1
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Whedon S, Lee K, Wang ZA, Zahn E, Lu C, Yapa Abeywardana M, Fairall L, Nam E, DuBois-Coyne S, De Ioannes P, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. Circular Engineered Sortase for Interrogating Histone H3 in Chromatin. J Am Chem Soc 2024; 146:33914-33927. [PMID: 39585806 PMCID: PMC11638967 DOI: 10.1021/jacs.4c12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating the chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here, we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle-down proteomics with tandem mass tags. This cut-and-paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetic discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel
D. Whedon
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A. Wang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Congcong Lu
- Epigenetics
Institute, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maheeshi Yapa Abeywardana
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Eunju Nam
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah DuBois-Coyne
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Xinlei Sheng
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adelina Andrei
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department
of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York 10016, United States
| | - Yingming Zhao
- Ben
May Department
for Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - John W. R. Schwabe
- Leicester
Institute of Structural and Chemical Biology, Department of Molecular
and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Mingxuan Wu
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin A. Garcia
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham and Women’s Hospital,
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Whedon SD, Lee K, Wang ZA, Zahn E, Lu C, Yapa-Abeywardana M, Fairall L, Nam E, Dubois-Coyne S, Ioannes PD, Sheng X, Andrei A, Lundberg E, Jiang J, Armache KJ, Zhao Y, Schwabe JWR, Wu M, Garcia BA, Cole PA. A circular engineered sortase for interrogating histone H3 in chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612318. [PMID: 39372790 PMCID: PMC11451751 DOI: 10.1101/2024.09.10.612318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reversible modification of the histone H3 N-terminal tail is critical in regulating chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes. This approach significantly accelerates the production of both symmetrically and asymmetrically modified nucleosomes. We demonstrate the utility of asymmetrically modified nucleosomes produced in this way in dissecting the impact of multiple modifications on eraser enzyme processing and molecular recognition by a reader protein. Moreover, we show that cW11 sortase is very effective at cutting and tagging histone H3 tails from endogenous histones, facilitating multiplex "cut-and-paste" middle down proteomics with tandem mass tags. This cut-and- paste proteomics approach permits the quantitative analysis of histone H3 modification crosstalk after treatment with different histone deacetylase inhibitors. We propose that these chemoenzymatic tail isolation and modification strategies made possible with cW11 sortase will broadly power epigenetics discovery and therapeutic development.
Collapse
Affiliation(s)
- Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Zahn
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Congcong Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Maheeshi Yapa-Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sarah Dubois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pablo De Ioannes
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Xinlei Sheng
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - Adelina Andrei
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Lundberg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jennifer Jiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Peng S, Liu X, Lu C, Wang H, Liu X, Gong Q, Tao H, Xu H, Tian C, Xu G, Li JB. Efficient Chemical Synthesis of Multi-Monoubiquitylated and Diubiquitylated Histones by the α-Halogen Ketone-Mediated Strategy. Bioconjug Chem 2024; 35:944-953. [PMID: 38954775 DOI: 10.1021/acs.bioconjchem.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The chemical synthesis of homogeneously ubiquitylated histones is a powerful approach to decipher histone ubiquitylation-dependent epigenetic regulation. Among the various methods, α-halogen ketone-mediated conjugation chemistry has recently been an attractive strategy to generate single-monoubiquitylated histones for biochemical and structural studies. Herein, we report the use of this strategy to prepare not only dual- and even triple-monoubiquitylated histones but also diubiquitin-modified histones. We were surprised to find that the synthetic efficiencies of multi-monoubiquitylated histones were comparable to those of single-monoubiquitylated ones, suggesting that this strategy is highly tolerant to the number of ubiquitin monomers installed onto histones. The facile generation of a series of single-, dual-, and triple-monoubiquitylated H3 proteins enabled us to evaluate the influence of ubiquitylation patterns on the binding of DNA methyltransferase 1 (DNMT1) to nucleosomes. Our study highlights the potential of site-specific conjugation chemistry to generate chemically defined histones for epigenetic studies.
Collapse
Affiliation(s)
- Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Haibo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Xiaotong Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Qingyue Gong
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Huizhong Tao
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Hongrui Xu
- Suzhou Municipal Center for Disease Control and Prevention, Suzhou 215004, China
| | - Changlin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Kawaf RR, Ramadan WS, El-Awady R. Deciphering the interplay of histone post-translational modifications in cancer: Co-targeting histone modulators for precision therapy. Life Sci 2024; 346:122639. [PMID: 38615747 DOI: 10.1016/j.lfs.2024.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.
Collapse
Affiliation(s)
- Rawan R Kawaf
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
7
|
Currie MF, Singh SK, Ji M, Chatterjee C. The semisynthesis of site-specifically modified histones and histone-based probes of chromatin-modifying enzymes. Methods 2023; 215:28-37. [PMID: 37244506 PMCID: PMC10364803 DOI: 10.1016/j.ymeth.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
Histone post-translational modifications (PTMs) on lysine residues, including methylation, ubiquitylation, and sumoylation, have been studied using semisynthetic histones reconstituted into nucleosomes. These studies have revealed the in vitro effects of histone PTMs on chromatin structure, gene transcription, and biochemical crosstalk. However, the dynamic and transient nature of most enzyme-chromatin interactions poses a challenge toward identifying specific enzyme-substrate interactions. To address this, we report methodology for the synthesis of two ubiquitylated activity-based probe histones, H2BK120ub(G76C) and H2BK120ub(G76Dha), that may be used to trap enzyme active-site cysteines as disulfides or in the form of thioether linkages, respectively. The general synthetic method we report for converting ubiquitylated nucleosomes into activity-based probes may also be applied to other histone sites of ubiquitylation in order to facilitate the identification of enzyme-chromatin interactions.
Collapse
Affiliation(s)
- Madeline F Currie
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Meihuan Ji
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
8
|
Li Z, Tong Z, Gong Q, Ai H, Peng S, Chen C, Chu GC, Li JB. The expedient, CAET-assisted synthesis of dual-monoubiquitinated histone H3 enables evaluation of its interaction with DNMT1. Chem Sci 2023; 14:5681-5688. [PMID: 37265717 PMCID: PMC10231317 DOI: 10.1039/d3sc00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Site-selective conjugation chemistry has proven effective to synthesize homogenously ubiquitinated histones. Recently, a powerful strategy using 2-((2-chloroethyl) amino) ethane-1-thiol (CAET) as a bifunctional handle was developed to generate chemically stable ubiquitin chains without racemization and homodimerization. Herein, we extend this strategy to the expedient synthesis of ubiquitinated histones, exemplifying its utility to not only synthesize single-monoubiquitinated histones, but dual-monoubiquitinated histones as well. The synthetic histones enabled us to evaluate the binding of DNMT1 to ubiquitinated nucleosomes and map the hotspots of this interaction. Our work highlights the potential of modern chemical protein synthesis to synthesize ubiquitinated histones for epigenetic studies.
Collapse
Affiliation(s)
- Zichen Li
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Zebin Tong
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Qingyue Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
- School of Life Sciences, University of Science and Technology of China Hefei 230026 China
| | - Huasong Ai
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Shuai Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Cong Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| | - Guo-Chao Chu
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University Suzhou, 215123 China
| |
Collapse
|
9
|
Singh SK, Reyna A, Xie X, Mao H, Ji M, Zheng N, Hsu PL, Chatterjee C. Total chemical synthesis of sumoylated histone H4 reveals negative biochemical crosstalk with histone ubiquitylation. Chem Commun (Camb) 2023; 59:4063-4066. [PMID: 36938583 PMCID: PMC10099519 DOI: 10.1039/d2cc06683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
An efficient total chemical synthesis of site-specifically sumoylated histone H4 was undertaken to generate homogenously modified mononucleosomes. These were tested as substrates in biochemical assays with the histone H2B-specific ubiquitin ligases Rad6 and Bre1, which revealed the strong inhibition of H2B ubiquitylation by SUMO. This novel negative biochemical crosstalk between SUMO and ubiquitin was also confirmed to exist in human cells.
Collapse
Affiliation(s)
- Sumeet K Singh
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Andres Reyna
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Xiaowen Xie
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Haibin Mao
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Meihuan Ji
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | - Ning Zheng
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | - Peter L Hsu
- Department of Pharmacology, University of Washington; Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
10
|
Iwase R, Dempsey DR, Whedon SD, Jiang H, Palanski BA, Deng B, Cole PA. Semisynthetic Approach to the Analysis of Tumor Suppressor PTEN Ubiquitination. J Am Chem Soc 2023; 145:6039-6044. [PMID: 36897111 PMCID: PMC10071500 DOI: 10.1021/jacs.2c13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Phosphatase and tensin homologue (PTEN) tumor suppressor protein is a PIP3 lipid phosphatase that is subject to multifaceted post-translational modifications. One such modification is the monoubiquitination of Lys13 that may alter its cellular localization but is also positioned in a manner that could influence several of its cellular functions. To explore the regulatory influence of ubiquitin on PTEN's biochemical properties and its interaction with ubiquitin ligases and a deubiquitinase, the generation of a site-specifically and stoichiometrically ubiquitinated protein could be beneficial. Here, we describe a semisynthetic method that relies upon sequential expressed protein ligation steps to install ubiquitin at a Lys13 mimic in near full-length PTEN. This approach permits the concurrent installation of C-terminal modifications in PTEN, thereby facilitating an analysis of the interplay between N-terminal ubiquitination and C-terminal phosphorylation. We find that the N-terminal ubiquitination of PTEN inhibits its enzymatic function, reduces its binding to lipid vesicles, modulates its processing by NEDD4-1 E3 ligase, and is efficiently cleaved by the deubiquitinase, USP7. Our ligation approach should motivate related efforts for uncovering the effects of ubiquitination of complex proteins.
Collapse
Affiliation(s)
- Reina Iwase
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel R. Dempsey
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Dermatology and Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Samuel D. Whedon
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Brad A. Palanski
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bedphiny Deng
- Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115, United States
- College of Natural Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Cao Y, Huang C, Zhao X, Yu J. Regulation of SUMOylation on RNA metabolism in cancers. Front Mol Biosci 2023; 10:1137215. [PMID: 36911524 PMCID: PMC9998694 DOI: 10.3389/fmolb.2023.1137215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Post-translational modifications of proteins play very important roles in regulating RNA metabolism and affect many biological pathways. Here we mainly summarize the crucial functions of small ubiquitin-like modifier (SUMO) modification in RNA metabolism including transcription, splicing, tailing, stability and modification, as well as its impact on the biogenesis and function of microRNA (miRNA) in particular. This review also highlights the current knowledge about SUMOylation regulation in RNA metabolism involved in many cellular processes such as cell proliferation and apoptosis, which is closely related to tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Yingting Cao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caihu Huang
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology and Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ai H, Chu GC, Gong Q, Tong ZB, Deng Z, Liu X, Yang F, Xu Z, Li JB, Tian C, Liu L. Chemical Synthesis of Post-Translationally Modified H2AX Reveals Redundancy in Interplay between Histone Phosphorylation, Ubiquitination, and Methylation on the Binding of 53BP1 with Nucleosomes. J Am Chem Soc 2022; 144:18329-18337. [PMID: 36166692 DOI: 10.1021/jacs.2c06156] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical synthesis of homogeneously modified histones is a powerful approach to quantitatively decipher how post-translational modifications (PTMs) modulate epigenetic events. Herein, we describe the expedient syntheses of a selection of phosphorylated and ubiquitinated H2AX proteins in a strategy integrating expressed protein hydrazinolysis and auxiliary-mediated protein ligation. These modified H2AX proteins were then used to discover that although H2AXS139 phosphorylation can enhance the binding of the DNA damage repair factor 53BP1 to either an unmodified nucleosome or that bearing a single H2AXK15ub or H4K20me2 modification, it augments 53BP1's binding only weakly to nucleosomes bearing both H2AXK15ub and H4K20me2. To better understand why such a trivalent additive effect is lacking, we solved the cryo-EM structure (3.38 Å) of the complex of 53BP1 with the H2AXK15ub/S139ph_H4K20me2 nucleosome, which showed that H2AXS139 phosphorylation distorts the interaction interface between ubiquitin and 53BP1's UDR motif. Our study revealed that there is redundancy in the interplay of multiple histone PTMs, which may be useful for controlling the dynamic distribution of effector proteins onto nucleosomes bearing different histone variants and PTMs in a time-dependent fashion, through specific cellular biochemical events.
Collapse
Affiliation(s)
- Huasong Ai
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Guo-Chao Chu
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Qingyue Gong
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Ze-Bin Tong
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhiheng Deng
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Xin Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fan Yang
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Ziyu Xu
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
14
|
Wang ZA, Whedon SD, Wu M, Wang S, Brown EA, Anmangandla A, Regan L, Lee K, Du J, Hong JY, Fairall L, Kay T, Lin H, Zhao Y, Schwabe JWR, Cole PA. Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase. J Am Chem Soc 2022; 144:3360-3364. [PMID: 35175758 PMCID: PMC8895396 DOI: 10.1021/jacs.1c13555] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and β-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Siyu Wang
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Edward A Brown
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ananya Anmangandla
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Liam Regan
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jianfeng Du
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - Jun Young Hong
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Taylor Kay
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yingming Zhao
- The Ben May Department for Cancer Research, Chicago, Illinois 60637, United States
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Leonen CJA, Shimada M, Weller CE, Nakadai T, Hsu PL, Tyson EL, Mishra A, Shelton PM, Sadilek M, Hawkins RD, Zheng N, Roeder RG, Chatterjee C. Sumoylation of the human histone H4 tail inhibits p300-mediated transcription by RNA polymerase II in cellular extracts. eLife 2021; 10:67952. [PMID: 34747692 PMCID: PMC8626089 DOI: 10.7554/elife.67952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
The post-translational modification of histones by the small ubiquitin-like modifier (SUMO) protein has been associated with gene regulation, centromeric localization, and double-strand break repair in eukaryotes. Although sumoylation of histone H4 was specifically associated with gene repression, this could not be proven due to the challenge of site-specifically sumoylating H4 in cells. Biochemical crosstalk between SUMO and other histone modifications, such as H4 acetylation and H3 methylation, that are associated with active genes also remains unclear. We addressed these challenges in mechanistic studies using an H4 chemically modified at Lys12 by SUMO-3 (H4K12su) and incorporated into mononucleosomes and chromatinized plasmids for functional studies. Mononucleosome-based assays revealed that H4K12su inhibits transcription-activating H4 tail acetylation by the histone acetyltransferase p300, as well as transcription-associated H3K4 methylation by the extended catalytic module of the Set1/COMPASS (complex of proteins associated with Set1) histone methyltransferase complex. Activator- and p300-dependent in vitro transcription assays with chromatinized plasmids revealed that H4K12su inhibits both H4 tail acetylation and RNA polymerase II-mediated transcription. Finally, cell-based assays with a SUMO-H4 fusion that mimics H4 tail sumoylation confirmed the negative crosstalk between histone sumoylation and acetylation/methylation. Thus, our studies establish the key role for histone sumoylation in gene silencing and its negative biochemical crosstalk with active transcription-associated marks in human cells.
Collapse
Affiliation(s)
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Caroline E Weller
- Department of Chemistry, University of Washington, Seattle, United States
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States.,Project for Cancer Epigenomics, Cancer Institute of JFCR, Tokyo, Japan
| | - Peter L Hsu
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Elizabeth L Tyson
- Department of Chemistry, University of Washington, Seattle, United States
| | - Arpit Mishra
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Patrick Mm Shelton
- Department of Chemistry, University of Washington, Seattle, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, United States
| | - R David Hawkins
- Department of Genome Sciences, Department of Medicine, University of Washington, Seattle, United States
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York City, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, United States
| |
Collapse
|
16
|
Yau TY, Sander W, Eidson C, Courey AJ. SUMO Interacting Motifs: Structure and Function. Cells 2021; 10:cells10112825. [PMID: 34831049 PMCID: PMC8616421 DOI: 10.3390/cells10112825] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a member of the ubiquitin-related protein family. SUMO modulates protein function through covalent conjugation to lysine residues in a large number of proteins. Once covalently conjugated to a protein, SUMO often regulates that protein’s function by recruiting other cellular proteins. Recruitment frequently involves a non-covalent interaction between SUMO and a SUMO-interacting motif (SIM) in the interacting protein. SIMs generally consist of a four-residue-long hydrophobic stretch of amino acids with aliphatic non-polar side chains flanked on one side by negatively charged amino acid residues. The SIM assumes an extended β-strand-like conformation and binds to a conserved hydrophobic groove in SUMO. In addition to hydrophobic interactions between the SIM non-polar core and hydrophobic residues in the groove, the negatively charged residues in the SIM make favorable electrostatic contacts with positively charged residues in and around the groove. The SIM/SUMO interaction can be regulated by the phosphorylation of residues adjacent to the SIM hydrophobic core, which provide additional negative charges for favorable electrostatic interaction with SUMO. The SUMO interactome consists of hundreds or perhaps thousands of SIM-containing proteins, but we do not fully understand how each SUMOylated protein selects the set of SIM-containing proteins appropriate to its function. SIM/SUMO interactions have critical functions in a large number of essential cellular processes including the formation of membraneless organelles by liquid–liquid phase separation, epigenetic regulation of transcription through histone modification, DNA repair, and a variety of host–pathogen interactions.
Collapse
|
17
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
18
|
Ryu HY, Hochstrasser M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res 2021; 49:6043-6052. [PMID: 33885816 PMCID: PMC8216275 DOI: 10.1093/nar/gkab280] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin structure and gene expression are dynamically controlled by post-translational modifications (PTMs) on histone proteins, including ubiquitylation, methylation, acetylation and small ubiquitin-like modifier (SUMO) conjugation. It was initially thought that histone sumoylation exclusively suppressed gene transcription, but recent advances in proteomics and genomics have uncovered its diverse functions in cotranscriptional processes, including chromatin remodeling, transcript elongation, and blocking cryptic initiation. Histone sumoylation is integral to complex signaling codes that prime additional histone PTMs as well as modifications of the RNA polymerase II carboxy-terminal domain (RNAPII-CTD) during transcription. In addition, sumoylation of histone variants is critical for the DNA double-strand break (DSB) response and for chromosome segregation during mitosis. This review describes recent findings on histone sumoylation and its coordination with other histone and RNAPII-CTD modifications in the regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Duan YC, Zhang SJ, Shi XJ, Jin LF, Yu T, Song Y, Guan YY. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur J Med Chem 2021; 222:113588. [PMID: 34107385 DOI: 10.1016/j.ejmech.2021.113588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Abnormal epigenetics is a critical hallmark of human cancers. Anticancer drug discovery directed at histone epigenetic modulators has gained impressive advances with six drugs available for cancer therapy and numerous other candidates undergoing clinical trials. However, limited therapeutic profile, drug resistance, narrow safety margin, and dose-limiting toxicities pose intractable challenges for their clinical utility. Because histone epigenetic modulators undergo intricate crosstalk and act cooperatively to shape an aberrant epigenetic profile, co-targeting histone epigenetic modulators with a different mechanism of action has rapidly emerged as an attractive strategy to overcome the limitations faced by the single-target epigenetic inhibitors. In this review, we summarize in detail the crosstalk of histone epigenetic modulators in regulating gene transcription and the progress of dual epigenetic inhibitors targeting this crosstalk.
Collapse
Affiliation(s)
- Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Shao-Jie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiao-Jing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Lin-Feng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Yuan-Yuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
20
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
21
|
Ryu HY, Zhao D, Li J, Su D, Hochstrasser M. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res 2020; 48:12151-12168. [PMID: 33231641 PMCID: PMC7708062 DOI: 10.1093/nar/gkaa1093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Histones are substrates of the SUMO (small ubiquitin-like modifier) conjugation pathway. Several reports suggest histone sumoylation affects transcription negatively, but paradoxically, our genome-wide analysis shows the modification concentrated at many active genes. We find that trans-tail regulation of histone-H2B ubiquitylation and H3K4 di-methylation potentiates subsequent histone sumoylation. Consistent with the known control of the Set3 histone deacetylase complex (HDAC) by H3K4 di-methylation, histone sumoylation directly recruits the Set3 complex to both protein-coding and noncoding RNA (ncRNA) genes via a SUMO-interacting motif in the HDAC Cpr1 subunit. The altered gene expression profile caused by reducing histone sumoylation matches well to the profile in cells lacking Set3. Histone H2B sumoylation and the Set3 HDAC coordinately suppress cryptic ncRNA transcription initiation internal to mRNA genes. Our results reveal an elaborate co-transcriptional histone crosstalk pathway involving the consecutive ubiquitylation, methylation, sumoylation and deacetylation of histones, which maintains transcriptional fidelity by suppressing spurious transcription.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- Correspondence may also be addressed to Hong-Yeoul Ryu. Tel: +82 53 950 6352;
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dan Su
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
22
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Longbotham JE, Zhang MY, Fujimori DG. Domain cross-talk in regulation of histone modifications: Molecular mechanisms and targeting opportunities. Curr Opin Chem Biol 2020; 57:105-113. [PMID: 32758979 DOI: 10.1016/j.cbpa.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Functional cross-talk between the catalytic and reader domains in chromatin-modifying enzymes and protein complexes enable coordinated regulation of chromatin modification status, and consequently impacts chromatin-associated processes. ZZ domains are a recently identified class of chromatin readers that recognize the N-terminal region of histone H3 to direct and regulate acetylation activity of several histone acetylation complexes. Cross-talk between chromatin readers sensitive to methylation, and catalytic domains of methyltransferases and demethylases impacts substrate specificity, catalytic activity, and propagation of chromatin marks. Recently described allosteric ligands that target domain communication highlight the potential of domain cross-talk in the development of the next-generation of chromatin-directed therapeutics.
Collapse
Affiliation(s)
- James E Longbotham
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA
| | - Meng Yao Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Dhall A, Shelton PMM, Delachat AMF, Leonen CJA, Fierz B, Chatterjee C. Nucleosome Binding by the Lysine Specific Demethylase 1 (LSD1) Enzyme Enables Histone H3 Demethylation. Biochemistry 2020; 59:2479-2483. [PMID: 32567837 DOI: 10.1021/acs.biochem.0c00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The essential human enzyme lysine specific demethylase 1 (LSD1) silences genes by demethylating mono- and dimethylated lysine 4 in histone H3 (H3K4me1/2). Studies of the minimal requirements for LSD1 activity are complicated by the heterogeneity of histone modification states in cells. We overcame this challenge by generating homogeneous mononucleosome substrates containing semisynthetic H3K4me2. Biophysical and biochemical assays with full-length LSD1 revealed its ability to bind and demethylate nucleosomes. Consistent with a requirement for nucleosome binding prior to demethylation, a competing nucleosome-binding peptide from the high-mobility group protein effectively inhibited LSD1 activity. Thus, our studies provide the first glimpse of nucleosome demethylation by LSD1 in the absence of other scaffolding proteins.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Patrick M M Shelton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aurore M-F Delachat
- Institut des sciences et ingénierie chimiques (ISIC), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Calvin J A Leonen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Beat Fierz
- Institut des sciences et ingénierie chimiques (ISIC), Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
25
|
|
26
|
Lavin DP, Tiwari VK. Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front Oncol 2020; 10:554. [PMID: 32477926 PMCID: PMC7235173 DOI: 10.3389/fonc.2020.00554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is the process whereby a polarized epithelial cell ceases to maintain cell-cell contacts, loses expression of characteristic epithelial cell markers, and acquires mesenchymal cell markers and properties such as motility, contractile ability, and invasiveness. A complex process that occurs during development and many disease states, EMT involves a plethora of transcription factors (TFs) and signaling pathways. Whilst great advances have been made in both our understanding of the progressive cell-fate changes during EMT and the gene regulatory networks that drive this process, there are still gaps in our knowledge. Epigenetic modifications are dynamic, chromatin modifying enzymes are vast and varied, transcription factors are pleiotropic, and signaling pathways are multifaceted and rarely act alone. Therefore, it is of great importance that we decipher and understand each intricate step of the process and how these players at different levels crosstalk with each other to successfully orchestrate EMT. A delicate balance and fine-tuned cooperation of gene regulatory mechanisms is required for EMT to occur successfully, and until we resolve the unknowns in this network, we cannot hope to develop effective therapies against diseases that involve aberrant EMT such as cancer. In this review, we focus on data that challenge these unknown entities underlying EMT, starting with EMT stimuli followed by intracellular signaling through to epigenetic mechanisms and chromatin remodeling.
Collapse
Affiliation(s)
| | - Vijay K. Tiwari
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
27
|
Kaur J, Daoud A, Eblen ST. Targeting Chromatin Remodeling for Cancer Therapy. Curr Mol Pharmacol 2020; 12:215-229. [PMID: 30767757 PMCID: PMC6875867 DOI: 10.2174/1874467212666190215112915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Background: Epigenetic alterations comprise key regulatory events that dynamically alter gene expression and their deregulation is commonly linked to the pathogenesis of various diseases, including cancer. Unlike DNA mutations, epigenetic alterations involve modifications to proteins and nucleic acids that regulate chromatin structure without affecting the underlying DNA sequence, altering the accessibility of the transcriptional machinery to the DNA, thus modulating gene expression. In cancer cells, this often involves the silencing of tumor suppressor genes or the increased expression of genes involved in oncogenesis. Advances in laboratory medicine have made it possible to map critical epigenetic events, including histone modifications and DNA methylation, on a genome-wide scale. Like the identification of genetic mutations, mapping of changes to the epigenetic landscape has increased our understanding of cancer progression. However, in contrast to irreversible genetic mutations, epigenetic modifications are flexible and dynamic, thereby making them promising therapeutic targets. Ongoing studies are evaluating the use of epigenetic drugs in chemotherapy sensitization and immune system modulation. With the preclinical success of drugs that modify epigenetics, along with the FDA approval of epigenetic drugs including the DNA methyltransferase 1 (DNMT1) inhibitor 5-azacitidine and the histone deacetylase (HDAC) inhibitor vorinostat, there has been a rise in the number of drugs that target epigenetic modulators over recent years. Conclusion: We provide an overview of epigenetic modulations, particularly those involved in cancer, and discuss the recent advances in drug development that target these chromatin-modifying events, primarily focusing on novel strategies to regulate the epigenome.
Collapse
Affiliation(s)
- Jasmine Kaur
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Abdelkader Daoud
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Scott T Eblen
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
28
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Miura K, Renhu N, Suzaki T. The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Commun Biol 2020; 3:23. [PMID: 31925312 PMCID: PMC6954211 DOI: 10.1038/s42003-019-0746-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis SIZ1 encodes a SUMO E3 ligase to regulate abiotic and biotic stress responses. Among SIZ1 or mammalian PIAS orthologs, plant SIZ1 proteins contain the plant homeodomain (PHD) finger, a C4HC3 zinc finger. Here, we investigated the importance of PHD of Arabidopsis SIZ1. The ProSIZ1::SIZ1(ΔPHD):GFP was unable to complement growth retardation, ABA hypersensitivity, and the cold-sensitive phenotype of the siz1 mutant, but ProSIZ1::SIZ1:GFP could. Substitution of C162S in the PHD finger was unable to complement the siz1 mutation. Tri-methylated histone H3K4 (H3K4me3) was recognized by PHD, not by PHD(C162S). WRKY70 was up-regulated in the siz1-2 mutant and H3K4me3 accumulated at high levels in the WRKY70 promoter. PHD interacts with ATX, which mediates methylation of histone, probably leading to suppression of ATX’s function. These results suggest that the PHD finger of SIZ1 is important for recognition of the histone code and is required for SIZ1 function and transcriptional suppression. Kenji Miura et al. investigate the role of the plant homeodomain (PHD) finger of the Arabidopsis SIZ1 protein. They show that the PHD finger is involved in hormone response and temperature sensitivity, and plays an important role in H3K4 methylation, thereby affecting recognition of histone code and transcriptional suppression.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan. .,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan.
| | - Na Renhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan.,Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
30
|
Ryu H, Su D, Wilson‐Eisele NR, Zhao D, López‐Giráldez F, Hochstrasser M. The Ulp2 SUMO protease promotes transcription elongation through regulation of histone sumoylation. EMBO J 2019; 38:e102003. [PMID: 31313851 PMCID: PMC6694223 DOI: 10.15252/embj.2019102003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023] Open
Abstract
Many eukaryotic proteins are regulated by modification with the ubiquitin-like protein small ubiquitin-like modifier (SUMO). This linkage is reversed by SUMO proteases, of which there are two in Saccharomyces cerevisiae, Ulp1 and Ulp2. SUMO-protein conjugation regulates transcription, but the roles of SUMO proteases in transcription remain unclear. We report that Ulp2 is recruited to transcriptionally active genes to control local polysumoylation. Mutant ulp2 cells show impaired association of RNA polymerase II (RNAPII) with, and diminished expression of, constitutively active genes and the inducible CUP1 gene. Ulp2 loss sensitizes cells to 6-azauracil, a hallmark of transcriptional elongation defects. We also describe a novel chromatin regulatory mechanism whereby histone-H2B ubiquitylation stimulates histone sumoylation, which in turn appears to inhibit nucleosome association of the Ctk1 kinase. Ctk1 phosphorylates serine-2 (S2) in the RNAPII C-terminal domain (CTD) and promotes transcript elongation. Removal of both ubiquitin and SUMO from histones is needed to overcome the impediment to S2 phosphorylation. These results suggest sequential ubiquitin-histone and SUMO-histone modifications recruit Ulp2, which removes polySUMO chains and promotes RNAPII transcription elongation.
Collapse
Affiliation(s)
- Hong‐Yeoul Ryu
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Dan Su
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Protein Science Corp.MeridenCTUSA
| | - Nicole R Wilson‐Eisele
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Max Planck Institute of BiochemistryMartinsriedGermany
| | - Dejian Zhao
- Yale Center for Genome AnalysisYale UniversityNew HavenCTUSA
| | | | - Mark Hochstrasser
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| |
Collapse
|
31
|
Conibear AC, Muttenthaler M. Advancing the Frontiers of Chemical Protein Synthesis-The 7 th CPS Meeting, Haifa, Israel. Cell Chem Biol 2019; 25:247-254. [PMID: 29547714 DOI: 10.1016/j.chembiol.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 7th Chemical Protein Synthesis Meeting took place in September 2017 in Haifa, Israel, bringing together 100 scientists from 11 countries. The cutting-edge scientific program included new synthetic strategies and ligation auxiliaries, novel insights into protein signaling and post-translational modifications, and a range of promising therapeutic applications.
Collapse
Affiliation(s)
- Anne C Conibear
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
32
|
Whedon SD, Parker MK, Tyson EL, Ritterhoff T, Shelton PMM, Chatterjee C. A clickable glutamine (CliQ) derivative for the traceless reversible modification of peptides and proteins. Chem Commun (Camb) 2019; 55:2043-2045. [DOI: 10.1039/c8cc09404g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(i)-mediated click reaction of proteins with affinity tags enables their selective isolation from complex mixtures.
Collapse
|
33
|
Kent SBH. Novel protein science enabled by total chemical synthesis. Protein Sci 2018; 28:313-328. [PMID: 30345579 DOI: 10.1002/pro.3533] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
Chemical synthesis is a well-established method for the preparation in the research laboratory of multiple-tens-of-milligram amounts of correctly folded, high purity protein molecules. Chemically synthesized proteins enable a broad spectrum of novel protein science. Racemic mixtures consisting of d-protein and l-protein enantiomers facilitate crystallization and determination of protein structures by X-ray diffraction. d-Proteins enable the systematic development of unnatural mirror image protein molecules that bind with high affinity to natural protein targets. The d-protein form of a therapeutic target can also be used to screen natural product libraries to identify novel small molecule leads for drug development. Proteins with novel polypeptide chain topologies including branched, circular, linear-loop, and interpenetrating polypeptide chains can be constructed by chemical synthesis. Medicinal chemistry can be applied to optimize the properties of therapeutic protein molecules. Chemical synthesis has been used to redesign glycoproteins and for the a priori design and construction of covalently constrained novel protein scaffolds not found in nature. Versatile and precise labeling of protein molecules by chemical synthesis facilitates effective application of advanced physical methods including multidimensional nuclear magnetic resonance and time-resolved FTIR for the elucidation of protein structure-activity relationships. The chemistries used for total synthesis of proteins have been adapted to making artificial molecular devices and protein-inspired nanomolecular constructs. Research to develop mirror image life in the laboratory is in its very earliest stages, based on the total chemical synthesis of d-protein forms of polymerase enzymes.
Collapse
Affiliation(s)
- Stephen B H Kent
- Department of Chemistry and Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
34
|
Banerjee DR, Deckard CE, Elinski MB, Buzbee ML, Wang WW, Batteas JD, Sczepanski JT. Plug-and-Play Approach for Preparing Chromatin Containing Site-Specific DNA Modifications: The Influence of Chromatin Structure on Base Excision Repair. J Am Chem Soc 2018; 140:8260-8267. [PMID: 29883113 DOI: 10.1021/jacs.8b04063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic DNA of eukaryotic cells exists in the form of chromatin, the structure of which controls the biochemical accessibility of the underlying DNA to effector proteins. In order to gain an in depth molecular understanding of how chromatin structure regulates DNA repair, detailed in vitro biochemical and biophysical studies are required. However, because of challenges associated with reconstituting nucleosome arrays containing site-specifically positioned DNA modifications, such studies have been limited to the use of mono- and dinucleosomes as model in vitro substrates, which are incapable of folding into native chromatin structures. To address this issue, we developed a straightforward and general approach for assembling chemically defined oligonucleosome arrays (i.e., designer chromatin) containing site-specifically modified DNA. Our method takes advantage of nicking endonucleases to excise short fragments of unmodified DNA, which are subsequently replaced with synthetic oligonucleotides containing the desired modification. Using this approach, we prepared several oligonucleosome substrates containing precisely positioned 2'-deoxyuridine (dU) residues and examined the efficiency of base excision repair (BER) within several distinct chromatin architectures. We show that, depending on the translational position of the lesion, the combined catalytic activities of uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1) can be either inhibited by as much as 20-fold or accelerated by more than 5-fold within compact chromatin (i.e., the 30 nm fiber) relative to naked DNA. Moreover, we demonstrate that digestion of dU by UDG/APE1 proceeds much more rapidly in mononucleosomes than in compacted nucleosome arrays, thereby providing the first direct evidence that internucleosome interactions play an important role in regulating BER within higher-order chromatin structures. Overall, this work highlights the value of performing detailed biochemical studies on precisely modified chromatin substrates in vitro and provides a robust platform for investigating DNA modifications in chromatin biology.
Collapse
Affiliation(s)
- Deb Ranjan Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Charles E Deckard
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meagan B Elinski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meridith L Buzbee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Wesley Wei Wang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - James D Batteas
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jonathan T Sczepanski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
35
|
Wu M, Hayward D, Kalin JH, Song Y, Schwabe JWR, Cole PA. Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex. eLife 2018; 7:e37231. [PMID: 29869982 PMCID: PMC6019071 DOI: 10.7554/elife.37231] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The core CoREST complex (LHC) contains histone deacetylase HDAC1 and histone demethylase LSD1 held together by the scaffold protein CoREST. Here, we analyze the purified LHC with modified peptide and reconstituted semisynthetic mononucleosome substrates. LHC demethylase activity toward methyl-Lys4 in histone H3 is strongly inhibited by H3 Lys14 acetylation, and this appears to be an intrinsic property of the LSD1 subunit. Moreover, the deacetylase selectivity of LHC unexpectedly shows a marked preference for H3 acetyl-Lys9 versus acetyl-Lys14 in nucleosome substrates but this selectivity is lost with isolated acetyl-Lys H3 protein. This diminished activity of LHC to Lys-14 deacetylation in nucleosomes is not merely due to steric accessibility based on the pattern of sensitivity of the LHC enzymatic complex to hydroxamic acid-mediated inhibition. Overall, these studies have revealed how a single Lys modification can confer a composite of resistance in chromatin to a key epigenetic enzyme complex involved in gene silencing.
Collapse
Affiliation(s)
- Mingxuan Wu
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Dawn Hayward
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Jay H Kalin
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Yun Song
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - John WR Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - Philip A Cole
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
36
|
Leonen CJA, Upadhyay E, Chatterjee C. Studies of biochemical crosstalk in chromatin with semisynthetic histones. Curr Opin Chem Biol 2018; 45:27-34. [PMID: 29494828 DOI: 10.1016/j.cbpa.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/26/2023]
Abstract
Reversible post-translational modifications of histone proteins in eukaryotic chromatin are closely tied to gene function and cellular development. Specific combinations of histone modifications, or marks, are implicated in distinct DNA-templated processes mediated by a range of chromatin-associated enzymes that install, erase and interpret the histone code. Mechanistic studies of the precise biochemical relationship between sets of marks and their effects on chromatin function are significantly complicated by the dynamic nature and heterogeneity of marks in cellular chromatin. Protein semisynthesis is a chemical technique that enables the piecewise assembly of uniformly and site-specifically modified histones in quantities sufficient for biophysical and biochemical analyses. Recent pioneering efforts in semisynthesis have yielded access to histones site-specifically modified by entire proteins, such as ubiquitin (Ub) and the small ubiquitin-like modifier (SUMO). Herein, we highlight key studies of biochemical crosstalk involving Ub and SUMO in chromatin that were enabled by histone semisynthesis.
Collapse
Affiliation(s)
| | - Esha Upadhyay
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
37
|
Lang K. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2018; 19:115-120. [PMID: 29251813 DOI: 10.1002/cbic.201700606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/24/2023]
Abstract
The power of CPS, live! More than 90 attendees from around the world came together in Haifa to present and hear about cutting-edge science in protein chemistry, from advances in synthetic methods to applications in biology and medicine. The meeting was a powerful demonstration that chemical protein synthesis can provide otherwise unattainable insights into protein structure and function.
Collapse
Affiliation(s)
- Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
38
|
Conibear AC, Watson EE, Payne RJ, Becker CFW. Native chemical ligation in protein synthesis and semi-synthesis. Chem Soc Rev 2018; 47:9046-9068. [DOI: 10.1039/c8cs00573g] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining modern synthetic and molecular biology toolkits, native chemical ligation and expressed protein ligation enables robust access to modified proteins.
Collapse
Affiliation(s)
- Anne C. Conibear
- Faculty of Chemistry
- Institute of Biological Chemistry
- University of Vienna
- Vienna
- Austria
| | - Emma E. Watson
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | | | | |
Collapse
|