1
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Cardano F, Márquez García R, Szymanski W. Manipulation of Chemistry and Biology with Visible Light Using Tetra-ortho-Substituted Azobenzenes and Azonium Ions. Angew Chem Int Ed Engl 2025:e202423506. [PMID: 40152740 DOI: 10.1002/anie.202423506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 03/29/2025]
Abstract
Molecular photoswitches are used for precise and reversible control over the properties and function of chemical, biological and material systems, offering exceptional spatiotemporal control. Their current development focuses on enabling operation with non-damaging and deep tissue penetrating visible/near-IR light. In this context, tetra-ortho-substituted azobenzenes and azonium ions play a leading role, thanks to their unique photophysical properties and easily modifiable structure. However, it is only recently that synthetic approaches to those sterically demanding systems have been established and their structure-photochemistry relations have been understood to provide general rules for their tuning to a given application. In this review, we provide a comprehensive overview of this family of molecular photoswitches, providing an analysis of their photophysical properties, followed by a discussion of the available synthetic methodologies. Finally, we showcase the versatility of tetra-ortho-substituted azobenzenes and azonium ions for enabling light-control in biological and material sciences, providing multiple insights for future applications.
Collapse
Affiliation(s)
- Francesca Cardano
- Department of Chemistry, University of Torino, Via P. Giuria 7, Torino, 10125, Italy
| | - Rosa Márquez García
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research, Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical, Center Groningen, Groningen, 9713 GZ, The Netherlands
| | - Wiktor Szymanski
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research, Institute of Pharmacy, University of Groningen, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
3
|
von Glasenapp V, C Almeida A, Chang D, Gasic I, Winssinger N, Gotta M. Spatio-temporal control of mitosis using light via a Plk1 inhibitor caged for activity and cellular permeability. Nat Commun 2025; 16:1599. [PMID: 39971898 PMCID: PMC11840123 DOI: 10.1038/s41467-025-56746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The ability to control the activity of kinases spatially and temporally is essential to elucidate the role of signalling pathways in development and physiology. Progress in this direction has been hampered by the lack of tools to manipulate kinase activity in a highly controlled manner in vivo. Here we report a strategy to modify BI2536, the well characterized inhibitor of the conserved and essential mitotic kinase Polo-like kinase 1 (Plk1). We introduce the same coumarin photolabile protecting group (PPG) at two positions of the inhibitor. At one position, the coumarin prevents the interaction with Plk1, at the second it masks an added carboxylic acid, important for cellular retention. Exposure to light results in removal of both PPGs, leading to the activation of the inhibitor and its trapping inside cells. We demonstrate the efficacy of the caged inhibitor in three-dimensional spheroid cultures: by uncaging it with a single light pulse, we can inhibit Plk1 and arrest cell division, a highly dynamic process, with spatio-temporal control. Our design can be applied to other small molecules, providing a solution to control their activity in living cells with unprecedented precision.
Collapse
Affiliation(s)
- Victoria von Glasenapp
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Ana C Almeida
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dalu Chang
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Ivana Gasic
- Department of Molecular and Cellular Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nicolas Winssinger
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
- Department of Organic Chemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| | - Monica Gotta
- Department of Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
5
|
Evans HT, Ko T, Oliveira MM, Yu A, Kalavai SV, Golhan EN, Polavarapu A, Balamoti E, Wu V, Klann E, Trauner D. Light-Activatable, Cell-Type Specific Labeling of the Nascent Proteome. ACS Chem Neurosci 2024; 15:3473-3481. [PMID: 39307974 PMCID: PMC11450754 DOI: 10.1021/acschemneuro.4c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the de novo proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation. To address this technological limitation, here we describe a novel, light-inducible specific method for labeling newly synthesized proteins within a targeted cell-type.By developing Opto-ANL, a photocaged version of the nonendogenous amino acid azidonorleucine (ANL), we can selectively label newly synthesized proteins in specific cell-types through the targeted expression of a mutant methionyl-tRNA synthetase (L274G-MetRS). We demonstrate that Opto-ANL can be rapidly uncaged by UV light treatment in both cell culture and mouse brain slices, with Opto-ANL labeled proteins being able to be visualized via fluorescent noncanonical amino acid tagging. We also reveal that pretreatment with Opto-ANL not only allows for the period of de novo proteomic labeling to be tightly controlled, but also improves labeling efficiency compared to regular ANL. To demonstrate the potential applications of this novel technique, we use Opto-ANL to detect insulin-induced increases in protein synthesis and to label the excitatory neuronal de novo proteome in mouse brain slices. We believe that this application of photopharmacology will allow researchers to generate novel insights into how the translational landscape is altered across cell-types during complex neurological phenomena such as memory formation.
Collapse
Affiliation(s)
- H. T. Evans
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - T. Ko
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M. M. Oliveira
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - A. Yu
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - S. V. Kalavai
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - E. N. Golhan
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - A. Polavarapu
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - E. Balamoti
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - V. Wu
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - E. Klann
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - D. Trauner
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Camerin L, Maleeva G, Gomila AMJ, Suárez-Pereira I, Matera C, Prischich D, Opar E, Riefolo F, Berrocoso E, Gorostiza P. Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo. Angew Chem Int Ed Engl 2024; 63:e202403636. [PMID: 38887153 DOI: 10.1002/anie.202403636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
Collapse
Affiliation(s)
- Luisa Camerin
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Doctorate program in organic chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, 20133, Italy
| | - Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, SW120BZ, United Kingdom
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona, 08025, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
7
|
Bikbaeva G, Pilip A, Egorova A, Medvedev V, Mamonova D, Pankin D, Kalinichev A, Mayachkina N, Bakina L, Kolesnikov I, Leuchs G, Manshina A. Smart photopharmacological agents: LaVO 4:Eu 3+@vinyl phosphonate combining luminescence imaging and photoswitchable butyrylcholinesterase inhibition. NANOSCALE ADVANCES 2024; 6:4417-4425. [PMID: 39170980 PMCID: PMC11334978 DOI: 10.1039/d4na00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/20/2024] [Indexed: 08/23/2024]
Abstract
The combination of photoswitchability and bioactivity in one compound provides interesting opportunities for photopharmacology. Here, we report a hybrid compound that in addition allows for its visual localization. It is the first demonstration of its kind and it even shows high photoswitchability. The multifunctional nanomaterial hybrid, which we present, is composed of luminescent LaVO4:Eu3+ nanoparticles and vinyl phosphonate, the latter of which inhibits butyrylcholinesterase (BChE). This inhibition increases 7 times when irradiated with a 266 nm laser. We found that it is increased even further when vinyl phosphonate molecules are conjugated with LaVO4:Eu3+ nanoparticles, leading in total to a 20-fold increase in BChE inhibition upon laser irradiation. The specific luminescence spectrum of LaVO4:Eu3+ allows its spatial localization in various biological samples (chicken breast, Daphnia and Paramecium). Furthermore, laser irradiation of the LaVO4:Eu3+@vinyl phosphonate hybrid leads to a drop in luminescence intensity and in lifetime of the Eu3+ ion that can implicitly indicate photoswitching of vinyl phosphonate in the bioactive state. Thus, combining enhanced photoswitchability, bioactivity and luminescence induced localizability in a unique way, hybrid LaVO4:Eu3+@vinyl phosphonate can be considered as a promising tool for photopharmacology.
Collapse
Affiliation(s)
- Gulia Bikbaeva
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Anna Pilip
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Anastasiya Egorova
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
- St Petersburg State Technological Institute (Technical University) 26, Moskovski Ave. St Petersburg 190013 Russia
| | - Vasiliy Medvedev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Daria Mamonova
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Dmitrii Pankin
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Alexey Kalinichev
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Natalya Mayachkina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Lyudmila Bakina
- St Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences Korpusnaya 18 St Petersburg 197110 Russia
| | - Ilya Kolesnikov
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| | - Gerd Leuchs
- Max Planck Institute for the Science of Light Erlangen 91058 Germany
| | - Alina Manshina
- St Petersburg State University 7-9 Universitetskaya Embankment St Petersburg 199034 Russia
| |
Collapse
|
8
|
Howe CL, Icka-Araki D, Viray AEG, Garza S, Frank JA. Optical Control of TRPV1 Channels In Vitro with Tethered Photopharmacology. ACS Chem Biol 2024; 19:1466-1473. [PMID: 38904446 DOI: 10.1021/acschembio.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that is important for nociception and inflammatory pain and is activated by a variety of nociceptive stimuli─including lipids such as capsaicin (CAP) and endocannabinoids. TRPV1's role in physiological systems is often studied by activating it with externally perfused ligands; however, this approach is plagued by poor spatiotemporal resolution. Lipid agonists are insoluble in physiological buffers and can permeate membranes to accumulate nonselectively inside cells, where they can have off-target effects. To increase the spatiotemporal precision with which we can activate lipids on cells and tissues, we previously developed optically cleavable targeted (OCT) ligands, which use protein tags (SNAP-tags) to localize a photocaged ligand on a target cellular membrane. After enrichment, the active ligand is released on a flash of light to activate nearby receptors. In our previous work, we developed an OCT-ligand to control a cannabinoid-sensitive GPCR. Here, we expand the scope of OCT-ligand technology to target TRPV1 ion channels. We synthesize a probe, OCT-CAP, that tethers to membrane-bound SNAP-tags and releases a TRPV1 agonist when triggered by UV-A irradiation. Using Ca2+ imaging and electrophysiology in HEK293T cells expressing TRPV1, we demonstrate that OCT-CAP uncaging activates TRPV1 with superior spatiotemporal precision when compared to standard diffusible ligands or photocages. This study is the first example of an OCT-ligand designed to manipulate an ion-channel target. We anticipate that these tools will find many applications in controlling lipid signaling pathways in various cells and tissues.
Collapse
Affiliation(s)
- Carmel L Howe
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David Icka-Araki
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alexander E G Viray
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sarahi Garza
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - James A Frank
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
9
|
Jeon W, Lee JM, Kim Y, Lee Y, Won J, Lee S, Son W, Koo YH, Hong JW, Gwac H, Joo J, Kim SJ, Choi C, Park S. Structurally Aligned Multifunctional Neural Probe (SAMP) Using Forest-Drawn CNT Sheet onto Thermally Drawn Polymer Fiber for Long-Term In Vivo Operation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313625. [PMID: 38552258 DOI: 10.1002/adma.202313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yunheum Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joonhee Won
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Somin Lee
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonkyeong Son
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Hoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hocheol Gwac
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Tian M, Ma Z, Yang GZ. Micro/nanosystems for controllable drug delivery to the brain. Innovation (N Y) 2024; 5:100548. [PMID: 38161522 PMCID: PMC10757293 DOI: 10.1016/j.xinn.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024] Open
Abstract
Drug delivery to the brain is crucial in the treatment for central nervous system disorders. While significant progress has been made in recent years, there are still major challenges in achieving controllable drug delivery to the brain. Unmet clinical needs arise from various factors, including controlled drug transport, handling large drug doses, methods for crossing biological barriers, the use of imaging guidance, and effective models for analyzing drug delivery. Recent advances in micro/nanosystems have shown promise in addressing some of these challenges. These include the utilization of microfluidic platforms to test and validate the drug delivery process in a controlled and biomimetic setting, the development of novel micro/nanocarriers for large drug loads across the blood-brain barrier, and the implementation of micro-intervention systems for delivering drugs through intraparenchymal or peripheral routes. In this article, we present a review of the latest developments in micro/nanosystems for controllable drug delivery to the brain. We also delve into the relevant diseases, biological barriers, and conventional methods. In addition, we discuss future prospects and the development of emerging robotic micro/nanosystems equipped with directed transportation, real-time image guidance, and closed-loop control.
Collapse
Affiliation(s)
- Mingzhen Tian
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Garwood IC, Major AJ, Antonini MJ, Correa J, Lee Y, Sahasrabudhe A, Mahnke MK, Miller EK, Brown EN, Anikeeva P. Multifunctional fibers enable modulation of cortical and deep brain activity during cognitive behavior in macaques. SCIENCE ADVANCES 2023; 9:eadh0974. [PMID: 37801492 PMCID: PMC10558126 DOI: 10.1126/sciadv.adh0974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.
Collapse
Affiliation(s)
- Indie C. Garwood
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J. Major
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josefina Correa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Youngbin Lee
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Meredith K. Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Ma X, Johnson DA, He XJ, Layden AE, McClain SP, Yung JC, Rizzo A, Bonaventura J, Banghart MR. In vivo photopharmacology with a caged mu opioid receptor agonist drives rapid changes in behavior. Nat Methods 2023; 20:682-685. [PMID: 36973548 PMCID: PMC10569260 DOI: 10.1038/s41592-023-01819-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023]
Abstract
Photoactivatable drugs and peptides can drive quantitative studies into receptor signaling with high spatiotemporal precision, yet few are compatible with behavioral studies in mammals. We developed CNV-Y-DAMGO-a caged derivative of the mu opioid receptor-selective peptide agonist DAMGO. Photoactivation in the mouse ventral tegmental area produced an opioid-dependent increase in locomotion within seconds of illumination. These results demonstrate the power of in vivo photopharmacology for dynamic studies into animal behavior.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Desiree A Johnson
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Jenny He
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aryanna E Layden
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Shannan P McClain
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jean C Yung
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Arianna Rizzo
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, Catalonia, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - Matthew R Banghart
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Müller-Deku A, Thorn-Seshold O. Exhaustive Catalytic ortho-Alkoxylation of Azobenzenes: Flexible Access to Functionally Diverse Yellow-Light-Responsive Photoswitches. J Org Chem 2022; 87:16526-16531. [PMID: 36475716 DOI: 10.1021/acs.joc.2c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We develop the first method for catalytic, exhaustive ortho-alkoxylation of azobenzene photoswitches. Alkoxylation is known to improve the photoswitch properties that control azobenzenes' success in chemical biology or materials sciences, e.g., better completeness of both E → Z and Z → E photoisomerizations and >100 nm red shift of photoresponse. Our method enables straightforward late-stage diversification of photoswitches with interesting functional handles. We showcase four applications: using it to rationally tune lipophilicity, prepare isotopic tracers for metabolism studies, install full water solubility without ionic charges, and efficiently access previously difficult mixed-substituent photoswitches. We also identified a previously unexplored mixed-substituent tetra-ortho family, difluoro-dialkoxy-azobenzenes, whose photoresponse can outperform previous 'gold standard' tetrafluoro-, dichloro-difluoro-, and tetrachloro-azobenzenes in significant ways. We thus expect that both the scaffolds we showcase and the method we develop will impact broadly on photochemistry and photopharmacology.
Collapse
Affiliation(s)
- Adrian Müller-Deku
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, Munich 81377, Germany
| |
Collapse
|
15
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
16
|
Wu Y, Wu M, Vázquez-Guardado A, Kim J, Zhang X, Avila R, Kim JT, Deng Y, Yu Y, Melzer S, Bai Y, Yoon H, Meng L, Zhang Y, Guo H, Hong L, Kanatzidis EE, Haney CR, Waters EA, Banks AR, Hu Z, Lie F, Chamorro LP, Sabatini BL, Huang Y, Kozorovitskiy Y, Rogers JA. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology. Nat Commun 2022; 13:5571. [PMID: 36137999 PMCID: PMC9500026 DOI: 10.1038/s41467-022-32947-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Mingzheng Wu
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Xin Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Jin-Tae Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | | | - Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Yun Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Hyoseo Yoon
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lingzi Meng
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Yi Zhang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, US
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, US
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Liu Hong
- Mechanical Science and Engineering Department, University of Illinois, Urbana, IL, USA
| | - Evangelos E Kanatzidis
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Radiology, and Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Emily A Waters
- Center for Advanced Molecular Imaging, Radiology, and Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anthony R Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc, Northfield, IL, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | | | - Leonardo P Chamorro
- Mechanical Science and Engineering Department, University of Illinois, Urbana, IL, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institutes, Northwestern University, Evanston, IL, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Neurolux Inc, Northfield, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute & Feinberg Medical School, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Department of Computer Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Orthogonal Control of Neuronal Circuits and Behavior Using Photopharmacology. J Mol Neurosci 2022; 72:1433-1442. [PMID: 35737209 DOI: 10.1007/s12031-022-02037-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/04/2022] [Indexed: 10/17/2022]
Abstract
Over the last decades, photopharmacology has gone far beyond its proof-of-concept stage to become a bona fide approach to study neural systems in vivo. Indeed, photopharmacological control has expanded over a wide range of endogenous targets, such as receptors, ion channels, transporters, kinases, lipids, and DNA transcription processes. In this review, we provide an overview of the recent progresses in the in vivo photopharmacological control of neuronal circuits and behavior. In particular, the use of small aquatic animals for the in vivo screening of photopharmacological compounds, the recent advances in optical modulation of complex behaviors in mice, and the development of adjacent techniques for light and drug delivery in vivo are described.
Collapse
|
18
|
Frank JA. Optofluidic neural interfaces for in vivo photopharmacology. Curr Opin Pharmacol 2022; 63:102195. [DOI: 10.1016/j.coph.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
19
|
Parker HE, Sengupta S, Harish AV, Soares RRG, Joensson HN, Margulis W, Russom A, Laurell F. A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection. Sci Rep 2022; 12:3539. [PMID: 35241725 PMCID: PMC8894408 DOI: 10.1038/s41598-022-07306-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula: see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.
Collapse
Affiliation(s)
- Helen E. Parker
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.9531.e0000000106567444Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Sanghamitra Sengupta
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,grid.417889.b0000 0004 0646 2441AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Achar V. Harish
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| | - Ruben R. G. Soares
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Haakan N. Joensson
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden
| | - Walter Margulis
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden ,Research Institutes of Sweden (RISE), 164 19 Stockholm, Sweden
| | - Aman Russom
- grid.5037.10000000121581746Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65 Solna, Sweden ,grid.5037.10000000121581746AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Laurell
- grid.5037.10000000121581746Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
| |
Collapse
|
20
|
Scheiner M, Sink A, Hoffmann M, Vrigneau C, Endres E, Carles A, Sotriffer C, Maurice T, Decker M. Photoswitchable Pseudoirreversible Butyrylcholinesterase Inhibitors Allow Optical Control of Inhibition in Vitro and Enable Restoration of Cognition in an Alzheimer's Disease Mouse Model upon Irradiation. J Am Chem Soc 2022; 144:3279-3284. [PMID: 35138833 DOI: 10.1021/jacs.1c13492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Sink
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Cassandre Vrigneau
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Allison Carles
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
21
|
Sui K, Meneghetti M, Kaur J, Sørensen JF, Berg RW, Markos C. Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulation. J Neural Eng 2022; 19. [PMID: 35130533 DOI: 10.1088/1741-2552/ac5267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Optical fiber devices constitute significant tools for the modulation and interrogation of neuronal circuitry in the mid and deep brain regions. The illuminated brain area during neuromodulation has a direct impact on the spatio-temporal properties of the brain activity and depends solely on the material and geometrical characteristics of the optical fibers. In the present work, we developed two different flexible polymer optical fibers (POFs) with integrated microfluidic channels (MFCs) and an ultra-high numerical aperture (UHNA) for enlarging the illumination angle to achieve efficient neuromodulation. APPROACH Three distinct thermoplastic polymers: polysulfone (PSU), polycarbonate (PC), and fluorinated ethylene propylene (FEP) were used to fabricate two step-index UHNA POF neural devices using a scalable thermal drawing process. The POFs were characterized in terms of their illumination map as well as their fluid delivery capability in phantom and adult rat brain slices. MAIN RESULTS A 100-fold reduced bending stiffness of the proposed fiber devices compared to their commercially available counterparts has been found. The integrated MFCs can controllably deliver dye (trypan blue) on-demand over a wide range of injection rates spanning from 10 nL/min to 1000 nL/min. Compared with commercial silica fibers, the proposed UHNA POFs exhibited an increased illumination area by 17% and 21% under 470 and 650 nm wavelength, respectively. In addition, a fluorescent light recording experiment has been conducted to demonstrate the ability of our UHNA POFs to be used as optical waveguides in fiber photometry. SIGNIFICANCE Our results overcome the current technological limitations of fiber implants that have limited illumination area and we suggest that soft neural fiber devices can be developed using different custom designs for illumination, collection, and photometry applications. We anticipate our work to pave the way towards the development of next-generation functional optical fibers for neuroscience.
Collapse
Affiliation(s)
- Kunyang Sui
- DTU Fotonik, DTU - Lyngby Campus, Ørsteds Plads, 343, Lyngby, 2800, DENMARK
| | - Marcello Meneghetti
- DTU Fotonik, DTU - Lyngby Campus, Ørsteds Plads, 343,, Lyngby, 2800, DENMARK
| | - Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Jakob Fleng Sørensen
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Rune W Berg
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Christos Markos
- DTU Fotonik, Technical University of Denmark, DTU Fotonik, Ørsteds Plads Building 343, room 022, Kgs.Lyngby, Lyngby, 2800, DENMARK
| |
Collapse
|
22
|
Nazempour R, Zhang B, Ye Z, Yin L, Lv X, Sheng X. Emerging Applications of Optical Fiber-Based Devices for Brain Research. ADVANCED FIBER MATERIALS 2022; 4:24-42. [DOI: 10.1007/s42765-021-00092-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
|
23
|
Shi D, Dhawan V, Cui XT. Bio-integrative design of the neural tissue-device interface. Curr Opin Biotechnol 2021; 72:54-61. [PMID: 34710753 PMCID: PMC8671324 DOI: 10.1016/j.copbio.2021.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Neural implants enable bidirectional communications with nervous tissue and have demonstrated tremendous potential in research and clinical applications. To obtain high fidelity and stable information exchange, we need to minimize the undesired host responses and achieve intimate neuron-device interaction. This paper highlights the key bio-integrative strategies aimed at seamless integration through intelligent device designs to minimize the immune responses, as well as incorporate bioactive elements to actively modulate cellular reactions. These approaches span from surface modification and bioactive agent delivery, to biomorphic and biohybrid designs. Many of these strategies have shown effectiveness in functional outcome measures, others are exploratory but with fascinating potentials. The combination of bio-integrative strategies may synergistically promote the next generation of neural interfaces.
Collapse
Affiliation(s)
- Delin Shi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neural Basis of Cognition, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
24
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
25
|
Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to 'little engines' and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one's imagination.
Collapse
|
26
|
Antonini MJ, Sahasrabudhe A, Tabet A, Schwalm M, Rosenfeld D, Garwood I, Park J, Loke G, Khudiyev T, Kanik M, Corbin N, Canales A, Jasanoff AP, Fink Y, Anikeeva P. Customizing MRI-Compatible Multifunctional Neural Interfaces through Fiber Drawing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104857. [PMID: 34924913 PMCID: PMC8673858 DOI: 10.1002/adfm.202104857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anthony Tabet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Indie Garwood
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Jimin Park
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tural Khudiyev
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Kanik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kinetik Therapeutics LLC, Newton, MA, 02459, USA
| | - Nathan Corbin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Alan P. Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Advanced Functional Fabrics of America, Cambridge, MA, 02139 USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Tabet A, Antonini MJ, Sahasrabudhe A, Park J, Rosenfeld D, Koehler F, Yuk H, Hanson S, Stinson J, Stok M, Zhao X, Wang C, Anikeeva P. Modular Integration of Hydrogel Neural Interfaces. ACS CENTRAL SCIENCE 2021; 7:1516-1523. [PMID: 34584953 PMCID: PMC8461769 DOI: 10.1021/acscentsci.1c00592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 05/17/2023]
Abstract
Thermal drawing has been recently leveraged to yield multifunctional, fiber-based neural probes at near kilometer length scales. Despite its promise, the widespread adoption of this approach has been impeded by (1) material compatibility requirements and (2) labor-intensive interfacing of functional features to external hardware. Furthermore, in multifunctional fibers, significant volume is occupied by passive polymer cladding that so far has only served structural or electrical insulation purposes. In this article, we report a rapid, robust, and modular approach to creating multifunctional fiber-based neural interfaces using a solvent evaporation or entrapment-driven (SEED) integration process. This process brings together electrical, optical, and microfluidic modalities all encased within a copolymer comprised of water-soluble poly(ethylene glycol) tethered to water-insoluble poly(urethane) (PU-PEG). We employ these devices for simultaneous optogenetics and electrophysiology and demonstrate that multifunctional neural probes can be used to deliver cellular cargo with high viability. Upon exposure to water, PU-PEG cladding spontaneously forms a hydrogel, which in addition to enabling integration of modalities, can harbor small molecules and nanomaterials that can be released into local tissue following implantation. We also synthesized a custom nanodroplet forming block polymer and demonstrated that embedding such materials within the hydrogel cladding of our probes enables delivery of hydrophobic small molecules in vitro and in vivo. Our approach widens the chemical toolbox and expands the capabilities of multifunctional neural interfaces.
Collapse
Affiliation(s)
- Anthony Tabet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch
Institute For Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Marc-Joseph Antonini
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT
Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Atharva Sahasrabudhe
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Jimin Park
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dekel Rosenfeld
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Florian Koehler
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel Hanson
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jordan Stinson
- Koch
Institute For Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melissa Stok
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chun Wang
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Polina Anikeeva
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Ryazantsev MN, Strashkov DM, Nikolaev DM, Shtyrov AA, Panov MS. Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Donthamsetti P, Konrad DB, Hetzler B, Fu Z, Trauner D, Isacoff EY. Selective Photoswitchable Allosteric Agonist of a G Protein-Coupled Receptor. J Am Chem Soc 2021; 143:8951-8956. [PMID: 34115935 PMCID: PMC8227462 DOI: 10.1021/jacs.1c02586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most common targets of drug discovery. However, the similarity between related GPCRs combined with the complex spatiotemporal dynamics of receptor activation in vivo has hindered drug development. Photopharmacology offers the possibility of using light to control the location and timing of drug action by incorporating a photoisomerizable azobenzene into a GPCR ligand, enabling rapid and reversible switching between an inactive and active configuration. Recent advances in this area include (i) photoagonists and photoantagonists that directly control receptor activity but are nonselective because they bind conserved sites, and (ii) photoallosteric modulators that bind selectively to nonconserved sites but indirectly control receptor activity by modulating the response to endogenous ligand. In this study, we designed a photoswitchable allosteric agonist that targets a nonconserved allosteric site for selectivity and activates the receptor on its own to provide direct control. This work culminated in the development of aBINA, a photoswitchable allosteric agonist that selectively activates the Gi/o-coupled metabotropic glutamate receptor 2 (mGluR2). aBINA is the first example of a new class of precision drugs for GPCRs and other clinically important signaling proteins.
Collapse
Affiliation(s)
- Prashant Donthamsetti
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - David B. Konrad
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Belinda Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Zhu Fu
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Ehud Y. Isacoff
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Reynders M, Trauner D. Optical control of targeted protein degradation. Cell Chem Biol 2021; 28:969-986. [PMID: 34115971 DOI: 10.1016/j.chembiol.2021.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Molecular glues and proteolysis targeting chimeras (PROTACs) have emerged as small-molecule tools that selectively induce the degradation of a chosen protein and have shown therapeutic promise. Recently, several approaches employing light as an additional stimulus to control induced protein degradation have been reported. Here, we analyze the principles guiding the design of such systems, provide a survey of the literature published to date, and discuss opportunities for further development. Light-responsive degraders enable the precise temporal and spatial control of protein levels, making them useful research tools but also potential candidates for human precision medicine.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA; Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA; Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|