1
|
Isac DL, Rosca E, Airinei A, Ursu EL, Puf R, Man IC, Neamtu A, Laaksonen A. Signature of electronically excited states in Raman spectra of azobenzene derivatives. Computational and experimental approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125828. [PMID: 39923713 DOI: 10.1016/j.saa.2025.125828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Raman spectroscopy can provide highly sensitive and detailed information about the structural fingerprint of molecules, enabling their identification. In this study, our aim is to understand the enhanced intensity observed in experimental Raman measurements. Five azobenzene derivatives were selected, each substituted with different functional groups, for both experimental and theoretical investigations. To reproduce the experimental trend, we employed various levels of theory using the QM-DFT approach. Theoretical results were compared to experimental data through both qualitative and quantitative analyses. A good correlation between theoretical and experimental results was achieved when considering electronic transitions to predict the theoretical Raman spectra and interpret the experimental data. Our theoretical results indicate that even dark (nπ*) transitions, which are forbidden and have an oscillator strength close to zero, can have a signature in the Raman spectra due to the resonance effect with incident energy. Additionally, the vibrational modes stimulated by the presence of ππ* bright states, being at the pre-resonance with the incident energy, was clearly separated from the vibrational frequencies of the dark states, which was evinced in the Raman fingerprint. Theoretical Raman spectra of azobenzene derivatives, substituted with push-pull moieties, revealed contributions from the charge transfer transitions (nπ*CT, ππ*CT) as well as back-donation of electron density, observed for the first time in an azobenzene derivative. Our protocol, proposing a quantitative and qualitative overlap between theoretical and experimental data, confirms the presence of combination modes between vibrational levels and electronically excited states.
Collapse
Affiliation(s)
- Dragos Lucian Isac
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania.
| | - Emilian Rosca
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania
| | - Elena Laura Ursu
- Center of Advanced Research in Bionanocojugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania
| | - Razvan Puf
- Center of Advanced Research in Bionanocojugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania
| | - Isabela Costinela Man
- C. D. Nenițescu Institute of Organic and Supramolecular Chemistry, 202B Splaiul Independentei, Bucharest, Romania
| | - Andrei Neamtu
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanocojugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley 700487 Iasi, Romania; Energy Engineering, Division of Energy Science, Luleå University of Technology 97187 Luleå, Sweden; Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University 10681 Stockholm, Sweden; State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
2
|
Qian N, Zhao Z, El Khoury E, Gao X, Canela C, Shen Y, Shi L, Shi L, Hu F, Wei L, Min W. Illuminating life processes by vibrational probes. Nat Methods 2025; 22:928-944. [PMID: 40360917 DOI: 10.1038/s41592-025-02689-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 05/15/2025]
Abstract
Vibration of chemical bonds can serve as imaging contrast. Vibrational probes, synergized with major advances in chemical bond imaging instruments, have recently flourished and proven valuable in illuminating life processes. Here, we review how the development of vibrational probes with optimal biocompatibility, enhanced sensitivity, multichromatic colors and diverse functionality has extended chemical bond imaging beyond the prevalent label-free paradigm into various novel applications such as imaging metabolites, metabolic imaging, drug imaging, super-multiplex imaging, vibrational profiling and vibrational sensing. These advancements in vibrational probes have greatly facilitated understanding living systems, a new field of vibrational chemical biology.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Elsy El Khoury
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Carli Canela
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yihui Shen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lingyan Shi
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Zhang Y, Wang X, Zhang X, Wang W, Yao Y, Pan J, Shao G, Bi S, Chen N, Jiang J, Shao H. Tunable photo-responsive liquid crystal elastomer fibers via disperse dyeing for smart textiles. MATERIALS HORIZONS 2025. [PMID: 40245020 DOI: 10.1039/d5mh00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Active fibers, responding autonomously to environmental changes, are the basis of the development of smart textiles. However, there are still challenges in achieving responsive specificity and self-resilience of these fibers, which restrict the implementation of precise and complex actuation behaviors. Herein, an efficient strategy with a combination of a two-step crosslinking and disperse dyeing method was proposed to integrate multiple independent and non-interfering photo-thermal conversion nanoparticles into liquid crystal elastomer fibers (LCEFs). Three dyed LCEFs that selectively respond to 532 nm, 808 nm, and 980 nm wavelengths of light have been achieved. Based on this, a Delta robot was constructed with the capability of identifying specific light. The dyed LCEFs were also successfully incorporated into functional textiles through different fabrication technologies, demonstrating an embroidered anti-counterfeit logo, a 2D to 3D transformable disc-woven bionic flower, and an adaptive breathing knitted fabric. This work may facilitate the development of untethered soft robots with tunable and complex actuation, as well as the advancement of novel smart fabrics.
Collapse
Affiliation(s)
- Ye Zhang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Xuan Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Xin Zhang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Wendi Wang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Yichen Yao
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Junjie Pan
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Guangwei Shao
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Siyi Bi
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Nanliang Chen
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Jinhua Jiang
- Engineering Research Center of Technical Textile, Ministry of Education, Shanghai, 201620, P. R. China.
| | - Huiqi Shao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China.
| |
Collapse
|
4
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
5
|
Song L, Li J. Ultrasensitive NIR-II Surface-Enhanced Resonance Raman Scattering Nanoprobes with Nonlinear Photothermal Effect for Optimized Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407787. [PMID: 39610185 DOI: 10.1002/smll.202407787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Surface-enhanced resonance Raman scattering (SERRS) in the second near-infrared (NIR-II) window has great potential for improved phototheranostics, but lacks nonfluorescent, resonant and high-affinity Raman dyes. Herein, it is designed and synthesize a multi-sulfur Raman reporter, NF1064, whose maximum absorption of 1064 nm rigidly resonates with NIR-II excitation laser while possessing absolutely nonfluorescent backgrounds. Ultrafast spectroscopy suggests that the fluorescence quenching mechanism of NF1064 originates from twisted intramolecular charge transfer (TICT) in the excited state. Gold nanorods (AuNRs) decorated with such nonfluorescent NF1064 (AuNR@NF1064) show remarkable SERRS performances, including zero-fluorescence background, femtomolar-level sensitivity as well as superb photostability without fluorescence photobleaching. More importantly, AuNR@NF1064 exhibits a nonlinear photothermal effect upon plasmonic fields of AuNRs by amplifying the non-radiative decay of nonfluorescent NF1064, thus achieving a high photothermal conversion of 68.5% in NIR-II window with potential for further augmentation. With remarkable SERRS and photothermal properties, the NIR-II nanoprobes allow for high-precision intraoperative guided tumor resection within 8 min, and high-efficient hyperthermia combating of drug-resistant bacterial infection within living mouse body. This work not only unlocks the potential of nonfluorescent resonant dyes for NIR-II Raman imaging, but also opens up a new method for boosting photothermal conversion efficiency of nanomaterials.
Collapse
Affiliation(s)
- Laicui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jin Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| |
Collapse
|
6
|
Ma W, Wang Y, Wang R, Fan X, Ma S, Tang Y, Ai Z, Yao Y, Zhang L, Gao T. Azo-Enhanced Raman Scattering Probing Proton Transfer between Water and Nanoscale Zero-valent Iron. J Am Chem Soc 2024; 146:32785-32794. [PMID: 39541334 DOI: 10.1021/jacs.4c13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The interaction between a solid and water at their interface, especially proton transfer, impacts molecular-scale catalysis, macroscopic environmental science, and geoscience. Although being highly desired, directly probing proton transfer between a solid and water is a great challenge, given the subnanometer to nanometer scale of the interface. The fundamental challenge lies in the lack of a measurement tool to sensitively observe local proton concentration without introducing an exogenous electrode or nanoparticle with a minimum size of tens of nanometers. Here, we demonstrate an azo-enhanced Raman scattering strategy to design a 2 nm long small-molecule pH probe with a chelating group anchoring to the solid surface. Empowered by the intramolecular Raman enhancing sensitivity, the probe directly observes proton transfer between water and nanoscale zero-valent iron (nZVI), a famous environmental material for pollution control. This molecular-scale interfacial probing methodology offers a powerful tool to pave the way for advanced environmental and geochemical discernment and management.
Collapse
Affiliation(s)
- Weiwei Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yuxin Wang
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Fan
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sicong Ma
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yuchen Tang
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingjuan Gao
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
7
|
Hu S, Yin X, Liu S, Yan Y, Mu J, Liu H, Cen Q, Wu M, Lv L, Liu R, Li H, Yao M, Zhao R, Yao D, Zou B, Zou G, Ma Y. Lighting Up Nonemissive Azobenzene Derivatives by Pressure. J Am Chem Soc 2024; 146:28961-28972. [PMID: 39279160 DOI: 10.1021/jacs.4c09784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Pressure-induced emission (PIE) is a compelling phenomenon that can activate luminescence within nonemissive materials. However, PIE in nonemissive organic materials has never been achieved. Herein, we present the first observation of PIE in an organic system, specifically within nonemissive azobenzene derivatives. The emission of 1,2-bis(4-(anthracen-9-yl)phenyl)diazene was activated at 0.52 GPa, primarily driven by local excitation promotion induced by molecular conformational changes. Complete photoisomerization suppression of the molecule was observed at 1.5 GPa, concurrently accelerating the emission enhancement to 3.53 GPa. Differing from the key role of isomerization inhibition in conventional perception, our findings demonstrate that the excited-state constituent is the decisive factor for emission activation, providing a potentially universal approach for high-efficiency azobenzene emission. Additionally, PIE was replicated in the analogue 1,2-bis(4-(9H-carbazol-9-yl)phenyl)diazene, confirming the general applicability of our findings. This work marks a significant breakthrough within the PIE paradigm and paves the novel high-pressure route for crystalline-state photoisomerization investigation.
Collapse
Affiliation(s)
- Shuhe Hu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiu Yin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuye Yan
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiahui Mu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiuyan Cen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Min Wu
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Long Lv
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Haiyan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Mingguang Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ruiyang Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Kay Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Pruccoli A, Zumbusch A. High Sensitivity Stimulated Raman Scattering Microscopy with Electronic Resonance Enhancement. Chemphyschem 2024; 25:e202400309. [PMID: 38923336 DOI: 10.1002/cphc.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Raman microscopy is an important tool for labelfree microscopy. However, spontaneous Raman microscopy suffers from slow image acquisition rates and susceptibility to fluorescence background. Coherent Raman microsocopy techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy, by contrast, offer fast imaging capability and robustness against sample fluorescence. Yet, their rather low sensitivity impedes their broader application. This review discusses sensitivity enhancement of SRS microscopy to μ ${\mu }$ M detection levels by using electronically pre-resonant excitation. We present the foundations of this approach, discuss its technological implementation, and show first successful applications. A special emphasis is given to outlining new experimental developments allowing novel types of investigations.
Collapse
Affiliation(s)
- Andrea Pruccoli
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
9
|
Deng B, Zhang Y, Qiu G, Li J, Lin LL, Ye J. NIR-II Surface-Enhanced Raman Scattering Nanoprobes in Biomedicine: Current Impact and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402235. [PMID: 38845530 DOI: 10.1002/smll.202402235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Indexed: 10/04/2024]
Abstract
The field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability. The discussion of future directions includes the refinement of nanoprobe substrates, emphasizing the tailoring of optical properties of metallic SERS-active nanoprobes, and exploring non-metallic alternatives. The intricacies of designing Raman reporters for the NIR-II resonance and the potential of these reporters to advance the field are also discussed. The integration of artificial intelligence (AI) into nanoprobe design represents a cutting-edge approach to overcome current challenges. This article also examines the emergence of deep Raman techniques for through-tissue SERS detection, toward NIR-II SERS tomography. It acknowledges instrumental advancements like improved charge-coupled device sensitivity and accelerated imaging speeds. The article concludes by addressing the critical aspects of biosafety, ease of functionalization, compatibility, and the path to clinical translation. With a comprehensive overview of current achievements and future prospects, this review aims to illuminate the path for NIR-II SERS nanoprobes to innovate diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Binge Deng
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuqing Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Guangyu Qiu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jin Li
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
10
|
Chen C, Wang X, Wang X, Waterhouse GIN, Jiang M, Qiao X, Xu Z. "One-Pot" Readout Cyano-Programmable SERS-Encoded Platform Enables Ultrasensitive and Interference-Free Detection of Multitarget Bioamines. Anal Chem 2024; 96:12862-12874. [PMID: 39045809 DOI: 10.1021/acs.analchem.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) detection platforms with high signal-to-noise ratio in the "biological-silent" region (1800-2800 cm-1) are presently being developed for sensing and imaging applications, overcoming the limitations of traditional SERS studies in the "fingerprint" region. Herein, a series of cyano-programmable Raman reporters (RRs) operating in the "biological-silent" region were designed based on 4-mercaptobenzonitrile derivatives and then embedded in core-shell Au@Ag nanostars using a "bottom-up" strategy to provide SERS enhancement and encapsulation protection. The approach enabled the "one-pot" readout interference-free detection of multiple bioamines (histamine, tyramine, and β-phenethylamine) based on aptamer-driven magnetic-induced technology. Three cyano-encoded SERS tags resulted in separate SERS signals for histamine, tyramine, and β-phenethylamine at 2220, 2251, and 2150 cm-1, respectively. A target-specific aptamer-complementary DNA competitive binding strategy allowed the formation of microscale core-satellite assemblies between Fe3O4-based magnetic beads and the SERS tags, enabling multiple SERS signals to be observed simultaneously under a 785 nm laser excitation laser. The LODs for detection of the three bioamines were 0.61 × 10-5, 2.67 × 10-5, and 1.78 × 10-5 mg L-1, respectively. The SERS-encoded platform utilizing programmable reporters provides a fast and sensitive approach for the simultaneous detection of multiple biomarkers, paving the way for routine SERS analyses of multiple analytes in complex matrices.
Collapse
Affiliation(s)
- Chen Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xinyue Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Ximo Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xuguang Qiao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| |
Collapse
|
11
|
Fujioka H, Murao Y, Okinaka M, John Spratt S, Shou J, Kawatani M, Kojima R, Tachibana R, Urano Y, Ozeki Y, Kamiya M. Cyano-Hydrol green derivatives: Expanding the 9-cyanopyronin-based resonance Raman vibrational palette. Bioorg Med Chem Lett 2024; 106:129757. [PMID: 38636718 DOI: 10.1016/j.bmcl.2024.129757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
9-cyanopyronin is a promising scaffold that exploits resonance Raman enhancement to enable sensitive, highly multiplexed biological imaging. Here, we developed cyano-Hydrol Green (CN-HG) derivatives as resonance Raman scaffolds to expand the color palette of 9-cyanopyronins. CN-HG derivatives exhibit sufficiently long wavelength absorption to produce strong resonance Raman enhancement for near-infrared (NIR) excitation, and their nitrile peaks are shifted to a lower frequency than those of 9-cyanopyronins. The fluorescence of CN-HG derivatives is strongly quenched due to the lack of the 10th atom, unlike pyronin derivatives, and this enabled us to detect spontaneous Raman spectra with high signal-to-noise ratios. CN-HG derivatives are powerful candidates for high performance vibrational imaging.
Collapse
Affiliation(s)
- Hiroyoshi Fujioka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuta Murao
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Momoko Okinaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Spencer John Spratt
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Jingwen Shou
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Minoru Kawatani
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Tachibana
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Ozeki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mako Kamiya
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Research Center for Autonomous Systems Meterialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho. Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
12
|
Jiang Y, Cao J, Hu S, Cheng T, Wang H, Guo X, Ying Y, Liu X, Wang F, Wen Y, Wu Y, Yang H. Internal standard optimization advances sensitivity and robustness of ratiometric detection method. Analyst 2024; 149:2806-2811. [PMID: 38683246 DOI: 10.1039/d4an00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
We design a p-aminothiophenol (pATP) modified Au/ITO chip to determine nitrite ions in lake water by a ratiometric surface-enhanced Raman scattering (SERS) method based on nitrite ions triggering the transformation of pATP to p,p'-dimercaptoazobenzene (DMAB). Intriguingly, by using the SERS peak (at 1008 cm-1) from benzoic ring deforming as an internal standard instead of the traditional peak at 1080 cm-1, the detection sensitivity of the method was improved 10 times.
Collapse
Affiliation(s)
- Yuning Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Jiaying Cao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Sen Hu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Tao Cheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Hanyu Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Environmental and Geographic Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
13
|
Vardaki MZ, Gregoriou VG, Chochos CL. Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window. RSC Chem Biol 2024; 5:273-292. [PMID: 38576725 PMCID: PMC10989507 DOI: 10.1039/d3cb00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024] Open
Abstract
Spectroscopic studies increasingly employ Raman tags exhibiting a signal in the cell - silent region of the Raman spectrum (1800-2800 cm-1), where bands arising from biological molecules are inherently absent. Raman tags bearing functional groups which contain a triple bond, such as alkyne and nitrile or a carbon-deuterium bond, have a distinct vibrational frequency in this region. Due to the lack of spectral background and cell-associated bands in the specific area, the implementation of those tags can help overcome the inherently poor signal-to-noise ratio and presence of overlapping Raman bands in measurements of biological samples. The cell - silent Raman tags allow for bioorthogonal imaging of biomolecules with improved chemical contrast and they have found application in analyte detection and monitoring, biomarker profiling and live cell imaging. This review focuses on the potential of the cell - silent Raman region, reporting on the tags employed for biomedical applications using variants of Raman spectroscopy.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
| | - Vasilis G Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| | - Christos L Chochos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue Athens 11635 Greece
- Advent Technologies SA, Stadiou Street, Platani Rio Patras 26504 Greece
| |
Collapse
|
14
|
Yang Y, Bai X, Hu F. Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control. Nat Commun 2024; 15:2578. [PMID: 38519503 PMCID: PMC10959996 DOI: 10.1038/s41467-024-46904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Optical imaging with photo-controllable probes has greatly advanced biological research. With superb chemical specificity of vibrational spectroscopy, stimulated Raman scattering (SRS) microscopy is particularly promising for super-multiplexed optical imaging with rich chemical information. Functional SRS imaging in response to light has been recently demonstrated, but multiplexed SRS imaging with reversible photocontrol remains unaccomplished. Here, we create a multiplexing palette of photoswitchable polyynes with 16 Raman frequencies by coupling asymmetric diarylethene with super-multiplexed Carbow (Carbow-switch). Through optimization of both electronic and vibrational spectroscopy, Carbow-switch displays excellent photoswitching properties under visible light control and SRS response with large frequency change and signal enhancement. Reversible and spatial-selective multiplexed SRS imaging of different organelles are demonstrated in living cells. We further achieve photo-selective time-lapse imaging of organelle dynamics during oxidative stress and protein phase separation. The development of Carbow-switch for photoswitchable SRS microscopy will open up new avenues to study complex interactions and dynamics in living cells with high spatiotemporal precision and multiplexing capability.
Collapse
Affiliation(s)
- Yueli Yang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Xueyang Bai
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
15
|
Li J, Liu F, Bi X, Ye J. Imaging immune checkpoint networks in cancer tissues with supermultiplexed SERS nanoprobes. Biomaterials 2023; 302:122327. [PMID: 37716283 DOI: 10.1016/j.biomaterials.2023.122327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Combined immune checkpoint (ICP) inhibitors maximize immune response rates of patients compared to the single-drug treatment strategy in cancer immunotherapy, and prediction of such optimal combinations requires high-throughput imaging techniques and suitable data analysis. In this work, we report a rational strategy for predicting combined drugs of ICP inhibitors based on supermultiplexed surface-enhanced Raman scattering (SERS) imaging and correlation network analysis. To this end, we first built an ultrasensitive and supermultiplexed volume-active SERS (VASERS) nanoprobe platform, where Raman molecules are randomly arranged in 3D volumetric electromagnetic hotspots. By examining various bio-orthogonal Raman molecules with different electronic properties, we developed frequency modulation guidelines and achieved 32 resolvable colors in the Raman-silent region, the largest number of resolvable SERS colors demonstrated to date. We then demonstrated one-shot ten-color imaging of ICPs with high spectral resolution in clinical biopsies of breast cancer tissues, suggesting highly heterogeneous expression patterns of ICPs across tumor subtypes. Through correlation network analysis of these high-throughput Raman data, we investigated co-expression relationships among these ten-panel ICPs in cancer tissues and finally identified a variety of possible ICP combinations for synergistic immunotherapy of breast cancers, which may lead to novel therapeutical insights.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Fugang Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinyuan Bi
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China.
| |
Collapse
|
16
|
Li J, Deng B, Ye J. Fluorescence-free bis(dithiolene)nickel dyes for surface-enhanced resonance Raman imaging in the second near-infrared window. Biomaterials 2023; 300:122211. [PMID: 37379685 DOI: 10.1016/j.biomaterials.2023.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Binge Deng
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jian Ye
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
17
|
Rex M C, Debroy A, Nirmala MJ, Mukherjee A. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Adv 2023; 13:22905-22917. [PMID: 37520083 PMCID: PMC10375451 DOI: 10.1039/d3ra04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600036 India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
18
|
Tang Y, Zheng X, Gao T. Orthogonal Combinatorial Raman Codes Enable Rapid High-Throughput-Out Library Screening of Cell-Targeting Ligands. RESEARCH (WASHINGTON, D.C.) 2023; 6:0136. [PMID: 37214198 PMCID: PMC10198463 DOI: 10.34133/research.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
High-throughput assays play an important role in the fields of drug discovery, genetic analysis, and clinical diagnostics. Although super-capacity coding strategies may facilitate labeling and detecting large numbers of targets in a single assay, practically, the constructed large-capacity codes have to be decoded with complicated procedures or are lack of survivability under the required reaction conditions. This challenge results in either inaccurate or insufficient decoding outputs. Here, we identified chemical-resistant Raman compounds to build a combinatorial coding system for the high-throughput screening of cell-targeting ligands from a focused 8-mer cyclic peptide library. The accurate in situ decoding results proved the signal, synthetic, and functional orthogonality for this Raman coding strategy. The orthogonal Raman codes allowed for a rapid identification of 63 positive hits at one time, evidencing a high-throughput-out capability in the screening process. We anticipate this orthogonal Raman coding strategy being generalized to enable efficient high-throughput-out screening of more useful ligands for cell targeting and drug discovery.
Collapse
|
19
|
Cao J, Zhu W, Zhou J, Zhao BC, Pan YY, Ye Y, Shen AG. Engineering a SERS Sensing Nanoplatform with Self-Sterilization for Undifferentiated and Rapid Detection of Bacteria. BIOSENSORS 2023; 13:75. [PMID: 36671910 PMCID: PMC9855742 DOI: 10.3390/bios13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The development of a convenient, sensitive, rapid and self-sterilizing biosensor for microbial detection is important for the prevention and control of foodborne diseases. Herein, we designed a surface-enhanced Raman scattering (SERS) sensing nanoplatform based on a capture-enrichment-enhancement strategy to detect bacteria. The gold-Azo@silver-cetyltrimethylammonium bromide (Au-Azo@Ag-CTAB) SERS nanotags were obtained by optimizing the synthesis process conditions. The results showed that the modification of CTAB enabled the nanotags to bind to different bacteria electrostatically. This SERS sensing nanoplatform was demonstrated to be fast (15 min), accurate and sensitive (limit of detection (LOD): 300 and 400 CFU/mL for E. coli and S. aureus, respectively). Of note, the excellent endogenous antibacterial activity of CTAB allowed the complete inactivation of bacteria after the assay process, thus effectively avoiding secondary contamination.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wei Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ji Zhou
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Bai-Chuan Zhao
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yao-Yu Pan
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ai-Guo Shen
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| |
Collapse
|
20
|
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Zhang XG, Zhong JH. Correlating the orbital overlap area and vibrational frequency shift of an isocyanide moiety adsorbed on Pt and Pd covered Au(111) surfaces. Phys Chem Chem Phys 2022; 24:23301-23308. [PMID: 36165277 DOI: 10.1039/d2cp03444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orbital interactions between adsorbed molecules and the underlying metal surfaces play critical roles in a wide range of surface and interfacial processes. Establishing a correlation between an experimental observable (e.g., vibrational frequency shift of the adsorbed molecule) and the orbital interactions is of vital importance. Herein, theoretical calculations are used to investigate the vibrational frequency shift of phenyl isocyanide molecules as a probe molecule adsorbed on mono- and bi-layer Pt and Pd covered Au(111) surfaces and Pd2Au4 and Pt2Au4 clusters. By analyzing the density of states (DOS) of the adsorption system, we show that the orbital overlap area of d electronic DOS with a molecular σ or π* orbital, particularly their ratio (Rd-σ/d-π*), can be a meaningful descriptor to explain the frequency shift of the CN moiety. This hypothesis has been verified by simulations for phenyl isocyanide with electron donating NH2- and withdrawing CF3- substituent groups, formonitrile and carbon monoxide. Quasi-linear dependence of the frequency shift on Rd-σ/d-π* is observed for both the red and blue shift regions. Our findings build up on previous notions of electronic interactions, which will provide a more quantitative and solid footing to understand and analyze the frequency shift of adsorbed molecules on metal surfaces and the related electronic interactions and catalytic properties.
Collapse
Affiliation(s)
- Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jin-Hui Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
23
|
Li M, Tian S, Meng F, Yin M, Yue Q, Wang S, Bu W, Luo L. Continuously Multiplexed Ultrastrong Raman Probes by Precise Isotopic Polymer Backbone Doping for Multidimensional Information Storage and Encryption. NANO LETTERS 2022; 22:4544-4551. [PMID: 35604007 DOI: 10.1021/acs.nanolett.2c01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Raman-based super multiplexing has attracted great interest in imaging, biological analysis, identity security, and information storage. It still remains a great challenge to synthesize a large number of different Raman-active molecules to fulfill the Raman color palette. Here, we report a facile and systematic strategy to construct continuously multiplexed ultrastrong Raman probes. By precisely incorporating different ratios of 13C isotope into the backbone of poly(deca-4,6-diynedioic acid) (PDDA), we can obtain a library of PDDAs with tunable double-bond Raman frequencies and adjustable intensity ratios of two triple-bond (13C≡13C and 12C≡12C) Raman peaks, while retaining the ultrastrong Raman signals and physicochemical properties of the polymer. We also demonstrate the successful application of 13C-doped PDDAs as security inks to generate a novel 3D matrix barcode system for information encryption and high-density data storage. The isotopically doped PDDA series herein pave a new way to advance Raman-based super multiplexing for diverse applications.
Collapse
Affiliation(s)
- Mengyang Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sidan Tian
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Mingming Yin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Qiang Yue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wenting Bu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Minister of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
24
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
25
|
Du J, Wei L. Multicolor Photoactivatable Raman Probes for Subcellular Imaging and Tracking by Cyclopropenone Caging. J Am Chem Soc 2021; 144:777-786. [PMID: 34913693 DOI: 10.1021/jacs.1c09689] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photoactivatable probes, with high-precision spatial and temporal control, have largely advanced bioimaging applications, particularly for fluorescence microscopy. While emerging Raman probes have recently pushed the frontiers of Raman microscopy for noninvasive small-molecule imaging and supermultiplex optical imaging with superb sensitivity and specificity, photoactivatable Raman probes remain less explored. Here, we report the first general design of multicolor photoactivatable alkyne Raman probes based on cyclopropenone caging for live-cell imaging and tracking. The fast photochemically generated alkynes from cyclopropenones enable background-free Raman imaging with desired photocontrollable features. We first synthesized and spectroscopically characterized a series of model cyclopropenones and identified the suitable light-activating scaffold. We further engineered the scaffold for enhanced chemical stability in a live-cell environment and improved Raman sensitivity. Organelle-targeting probes were then generated to achieve targeted imaging of mitochondria, lipid droplets, endoplasmic reticulum, and lysosomes. Multiplexed photoactivated imaging and tracking at both subcellular and single-cell levels was next demonstrated to monitor the dynamic migration and interactions of the cellular contents. We envision that this general design of multicolor photoactivatable Raman probes would open up new ways for spatial-temporal controlled profiling and interrogations in complex biological systems with high information throughput.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
26
|
Su X, Liu R, Li Y, Han T, Zhang Z, Niu N, Kang M, Fu S, Wang D, Wang D, Tang BZ. Aggregation-Induced Emission-Active Poly(phenyleneethynylene)s for Fluorescence and Raman Dual-Modal Imaging and Drug-Resistant Bacteria Killing. Adv Healthc Mater 2021; 10:e2101167. [PMID: 34606177 DOI: 10.1002/adhm.202101167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Poly(phenyleneethynylene) (PPE) is a widely used functional conjugated polymer with applications ranging from organic optoelectronics and fluorescence sensors to optical imaging and theranostics. However, the fluorescence efficiency of PPE in aggregate states is generally not as good as their solution states, which greatly compromises their performance in fluorescence-related applications. Herein, a series of PPE derivatives with typical aggregation-induced emission (AIE) properties is designed and synthesized. In these PPEs, the diethylamino-substituted tetraphenylethene units function as the long-wavelength AIE source and the alkyl side chains serve as the functionalization site. The obtained AIE-active PPEs with large π-conjugation show strong aggregate-state fluorescence, interesting self-assembly behaviors, inherently enhanced alkyne vibrations in the Raman-silent region of cells, and efficient antibacterial activities. The PPE nanoparticles with good cellular uptake capability can clearly and sensitively visualize the tumor region and residual tumors via their fluorescence and Raman signals, respectively, to benefit the precise tumor resection surgery. After post-functionalization, the obtained PPE-based polyelectrolyte can preferentially image bacteria over mammalian cells and possesses efficient photodynamic killing capability against Gram-positive and drug-resistant bacteria. This work provides a feasible design strategy for developing functional conjugated polymers with multimodal imaging capability as well as photodynamic antimicrobial ability.
Collapse
Affiliation(s)
- Xiang Su
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences Nankai University Tianjin 300071 China
| | - Ying Li
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ting Han
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Zhijun Zhang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Niu Niu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Miaomiao Kang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Shuang Fu
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Deliang Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
27
|
Tang Y, Chen X, Zhang S, Smith ZJ, Gao T. Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes. Anal Chem 2021; 93:15659-15666. [PMID: 34779624 DOI: 10.1021/acs.analchem.1c03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Due to the fundamental mechanism of vibrational state transitions for chemical bonds, the spectra of Raman scattering are narrow-banded and photostable signals capable of probing specific reactions. In the case of protonation/deprotonation reactions, certain chemical bonds are broken and new bonds are formed. Based on the changes of the vibrational modes for the corresponding bonds, fingerprint analysis of multiple Raman bands may allow for the in situ visualization of proton distribution in live cells. However, Raman scattering faces the well-known challenge of low sensitivity. To perform the vibrational fingerprint analysis of Raman scattering by overcoming this challenge, we developed an azo-based resonance Raman pH probe. It was an azobenzene-featured small molecule responsive to protons with the inherent Raman signal ∼104-fold more intense than that of the conventional alkyne-type Raman reporter 5-ethynyl-2'-deoxyuridine. Through the substitution of the electron-donating and -withdrawing entities to the azobenzene group, the effect of resonance Raman scattering and fluorescence quenching was obtained. This effect resulted in a significant Raman enhancement factor of ∼103 compared to the counterpart molecules without the molecular design. Based on the enhanced Raman sensitivity of the azo-based resonance Raman pH probe, the identification of vibrational fingerprint changes at the azo group was achieved during the protonation/deprotonation reactions, and the vibrational fingerprint analysis resolved a pH difference of less than 0.2 unit. The method enabled sensitive hyperspectral cell imaging that clearly visualized the change of proton distribution in autophagic cells.
Collapse
Affiliation(s)
- Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xuqi Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shaohua Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
28
|
Wang S, Zhang F. Azo Pigments Make Raman Spectral Multiplexing More Sensitive. ACS CENTRAL SCIENCE 2021; 7:709-711. [PMID: 34079891 PMCID: PMC8161472 DOI: 10.1021/acscentsci.1c00527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular
Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular
Catalysis and Innovative Materials, Fudan
University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular
Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular
Catalysis and Innovative Materials, Fudan
University, Shanghai 200433, China
| |
Collapse
|