1
|
Ma Z, Chen Z, Yuan Z, Ren C, Zhang B, Cui Y, Li X, Jagadeesh RV, Beller M. Synthesis of aromatic amides from lignin and its derivatives. Nat Commun 2025; 16:3476. [PMID: 40216764 PMCID: PMC11992226 DOI: 10.1038/s41467-025-58559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Benzamides constitute an important class of bulk and fine chemicals as well as essential parts of many life science molecules. Currently, all these compounds are majorly produced from petrochemical-based feedstocks. Notably the selective aerobic oxidative conversion of lignin and lignin-derived compounds to primary, secondary, and tertiary amides and phenols offers the potential for a more sustainable synthesis of valuable building blocks for fine chemicals, monomers for polymers, biologically active molecules, and diverse consumer products. Here we present the concept of "lignin to amides" which is demonstrated by a one-pot, multi-step oxidation process utilizing molecular oxygen and a 3d-metal catalyst with highly dispersed and stable cobalt species (Co-SACs) supported on nitrogen-doped carbon in water as solvent. Moreover, our cobalt-based methodology allows for the cost-efficient transformation of a lignin and its variety of derivates simply using O2 and organic amines. Mechanistic investigations and control experiments suggest that the process involves an initial dehydrogenation of Cα-OH, cleavage of the Cβ-O as well as C(O)-C bond and condensation of the resulting carboxylic acids with amines. Spectroscopic studies indicate that the formation of superoxide species (O2●-) and specific Co-nitrogen sites anchored on mesoporous carbon sheets are key for the success of this transformation.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Zeli Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Changyue Ren
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Binyu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanbin Cui
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Xinmin Li
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- School of Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- Nanotechnology Centre, Centre for Energy and Environmental Technologies (CEET), VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic.
- Department of Chemistry, REVA University, Bangalore, India.
| | | |
Collapse
|
2
|
Seidi F, Liu Y, Huang Y, Xiao H, Crespy D. Chemistry of lignin and condensed tannins as aromatic biopolymers. Chem Soc Rev 2025; 54:3140-3232. [PMID: 39976198 DOI: 10.1039/d4cs00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aromatic biopolymers are the second largest group of biopolymers after polysaccharides. Depolymerization of aromatic biopolymers, as cheap and renewable substitutes for fossil-based resources, has been used in the preparation of biofuels, and a range of aromatic and aliphatic small molecules. Additionally, these polymers exhibit a robust UV-shielding function due to the high content of aromatic groups. Meanwhile, the abundance of phenolic groups in their structures gives these compounds outstanding antioxidant capabilities, making them well-suited for a diverse array of anti-UV and medical applications. Nevertheless, these biopolymers possess inherent drawbacks in their pristine states, such as rigid structure, low solubility, and lack of desired functionalities, which hinder their complete exploitation across diverse sectors. Thus, the modification and functionalization of aromatic biopolymers are essential to provide them with specific functionalities and features needed for particular applications. Aromatic biopolymers include lignins, tannins, melanins, and humic acids. The objective of this review is to offer a thorough reference for assessing the chemistry and functionalization of lignins and condensed tannins. Lignins represent the largest and most prominent category of aromatic biopolymers, typically distinguishable as either softwood-derived or hardwood-derived lignins. Besides, condensed tannins are the most investigated group of the tannin family. The electron-rich aromatic rings, aliphatic hydroxyl groups, and phenolic groups are the main functional groups in the structure of lignins and condensed tannins. Methoxy groups are also abundant in lignins. Each group displays varying chemical reactivity within these biopolymers. Therefore, the selective and specific functionalization of lignins and condensed tannins can be achieved by understanding the chemistry behavior of these functional groups. Targeted applications include biomedicine, monomers and surface active agents for sustainable plastics.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
3
|
Jin Z, Li Q, Zhu M, Zhang Y, Yan X, Zhou X. Palladium-catalyzed carbon-carbon bond cleavage of primary alcohols: decarbonylative coupling of acetylenic aldehydes with haloarenes. RSC Adv 2025; 15:7826-7831. [PMID: 40070398 PMCID: PMC11895861 DOI: 10.1039/d5ra00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the current work, a palladium-catalyzed C-C bond cleavage reaction of primary alcohols has been developed. This transformation was characterized by a broad substrate scope, superior functional group tolerance, and high efficiency for selective C-C bond cleavage and was then followed by alkynyl-aryl cross coupling. Mechanism studies indicated that the propargyl alcohols underwent β-H elimination to form aldehydes rather than having undergone β-C elimination. The corresponding aldehyde intermediates then proceeded through a decarbonylation and coupling reaction with haloarenes to yield diarylacetylenes.
Collapse
Affiliation(s)
- Zewei Jin
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qiang Li
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Maoshuai Zhu
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yanqiong Zhang
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University Chengdu 610041 P. R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
4
|
Huang Z, Yu Z, Guo Z, Shi P, Hu J, Deng H, Huang Z. Selective Cleavage of C β-O-4 Bond for Lignin Depolymerization via Paired-Electrolysis in an Undivided Cell. Angew Chem Int Ed Engl 2024; 63:e202407750. [PMID: 38899860 DOI: 10.1002/anie.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H2 and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the Cβ-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of Cβ-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of Cβ-O-4 linkage.
Collapse
Affiliation(s)
- Zhenghui Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zihan Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, P. R. China
| | - Zhaogang Guo
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Pingsen Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zhiliang Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| |
Collapse
|
5
|
Ren H, Chen Y, Labidi A, Zhao K, Xu X, Othman SI, Allam AA, Rudayni HA, Wang C. Transforming bio-waste lignin into amine functionalized carbon quantum dots for selective detection of trace Cu 2+ in aqueous system. Int J Biol Macromol 2024; 273:133118. [PMID: 38871106 DOI: 10.1016/j.ijbiomac.2024.133118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Developing carbon quantum dots (CQDs) from bio-waste lignin for effectively detecting Cu2+ is of great significance for promoting the value-added utilization of lignin resources. However, the limited amount of surface-active groups and low quantum yield of lignin-based CQDs hinder their application in this regard. Herein, bio-waste lignin was converted into value-added amine functionalized CQDs using a facile two-step hydrothermal approach. The as-synthesized CQDs modified with amino groups exhibit bright green fluorescence, abundant surface functional groups, high water solubility and uniform particle size (3.9 nm). Systematic analysis demonstrates that the rich NH2 groups (~12.3 %) on the CQDs backbone improve their fluorescence properties (quantum yield increased from 3.4 % to 21.1 %) and specific detection ability for Cu2+. The developed NH2-CQDs serve as an efficient fluorescent probe, displaying high sensitivity and selectivity towards Cu2+ in aqueous system, with a detection limit of 2.42 μmol/L, which is lower than the maximum permitted amount of Cu2+ in drinking water (20 μmol/L). The detection mechanism of NH2-CQDs for Cu2+ is attributed to the synergy of static quenching and photo-induced electron transfer. This study provides a valuable reference for the synthesis of high-quality fluorescent CQDs from lignin resources and the effective detection of trace Cu2+ in aquatic environments.
Collapse
Affiliation(s)
- Haitao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuqing Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ke Zhao
- College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control, Xinjiang 832003, PR China
| | - Xiaoqian Xu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
6
|
Zhu L, Cui C, Xiao X, Zhang J, Kuang X, Liu H, Zhou Z, Qi F. Online Compositional Analysis of Complex Oligomers in Biomass Degradation by High-Pressure Flow-Through Reactor Coupled with High-Resolution Mass Spectrometry. Anal Chem 2024; 96:8657-8664. [PMID: 38738643 DOI: 10.1021/acs.analchem.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Online analysis of the composition and evolution of complex oligomeric intermediates in biomass degradation is highly desirable to elucidate the mechanism of bond cleavage and study the effect of conditions on the selective conversion of feedstocks. However, harsh reaction conditions and complicated conversion systems pose tremendous challenges for conventional, state-of-the-art analytical techniques. Herein, we introduce a continuous and rapid compositional analysis strategy coupling a high-pressure flow-through reactor with online high-resolution mass spectrometry, which enables the molecular-level characterization of most biomass-related products throughout the conversion for over 2 h. Catalytic depolymerization of one model compound was studied, and temperature-dependent data of over 50 intermediates as well as recondensation dimers and oligomers were obtained, which have rarely been reported in the literature. Thousands of products during the flow-through conversion of birch wood with molecular weights up to 1000 Da were presented, and 8 typical lignin dimers and oligomers with various interunit linkages were identified at the molecular level, demonstrating the potential to analyze more complicated systems far beyond conventional methods, especially for complex oligomers. The continuous evolutions of different components and typical products were unveiled for the first time, providing valuable insights into the investigation of the structure, composition, and decomposition mechanism of lignocellulose as well as the influence of reaction conditions. This method leads to the previously unattained ability to probe and reveal complicated chemical compositions in high-pressure reactions and can be applied to all other high-pressure heterogeneous aqueous reactions.
Collapse
Affiliation(s)
- Linyu Zhu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Cunhao Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xintong Xiao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jing Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xun Kuang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Haoran Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhongyue Zhou
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Fei Qi
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
7
|
Luo Z, Li L, Nguyen VT, Kanbur U, Li Y, Zhang J, Nie R, Biswas A, Bud'ko SL, Oh J, Zhou L, Huang W, Sadow AD, Wang B, Scott SL, Qi L. Catalytic Hydrogenolysis by Atomically Dispersed Iron Sites Embedded in Chemically and Redox Non-innocent N-Doped Carbon. J Am Chem Soc 2024; 146:8618-8629. [PMID: 38471106 DOI: 10.1021/jacs.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis. The reaction is facilitated by the N-C support. According to spectroscopic analyses, the as-synthesized catalysts contain mostly pentacoordinated FeIII sites, with four in-plane nitrogen donor ligands and one axial hydroxyl ligand. In the presence of 20 bar of H2 at 170-230 °C, the hydroxyl ligand is lost when N4FeIIIOH is reduced to N4FeII, assisted by the H2 chemisorbed on the support. When an alcohol binds to the tetracoordinated FeII sites, homolytic cleavage of the O-H bond is accompanied by reoxidation to FeIII and H atom transfer to the support. The role of the N-C support in catalytic hydrogenolysis is analogous to the behavior of chemically and redox-non-innocent ligands in molecular catalysts based on first-row transition metal ions and enhances the ability of M-N-Cs to achieve the types of multistep activations of strong bonds needed to upgrade renewable and recycled feedstocks.
Collapse
Affiliation(s)
- Zhicheng Luo
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Li Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Vy T Nguyen
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Uddhav Kanbur
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yuting Li
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Jie Zhang
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Renfeng Nie
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Abhranil Biswas
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Sergey L Bud'ko
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Jinsu Oh
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Lin Zhou
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susannah L Scott
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Long Qi
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Shen Z, Shi C, Liu F, Wang W, Ai M, Huang Z, Zhang X, Pan L, Zou J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306693. [PMID: 37964410 PMCID: PMC10767463 DOI: 10.1002/advs.202306693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Lignin is the main component of lignocellulose and the largest source of aromatic substances on the earth. Biofuel and bio-chemicals derived from lignin can reduce the use of petroleum products. Current advances in lignin catalysis conversion have facilitated many of progress, but understanding the principles of catalyst design is critical to moving the field forward. In this review, the factors affecting the catalysts (including the type of active metal, metal particle size, acidity, pore size, the nature of the oxide supports, and the synergistic effect of the metals) are systematically reviewed based on the three most commonly used supports (carbon, oxides, and zeolites) in lignin hydrogenolysis. The catalytic performance (selectivity and yield of products) is evaluated, and the emerging catalytic mechanisms are introduced to better understand the catalyst design guidelines. Finally, based on the progress of existing studies, future directions for catalyst design in the field of lignin depolymerization are proposed.
Collapse
Affiliation(s)
- Zhensheng Shen
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Wei Wang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Minhua Ai
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhenfeng Huang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
9
|
Zhao M, Zhao L, Zhao XY, Cao JP, Maruyama KI. Pd-Based Nano-Catalysts Promote Biomass Lignin Conversion into Value-Added Chemicals. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5198. [PMID: 37512471 PMCID: PMC10384994 DOI: 10.3390/ma16145198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Lignin, as a structurally complex biomaterial, offers a valuable resource for the production of aromatic chemicals; however, its selective conversion into desired products remains a challenging task. In this study, we prepared three types of Pd-based nano-catalysts and explored their application in the depolymerization of alkali lignin, under both H2-free (hydrogen transfer) conditions and H2 atmosphere conditions. The materials were well characterized with TEM, XRD, and XPS and others, and the electronic interactions among Pd, Ni, and P were analyzed. The results of lignin depolymerization experiments revealed that the ternary Pd-Ni-P catalyst exhibited remarkable performance and guaiacols could be produced under H2 atmosphere conditions in 14.2 wt.% yield with a selectivity of 89%. In contrast, Pd-Ni and Pd-P catalysts resulted in a dispersed product distribution. Considering the incorporation of P and the Pd-Ni synergistic effect in the Pd-Ni-P catalyst, a possible water-involved transformation route of lignin depolymerization was proposed. This work indicates that metal phosphides could be promising catalysts for the conversion of lignin and lignin-derived feedstocks into value-added chemicals.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Materials and Biology, National Institute of Technology, Akita College, Akita 011-8511, Japan
| | - Liang Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Xiao-Yan Zhao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
| | - Jing-Pei Cao
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining & Technology, Xuzhou 221116, China
| | - Koh-Ichi Maruyama
- Department of Materials and Biology, National Institute of Technology, Akita College, Akita 011-8511, Japan
| |
Collapse
|
10
|
Guo L, Ding Y, Wang H, Liu Y, Qiang Q, Luo Q, Song F, Li C. Imidazo[1,2-a]pyridine derivatives synthesis from lignin β-O-4 segments via a one-pot multicomponent reaction. iScience 2023; 26:106834. [PMID: 37250767 PMCID: PMC10209544 DOI: 10.1016/j.isci.2023.106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
The catalytic conversion of lignin into N-containing chemicals is of great significance for the realization of value-added biorefinery concept. In this article, a one-pot strategy was designed for the transformation of lignin β-O-4 model compounds to imidazo[1,2-a]pyridines in yields up to 95% using 2-aminopyridine as a nitrogen source. This transformation involves highly coupled cleavage of C-O bonds, sp3C-H bond oxidative activation, and intramolecular dehydrative coupling reaction to construction of N-heterobicyclic ring. With this protocol, a wide range of functionalized imidazo[1,2-a]pyridines sharing the same structure skeleton as those commercial drug molecules, such as Zolimidine, Alpidem, Saripidem, etc., were synthesized from different lignin β-O-4 model compounds and one β-O-4 polymer, emphasizing the application feasibility of lignin derivatives in N-heterobicyclic pharmaceutical synthesis.
Collapse
Affiliation(s)
- Luxian Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Fei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Yin WZ, Xiao LP, Zou SL, Li WX, Wang H, Sun RC. Valorization of lignin through reductive catalytic fractionation of fermented corn stover residues. BIORESOURCE TECHNOLOGY 2023; 373:128752. [PMID: 36804856 DOI: 10.1016/j.biortech.2023.128752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The fermented corn stover residues are abundant renewable lignin-rich bioresources that show great potential to produce aromatic phenols. However, selective catalytic hydrogenolysis of this residual material still remains challenge to obtain high yields. Herein, a novel strategy to produce monophenolic compounds from the fermented stover over a commercial Pd/C catalyst was proposed. Taking the reaction temperature as the key variable, the highest monomer yield was 28.5 wt% at 220 °C in compaction with that of the pristine corn stover (22.8 wt%). The enhanced monophenol yield was due to the higher contents of lignin and less recalcitrance in the fermented stover. Moreover, the van Krevelen diagram revealed a slight selective CO bond scission of lignin macromolecular during fermentation as well as the dehydration and deoxygenation in hydrogenolysis reaction. Overall, this work opens a new avenue for the valorization of lignin through reductive catalytic fractionation of agricultural wastes.
Collapse
Affiliation(s)
- Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Shuang-Lin Zou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wen-Xin Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Wang
- Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
12
|
Hydrogenolysis of Lignin and C–O Linkages Containing Lignin-Related Compounds over an Amorphous CoRuP/SiO2 Catalyst. Catalysts 2022. [DOI: 10.3390/catal12111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Efficient depolymerization of C–O linkages is essential for converting lignin into fuels and higher value-added chemicals. In this work, CoRuP/SiO2, an amorphous Ru-Co phosphide composite, was fabricated for the efficient hydrogenolysis of ether linkages. The 4–O–5 and α–O–4 linkages containing lignin-related compounds, such as diphenyl ether, benzyl phenyl ether, 3-methyl diphenyl ether, and dibenzyl ether, are selected as representatives of linkages in lignin. Under mild conditions, Ru-containing metallic phosphides have high-performance for the catalytic depolymerization of C–O linkages. Compared with other catalysts, CoRuP/SiO2 shows an outstanding selectivity for benzene and excellent efficiency in depolymerizing diphenyl ethers, yielding only a small amount of by-products. Furthermore, the total acidity shows a linear relationship with the hydrogenolysis reactivity in cleaving aromatic ether bonds. The mechanisms for the catalytic hydrogenolysis of 4–O–5 and α–O–4 bonds over CoRuP/SiO2 are proposed. Moreover, two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopic analysis demonstrates that CoRuP/SiO2 could effectively depolymerize C–O bonds of lignin. These dominant hydrogenolysis products from lignin have excellent potential in the production of high value-added drugs or pharmaceutical intermediates. The hydrogenolysis of lignin can be a highly efficient alternative to the existing method of lignin utilization.
Collapse
|
13
|
Wang Q, Xiao LP, Lv YH, Yin WZ, Hou CJ, Sun RC. Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into Monomeric Phenols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi-Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wen-Zheng Yin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan-Jin Hou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Hossain MA, Saelee T, Tulaphol S, Rahaman MS, Phung TK, Maihom T, Praserthdam P, Praserthdam S, Yelle DJ, Sathitsuksanoh N. Catalytic hydrogenolysis of lignin into phenolics by internal hydrogen over Ru catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City University of Science: University of Science Science and Technology VIET NAM
| | | | | | | | - Daniel J. Yelle
- Department of Agriculture Forest Biopolymer Science and Engineering UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
15
|
Su S, Xiao LP, Chen X, Wang S, Chen XH, Guo Y, Zhai SR. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources. CHEMSUSCHEM 2022; 15:e202200365. [PMID: 35438245 DOI: 10.1002/cssc.202200365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Lignin-first depolymerization of lignocellulosic biomass into aromatics is of great significance to sustainable biorefinery. However, it remains a challenge, owing to the variance between lignin sources and structures. In this study, ruthenium supported on carbon nanotubes (Ru/CNT) exhibits efficient catalytic activity toward lignin hydrogenolysis to exclusively afford monophenols in high yields. Catalytic tests indicate that the yields of aromatic monomers are related to lignin sources and decrease in the order: hardwoods > herbaceous plants > softwoods. Experimental results demonstrate that the scission of C-O bonds and the high selectivity to monomeric aromatic compounds over the Ru/CNT catalyst are enhanced by avoiding side condensation. Furthermore, the fabricated Ru/CNT shows good reusability and recyclability, applicability, and biomass feedstock compatibility, rendering it a promising candidate for lignin valorization. These findings pave the way for rational design of highly active and stable catalysts to potentially address challenges in lignin chemistry.
Collapse
Affiliation(s)
- Shihao Su
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xue Chen
- Department of Life Science and Engineering, Jining University, Jining, 273155, P. R. China
| | - Shuizhong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiao-Hong Chen
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shang-Ru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
16
|
Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T. Sustainable Production of Benzylamines from Lignin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Zongbao K. Zhao
- Division of Biotechnology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
17
|
Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T. Sustainable Production of Benzylamines from Lignin. Angew Chem Int Ed Engl 2021; 60:20666-20671. [PMID: 34297874 DOI: 10.1002/anie.202105973] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β-O-4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of Cα -OH, hydrogenolysis of the Cβ -O bond and reductive amination in the presence of Pd/C catalyst. Experimental data suggest that the dehydrogenation reaction proceeds over the other two reactions and secondary amines serve as both reducing agents and amine sources in the transformation. Moreover, the concept of "lignin to benzylamines" was demonstrated by a two-step process. This work represents a first example of synthesis of benzylamines from lignin, thus providing a new opportunity for the sustainable synthesis of benzylamines from renewable biomass, and expanding the products pool of biomass conversion to meet future biorefinery demands.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
18
|
Depolymerization and Hydrogenation of Organosolv Eucalyptus Lignin by Using Nickel Raney Catalyst. Processes (Basel) 2021. [DOI: 10.3390/pr9071093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The use of lignocellulosic biomass to obtain biofuels and chemicals produces a large amount of lignin as a byproduct. Lignin valorization into chemicals needs efficient conversion processes to be developed. In this work, hydrocracking of organosolv lignin was performed by using nickel Raney catalyst. Organosolv lignin was obtained from the pretreatment of eucalyptus wood at 170 °C for 1 h by using 1/100/100 (w/v/v) ratio of biomass/oxalic acid solution (0.4% w/w)/1-butanol. The resulting organic phase of lignin in 1-butanol was used in hydrogenation tests. The conversion of lignin was carried out with a batch reactor equipped with a 0.3 L vessel with adjustable internal stirrer and heat control. The reactor was pressurized at 5 bar with hydrogen at room temperature, and then the temperature was raised to 250 °C and kept for 30 min. Operative conditions were optimized to achieve high conversion in monomers and to minimize the loss of solvent. At the best performance conditions, about 10 wt % of the lignin was solubilized into monomeric phenols. The need to find a trade-off between lignin conversion and solvent side reaction was highlighted.
Collapse
|
19
|
Zhang H, Fu S, Du X, Deng Y. Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. CHEMSUSCHEM 2021; 14:2268-2294. [PMID: 33811470 DOI: 10.1002/cssc.202100067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In the past five years, biomass-derived biofuels and biochemicals were widely studied both in academia and industry as promising alternatives to petroleum. In this Review, the latest progress of the synthesis and fabrication of porous nanocatalysts that are used in catalytic transformations involving hydrogenolysis of lignin is reviewed in terms of their textural properties, catalytic activities, and stabilities. A particular emphasis is made with regard to the catalyst design for the hydrogenolysis of lignin and/or lignin model compounds. Furthermore, the effects of different supports on the lignin hydrogenolysis/hydrogenation are discussed in detail. Finally, the challenges and future opportunities of lignin hydrogenolysis over nanomaterial-supported catalysts are also presented.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
20
|
Wu D, Wang Q, Safonova OV, Peron DV, Zhou W, Yan Z, Marinova M, Khodakov AY, Ordomsky VV. Lignin Compounds to Monoaromatics: Selective Cleavage of C-O Bonds over a Brominated Ruthenium Catalyst. Angew Chem Int Ed Engl 2021; 60:12513-12523. [PMID: 33730419 DOI: 10.1002/anie.202101325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/09/2022]
Abstract
The cleavage of C-O linkages in aryl ethers in biomass-derived lignin compounds without hydrogenation of the aromatic rings is a major challenge for the production of sustainable mono-aromatics. Conventional strategies over the heterogeneous metal catalysts require the addition of homogeneous base additives causing environmental problems. Herein, we propose a heterogeneous Ru/C catalyst modified by Br atoms for the selective direct cleavage of C-O bonds in diphenyl ether without hydrogenation of aromatic rings reaching the yield of benzene and phenol as high as 90.3 % and increased selectivity to mono-aromatics (97.3 vs. 46.2 % for initial Ru) during depolymerization of lignin. Characterization of the catalyst indicates selective poisoning by Br of terrace sites over Ru nanoparticles, which are active in the hydrogenation of aromatic rings, while the defect sites on the edges and corners remain available and provide higher intrinsic activity in the C-O bond cleavage.
Collapse
Affiliation(s)
- Dan Wu
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China.,Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Qiyan Wang
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China.,Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | | | - Deizi V Peron
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China
| | - Zhen Yan
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464, CNRS-Solvay, 201108, Shanghai, P. R. China
| | - Maya Marinova
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000, Lille, France
| | - Andrei Y Khodakov
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Vitaly V Ordomsky
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| |
Collapse
|
21
|
Wu D, Wang Q, Safonova OV, Peron DV, Zhou W, Yan Z, Marinova M, Khodakov AY, Ordomsky VV. Lignin Compounds to Monoaromatics: Selective Cleavage of C−O Bonds over a Brominated Ruthenium Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dan Wu
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Qiyan Wang
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | | | - Deizi V. Peron
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
| | - Zhen Yan
- Eco-Efficient Products and Processes Laboratory (E2P2L) UMI 3464 CNRS-Solvay 201108 Shanghai P. R. China
| | - Maya Marinova
- Univ. Lille CNRS INRAE Centrale Lille Univ. Artois FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Andrei Y. Khodakov
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Vitaly V. Ordomsky
- Univ. Lille CNRS Centrale Lille ENSCL Univ. Artois UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| |
Collapse
|
22
|
Banwell MG, Pollard B, Liu X, Connal LA. Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chem Asian J 2021; 16:604-620. [PMID: 33463003 DOI: 10.1002/asia.202001451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Indexed: 12/16/2022]
Abstract
The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.
Collapse
Affiliation(s)
- Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou/Zhuhai, 510632/519070, P. R. China.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Brett Pollard
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
23
|
Zhang H, Liu Y, Fu S, Deng Y. Selective hydrodeoxygenation of lignin model compound (3,4-dimethoxybenzyl alcohol) by Pd/CN X catalyst. Int J Biol Macromol 2020; 169:274-281. [PMID: 33345971 DOI: 10.1016/j.ijbiomac.2020.12.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/15/2022]
Abstract
Upgrading of lignin derived bio-oil is an essential step for producing sustainable bio-based chemicals and fuel. Taken into account that α hydroxyl is the abundant functional group in lignin, high effective and selective catalytic alcoholysis for cleaving the Cα-OH linkages would be desirable. However, an in-depth understanding of the reaction mechanisms involved in the cleavage of Caromatic-Cα and Cα-O bonds over a novel catalyst is still needed. Herein, we report an efficient liquid-phase hydrogen transfer strategy for the selective hydrodeoxygenation of a non-phenolic lignin model compound, 3,4-dimethoxybenzyl (veratryl) alcohol, under mild conditions. By employing iso-propanol as solvent and H-donor, and palladium nanoparticles immobilized on nitrogen-doped carbon (Pd/CNX) as efficient multifunctional catalyst, veratryl alcohol dehydroxylation exhibited almost 100% conversion along with very high selectivity for 1,2-dimethoxy-benzene (46%) and 3,4-dimethoxytoluene (54%). Compared with other Pd catalysis, the Pd/CNX has excellent catalytic performances and exhibits higher selectivity for 3,4-dimethoxytoluene under incorporation with 1% HCOOH at 220 °C. The proportion of Pd (0) significantly increases in Pd/CNX catalyst when introduced into N precursor because of its highly dispersed Pd NPs and preventing the reoxidation of Pd (0). The dehydrogenation reaction occurred through the hydrogen generation of a secondary alcohol. Then, the Cα-OH and Caromatic-Cα bonds of veratryl alcohol were selectively cleaved by catalytic transfer hydrogenolysis. The alcoholysis mechanism is supported by dispersion-corrected density functional theory computations.
Collapse
Affiliation(s)
- Haichuan Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China; School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and RBI at Georgia Tech, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 30332-0620, USA
| |
Collapse
|
24
|
Chen C, Liu P, Xia H, Zhou M, Jiang J. Catalytic transfer hydrogenation of 4‐O‐5 models in lignin‐derived compounds to cycloalkanes over Ni‐based catalysts. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Changzhou Chen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA Nanjing China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Peng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA Nanjing China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Haihong Xia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA Nanjing China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA Nanjing China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA Nanjing China
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| |
Collapse
|
25
|
Phongpreecha T, Christy KF, Singh SK, Hao P, Hodge DB. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood. BIORESOURCE TECHNOLOGY 2020; 316:123907. [PMID: 32739581 DOI: 10.1016/j.biortech.2020.123907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The impact of catalyst choice and reaction conditions during catalytic hydrogenolysis of silver birch biomass are assessed for their effect on aromatic monomer yields and selectivities, lignin removal, and sugar yields from enzymatic hydrolysis. At a reaction temperature of 220 °C with no supplemental H2, it was demonstrated that both Co/C and Ni/C exhibited aromatic monomer yields of >50%, which were close to the theoretical maximum expected for the lignin based on total β-O-4 content and exhibited high selectivities for 4-propylguaiacol and 4-propylsyringol. Pd/C exhibited a significantly different set of products, and using a model lignin dimer, showed a product profile that shifted upon inclusion of supplemental H2, suggesting that the generation of surface hydrogen is critical for this catalyst system. Lignin removal during hydrogenolysis could be correlated to glucose yields and inclusion of lignin depolymerizing catalysts significantly improves lignin removal and subsequent enzymatic hydrolysis yields.
Collapse
Affiliation(s)
| | - Kendall F Christy
- Department of Chemical Engineering and Materials Science, Michigan State University, United States
| | - Sandip K Singh
- Chemical & Biological Engineering Department, Montana State University, United States
| | - Pengchao Hao
- Department of Chemistry, Michigan State University, United States
| | - David B Hodge
- Chemical & Biological Engineering Department, Montana State University, United States; Division of Sustainable Process Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
26
|
Yang C, Kärkäs MD, Magallanes G, Chan K, Stephenson CRJ. Organocatalytic Approach to Photochemical Lignin Fragmentation. Org Lett 2020; 22:8082-8085. [PMID: 33001651 DOI: 10.1021/acs.orglett.0c03029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, an organocatalytic method for photochemical C-O bond cleavage of lignin systems is reported. The use of photochemistry enabled fragmentation of the β-O-4 linkage, the primary linkage in lignin, provides the fragmentation products in good to high yields. The approach was merged with reported oxidation conditions in a one-pot, two-step platform without any intermediary purification, suggesting its high fidelity. The future utility of the organocatalytic method was illustrated by applying the visible light-mediated protocol to continuous flow processing.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Markus D Kärkäs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gabriel Magallanes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kimberly Chan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R J Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Li H, Song G. Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02339] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Helong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
| |
Collapse
|
28
|
Wang S, Li WX, Yang YQ, Chen X, Ma J, Chen C, Xiao LP, Sun RC. Unlocking Structure-Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers. CHEMSUSCHEM 2020; 13:4548-4556. [PMID: 32419330 DOI: 10.1002/cssc.202000785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Lignin depolymerization into aromatic monomers with high yields and selectivity is essential for the economic feasibility of biorefinery. However, the relationship between lignin structure and its reactivity for upgradeability is still poorly understood, in large part owing to the difficulty in quantitative characterization of lignin structural properties. To overcome these shortcomings, advanced NMR technologies [2D HSQC (heteronuclear single quantum coherence) and 31 P] were used to accurately quantify lignin functionalities. Diverse lignin samples prepared from Eucalyptus grandis with varying β-O-4 linkages were subjected to Pd/C-catalyzed hydrogenolysis for efficient C-O bond cleavage to achieve theoretical monomer yields. Strong correlations were observed between the yield of monomeric aromatic compounds and the structural features of lignin, including the contents of β-O-4 linkages and phenolic hydroxyl groups. Notably, a combined yield of up to 44.1 wt % was obtained from β-aryl ether rich in native lignin, whereas much lower yields were obtained from technical lignins low in β-aryl ether content. This work quantitatively demonstrates that the lignin reactivity for acquiring aromatic monomer yields varies depending on the lignin fractionation processes.
Collapse
Affiliation(s)
- Shuizhong Wang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Wen-Xin Li
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yue-Qin Yang
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaohong Chen
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jiliang Ma
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Changzhou Chen
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Ling-Ping Xiao
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Run-Cang Sun
- Center for Lignocellulose Chemistry and Biomaterials, Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
29
|
Shen X, Xin Y, Liu H, Han B. Product-oriented Direct Cleavage of Chemical Linkages in Lignin. CHEMSUSCHEM 2020; 13:4367-4381. [PMID: 32449257 DOI: 10.1002/cssc.202001025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Lignin is one of the most important biomacromolecules in the plant biomass and the largest renewable source of aromatic building blocks in nature. Selectively producing value-added chemicals from the catalytic transformation of renewable lignin is of strategic significance and meet sustainability targets owing to the excessive consumption of non-renewable petroleum resource, but remains a long-term challenge owing to the complexity of lignin structure. This Minireview provides a summary and perspective of the extensive research that provides insight into selectively catalytic transformations of lignin and its derived monomers via directed scissor of chemical linkages (C-O and C-C bonds) with product-oriented targets. Furthermore, some challenges and opportunities of lignin catalytic transformation are provided based on existing problems in this field for readers to discuss future research directions.
Collapse
Affiliation(s)
- Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Yu Xin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101407, P. R. China
| |
Collapse
|
30
|
Zhang L, Feng J, Cai B, Zhu H, Zhu Y, Pan H. Efficient Ni‐Cu/AC Bimetal Catalyst for Hydrogenolysis of Lignin to Produce High‐Value‐Added Chemicals. ChemistrySelect 2020. [DOI: 10.1002/slct.202002069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Le Zhang
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing 210037 China
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Junfeng Feng
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing 210037 China
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Bo Cai
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Huimin Zhu
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Yanqi Zhu
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Hui Pan
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing 210037 China
- College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
31
|
Abstract
Catalytic cleavage of strong bonds including hydrogen-hydrogen, carbon-oxygen, and carbon-hydrogen bonds is a highly desired yet challenging fundamental transformation for the production of chemicals and fuels. Transition metal-containing catalysts are employed, although accompanied with poor selectivity in hydrotreatment. Here we report metal-free nitrogen-assembly carbons (NACs) with closely-placed graphitic nitrogen as active sites, achieving dihydrogen dissociation and subsequent transformation of oxygenates. NACs exhibit high selectivity towards alkylarenes for hydrogenolysis of aryl ethers as model bio-oxygenates without over-hydrogeneration of arenes. Activities originate from cooperating graphitic nitrogen dopants induced by the diamine precursors, as demonstrated in mechanistic and computational studies. We further show that the NAC catalyst is versatile for dehydrogenation of ethylbenzene and tetrahydroquinoline as well as for hydrogenation of common unsaturated functionalities, including ketone, alkene, alkyne, and nitro groups. The discovery of nitrogen assembly as active sites can open up broad opportunities for rational design of new metal-free catalysts for challenging chemical reactions. Metal-free catalysts can offer uniquely different activity and selectivity from transition metal-based counterparts. Here, the authors report metal-free nitrogen-assembly carbon with closely-placed nitrogen as active sites, achieving catalytic cleavage of strong bonds including H-H, C-O and C-H.
Collapse
|
32
|
Ji N, Diao X, Li X, Jia Z, Zhao Y, Lu X, Song C, Liu Q, Li C. Toward Alkylphenols Production: Lignin Depolymerization Coupling with Methoxy Removal over Supported MoS2 Catalyst. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01255] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Xinyong Diao
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Xinxin Li
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zhichao Jia
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Yujun Zhao
- School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Chunfeng Song
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Qingling Liu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, 300350 Tianjin, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
33
|
Zhu G, Shi S, Zhao L, Liu M, Gao J, Xu J. Catalytic Activation of Carbon–Hydrogen Bonds in Lignin Linkages over Strong-Base-Modified Covalent Triazine Frameworks for Lignin Oxidative Cleavage. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guozhi Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Song Shi
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Li Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Meng Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jin Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
34
|
Kusumoto S, Kishino M, Nozaki K. Cleavage of C–C and C–O Bonds in β-O-4 Linkage of Lignin Model Compound by Cyclopentadienone Group 8 and 9 Metal Complexes. CHEM LETT 2020. [DOI: 10.1246/cl.200037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masamichi Kishino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Wong SS, Shu R, Zhang J, Liu H, Yan N. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev 2020; 49:5510-5560. [DOI: 10.1039/d0cs00134a] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides critical analysis on various downstream processes to convert lignin derived feedstock into fuels, chemicals and materials.
Collapse
Affiliation(s)
- Sie Shing Wong
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| | - Riyang Shu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- School of Materials and Energy
| | - Jiaguang Zhang
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane
- Lincoln
- UK
| | - Haichao Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University
- International Campus of Tianjin University
- Fuzhou 350207
- P. R. China
- Department of Chemical and Biomolecular Engineering
| |
Collapse
|
36
|
Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 2020; 49:6198-6223. [DOI: 10.1039/d0cs00314j] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights recent advances in photocatalytic transformations of lignocellulosic biomass (polysaccharides and lignin) into chemicals (in particular organic oxygenates).
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Nengchao Luo
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Feng Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|
37
|
Chen X, Zhang K, Xiao LP, Sun RC, Song G. Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:2. [PMID: 31921351 PMCID: PMC6943948 DOI: 10.1186/s13068-019-1644-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin, represents the most abundant renewable carbon source with significant potential for the production of sustainable chemicals and fuels. Current biorefineries focus on cellulose and hemicellulose valorization, whereas lignin is treated as a waste product and is burned to supply energy to the biorefineries. The depolymerization of lignin into well-defined mono-aromatic chemicals suitable for downstream processing is recognized increasingly as an important starting point for lignin valorization. In this study, conversion of all three components of Eucalyptus grandis into the corresponding monomeric chemicals was investigated using solid and acidic catalyst in sequence. RESULTS Lignin was depolymerized into well-defined monomeric phenols in the first step using a Pd/C catalyst. The maximum phenolic monomers yield of 49.8 wt% was achieved at 240 °C for 4 h under 30 atm H2. In the monomers, 4-propanol guaiacol (12.9 wt%) and 4-propanol syringol (31.9 wt%) were identified as the two major phenolic products with 90% selectivity. High retention of cellulose and hemicellulose pulp was also obtained, which was treated with FeCl3 catalyst to attain 5-hydroxymethylfurfural, levulinic acid and furfural simultaneously. The optimal reaction condition for the co-conversion of hemicellulose and cellulose was established as 190 °C and 100 min, from which furfural and levulinic acid were obtained in 55.9% and 73.6% yields, respectively. Ultimately, 54% of Eucalyptus sawdust can be converted into well-defined chemicals under such an integrated biorefinery method. CONCLUSIONS A two-step process (reductive catalytic fractionation followed by FeCl3 catalysis) allows the fractionation of all the three biopolymers (cellulose, hemicellulose, and lignin) in Eucalyptus biomass, which provides a promising strategy to make high-value chemicals from sustainable biomass.
Collapse
Affiliation(s)
- Xue Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Kaili Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| | - Ling-Ping Xiao
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, Liaoning Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
38
|
Nguyen ST, Murray PRD, Knowles RR. Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04813] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip R. D. Murray
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
39
|
Wang M, Wang F. Catalytic Scissoring of Lignin into Aryl Monomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901866. [PMID: 31821648 DOI: 10.1002/adma.201901866] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Lignin is an aromatic polymer, which is the biggest and most sustainable reservoir for aromatics. The selective conversion of lignin polymers into aryl monomers is a promising route to provide aromatics, but it is also a challenging task. Compared to cellulose, lignin remains the most poorly utilized biopolymer due to its complex structure. Although harsh conditions can degrade lignin, the aromatic rings are usually destroyed. This article comprehensively analyzes the challenges facing the scissoring of lignin into aryl monomers and summarizes the recent progress, focusing on the strategies and the catalysts to address the problems. Finally, emphasis is given to the outlook and future directions of this research.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
| |
Collapse
|
40
|
Cao Y, Chen SS, Zhang S, Ok YS, Matsagar BM, Wu KCW, Tsang DCW. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121878. [PMID: 31377047 DOI: 10.1016/j.biortech.2019.121878] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 05/13/2023]
Abstract
Lignin is one of the most promising renewable sources for aromatic hydrocarbons, while effective depolymerization towards its constituent monomers is a particular challenge because of the structural complexity and stability. Intensive research efforts have been directed towards exploiting effective valorization of lignin for the production of bio-based platform chemicals and fuels. The present contribution aims to provide a critical review of key advances in the identification of exact lignin structure subjected to various fractionation technologies and demonstrate the key roles of lignin structures in depolymerization for unique functionalized products. Various technologies (e.g., thermocatalytic approaches, photocatalytic conversion, and mechanochemical depolymerization) are reviewed and evaluated in terms of feasibility and potential for further upgrading. Overall, advances in pristine lignin structure analysis and conversion technologies can facilitate recovery and subsequent utilization of lignin towards tailored commodity chemicals and fungible fuels.
Collapse
Affiliation(s)
- Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
41
|
Wang F, Yu YZ, Chen Y, Yang CY, Yang YY. One-step alcoholysis of lignin into small-molecular aromatics: Influence of temperature, solvent, and catalyst. ACTA ACUST UNITED AC 2019; 24:e00363. [PMID: 31440458 PMCID: PMC6698935 DOI: 10.1016/j.btre.2019.e00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
The reactant suspension mode is an effective strategy to deoxy-liquefaction of lignin. The catalyst Cu-C has the optimal catalytic activity and selectivity in methanol. The catalyst Fe-SiC possesses the optimal catalytic deoxygenation in ethanol. The cleavages of C—O ether bonds and C—C bonds directly promote the formation of small-molecular aromatics.
Lignin valorization is a challenge because of its complex structure and high thermal stability. Supercritical alcoholysis of lignin without external hydrogen in a self-made high-pressure reactor is investigated under different temperatures (450–500 °C) and solvents as well as catalysts by using a reactant suspension mode. Small-molecular arenes and mono-phenols (C7-C12) are generated under short residence time of 30 min. High temperature (500 °C) favors efficient deoxy-liquefaction of lignin (70%) and formation of small-molecular arenes (C6-C9). Solvents methanol and ethanol demonstrate much more synergistic effect on efficient deoxy-liquefaction of lignin than propanol. The catalyst Cu-C has the optimal activity and selectivity in methanol (70% of conversion, 83.93% of arenes), whereas Fe-SiC possesses the optimal catalytic deoxygenation in ethanol, resulting in the formation of arenes other than phenols. Further analysis indicates that lignin is converted into arenes by efficient cleavages of C—O ether bonds and C—C bonds under high temperature and pressure.
Collapse
Affiliation(s)
- Fang Wang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - You-Zhu Yu
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Yigang Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Chun-Yu Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Yuan-Yu Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Material of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
42
|
Li H, Song G. Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People’s Republic of China
| |
Collapse
|
43
|
Sun K, Chen S, Zhang J, Lu GP, Cai C. Cobalt Nanoparticles Embedded inN-Doped Porous Carbon Derived from Bimetallic Zeolitic Imidazolate Frameworks for One-Pot Selective Oxidative Depolymerization of Lignin. ChemCatChem 2019. [DOI: 10.1002/cctc.201801752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kangkang Sun
- Chemical Engineering College; Nanjing University of Science & Technology Xiaolingwei 200; Nanjing 210094 P.R. China
| | - Shujie Chen
- School of Chemistry and Chemical Engineering; Guangzhou University; Guangzhou 510006 P.R. China
| | - Jiawei Zhang
- Chemical Engineering College; Nanjing University of Science & Technology Xiaolingwei 200; Nanjing 210094 P.R. China
| | - Guo-Ping Lu
- Chemical Engineering College; Nanjing University of Science & Technology Xiaolingwei 200; Nanjing 210094 P.R. China
| | - Chun Cai
- Chemical Engineering College; Nanjing University of Science & Technology Xiaolingwei 200; Nanjing 210094 P.R. China
| |
Collapse
|
44
|
Matsagar BM, Kang TC, Wang ZY, Yoshikawa T, Nakasaka Y, Masuda T, Chuang LC, Wu KCW. Efficient liquid-phase hydrogenolysis of a lignin model compound (benzyl phenyl ether) using a Ni/carbon catalyst. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00304a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient liquid-phase hydrogenolysis of benzyl phenyl ether using Ni/CB in an EtOH/H2O co-solvent system.
Collapse
Affiliation(s)
| | - Ting-Cih Kang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Zheng-Yen Wang
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | | | - Yuta Nakasaka
- Division of Applied Chemistry
- Hokkaido University
- Sapporo
- Japan
| | - Takao Masuda
- Division of Applied Chemistry
- Hokkaido University
- Sapporo
- Japan
| | - Li-Ching Chuang
- Division of Chemical Engineering
- Institute of Nuclear Energy Research
- Taoyuan 320
- Taiwan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT)
| |
Collapse
|
45
|
Zhu J, Wang J, Dong G. Catalytic activation of unstrained C(aryl)-C(aryl) bonds in 2,2'-biphenols. Nat Chem 2019; 11:45-51. [PMID: 30397321 PMCID: PMC6383370 DOI: 10.1038/s41557-018-0157-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
Abstract
Transition metal catalysis has emerged as an important means for C-C activation that allows mild and selective transformations. However, the current scope of C-C bonds that can be activated is primarily restricted to either highly strained systems or more polarized C-C bonds. In contrast, the catalytic activation of non-polar and unstrained C-C moieties remains an unmet challenge. Here we report a general approach for the catalytic activation of the unstrained C(aryl)-C(aryl) bonds in 2,2'-biphenols. The key is to utilize the phenol moiety as a handle to install phosphinites as a recyclable directing group. Using hydrogen gas as the reductant, monophenols are obtained with a low catalyst loading and high functional group tolerance. This approach is also applied to the synthesis of 2,3,4-trisubstituted phenols. A further mechanistic study suggests that the C-C activation step is mediated by a rhodium(I) monohydride species. Finally, a preliminary study on breaking the inert biphenolic moieties in lignin models is illustrated.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Awan IZ, Tanchoux N, Quignard F, Albonetti S, Cavani F, Di Renzo F. Heterogeneous Catalysis as a Tool for Production of Aromatic Compounds From Lignin. STUDIES IN SURFACE SCIENCE AND CATALYSIS 2019. [DOI: 10.1016/b978-0-444-64127-4.00013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Zhou W, Nakahashi J, Miura T, Murakami M. Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wang Zhou
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Junki Nakahashi
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Tomoya Miura
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry Kyoto University, Katsura Kyoto 615-8510 Japan
| |
Collapse
|
48
|
Wang S, Gao W, Li H, Xiao LP, Sun RC, Song G. Selective Fragmentation of Biorefinery Corncob Lignin into p-Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. CHEMSUSCHEM 2018; 11:2114-2123. [PMID: 29660264 DOI: 10.1002/cssc.201800455] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/10/2018] [Indexed: 05/11/2023]
Abstract
Lignin is the largest renewable resource of bioaromatics, and the catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we report that ZnMoO4 supported on MCM-41 can catalyze the fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin, and native lignin derived from corncob to yield lignin oily products that contain 15-37.8 wt % phenolic monomers, in which the high selectivities towards methyl coumarate (1) and methyl ferulate (2) were obtained (up to 78 %). The effects of some key parameters such as the influence of the solvent, reaction temperature, time, H2 pressure, and catalyst dosage were examined in view of activity and selectivity. The loss of Zn from the catalyst is discussed as the primary cause of deactivation, and the catalytic activity and selectivity can be well preserved in at least six runs by thermal calcination. The high selectivity to 1 and 2 leads to their easy separation and purification from lignin oily product to provide sustainable monomers for the preparation of functional polyether esters and polyesters.
Collapse
Affiliation(s)
- Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Wa Gao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Helong Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ling-Ping Xiao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| |
Collapse
|
49
|
Li J, Sun H, Liu JX, Zhang JJ, Li ZX, Fu Y. Selective reductive cleavage of C O bond in lignin model compounds over nitrogen-doped carbon-supported iron catalysts. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Selective hydrodeoxygenation of lignin β-O-4 model compounds and aromatic ketones promoted by palladium chloride with acidic CO2/MeOH system. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|