminal disulfide unit as the H adsorption site.
Collapse
Affiliation(s)
- Aristeidis Baloglou
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Manuel Plattner
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Marie‐Luise Grutza
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstraße 2179104FreiburgGermany
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
45
|
Baloglou A, Plattner M, Ončák M, Grutza M, Kurz P, Beyer MK. [Mo
3
S
13
]
2−
als Modellsystem für die katalytische Wasserstoffentwicklung durch MoS
x
: Untersuchung der Protonierungsstellen in der Gasphase durch Infrarot‐Mehrphotonendissoziationsspektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aristeidis Baloglou
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Manuel Plattner
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| | - Marie‐Luise Grutza
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| | - Philipp Kurz
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg Deutschland
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik Universität Innsbruck Technikerstraße 25 6020 Innsbruck Österreich
| |
Collapse
|
46
|
Sun Y, Peng F, Zhang L, Jiang B, Dou H, Zhang N, Xu M, Yang N. Hierarchical Nitrogen‐doped Mo
2
C Nanoparticle‐in‐microflower Electrocatalyst: in Situ Synthesis and Efficient Hydrogen‐evolving Performance in Alkaline and Acidic Media. ChemCatChem 2020. [DOI: 10.1002/cctc.202000995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yongli Sun
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Feifei Peng
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Luhong Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Bin Jiang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Haozhen Dou
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Na Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Mi Xu
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Na Yang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
47
|
Giuffredi G, Mezzetti A, Perego A, Mazzolini P, Prato M, Fumagalli F, Lin YC, Liu C, Ivanov IN, Belianinov A, Colombo M, Divitini G, Ducati C, Duscher G, Puretzky AA, Geohegan DB, Di Fonzo F. Non-Equilibrium Synthesis of Highly Active Nanostructured, Oxygen-Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004047. [PMID: 33090682 DOI: 10.1002/smll.202004047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum sulfide emerged as promising hydrogen evolution reaction (HER) electrocatalyst thanks to its high intrinsic activity, however its limited active sites exposure and low conductivity hamper its performance. To address these drawbacks, the non-equilibrium nature of pulsed laser deposition (PLD) is exploited to synthesize self-supported hierarchical nanoarchitectures by gas phase nucleation and sequential attachment of defective molybdenum sulfide clusters. The physics of the process are studied by in situ diagnostics and correlated to the properties of the resulting electrocatalyst. The as-synthesized architectures have a disordered nanocrystalline structure, with nanodomains of bent, defective S-Mo-S layers embedded in an amorphous matrix, with excess sulfur and segregated molybdenum particles. Oxygen incorporation in this structure fosters the creation of amorphous oxide/oxysulfide nanophases with high electrical conductivity, enabling fast electron transfer to the active sites. The combined effect of the nanocrystalline pristine structure and the surface oxidation enhances the performance leading to small overpotentials, very fast kinetics (35.1 mV dec-1 Tafel slope) and remarkable long-term stability for continuous operation up to -1 A cm-2. This work shows possible new avenues in catalytic design arising from a non-equilibrium technique as PLD and the importance of structural and chemical control to improve the HER performance of MoS-based catalysts.
Collapse
Affiliation(s)
- Giorgio Giuffredi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Alessandro Mezzetti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Andrea Perego
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
- Department of Energy, Politecnico di Milano, Via Lambruschini 4, Milano, 20156, Italy
| | - Piero Mazzolini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Francesco Fumagalli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| | - Yu-Chuan Lin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Chenze Liu
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ilia N Ivanov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Massimo Colombo
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16130, Italy
| | - Giorgio Divitini
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Gerd Duscher
- Department of Material Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Fabio Di Fonzo
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy
| |
Collapse
|
48
|
Campos-Roldán C, Gonzalez-Huerta R, Lartundo-Rojas L, Del Angel P, Alonso-Vante N. The induced effect of chemical and photo-assisted deposition of molybdenum sulfide on carbon towards the hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Bentley CL, Agoston R, Tao B, Walker M, Xu X, O'Mullane AP, Unwin PR. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44307-44316. [PMID: 32880446 DOI: 10.1021/acsami.0c11759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Roland Agoston
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Binglin Tao
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
50
|
Nguyen AD, Pham PT, Tran DC, Nguyen LT, Tran PD. Embedding Amorphous Molybdenum Sulfide within a Porous Poly(3,4-ethylenedioxythiophene) Matrix to Enhance its H 2 -evolving Catalytic Activity and Robustness. Chem Asian J 2020; 15:2996-3002. [PMID: 32785945 DOI: 10.1002/asia.202000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Indexed: 11/09/2022]
Abstract
Amorphous molybdenum sulfide (MoSx ) is a promising alternative to Pt catalyst for the H2 evolution in water. However, it is suffered of an electrochemical corrosion. In this report, we present a strategy to tack this issue by embedding the MoSx catalyst within a porous poly(3,4-ethylenedioxythiophene) (PEDOT) matrix. The PEDOT host is firstly grown onto a fluorine-doped tin oxide (FTO) electrode by electrochemical polymerization of EDOT monomer in an acetonitrile solution to perform a porous structure. The MoSx catalyst is subsequently deposited onto the PEDOT by an electrochemical oxidation of [MoS4 ]2- monomer. In a 0.5 M H2 SO4 electrolyte solution, the MoSx /PEDOT shows higher H2 -evolving catalytic activities (current density of 34.2 mA/cm2 at -0.4 V vs RHE) in comparison to a pristine MoSx grown on a planar FTO electrode having similar catalyst loading (24.2 mA/cm2 ). The PEDOT matrix contributes to enhance the stability of MoSx catalyst by a significant manner. As such, the MoSx /PEDOT retains 81 % of its best catalytic activity after 1000 potential scans from 0 to -0.4 V vs. RHE, whereas a planar MoSx catalyst is completely degraded after about 240 potential scans, due to its complete corrosion.
Collapse
Affiliation(s)
- Anh D Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Phuong T Pham
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Dai C Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Loan T Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 8 Hoang Quoc Viet, Hanoi, Vietnam
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| |
Collapse
|