1
|
Lee S, Park JS, Hong JH, Woo H, Lee CH, Yoon JH, Lee KB, Chung S, Yoon DS, Lee JH. Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects. Biosens Bioelectron 2025; 280:117399. [PMID: 40184880 DOI: 10.1016/j.bios.2025.117399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Recently, artificial intelligence (AI) has emerged as a transformative tool, enhancing the speed, accuracy, and scalability of bacterial diagnostics. This review explores the role of AI in revolutionizing bacterial detection and antimicrobial susceptibility testing (AST) by leveraging machine learning models, including Random Forest, Support Vector Machines (SVM), and deep learning architectures such as Convolutional Neural Networks (CNNs) and transformers. The integration of AI into these methods promises to address the current limitations of traditional techniques, offering a path toward more efficient, accessible, and reliable diagnostic solutions. In particular, AI-based approaches have demonstrated significant potential in resource-limited settings by enabling cost-effective and portable diagnostic solutions, reducing dependency on specialized infrastructure, and facilitating remote bacterial detection through smartphone-integrated platforms and telemedicine applications. This review highlights AI's transformative role in automating data analysis, minimizing human error, and delivering real-time diagnostic results, ultimately improving patient outcomes and optimizing healthcare efficiency. In addition, we not only examine the current advances in machine learning and deep learning but also review their applications in plate counting, mass spectrometry, morphology-based and motion-based microscopic detection, holographic microscopy, colorimetric and fluorescence detection, electrochemical sensors, Raman and Surface-Enhanced Raman Spectroscopy (SERS), and Atomic Force Microscopy (AFM) for bacterial diagnostics and AST. Finally, we discuss the future directions and potential advancements in AI-driven bacterial diagnostics.
Collapse
Affiliation(s)
- Seungmin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Jeong Soo Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji Hye Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea
| | - Hyowon Woo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chang-Hyun Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ju Hwan Yoon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Ki-Baek Lee
- Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon, Seoul, 01897, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul, 02841, Republic of Korea.
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk, Seoul, 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea; Astrion Inc, Seoul, 02841, Republic of Korea.
| | - Jeong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Department of Integrative Energy Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Bisht B, Bhardwaj P, Chauhan S, Sagrika, Vedika, Basnal N, Bhalla V. Nanocatalysis of silver-nanobioprobe based supersensitive electrochemical detection of Salmonella serotypes targeting virulence protein. Biosens Bioelectron 2025; 268:116872. [PMID: 39489013 DOI: 10.1016/j.bios.2024.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Herein, we report a supersensitive and specific detection of Salmonella employing nanocatalysis of silver nanoparticle (AgNp). A nanobioprobe was developed employing specific antibody (Ab) that binds to a peptide present in transmembrane protein of Salmonella. We have studied 7 surface-exposed peptide hits from conserved virulence proteins (PagC, ST50, PagN, CdtB and FliC). These peptides were experimentally evaluated by BLI (Bio layer interferometry) for their reactivity towards antisera raised against an admix of major Salmonella serogroups. The most promising peptide was used to generate Ab with binding affinity Kd of 5.6 × 10-9 M. The Ab exhibited high specificity towards entire Salmonella serotypes prevalent in foods, as illustrated by FACS (Fluorescence-activated cell sorting) study. The Ab-AgNp probe was blocked with a dual layer to prevent non-specific interactions, confirmed by employing BLI and TEM (Transmission electron microscopy). For the electrochemical detection, the autonanocatalysis of AgNp in presence of H2O2 was used to generate numerous Ag+ resulting in an amplified signal that could detect 10 cells/mL. The relative standard deviation (RSD) was observed to be 4.5%. The platform achieved recovery of 100-112% calculated for 102 cells/mL. The performance was validated in milk, buffer peptone water (BPW) and tap water by spiking studies. The study highlights the effectiveness of efficiently blocked AgNp-mediated probes for the highly selective and sensitive detection of Salmonella, representing a significant advancement in bacterial sensing.
Collapse
Affiliation(s)
- Bhawana Bisht
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Bhardwaj
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakshi Chauhan
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India
| | - Sagrika
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vedika
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Namita Basnal
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijayender Bhalla
- Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Zenner C, Hall LJ, Roy S, Hauer J, Sroka R, Maiti KS. Measurement of Bacterial Headspaces by FT-IR Spectroscopy Reveals Distinct Volatile Organic Compound Signatures. Anal Chem 2025; 97:106-113. [PMID: 39707942 PMCID: PMC11740187 DOI: 10.1021/acs.analchem.4c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Ensuring prompt and precise identification of bacterial pathogens is essential for initiating appropriate antibiotic therapy and combating severe bacterial infections effectively. Traditional microbiological diagnostics, involving initial culturing and subsequent pathogen detection, are often laborious and time-consuming. Even though modern techniques such as Raman spectroscopy, MALDI-TOF, and 16S rRNA PCR have significantly expedited this process, new methods are required for the accurate and fast detection of bacterial pathogens. In this context, using bacterial metabolites for detection is promising as a future diagnostic approach. Fourier-transform infrared spectroscopy was employed in our study to analyze the biochemical composition of gas phases of bacterial isolates. We can characterize individual bacterial strains and identify specific bacteria within mixtures by utilizing volatile-metabolite-based infrared detection techniques. This approach enables rapid identification by discerning distinctive spectral features and intensities for different bacteria, offering new perspectives for bacterial pathogen diagnostics. This technique holds innovative potential to accelerate progress in the field, providing a faster and potentially more precise alternative to conventional diagnostic methods.
Collapse
Affiliation(s)
- Christian Zenner
- Technical
University of Munich, School of Life Sciences, Intestinal Microbiome, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Lindsay J. Hall
- Technical
University of Munich, School of Life Sciences, Intestinal Microbiome, Weihenstephaner Berg 3, 85354 Freising, Germany
- University
of Birmingham, Institute of Microbiology and Infection, Chair of Microbiome
Research, B15 2TT Edgbaston Birmingham, U.K.
| | - Susmita Roy
- Department
of Clinical Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jürgen Hauer
- TUM
School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Ronald Sroka
- Department
of Urology, LMU University Hospital, LMU
Munich, 81377 Munich, Germany
- Laser-Forschungslabor,
LIFE-Center, LMU University Hospital, LMU
Munich, 82152 Planegg, Germany
| | - Kiran Sankar Maiti
- TUM
School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Laser-Forschungslabor,
LIFE-Center, LMU University Hospital, LMU
Munich, 82152 Planegg, Germany
| |
Collapse
|
4
|
Maghsoomi S, Walochnik J, Brandl M, Pham ML. A Novel Methylene Blue Indicator-Based Aptasensor for Rapid Detection of Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:11682. [PMID: 39519234 PMCID: PMC11547117 DOI: 10.3390/ijms252111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen highly prevalent in the environment, requiring early detection methods to prevent infections in vulnerable individuals. The most specific aptamer for P. aeruginosa, F23, has been used for the development of various assays and sensors for early diagnosis and monitoring. In this study, a novel F23-based electrochemical aptasensor was designed using disposal gold screen-printed electrodes (Au-SPEs) with high reproducibility. Methylene blue (MB) was used as an exogenous indicator, which significantly amplified the electrochemical signal and improved the sensitivity of detection. The aptasensor explored a limit of detection (LOD) of 8 CFU·mL-1 and high selectivity for P. aeruginosa over other interfering bacteria. Furthermore, it showed potential to detect P. aeruginosa in tap water samples, offering a point-of-care tool for rapidly controlling the growth of this bacterium in various applications.
Collapse
Affiliation(s)
- Somayeh Maghsoomi
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria;
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria;
| | - Martin Brandl
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| | - Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| |
Collapse
|
5
|
Tieu MV, Abafogi AT, Hoang TX, Pham DT, Park J, Park S, Park S, Cho S. Impedimetric Gram-Positive Bacteria Biosensor Using Vancomycin-Coated Silica Nanoparticles with a Gold Nanocluster-Deposited Electrode. Anal Chem 2024; 96:16658-16667. [PMID: 39279360 DOI: 10.1021/acs.analchem.4c02852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We introduce a swift, label-free electrochemical biosensor designed for the precise on-site detection of Gram-positive bacteria via electrochemical impedance spectroscopy. The biosensor was prepared by electroplating the electrode surface with gold nanoclusters (AuNCs) on the gold-interdigitated wave-shaped electrode with a printed circuit board (Au-PCB) electrode, which plays a role in cost-effective and promising lab-on-a-chip microsystems and integrated biosensing systems. This was followed by the application of silica nanoparticle-modified vancomycin (SiNPs-VAN) that binds to Gram-positive bacteria and facilitates their detection on the AuNC-coated surface. The biosensor demonstrated remarkable sensitivity and specificity. It could detect as few as 102 colony-forming units (CFU)/mL of Staphylococcus aureus, 101 CFU/mL of Bacillus cereus, and 102 CFU/mL of Micrococcus luteus within 20 min. Additionally, SiNPs-VAN is also known for its high stability, low cost, and ease of preparation. It is effective in identifying Gram-positive bacteria in water samples across a concentration range of 102-105 CFU/mL and shows selective identification of Gram-positive bacteria with minimal interference from Gram-negative bacteria like Escherichia coli. The ability of the biosensor to quantify Gram-positive bacteria aligns well with the results obtained from the quantitative real-time polymerase chain reaction (qRT-PCR). These findings highlight the potential of electrochemical biosensors for the detection of pathogens and other biological entities, marking a significant advancement in this field.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Abdurhaman Teyib Abafogi
- School of Mechanical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea
| | - Duc-Trung Pham
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Jaehwan Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Sungho Park
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Sungbo Cho
- Department of Semiconductor Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
6
|
Santos MPMC, de Oliveira LS, Lima-Neto RG, Andrade CAS, Oliveira MDL. New bioelectrode based on graphene quantum dots-polypyrrole film and Concanavalin A for pathogenic microorganism detection. J Pharm Biomed Anal 2024; 248:116299. [PMID: 38865928 DOI: 10.1016/j.jpba.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Infections caused by microorganisms are a public health problem worldwide. New biodetection systems are essential to diagnose with accuracy resulting in more effective treatment. In this work, we propose a ConA-conjugated graphene quantum dots and polypyrrole film-based biosensor for label-free detection of Candida albicans, Candida glabrata, Candida tropicalis, E. coli, B. subitilis, and S. aureus. We modified polypyrrole and graphene quantum dots (PPY-QDGs) with Concanavalin A (Con A) lectin. ConA is a glucose/mannose-specific lectin. The results showed that ConA lectin has the highest binding affinity for C. tropicalis and S. subtilis. PPY-GQDs-ConA binding profile revealed differential response for Candida spp (C. tropicalis > C. albicans > C. glabrata) and bacterial (B. subtilis > S. aureus > E. coli). The limits of detection (LOD) obtained were 1.42 CFU/mL for C. albicans, and 3.72 CFU/mL for C. glabrata. C. tropicalis yielded a LOD of 0.18 CFU/mL. The respective LODs for the evaluated bacteria were 0.39 CFU/mL for S. aureus, 0.72 CFU/mL for S. subtilis, and 2.63 CFU/mL for E. coli. The differential response obtained for the sensor can be attributed to the heterogeneous distribution of carbohydrates on the microorganism's surfaces. The proposed system based on a flexible substrate is effective for microbiological diagnosis.
Collapse
Affiliation(s)
- Maria P M C Santos
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Léony S de Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Reginaldo G Lima-Neto
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| |
Collapse
|
7
|
Chang YC, Arnould B, Heemstra JM, Moeller KD. Developing Microelectrode Arrays for the Point-of-Care Multiplex Detection of Metabolites. Anal Chem 2024; 96:14571-14580. [PMID: 39183484 PMCID: PMC11907268 DOI: 10.1021/acs.analchem.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
DNA-aptamer-functionalized electrode arrays can provide an intriguing method for detecting pathogen-derived exometabolites. This work addresses the limitations of previous aptamer-based pathogen detection methods by introducing a novel surface design that bridges the gap between initial efforts in this area and the demands of a point-of-care device. Specifically, the use of a diblock copolymer coating on a high-density microelectrode array and Cu-mediated cross coupling reactions that allow for the exclusive functionalization of that coating by any electrode or set of electrodes in the array provides a device that is stable for 1 year and compatible with the multiplex detection of small-molecule targets. The new chemistry developed allows one to take advantage of a large number of electrodes in the array with one experiment described herein capitalizing on the use of 960 individually addressable electrodes.
Collapse
Affiliation(s)
- Yu-Chia Chang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benoit Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kevin D Moeller
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
P A A, Ragunathan L, Sanjeevi T, Sasi AC, Kanniyan K, Yadav R, Sambandam R. Breaking boundaries in microbiology: customizable nanoparticles transforming microbial detection. NANOSCALE 2024; 16:13802-13819. [PMID: 38990141 DOI: 10.1039/d4nr01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The detection and identification of microorganisms are crucial in microbiology laboratories. Traditionally, detecting and identifying microbes require extended periods of incubation, significant manual effort, skilled personnel, and advanced laboratory facilities. Recent progress in nanotechnology has provided novel opportunities for detecting and identifying bacteria, viruses, and microbial metabolites using customized nanoparticles. These improvements are thought to have the ability to surpass the constraints of existing procedures and make a substantial contribution to the development of rapid microbiological diagnosis. This review article examines the customizability of nanoparticles for detecting bacteria, viruses, and microbial metabolites and discusses recent cutting-edge studies demonstrating the use of nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Aboobacker P A
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Latha Ragunathan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Thiyagarajan Sanjeevi
- Department of Medical Biotechnology, Aarupadai Veedu Medical College, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India
| | - Aravind C Sasi
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Kavitha Kanniyan
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Richa Yadav
- Department of Microbiology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India.
| | - Ravikumar Sambandam
- Department of Medical Biotechnology, Aarupadai Veedu Medical College, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry 607402, India
| |
Collapse
|
9
|
de Godoy HA, Faria AM, Roza NAV, Bach-Toledo L, Simabuco FM, Scharlack NK, de Oliveira RB, Antunes AEC, Arthur R, Mazon T. Point-of-Care Electrochemical Immunosensor Applied against Nosocomial Infection: Staphylococcus aureus Detection in Human Hand Skin. ACS Infect Dis 2024; 10:1949-1957. [PMID: 38741263 DOI: 10.1021/acsinfecdis.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Staphylococcus aureus is an important pathogen that causes nosocomial infections, resulting in unacceptable morbidity and mortality rates. In this work, we proposed the construction of a nanostructured ZnO-based electrochemical immunosensor for qualitative and semiquantitative detection of S. aureus using simple methods for growing zinc oxide nanorods (ZnO NRs) on a sensor board and immobilizing the anti-S. aureus antibody on ZnO NRs through cystamine and glutaraldehyde. The immunosensor detected S. aureus in the 103-107 colony-forming unit (CFU) mL-1 range and showed a limit of detection (LoD) around 0.792 × 103 CFU mL-1. Beyond a satisfactory LoD, the developed immunosensor presented other advantages, such as high versatility for point-of-care assays and a suitable selective factor that admits the detection of the S. aureus concentration range in human hand skin after washing. Moreover, the immunosensor showed the potential to be an excellent device to control nosocomial infection by detecting the presence of S. aureus in human hand skin.
Collapse
Affiliation(s)
- Henri Alves de Godoy
- School of Technology, State University of Campinas (UNICAMP), 13484-332 Limeira, SP, Brazil
| | - Aline Macedo Faria
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| | | | - Larissa Bach-Toledo
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| | | | - Nayara Kastem Scharlack
- School of Applied Sciences, State University of Campinas (UNICAMP), 13484-350 Limeira, SP, Brazil
| | | | | | - Rangel Arthur
- School of Technology, State University of Campinas (UNICAMP), 13484-332 Limeira, SP, Brazil
| | - Talita Mazon
- Centro de Tecnologia da Informação Renato Archer, CTI, 13069-901 Campinas, SP, Brazil
| |
Collapse
|
10
|
Sahu PK, Gangwar R, Ramesh A, Rao KT, Vanjari SRK, Subrahmanyam C. Green-Synthesized Amino Carbons for Impedimetric Biosensing of E. coli O157:H7. ACS Infect Dis 2024; 10:1644-1653. [PMID: 38602317 DOI: 10.1021/acsinfecdis.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.
Collapse
Affiliation(s)
- Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Asha Ramesh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Karri Trinadha Rao
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Challapalli Subrahmanyam
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
11
|
Ardino C, Sannio F, Poli G, Galati S, Dreassi E, Botta L, Docquier JD, D'Agostino I. An update on antibacterial AlkylGuanidino Ureas: Design of new derivatives, synergism with colistin and data analysis of the whole library. Eur J Med Chem 2024; 270:116362. [PMID: 38574637 DOI: 10.1016/j.ejmech.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Antimicrobial resistance (AMR) represents one of the most challenging global Public Health issues, with an alarmingly increasing rate of attributable mortality. This scenario highlights the urgent need for innovative medicinal strategies showing activity on resistant isolates (especially, carbapenem-resistant Gram-negative bacteria, methicillin-resistant S. aureus, and vancomycin-resistant enterococci) yielding new approaches for the treatment of bacterial infections. We previously reported AlkylGuanidino Ureas (AGUs) with broad-spectrum antibacterial activity and a putative membrane-based mechanism of action. Herein, new tetra- and mono-guanidino derivatives were designed and synthesized to expand the structure-activity relationships (SARs) and, thereby, tested on the same panel of Gram-positive and Gram-negative bacteria. The membrane-active mechanism of selected compounds was then investigated through molecular dynamics (MD) on simulated bacterial membranes. In the end, the newly synthesized series, along with the whole library of compounds (more than 70) developed in the last decade, was tested in combination with subinhibitory concentrations of the last resort antibiotic colistin to assess putative synergistic or additive effects. Moreover, all the AGUs were subjected to cheminformatic and machine learning analyses to gain a deeper knowledge of the key features required for bioactivity.
Collapse
Affiliation(s)
- Claudia Ardino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Filomena Sannio
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, I-53100, Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Salvatore Galati
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Lorenzo Botta
- Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy; Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, I-01100, Viterbo, Italy
| | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, Viale Mario Bracci 16, I-53100, Siena, Italy; Lead Discovery Siena s.r.l., Via Vittorio Alfieri 31, I-53019, Castelnuovo Berardenga, Italy
| | - Ilaria D'Agostino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, I-56126, Pisa, Italy.
| |
Collapse
|
12
|
Ansari MA, Mohd-Naim NF, Ahmed MU. Electrochemical Nanoaptasensor Based on Graphitic Carbon Nitride/Zirconium Dioxide/Multiwalled Carbon Nanotubes for Matrix Metalloproteinase-9 in Human Serum and Saliva. ACS APPLIED BIO MATERIALS 2024; 7:1579-1587. [PMID: 38386014 DOI: 10.1021/acsabm.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this study, a nanocomposite was synthesized by incorporating graphitic carbon nanosheets, carboxyl-functionalized multiwalled carbon nanotubes, and zirconium oxide nanoparticles. The resulting nanocomposite was utilized for the modification of a glassy carbon electrode. Subsequently, matrix metalloproteinase aptamer (AptMMP-9) was immobilized onto the electrode surface through the application of ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. Morphological characterization of the nanomaterials and the nanocomposite was performed using field-emission scanning electron microscopy (FESEM). The nanocomposite substantially increased the electroactive surface area by 205%, facilitating enhanced immobilization of AptMMP-9. The efficacy of the biosensor was evaluated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimal conditions, the fabricated sensor demonstrated a broad range of detection from 50 to 1250 pg/mL with an impressive lower limit of detection of 10.51 pg/mL. In addition, the aptasensor exhibited remarkable sensitivity, stability, excellent selectivity, reproducibility, and real-world applicability when tested with human serum and saliva samples. In summary, our developed aptasensor exhibits significant potential as an advanced biosensing tool for the point-of-care quantification of MMP-9, promising advancements in biomarker detection for practical applications.
Collapse
Affiliation(s)
- Mohd Afaque Ansari
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Noor Faizah Mohd-Naim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
| |
Collapse
|
13
|
David S, Cârtoc RE, Petcu IC, Polonschii C, Petran A, Turcu R, Bratu D, Gheorghiu M, Gheorghiu E. In situ detection and viability assessment of target microorganisms. Biosens Bioelectron 2024; 245:115821. [PMID: 37984319 DOI: 10.1016/j.bios.2023.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
Rapid detection and viability assessment of pathogenic microorganisms, without the need for pre-enrichment steps, is critical in clinical microbiology, food safety, environmental quality assessment, and biosecurity. We demonstrate a powerful analytical concept and the related platform that enable in situ rapid detection, separation, sensitive quantification, and viability assessment of targeted microorganisms (bacteria and fungi) from minimally processed samples. This is based on a novel integration of magneto-affine selection and electrical impedance assay. The entire process, from capture to measurement, is executed using controlled magnetic fields to manipulate magnetic particles (MPs)-microbe affinity-based clusters, in a compact, portable setup equipped with cost-effective, single-use chambers. The system was tested for non-invasive in situ evaluation of model bacteria (Escherichia coli) and fungi (Saccharomyces cerevisiae) within clinically relevant concentration ranges, and it was demonstrated amenable for both commercial and custom MPs, proving its high versatility. The high capture efficiency, the ability to provide analytic results within 30 min directly from unprocessed samples (buffer and synthetic urine), and the high sensitivity in distinguishing live and dead cells in dynamic exposures represent significant advancements over existing assays and recommend the system as a screening tool for pathogen presence and antimicrobial susceptibility in clinical and environmental samples.
Collapse
Affiliation(s)
- Sorin David
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania
| | - Raluca-Elena Cârtoc
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Ionela-Cristina Petcu
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania; University POLITEHNICA of Bucharest, Splaiul Independenței 313, 060042, Bucharest, Romania
| | - Cristina Polonschii
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania
| | - Anca Petran
- National Institute R&D of Isotopic and Molecular Technologies, Cluj-Napoca, 400293, Romania
| | - Rodica Turcu
- National Institute R&D of Isotopic and Molecular Technologies, Cluj-Napoca, 400293, Romania
| | - Dumitru Bratu
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Eugen Gheorghiu
- International Centre of Biodynamics, Intrarea Portocalelor Nr. 1B, 060101, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| |
Collapse
|
14
|
Hassan NF, Khattab TA, Fouda MMG, Abu Zaid AS, Aboshanab KM. Electrospun cellulose nanofibers immobilized with anthocyanin extract for colorimetric determination of bacteria. Int J Biol Macromol 2024; 257:128817. [PMID: 38103663 DOI: 10.1016/j.ijbiomac.2023.128817] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
A novel smart biochromic textile sensor was developed by immobilizing anthocyanin extract into electrospun cellulose acetate nanofibers to detect bacteria for numerous potential uses, such as healthcare monitoring. Red-cabbage was employed to extract anthocyanin, which was then applied to cellulose acetate nanofibers treated with potassium aluminum sulfate as a mordant. Thus, nanoparticles (NPs) of mordant/anthocyanin (65-115 nm) were generated in situ on the surface of cellulose acetate nanofibrous film. The pH of a growing bacterial culture medium is known to change when bacteria multiply. The absorbance spectra revealed a bluish shift from 595 nm (purple) to 448 nm (green) during the growth of Gram-negative bacteria (E. coli) owing to the discharge of total volatile basic amines as secretion metabolites. On the other hand, the absorption spectra of a growing bacterial culture containing Gram-positive bacteria (L. acidophilus) showed a blue shift from 595 nm (purplish) to 478 nm (pink) as a result of releasing lactic acid as a secretion metabolite. Both absorbance spectra and CIE Lab parameters were used to determine the color shifts. Various analytical techniques were utilized to study the morphology of the anthocyanin-encapsulated electrospun cellulose nanofibers. The cytotoxic effects of the colored cellulose acetate nanofibers were tested.
Collapse
Affiliation(s)
- Nada F Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic-based Fiber Department, Textile Research and Technology Institute (TRT), National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Ahmed S Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
15
|
Ali SA, Ayalew H, Gautam B, Selvaraj B, She JW, Janardhanan JA, Yu HH. Detection of SARS-CoV-2 Spike Protein Using Micropatterned 3D Poly(3,4-Ethylenedioxythiophene) Nanorods Decorated with Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38193284 DOI: 10.1021/acsami.3c12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The sensitivity and fabrication process of the detection platform are important for developing viral disease diagnosis. Recently, the outbreak of SARS-CoV-2 compelled us to develop a new detection platform to control such diseases in the future. We present an electrochemical-based assay that employs the unique properties of gold nanoparticles (AuNPs) deposited on 3D carboxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOTAc) nanorods for specific and sensitive detection of SARS-CoV-2 spike protein (S1). The 3D-shaped PEDOTAc nanorods offer an ample surface area for receptor immobilization grown on indium-tin oxide surfaces through transfer-printing technology. Characterization via electrochemical, fluorescence, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques confirmed the structural and morphological properties of the AuNPs-decorated PEDOTAc. In contrast to antibody-based assays, our platform employs ACE2 receptors for spike protein binding. Differential pulse voltammetry records current responses, showing linear sensitivity from 100 ng to 10 pg/mL of S1. In addition, the SARS-CoV-2 assay (CoVPNs) also exhibited excellent selectivity against nonspecific target proteins (H9N2, IL-6, and Escherichia coli). Furthermore, the developed surface maintained good stability for up to 7 consecutive days without losing performance. The results provide new insight into effective 3D conductive nanostructure formation, which is promising in the development of versatile sensory devices.
Collapse
Affiliation(s)
- Syed Atif Ali
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hailemichael Ayalew
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Bhaskarchand Gautam
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Baskar Selvaraj
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei She
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30010, Taiwan
| | | | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
16
|
Pham ML, Maghsoomi S, Brandl M. An Electrochemical Aptasensor for the Detection of Freshwater Cyanobacteria. BIOSENSORS 2024; 14:28. [PMID: 38248405 PMCID: PMC10813013 DOI: 10.3390/bios14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Aphanizomenon is a genus of cyanobacteria that is filamentous and nitrogen-fixing and inhabits aquatic environments. This genus is known as one of the major producers of cyanotoxins that can affect water quality after the bloom period. In this study, an electrochemical aptasensor is demonstrated using a specific aptamer to detect Aphanizomenon sp. ULC602 for the rapid and sensitive detection of this bacterium. The principal operation of the generated aptasensor is based on the conformational change in the aptamer attached to the electrode surface in the presence of the target bacterium, resulting in a decrease in the current peak, which is measured by square-wave voltammetry (SWV). This aptasensor has a limit of detection (LOD) of OD750~0.3, with an extension to OD750~1.2 and a sensitivity of 456.8 μA·OD750-1·cm-2 without interference from other cyanobacteria. This is the first aptasensor studied that provides rapid detection to monitor the spread of this bacterium quickly in a targeted manner.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| | - Somayeh Maghsoomi
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Martin Brandl
- Center for Water and Environmental Sensors, Department for Integrated Sensor Systems, University for Continuing Education Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems an der Donau, Austria; (S.M.); (M.B.)
| |
Collapse
|
17
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Huang A, Krueger R, Moeller KD. Microelectrode Arrays, Electrocatalysis, and the Need for Proper Characterization. ChemElectroChem 2023; 10:e202300457. [PMID: 38450252 PMCID: PMC10914339 DOI: 10.1002/celc.202300457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 03/08/2024]
Abstract
Indirect electrochemical methods are a powerful tool for synthetic chemistry because they allow for the optimization of chemical selectivity in a reaction while maintaining the advantages of electrochemistry in terms of sustainability. Recently, we have found that such methods provide a handle for not only the synthesis of complex molecules, but also the construction of complex, addressable molecular surfaces. In this effort, the indirect electrochemical methods enable the placement or synthesis of molecules by any electrode or set of electrodes in a microelectrode array. The success of these surface-based reactions are typically evaluated with the use of fluorescence labelling studies. However, these fluorescence-based evaluations can be misleading. While they are excellent for determining that a reaction has occurred in a site-selective fashion on an array, they do not provide information on whether that reaction is the one desired or how well it worked. We describe here how the use of a "safety-catch" linker strategy allows for a more accurate assessment of reaction quality on an array, and then use that capability to illustrate how the use of transition metal mediated cross-coupling reactions on an array prevent unwanted background reactions that can occur on a polymer-coated electrode surface. The method enables a unique level of quality control for array-based transformations.
Collapse
Affiliation(s)
- Albert Huang
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Ruby Krueger
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Kevin D. Moeller
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Sirdeshmukh V, Mane K, Shukla M, Bhagwat P, Sharma R, Kambale S, Kale A. GQD as a probe and Graphene Oxide (GO)-Au/Ag nanocarriers for faster and more sensitive E. coli and S. aureus detection. 2023 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (NANOMED) 2023:40-43. [DOI: 10.1109/nanomed59780.2023.10404826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
| | - Ketan Mane
- COEP Technological University,Department of Applied Sciences,Pune,India
| | - Mahima Shukla
- Dr. Vishwanath Karad MIT – World Peace University,Department of Biosciences and Technology,Pune,India
| | - Prateeksha Bhagwat
- Dr. Vishwanath Karad MIT – World Peace University,Department of Biosciences and Technology,Pune,India
| | - Ruchika Sharma
- Dr. Vishwanath Karad MIT – World Peace University,Department of Biosciences and Technology,Pune,India
| | - Sampada Kambale
- Dr. Vishwanath Karad MIT – World Peace University,Department of Biosciences and Technology,Pune,India
| | - Anup Kale
- Dr. Vishwanath Karad MIT – World Peace University,Department of Biosciences and Technology,Pune,India
| |
Collapse
|
20
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
21
|
Touge C, Nakatsu M, Sugimoto M, Takamura E, Sakamoto H. A Biochemical Corrosion Monitoring Sensor with a Silver/Carbon Comb Structure for the Detection of Living Escherichia coli. ACS OMEGA 2023; 8:43511-43520. [PMID: 38027348 PMCID: PMC10666268 DOI: 10.1021/acsomega.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
For the detection and monitoring of live bacteria, we propose a biochemical corrosion monitoring (BCM) sensor that measures galvanic current by using a Ag/C sensor comprising silver and carbon comb electrodes. The deposition of an Escherichia coli suspension containing an LB liquid medium on the Ag/C sensor increased the galvanic current. The time required for the current to reach 20 nA is defined as T20. T20 tends to decrease as the initial number of E. coli in the E. coli solution increases. A linear relationship was obtained between the logarithm of the E. coli count and T20 in a bacterial count range of 1-108 cfu/mL under culture conditions in which the growth rate of the bacteria was constant. Hence, the number of live E. coli could be determined from T20. Ag2S precipitation was observed on the surface of the Ag electrode of the Ag/C sensor, where an increase in the current was observed. This generation of galvanic current was attributed to the reaction between a small amount of free H2S metabolized by E. coli in the bacterial solution during its growth process and Ag-the sensor anode. The Ag/C sensor can detect a free H2S concentration of 0.041 μM in the E. coli solution. This novel biochemical sensor can monitor the growth behavior of living organisms without damaging them.
Collapse
Affiliation(s)
- Chiyako Touge
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Michiyo Nakatsu
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Mai Sugimoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Eiichiro Takamura
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| |
Collapse
|
22
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
23
|
Zeid AM, Mostafa IM, Lou B, Xu G. Advances in miniaturized nanosensing platforms for analysis of pathogenic bacteria and viruses. LAB ON A CHIP 2023; 23:4160-4172. [PMID: 37668185 DOI: 10.1039/d3lc00674c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Pathogenic bacteria and viruses are the main causes of infectious diseases all over the world. Early diagnosis of such infectious diseases is a critical step in management of their spread and treatment of the infection in its early stages. Therefore, the innovation of smart sensing platforms for point-of-care diagnosis of life-threatening infectious diseases such as COVID-19 is a prerequisite to isolate the patients and provide them with suitable treatment strategies. The developed diagnostic sensors should be highly sensitive, specific, ultrafast, portable, cheap, label-free, and selective. In recent years, different nanosensors have been developed for the detection of bacterial and viral pathogens. We focus here on label-free miniaturized nanosensing platforms that were efficiently applied for pathogenic detection in biological matrices. Such devices include nanopore sensors and nanostructure-integrated lab-on-a-chip sensors that are characterized by portability, simplicity, cost-effectiveness, and ultrafast analysis because they avoid the time-consuming sample preparation steps. Furthermore, nanopore-based sensors could afford single-molecule counting of viruses in biological specimens, yielding high-sensitivity and high-accuracy detection. Moreover, non-invasive nanosensors that are capable of detecting volatile organic compounds emitted from the diseased organ to the skin, urine, or exhaled breath were also reviewed. The merits and applications of all these nanosensors for analysis of pathogenic bacteria and viruses in biological matrices will be discussed in detail, emphasizing the importance of artificial intelligence in advancing specific nanosensors.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Magnano San Lio R, Barchitta M, Maugeri A, La Rosa MC, Favara G, Agodi A. Updates on developing and applying biosensors for the detection of microorganisms, antimicrobial resistance genes and antibiotics: a scoping review. Front Public Health 2023; 11:1240584. [PMID: 37744478 PMCID: PMC10512422 DOI: 10.3389/fpubh.2023.1240584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background The inappropriate use of antibiotics in clinical and non-clinical settings contributes to the increasing prevalence of multidrug-resistant microorganisms. Contemporary endeavours are focused on exploring novel technological methodologies, striving to create cost-effective and valuable alternatives for detecting microorganisms, antimicrobial resistance genes (ARGs), and/or antibiotics across diverse matrices. Within this context, there exists an increasingly pressing demand to consolidate insights into potential biosensors and their implications for public health in the battle against antimicrobial resistance (AMR). Methods A scoping review was carried out to map the research conducted on biosensors for the detection of microorganisms, ARGs and/or antibiotics in clinical and environmental samples. The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist was used. Articles published from 1999 to November 2022 and indexed in the following databases were included: MEDLINE, EMBASE, Web of Science, BIOSIS Citation index, Derwent Innovations index, and KCI-Korean Journal. Results The 48 studies included in the scoping review described the development and/or validation of biosensors for the detection of microorganisms, ARGs and/or antibiotics. At its current stage, the detection of microorganisms and/or ARGs has focused primarily on the development and validation of biosensors in clinical and bacterial samples. By contrast, the detection of antibiotics has focused primarily on the development and validation of biosensors in environmental samples. Asides from target and samples, the intrinsic characteristics of biosensors described in the scoping review were heterogenous. Nonetheless, the number of studies assessing the efficacy and validation of the aforementioned biosensor remained limited, and there was also a lack of comparative analyses against conventional molecular techniques. Conclusion Promoting high-quality research is essential to facilitate the integration of biosensors as innovative technologies within the realm of public health challenges, such as antimicrobial resistance AMR. Adopting a One-Health approach, it becomes imperative to delve deeper into these promising and feasible technologies, exploring their potential across diverse sample sets and matrices.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Wang J, Peng L, Han D, Zheng T, Chang T, Cui HL. Label-free detection and identification of single bacteria via terahertz near-field imaging. Front Microbiol 2023; 14:1195448. [PMID: 37333650 PMCID: PMC10272414 DOI: 10.3389/fmicb.2023.1195448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
In recent years, terahertz (THz) imaging has attracted much attention because of its ability to obtain physical and chemical information in a label-free, noninvasive and nonionizing manner. However, the low spatial resolution of traditional THz imaging systems and the weak dielectric response of biological samples hinder the application of this technology in the biomedical field. In this paper, we report a new THz near-field imaging method for a single bacteria, through the coupling effect of nanoscale radius of probe and platinum gold substrate, which greatly enhances THz near-field signal of biological samples. A THz super-resolution image of bacteria has been successfully obtained by strictly controlling the relevant test parameters such as tip parameters and driving amplitude. By analyzing and processing the THz spectral image, the morphology and inner structure of bacteria have been observed. The method has been used to detect and identify Escherichia coli represented by Gram-negative bacteria and Staphylococcus aureus represented by Gram-positive bacteria. This application provides a new label-free, noninvasive and nonionizing testing protocol for the detection of single bacteria.
Collapse
Affiliation(s)
- Jie Wang
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Teng Zheng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China
| | - Tianying Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong-Liang Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
26
|
Nguyen TTQ, Gu MB. An ultrasensitive electrochemical aptasensor using Tyramide-assisted enzyme multiplication for the detection of Staphylococcus aureus. Biosens Bioelectron 2023; 228:115199. [PMID: 36906992 DOI: 10.1016/j.bios.2023.115199] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
In this study, we aimed to introduce a new electrochemical aptasensor based on the tyramide signal amplification (TSA) technology for a highly-sensitive detection of the pathogenic bacterium, Staphylococcus aureus, as a model of foodborne pathogens. In this aptasensor, the primary aptamer, SA37, was used to specifically capture bacterial cells; the secondary aptamer, SA81@HRP, was used as the catalytic probe; and a TSA-based signal enhancement system comprising of biotinyl-tyramide and streptavidin-HRP as electrocatalytic signal tags was adopted to fabricate the sensor and improve the detection sensitivity. S. aureus cells were selected as the pathogenic bacteria to verify the analytical performance of this TSA-based signal-enhancement electrochemical aptasensor platform. After the simultaneous binding of SA37-S. aureus-SA81@HRP formed on the gold electrode, thousands of @HRP molecules could be bound onto the biotynyl tyramide (TB) displayed on the bacterial cell surface through a catalytic reaction between HRP and H2O2, resulting in the generation of the highly amplified signals mediated by HRP reactions. This developed aptasensor could detect S. aureus bacterial cells at an ultra-low concentration, with a limit of detection (LOD) of 3 CFU/mL in buffer. Furthermore, this chronoamperometry aptasensor successfully detected target cells in both tap water and beef broth with LOD to be 8 CFU/mL, which are very high sensitivity and specificity. Overall, this electrochemical aptasensor using TSA-based signal-enhancement could be a very useful tool for the ultrasensitive detection of foodborne pathogens in food and water safety and environmental monitoring.
Collapse
Affiliation(s)
- Thi Thanh-Qui Nguyen
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
28
|
Paulose AK, Hou YJ, Huang YS, Chakkalaparambil Dileep N, Chiu CL, Pal A, Kalaimani VM, Lin ZH, Chang CR, Chen CP, Lin YC, Cheng CY, Cheng SH, Cheng CM, Wang YL. Rapid Escherichia coli Cloned DNA Detection in Serum Using an Electrical Double Layer-Gated Field-Effect Transistor-Based DNA Sensor. Anal Chem 2023; 95:6871-6878. [PMID: 37080900 DOI: 10.1021/acs.analchem.2c05719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
In this study, a rapid diagnosis platform was developed for the detection of Escherichia coli O157:H7. An electrical double layer (EDL)-gated field-effect transistor-based biosensor (BioFET) as a point-of-care testing device is demonstrated with its high sensitivity, portability, high selectivity, quick response, and ease of use. The specially designed ssDNA probe was immobilized on the extended gate electrode to bind the target complementary DNA segment of E. coli, resulting in a sharp drain current change within minutes. The limit of detection for target DNA is validated to a concentration of 1 fM in buffer solution and serum. Meanwhile, the results of a Kelvin probe force microscope were shown to have reduced surface potential of the DNA immobilized sensors before and after the cDNA detection, which is consistent with the decreased drain current of the BioFET. A 1.2 kb E. coli duplex DNA synthesized in plasmid was sonicated and detected in serum samples with the sensor array. Gel electrophoresis was used to confirm the efficiency of sonication by elucidating the length of DNA. Those results show that the EDL-gated BioFET system is a promising platform for rapid identification of pathogens for future clinical needs.
Collapse
Affiliation(s)
- Akhil K Paulose
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yueh-Ju Hou
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811726, Taiwan, ROC
| | - Yu-Shan Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | - Chia-Lin Chiu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Arnab Pal
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Vishal Mani Kalaimani
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 32748, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Lin Wang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
29
|
Mahoney A, Storek KM, Wuest WM. Structure-Based Design of Promysalin Analogues to Overcome Mechanisms of Bacterial Resistance. ACS OMEGA 2023; 8:12558-12564. [PMID: 37033834 PMCID: PMC10077553 DOI: 10.1021/acsomega.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The search for antibiotics that function through novel mechanisms of action is ongoing, and recent progress in our lab identified the tricarboxylic acid cycle as a viable option. Promysalin is a secondary metabolite capable of species-specific inhibition of Pseudomonas aeruginosa, a common opportunistic pathogen. Promysalin disrupts primary metabolism in this bacterium by competitively inhibiting succinate dehydrogenase at the ubiquinone binding site. However, the activity of promysalin in cellulo is marred potentially by its chemical instability and/or propensity for efflux. To assess the success of these novel analogues, a novel strain of P. aeruginosa harboring gene deletions of eight efflux pumps and porins was developed and implemented. Herein, we disclose the synthesis and biological investigation of six promysalin analogues to overcome these liabilities and demonstrate that efflux likely plays a significant role in tolerating the effect of the inhibitor.
Collapse
Affiliation(s)
- Andrew
R. Mahoney
- Department
of Chemistry, Emory Univers ity, and Emory
Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kelly M. Storek
- Department
of Infectious Diseases, Genentech, Inc. South San Francisco, California 94080, United States
| | - William M. Wuest
- Department
of Chemistry, Emory Univers ity, and Emory
Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Qu L, Han J, Huang Y, Yang G, Liu W, Long Z, Gu Y, Zhang Q, Gao M, Dong X. Peroxidase-like Nanozymes for Point-of-Care SERS Sensing and Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:1272-1282. [PMID: 36854189 DOI: 10.1021/acsabm.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The emergence of nanozymes provides a potential method for combating multidrug-resistant bacteria resulted from the abuse of antibiotics. However, in nanozyme-catalyzed systems, few studies have addressed the actual hydrogen peroxide (H2O2) level involved in sterilization. Herein, we designed a high-efficiency peroxidase-mimicking nanozyme with surface-enhanced Raman scattering (SERS) property by assembling gold nanoparticles on single-layer Cu2+-C3N4 (AuNP-Cu2+-C3N4). The nanozyme effectively converts the low-active Raman reporter 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form with H2O2, resulting in SERS signal changes, thereby achieving highly sensitive quantification of H2O2 with limit of detection as low as 0.60 μM. More importantly, the nanozyme can specifically catalyze H2O2 into antibacterial hydroxyl radicals. In vitro and in vivo evaluations demonstrate the remarkable antibacterial efficacy of the nanozyme/H2O2 combination against Staphylococcus aureus (up to 99.9%), which could promote wound healing in mice and allow point-of-care monitoring the amount of H2O2 participated in effective sterilization. This study not only displays great potential in combining multiple functionalities of nanomaterials for versatile bioassays but also provides a promising approach to design nanozymes for biomedical and catalytic applications.
Collapse
Affiliation(s)
- Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yi Huang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zhouyang Long
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qingming Zhang
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
31
|
Karbelkar A, Ahlmark R, Zhou X, Austin K, Fan G, Yang VY, Furst A. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins. Bioconjug Chem 2023; 34:358-365. [PMID: 36633230 DOI: 10.1021/acs.bioconjchem.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
Collapse
Affiliation(s)
- Amruta Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Rachel Ahlmark
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Victoria Y Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ariel Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
32
|
Zamzami M, Alamoudi S, Ahmad A, Choudhry H, Khan MI, Hosawi S, Rabbani G, Shalaan ES, Arkook B. Direct Identification of Label-Free Gram-Negative Bacteria with Bioreceptor-Free Concentric Interdigitated Electrodes. BIOSENSORS 2023; 13:179. [PMID: 36831945 PMCID: PMC9953431 DOI: 10.3390/bios13020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
This investigation demonstrates an electrochemical method for directly identifying unlabeled Gram-negative bacteria without other additives or labeling agents. After incubation, the bacterial cell surface is linked to the interdigitated electrode through electroadsorption. Next, these cells are exposed to a potential difference between the two electrodes. The design geometry of an electrode has a significant effect on the electrochemical detection of Gram-negative bacteria. Therefore, electrode design geometry is a crucial factor that needs to be considered when designing electrodes for electrochemical sensing. They provide the area for the reaction and are responsible for transferring electrons from one electrode to another. This work aims to study the available design in the commercial market to determine the most suitable electrode geometry with a high detection sensitivity that can be used to identify and quantify bacterial cells in normal saline solutions. To work on detecting bacterial cells without the biorecognition element, we have to consider the microelectrode's design, which makes it very susceptible to bacteria size. The concentration-dilution technique measures the effect of the concentration on label-free Gram-negative bacteria in a normal saline solution without needing bio-recognized elements for a fast screening evaluation. This method's limit of detection (LOD) cannot measure concentrations less than 102 CFU/mL and cannot distinguish between live and dead cells. Nevertheless, this approach exhibited excellent detection performance under optimal experimental conditions and took only a few hours.
Collapse
Affiliation(s)
- Mazin Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samer Alamoudi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - El-Sayed Shalaan
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| |
Collapse
|
33
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
34
|
Madhu S, Ramasamy S, Choi J. Recent Developments in Electrochemical Sensors for the Detection of Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15121488. [PMID: 36558939 PMCID: PMC9786047 DOI: 10.3390/ph15121488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The development of efficient point-of-care (POC) diagnostic tools for detecting infectious diseases caused by destructive pathogens plays an important role in clinical and environmental monitoring. Nevertheless, evolving complex and inconsistent antibiotic-resistant species mire their drug efficacy. In this regard, substantial effort has been expended to develop electrochemical sensors, which have gained significant interest for advancing POC testing with rapid and accurate detection of resistant bacteria at a low cost compared to conventional phenotype methods. This review concentrates on the recent developments in electrochemical sensing techniques that have been applied to assess the diverse latent antibiotic resistances of pathogenic bacteria. It deliberates the prominence of biorecognition probes and tailor-made nanomaterials used in electrochemical antibiotic susceptibility testing (AST). In addition, the bimodal functional efficacy of nanomaterials that can serve as potential transducer electrodes and the antimicrobial agent was investigated to meet the current requirements in designing sensor module development. In the final section, we discuss the challenges with contemporary AST sensor techniques and extend the key ideas to meet the demands of the next POC electrochemical sensors and antibiotic design modules in the healthcare sector.
Collapse
|
35
|
Drayton-White K, Liu S, Chang YC, Uppal S, Moeller KD. Microelectrode arrays, electrosynthesis, and the optimization of signaling on an inert, stable surface. Beilstein J Org Chem 2022; 18:1488-1498. [PMID: 36320341 PMCID: PMC9592966 DOI: 10.3762/bjoc.18.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2024] Open
Abstract
Microelectrode arrays are powerful tools for monitoring binding interactions between small molecules and biological targets. In most cases, molecules to be studied using such devices are attached directly to the electrodes in the array. Strategies are in place for calibrating signaling studies utilizing the modified electrodes so that they can be quantified relative to a positive control. In this way, the relative binding constants for multiple ligands for a receptor can potentially be determined in the same experiment. However, there are applications of microelectrode arrays that require stable, tunable, and chemically inert surfaces on the electrodes. The use of those surfaces dictate the use of indirect detection methods that are dependent on the nature of the stable surface used and the amount of the binding partner that is placed on the surface. If one wants to do a quantitative study of binding events that involve molecules on such a stable surface, then once again a method for calibrating the signal from a positive control is needed. Fortunately, the electrodes in an array are excellent handles for conducting synthetic reactions on the surface of an array, and those reactions can be used to tune the surface above the electrodes and calibrate the signal from a positive control. Here, we describe how available Cu-based electrosynthetic reactions can be used to calibrate electrochemical signals on a polymer-coated electrode array and delineate the factors to be considered when choosing a polymer surface for such a study.
Collapse
Affiliation(s)
- Kendra Drayton-White
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Siyue Liu
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Yu-Chia Chang
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Sakashi Uppal
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| | - Kevin D Moeller
- Washington University in Saint Louis, Saint Louis, Missouri 63130, United States
| |
Collapse
|
36
|
Maduraiveeran G. Nanomaterials-based portable electrochemical sensing and biosensing systems for clinical and biomedical applications. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMiniaturized electrochemical sensing systems are employed in day-to-day uses in the several area from public health to scientific applications. A variety of electrochemical sensor and biosensor systems may not be effectively employed in real-world diagnostic laboratories and biomedical industries due to their limitation of portability, cost, analytical period, and need of skilled trainer for operating devices. The design of smart and portable sensors with high sensitivity, good selectivity, rapid measurement, and reusable platforms is the driving strength for sensing glucose, lactate, hydrogen peroxide, nitric oxide, mRNA, etc. The enhancement of sensing abilities of such sensor devices through the incorporation of both novel sensitive nanomaterials and design of sensor strategies are evidenced. Miniaturization, cost and energy efficient, online and quantitative detection and multiple sensing ability are the beneficial of the nanostructured-material-based electrochemical sensor and biosensor systems. Owing to the discriminating catalytic action, solidity and biocompatibility for designing sensing system, nanoscale materials empowered electrochemical detection systems are accomplished of being entrenched into/combined with portable or miniaturized devices for specific applications. In this review, the advance development of portable and smart sensing/biosensing systems derived from nanoscale materials for clinical and biomedical applications is described.
Graphical Abstract
Collapse
|
37
|
Skorjanc T, Mavrič A, Sørensen MN, Mali G, Wu C, Valant M. Cationic Covalent Organic Polymer Thin Film for Label-free Electrochemical Bacterial Cell Detection. ACS Sens 2022; 7:2743-2749. [PMID: 36053557 PMCID: PMC9513792 DOI: 10.1021/acssensors.2c01292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Numerous species of bacteria pose a serious threat to human health and cause several million deaths annually. It is therefore essential to have quick, efficient, and easily operable methods of bacterial cell detection. Herein, we synthesize a novel cationic covalent organic polymer (COP) named CATN through the Menshutkin reaction and evaluate its potential as an impedance sensor for Escherichia coli cells. On account of its positive surface charge (ζ-potential = +21.0 mV) and pyridinium moieties, CATN is expected to interact favorably with bacteria that possess a negatively charged cell surface through electrostatic interactions. The interdigitated electrode arrays were coated with CATN using a simple yet non-traditional method of electrophoresis and then used in two-electrode electrochemical impedance spectroscopy (EIS) measurements. The impedance response showed a linear relationship with the increasing concentration of E. coli. The system was sensitive to bacterial concentrations as low as ∼30 CFU mL-1, which is far below the concentration considered to cause illnesses. The calculated limit of detection was as low as 2 CFU mL-1. This work is a rare example of a COP used in this type of bacteria sensing and is anticipated to stimulate further interest in the synthesis of organic polymers for EIS-based sensors.
Collapse
Affiliation(s)
- Tina Skorjanc
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Andraž Mavrič
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Mads Nybo Sørensen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Gregor Mali
- NMR
Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Changzhu Wu
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense, Denmark,
| | - Matjaz Valant
- Materials
Research Laboratory, University of Nova
Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia,
| |
Collapse
|
38
|
Chi Y, Shi M, Wu Y, Wu Y, Chang Y, Liu M. Single bacteria detection by droplet DNAzyme-coupled rolling circle amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2244-2248. [PMID: 35611869 DOI: 10.1039/d2ay00656a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We described a new system termed droplet DNAzyme-coupled rolling circle amplification (dDRCA) that can selectively detect bacteria from clinical urine samples with single-cell sensitivity within 1.5 h compared with the several hours needed for traditionally used culture-based methods.
Collapse
Affiliation(s)
- Yanchen Chi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Shi
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yanfang Wu
- School of Chemistry and Australian Centre for Nano Medicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China.
| |
Collapse
|
39
|
Könemund L, Neumann L, Hirschberg F, Biedendieck R, Jahn D, Johannes HH, Kowalsky W. Functionalization of an extended-gate field-effect transistor (EGFET) for bacteria detection. Sci Rep 2022; 12:4397. [PMID: 35292706 PMCID: PMC8924197 DOI: 10.1038/s41598-022-08272-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Traditional sensing technologies have drawbacks as they are time-consuming, cost-intensive, and do not attain the required accuracy and reproducibility. Therefore, new methods of measurements are necessary to improve the detection of bacteria. Well-established electrical measurement methods can connect high sensitive sensing systems with biological requirements. One approach is to functionalize an extended-gate field-effect transistor's (EGFET) sensing area with modified porphyrins containing two different linkers. One linker connects the electrode surface with the porphyrin. The other linker bonds bacteria on the functional layer through a specific peptide chain. The negative charge on the surface of the cells regulates the surface potential which has an impact on the electrical behavior of the EGFET. The attendance of attached bacteria on the functionalized sensing area could successfully be detected.
Collapse
Affiliation(s)
- Lea Könemund
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Laurie Neumann
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Felix Hirschberg
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Hans-Hermann Johannes
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany.
| | - Wolfgang Kowalsky
- Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), 30167, Hannover, Germany
| |
Collapse
|
40
|
Olaifa K, Ajunwa O, Marsili E. Electroanalytic evaluation of antagonistic effect of azole fungicides on Acinetobacter baumannii biofilms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Gopal A, Yan L, Kashif S, Munshi T, Roy VAL, Voelcker NH, Chen X. Biosensors and Point-of-Care Devices for Bacterial Detection: Rapid Diagnostics Informing Antibiotic Therapy. Adv Healthc Mater 2022; 11:e2101546. [PMID: 34850601 DOI: 10.1002/adhm.202101546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/20/2021] [Indexed: 02/06/2023]
Abstract
With an exponential rise in antimicrobial resistance and stagnant antibiotic development pipeline, there is, more than ever, a crucial need to optimize current infection therapy approaches. One of the most important stages in this process requires rapid and effective identification of pathogenic bacteria responsible for diseases. Current gold standard techniques of bacterial detection include culture methods, polymerase chain reactions, and immunoassays. However, their use is fraught with downsides with high turnaround time and low accuracy being the most prominent. This imposes great limitations on their eventual application as point-of-care devices. Over time, innovative detection techniques have been proposed and developed to curb these drawbacks. In this review, a systematic summary of a range of biosensing platforms is provided with a strong focus on technologies conferring high detection sensitivity and specificity. A thorough analysis is performed and the benefits and drawbacks of each type of biosensor are highlighted, the factors influencing their potential as point-of-care devices are discussed, and the authors' insights for their translation from proof-of-concept systems into commercial medical devices are provided.
Collapse
Affiliation(s)
- Ashna Gopal
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Saima Kashif
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| | - Tasnim Munshi
- School of Chemistry University of Lincoln, Brayford Pool Lincoln Lincolnshire LN6 7TS UK
| | | | - Nicolas H. Voelcker
- Drug Delivery Disposition and Dynamics Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton Victoria 3168 Australia
| | - Xianfeng Chen
- School of Engineering Institute for Bioengineering The University of Edinburgh Edinburgh EH9 3JL UK
| |
Collapse
|
42
|
Electrochemical Sensors for Antibiotic Susceptibility Testing: Strategies and Applications. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasing awareness of the impacts of infectious diseases has driven the development of advanced techniques for detecting pathogens in clinical and environmental settings. However, this process is hindered by the complexity and variability inherent in antibiotic-resistant species. A great deal of effort has been put into the development of antibiotic-resistance/susceptibility testing (AST) sensors and systems to administer proper drugs for patient-tailored therapy. Electrochemical sensors have garnered increasing attention due to their powerful potential to allow rapid, sensitive, and real-time monitoring, alongside the low-cost production, feasibility of minimization, and easy integration with other techniques. This review focuses on the recent advances in electrochemical sensing strategies that have been used to determine the level of antibiotic resistance/susceptibility of pathogenic bacteria. The recent examples of the current electrochemical AST sensors discussed here are classified into four categories according to what is detected and quantitated: the presence of antibiotic-resistant genes, changes in impedance caused by cell lysis, current response caused by changes in cellular membrane properties, and changes in the redox state of redox molecules. It also discusses potential strategies for the development of electrochemical AST sensors, with the goal of broadening their practical applications across various scientific and technological fields.
Collapse
|
43
|
Khoshroo A, Mavaei M, Rostami M, Valinezhad-Saghezi B, Fattahi A. Recent advances in electrochemical strategies for bacteria detection. BIOIMPACTS : BI 2022; 12:567-588. [PMID: 36644549 PMCID: PMC9809139 DOI: 10.34172/bi.2022.23616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Introduction: Bacterial infections have always been a major threat to public health and humans' life, and fast detection of bacteria in various samples is significant to provide early and effective treatments. Cell-culture protocols, as well-established methods, involve labor-intensive and complicated preparation steps. For overcoming this drawback, electrochemical methods may provide promising alternative tools for fast and reliable detection of bacterial infections. Methods: Therefore, this review study was done to present an overview of different electrochemical strategy based on recognition elements for detection of bacteria in the studies published during 2015-2020. For this purpose, many references in the field were reviewed, and the review covered several issues, including (a) enzymes, (b) receptors, (c) antimicrobial peptides, (d) lectins, (e) redox-active metabolites, (f) aptamer, (g) bacteriophage, (h) antibody, and (i) molecularly imprinted polymers. Results: Different analytical methods have developed are used to bacteria detection. However, most of these methods are highly time, and cost consuming, requiring trained personnel to perform the analysis. Among of these methods, electrochemical based methods are well accepted powerful tools for the detection of various analytes due to the inherent properties. Electrochemical sensors with different recognition elements can be used to design diagnostic system for bacterial infections. Recent studies have shown that electrochemical assay can provide promising reliable method for detection of bacteria. Conclusion: In general, the field of bacterial detection by electrochemical sensors is continuously growing. It is believed that this field will focus on portable devices for detection of bacteria based on electrochemical methods. Development of these devices requires close collaboration of various disciplines, such as biology, electrochemistry, and biomaterial engineering.
Collapse
Affiliation(s)
- Alireza Khoshroo
- Nutrition Health Research center, Hamadan University of Medical Sciences, Hamadan, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| | - Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoume Rostami
- Student Research Committe, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Medical Biology Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
,Corresponding authors: Alireza Khoshroo, ; Ali Fattahi,
| |
Collapse
|
44
|
Kwon J, Jeon JH, Yang SI, Yang H. Rapid and sensitive detection of
Aspergillus niger
using permeabilization based on tris buffer containing hydrazine. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jungwook Kwon
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Korea
| | - Jun Hui Jeon
- Department of Applied Chemistry Kyung Hee University Yongin Korea
| | - Sung Ik Yang
- Department of Applied Chemistry Kyung Hee University Yongin Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials Pusan National University Busan Korea
| |
Collapse
|
45
|
Oeschger TM, McCloskey DS, Buchmann RM, Choubal AM, Boza JM, Mehta S, Erickson D. Early Warning Diagnostics for Emerging Infectious Diseases in Developing into Late-Stage Pandemics. Acc Chem Res 2021; 54:3656-3666. [PMID: 34524795 DOI: 10.1021/acs.accounts.1c00383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The spread of infectious diseases due to travel and trade can be seen throughout history, whether from early settlers or traveling businessmen. Increased globalization has allowed infectious diseases to quickly spread to different parts of the world and cause widespread infection. Posthoc analysis of more recent outbreaks-SARS, MERS, swine flu, and COVID-19-has demonstrated that the causative viruses were circulating through populations for days or weeks before they were first detected, allowing disease to spread before quarantines, contact tracing, and travel restrictions could be implemented. Earlier detection of future novel pathogens could decrease the time before countermeasures are enacted. In this Account, we examined a variety of novel technologies from the past 10 years that may allow for earlier detection of infectious diseases. We have arranged these technologies chronologically from pre-human predictive technologies to population-level screening tools. The earliest detection methods utilize artificial intelligence to analyze factors such as climate variation and zoonotic spillover as well as specific species and geographies to identify where the infection risk is high. Artificial intelligence can also be used to monitor health records, social media, and various publicly available data to identify disease outbreaks faster than traditional epidemiology. Secondary to predictive measures is monitoring infection in specific sentinel animal species, where domestic animals or wildlife are indicators of potential disease hotspots. These hotspots inform public health officials about geographic areas where infection risk in humans is high. Further along the timeline, once the disease has begun to infect humans, wastewater epidemiology can be used for unbiased sampling of large populations. This method has already been shown to precede spikes in COVID-19 diagnoses by 1 to 2 weeks. As total infections increase in humans, bioaerosol sampling in high-traffic areas can be used for disease monitoring, such as within an airport. Finally, as disease spreads more quickly between humans, rapid diagnostic technologies such as lateral flow assays and nucleic acid amplification become very important. Minimally invasive point-of-care methods can allow for quick adoption and use within a population. These individual diagnostic methods then transfer to higher-throughput methods for more intensive population screening as an infection spreads. There are many promising early warning technologies being developed. However, no single technology listed herein will prevent every future outbreak. A combination of technologies from across our infection timeline would offer the most benefit in preventing future widespread disease outbreaks and pandemics.
Collapse
Affiliation(s)
| | | | | | | | | | - Saurabh Mehta
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York 10065, United States
| | | |
Collapse
|
46
|
Subjakova V, Oravczova V, Tatarko M, Hianik T. Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft Wearable Healthcare Materials and Devices. Adv Healthc Mater 2021; 10:e2100577. [PMID: 34019737 DOI: 10.1002/adhm.202100577] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Indexed: 12/16/2022]
Abstract
In spite of advances in electronics and internet technologies, current healthcare remains hospital-centred. Disruptive technologies are required to translate state-of-art wearable devices into next-generation patient-centered diagnosis and therapy. In this review, recent advances in the emerging field of soft wearable materials and devices are summarized. A prerequisite for such future healthcare devices is the need of novel materials to be mechanically compliant, electrically conductive, and biologically compatible. It is begun with an overview of the two viable design strategies reported in the literatures, which is followed by description of state-of-the-art wearable healthcare devices for monitoring physical, electrophysiological, chemical, and biological signals. Self-powered wearable bioenergy devices are also covered and sensing systems, as well as feedback-controlled wearable closed-loop biodiagnostic and therapy systems. Finally, it is concluded with an overall summary and future perspective.
Collapse
Affiliation(s)
- Quanxia Lyu
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Shu Gong
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jialiang Yin
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Jennifer M. Dyson
- Department of Biochemistry & Molecular Biology Biomedicine Discovery Institute Clayton VIC 3800 Australia
- Faculty of Engineering Monash Institute of Medical Engineering (MIME) Monash University Clayton VIC 3800 Australia
| | - Wenlong Cheng
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
48
|
Machado MC, Zamani M, Daniel S, Furst AL. Bioelectrochemical platforms to study and detect emerging pathogens. MRS BULLETIN 2021; 46:840-846. [PMID: 34483472 PMCID: PMC8407123 DOI: 10.1557/s43577-021-00172-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic-abiotic interface in these systems. These improvements have generated platforms with the capability to elucidate biological function rather than simply detect targets. This advantage is a key feature of recent bioelectrochemical platforms applied to infectious disease. Here, we describe developments in materials for bioelectrochemical platforms to study and detect emerging pathogens. The incorporation of host membrane material into electrochemical devices has provided unparalleled insights into the interaction between viruses and host cells, and new capture methods have enabled the specific detection of bacterial pathogens, such as those that cause secondary infections with SARS-CoV-2. As these devices continue to improve through the merging of hi-tech materials and biomaterials, the scalability and commercial viability of these devices will similarly improve.
Collapse
Affiliation(s)
- Mary C. Machado
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Susan Daniel
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
49
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
50
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|