1
|
Duret M, Wallner A, Besaury L, Aziz A. Diversity and functional features of the root-associated bacteriome are dependent on grapevine susceptibility to Plasmopara viticola. ENVIRONMENTAL MICROBIOME 2025; 20:30. [PMID: 40087775 PMCID: PMC11908067 DOI: 10.1186/s40793-025-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Plant health depends on beneficial interactions between the roots and their microbiomes. Despite recent progress on the role of the grapevine microbiome, the taxonomic identity and functional traits of microbial taxa specific to healthy or Plasmopara viticola-diseased plants, as well as to the susceptible or resistant cultivar are unknown. Using metabarcoding and shotgun metagenomics sequencing, we investigated the effect of downy mildew on the root-associated microbiome (rhizospheric soil, rhizoplane and endosphere) of 41B-grafted susceptible cultivar (Chardonnay) and resistant interspecific hybrid (Voltis) at flowering and veraison stages. The impact of conventional treatment on the rhizomicrobiome assembly of Chardonnay was also evaluated. RESULTS Analyses revealed a core bacteriome shared between both susceptible and resistant cultivars. This also highlighted common functional traits between the rhizosphere and rhizoplane bacteriomes in both cultivars. A dysbiosis state was also evidenced by a loss of beneficial communities in the rhizosphere of the P. viticola-infected cultivar. Microbial genome assemblies showed functional differences between healthy and diseased plants, with a loss of Pseudomonas and Phyllobacterium taxa at veraison. This state was mainly characterized by a loss of genes involved in polyamine transport and metabolism in the susceptible cultivar. It was also marked by an increase in population evenness and total bacterial diversity, and the presence of pathogenic species in susceptible plants. CONCLUSIONS This study reveals distinct and overlapping bacterial communities and functional genes in the rhizospheric soil, rhizoplane and root endosphere of both susceptible and resistant grapevine cultivars to downy mildew. Microbial diversity and abundant taxa of grapevine roots are influenced by downy mildew and cultivar susceptibility. Common bacterial functions are shared among rhizocompartments of susceptible and resistant cultivars, revealing a dysbiosis state and functional signatures related to plant immunity, especially in the infected-susceptible plants.
Collapse
Affiliation(s)
- Morgane Duret
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France
| | - Adrian Wallner
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France
| | - Ludovic Besaury
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, 51100, France
| | - Aziz Aziz
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France.
| |
Collapse
|
2
|
Russell Lewis B, Uddin MR, Kuo KM, Shah LMN, Harris NJ, Booth PJ, Hammerschmid D, Gumbart JC, Zgurskaya HI, Reading E. Mg 2+-dependent mechanism of environmental versatility in a multidrug efflux pump. Structure 2025; 33:552-565.e4. [PMID: 39809273 DOI: 10.1016/j.str.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025]
Abstract
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting instead in domain specific organization. We establish a unique histidine residue directs these dynamics and is essential for sustaining pump activity across acidic, neutral, and basic regimes. Overall, we propose Mg2+ conserves AcrA structural mobility to ensure optimal AcrAB-TolC function within rapidly changing environments commonly faced during bacterial infection and colonization.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK
| | - Muhammad R Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Katie M Kuo
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA 30332, USA
| | - Laila M N Shah
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK
| | - Nicola J Harris
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK
| | - Paula J Booth
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK
| | - Dietmar Hammerschmid
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA 30332, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
3
|
Hasnat S, Rahman S, Alam MB, Suin FM, Yeasmin F, Suha T, Supty NT, Sabila S, Chowdhury A, Shahinuzzaman ADA, Mahbub MM, Islam T, Hoque MN. High throughput screening identifies potential inhibitors targeting trimethoprim resistant DfrA1 protein in Klebsiella pneumoniae and Escherichia coli. Sci Rep 2025; 15:7141. [PMID: 40021806 PMCID: PMC11871338 DOI: 10.1038/s41598-025-91410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
The DfrA1 protein provides trimethoprim resistance in bacteria, especially Klebsiella pneumoniae and Escherichia coli, by modifying dihydrofolate reductase, which reduces the binding efficacy of the antibiotic. This study identified inhibitors of the trimethoprim-resistant DfrA1 protein through high-throughput computational screening and optimization of 3,601 newly synthesized chemical compounds from the ChemDiv database, aiming to discover potential drug candidates targeting DfrA1 in K. pneumoniae and E. coli. Through this approach, we identified six promising DCs, labeled DC1 to DC6, as potential inhibitors of DfrA1. Each DC showed a strong ability to bind effectively to the DfrA1 protein and formed favorable chemical interactions at the binding sites. These interactions were comparable to those of Iclaprim, a well-known antibiotic effective against DfrA1. To confirm our findings, we explored how the promising DCs work at the molecular level, focusing on their thermodynamic properties. Additionally, molecular dynamics simulations confirmed the ability of these six DCs to effectively inhibit the DfrA1 protein. Our results showed that DC4 (an organofluorinated compound) and DC6 (a benzimidazole compound) exhibited potential efficacy against the DfrA1 protein than the control drug, particularly regarding stability, solvent-accessible surface area, solvent exposure, polarity, and binding site interactions, which influence their residence time and efficacy. Overall, findings of this study suggest that DC4 and DC6 have the potential to act as inhibitors against the DfrA1, offering promising prospects for the treatment and management of infections caused by trimethoprim-resistant K. pneumoniae and E. coli in both humans and animals. However, further in vitro validations are necessary.
Collapse
Affiliation(s)
- Soharth Hasnat
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Soaibur Rahman
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Meherun Binta Alam
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Farha Mohi Suin
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Farzana Yeasmin
- Institute of Biotechnology and Genetic Engineering, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh
| | - Tanjila Suha
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Nahuna Tanjin Supty
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Sal Sabila
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Animesh Chowdhury
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - A D A Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - M Murshida Mahbub
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh.
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University (GAU), Gazipur, 1706, Bangladesh.
| |
Collapse
|
4
|
Lo CC, Yeh TH, Jao YH, Wang TH, Lo HR. Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters. Folia Microbiol (Praha) 2024; 69:993-1002. [PMID: 38319459 DOI: 10.1007/s12223-024-01143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters (p = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.
Collapse
Affiliation(s)
- Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung, 912012, Taiwan
| | - Tzu-Hui Yeh
- Department of Pathology and Laboratory Medicine, Pingtung Veterans General Hospital, Pingtung, 900053, Taiwan
| | - Ya-Hsuan Jao
- Department of Clinical Laboratory, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, 802511, Taiwan
| | - Tzu-Hui Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung, 831301, Taiwan.
| |
Collapse
|
5
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Tambat R, Kinthada RK, Saral Sariyer A, Leus IV, Sariyer E, D'Cunha N, Zhou H, Leask M, Walker JK, Zgurskaya HI. AdeIJK Pump-Specific Inhibitors Effective against Multidrug Resistant Acinetobacter baumannii. ACS Infect Dis 2024; 10:2239-2249. [PMID: 38787939 DOI: 10.1021/acsinfecdis.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Multidrug-resistant Acinetobacter baumannii is a serious threat pathogen rapidly spreading in clinics and causing a range of complicated human infections. The major contributor to A. baumannii antibiotic resistance is the overproduction of AdeIJK and AdeABC multidrug efflux pumps of the resistance-nodulation-division (RND) superfamily of proteins. The dominant role of efflux in antibiotic resistance and the relatively high permeability of the A. baumannii outer membrane to amphiphilic compounds make this pathogen a promising target for the discovery of clinically relevant efflux pump inhibitors. In this study, we identified 4,6-diaminoquoniline analogs with inhibitory activities against A. baumannii AdeIJK efflux pump and followed up on these compounds with a focused synthetic program to improve the target specificity and to reduce cytotoxicity. We identified several candidates that potentiate antibacterial activities of antibiotics erythromycin, tetracycline, and novobiocin not only in the laboratory antibiotic susceptible strain A. baumannii ATCC17978 but also in multidrug-resistant clinical isolates AB5075 and AYE. The best analogs potentiated the activities of antibiotics in low micromolar concentrations, did not have antibacterial activities on their own, inhibited AdeIJK-mediated efflux of its fluorescent substrate ethidium ion, and had low cytotoxicity in A549 human lung epithelial cells.
Collapse
Affiliation(s)
- Rushikesh Tambat
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rama Kumar Kinthada
- School of Medicine, Saint Louis University, St. Louis, Missouri 63110, United States
| | - Aysegul Saral Sariyer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, 08000 Artvin, Turkey
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Emrah Sariyer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, 08000 Artvin, Turkey
- Vocational School of Health Services, Medical Laboratory Techniques, Artvin Coruh University, 08000 Artvin, Turkey
| | - Napoleon D'Cunha
- School of Medicine, Saint Louis University, St. Louis, Missouri 63110, United States
| | - Hinman Zhou
- School of Medicine, Saint Louis University, St. Louis, Missouri 63110, United States
| | - Makaila Leask
- School of Medicine, Saint Louis University, St. Louis, Missouri 63110, United States
| | - John K Walker
- School of Medicine, Saint Louis University, St. Louis, Missouri 63110, United States
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63110, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Lewis BR, Uddin MR, Kuo KM, Shah LMN, Harris NJ, Booth PJ, Hammerschmid D, Gumbart JC, Zgurskaya HI, Reading E. Mg 2+-dependent mechanism of environmental versatility in a multidrug efflux pump. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597921. [PMID: 38915626 PMCID: PMC11195059 DOI: 10.1101/2024.06.10.597921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are a major driver of multidrug resistance among Gram-negative bacteria. The periplasm provides a distinct environment between the inner and outer membranes of Gram-negative bacteria. Cations, such as Mg2+, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg2+ and pH in modulating the dynamics of the periplasmic adaptor protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug efflux pump from Escherichia coli. In the absence of Mg2+, AcrA becomes increasingly plastic within acidic conditions, but when Mg2+ is bound this is ameliorated, resulting in domain specific organisation in neutral to weakly acidic regimes. We establish a unique histidine residue directs these structural dynamics and is essential for sustaining pump efflux activity across acidic, neutral, and alkaline conditions. Overall, we propose Mg2+ conserves the structural mobility of AcrA to ensure optimal AcrAB-TolC function within rapid changing environments commonly faced by the periplasm during bacterial infection and colonization. This work highlights that Mg2+ is an important mechanistic component in this pump class and possibly across other periplasmic lipoproteins.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | - Katie M. Kuo
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, USA
| | - Laila M. N. Shah
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Nicola J. Harris
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Paula J. Booth
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
| | - Dietmar Hammerschmid
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, USA
| | - Eamonn Reading
- Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, London, SE1 1DB, UK
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
9
|
Manrique PD, Leus IV, López CA, Mehla J, Malloci G, Gervasoni S, Vargiu AV, Kinthada RK, Herndon L, Hengartner NW, Walker JK, Rybenkov VV, Ruggerone P, Zgurskaya HI, Gnanakaran S. Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors. Commun Chem 2024; 7:84. [PMID: 38609430 PMCID: PMC11015012 DOI: 10.1038/s42004-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.
Collapse
Affiliation(s)
- Pedro D Manrique
- Physics Department, George Washington University, Washington, 20052, DC, USA.
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - César A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Rama K Kinthada
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Liam Herndon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
10
|
Ganjo AR, Balaky STJ, Mawlood AH, Smail SB, Shabila NP. Characterization of genes related to the efflux pump and porin in multidrug-resistant Escherichia coli strains isolated from patients with COVID-19 after secondary infection. BMC Microbiol 2024; 24:122. [PMID: 38600509 PMCID: PMC11005145 DOI: 10.1186/s12866-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.
Collapse
Affiliation(s)
- Aryan R Ganjo
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Salah Tofik Jalal Balaky
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Ahang Hasan Mawlood
- Department of Medical Microbiology, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Technique, College of Medical Technology, AL-Kitab University, Kirkuk, Iraq
| | | | - Nazar P Shabila
- College of Health Sciences, Catholic University in Erbil, Erbil, Kurdistan Region, Iraq
- Department of Community Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
11
|
Ramiz Uddin M, Shahriar A, Jahan Mim H, Khadiza Papia B, Rob Siddiquee MF, Bin R Q Khan A, Islam R, Fatema N, Parvez A, Kumar Roy G, Rana S. Unveiling Annona Reticulata's Bioactive Arsenal for Enhanced Antibiotic Effects. Chem Biodivers 2024; 21:e202301495. [PMID: 38282427 DOI: 10.1002/cbdv.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
OBJECTIVE To study the antibacterial and phytochemical activities of bioactive elements in the leaves of Annona reticulata Linn, a historically used Bangladeshi medicinal plant. METHODS Shade-dried and crushed plant leaves were soaked with various solvents to obtain samples for different chemical analyses. All extracts were selected for antimicrobial, physicochemical, and Pharmacological investigations. The antimicrobial activity was evaluated using disc diffusion assay, and broth microdilution methods determined potentiation of the activities of the antibiotic antibacterial activity of the plant extracts was investigated using either gram-positive or gram-negative pathogenic wild-type bacteria. RESULTS From the initial phytochemical and pharmacological studies, it was clear that all extracts, methanol, chloroform, and ethyl acetate, of the leaves of A. reticulata, were proven to process potent bioactive constituents. While differential antimicrobial properties were found to be possessed by all extracts, methanolic extract was the most potent one against all tested microorganisms. It also has potentiated the activities of antibiotics in E. coli. CONCLUSION Bioactive constituents in the plant extracts were shown to possess phytochemical and antimicrobial activities. More investigation is needed to segregate the chemical components responsible for the respective phytochemical and antimicrobial activities.
Collapse
Affiliation(s)
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Halima Jahan Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Bibi Khadiza Papia
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohd Faijanur Rob Siddiquee
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Ahnaf Bin R Q Khan
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nour Fatema
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Sohel Rana
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
12
|
Liu Y, Van Horn AM, Pham MTN, Dinh BNN, Chen R, Raphael SDR, Paulino A, Thaker K, Somadder A, Frost DJ, Menke CC, Slimak ZC, Slonczewski JL. Fitness trade-offs of multidrug efflux pumps in Escherichia coli K-12 in acid or base, and with aromatic phytochemicals. Appl Environ Microbiol 2024; 90:e0209623. [PMID: 38289137 PMCID: PMC10880634 DOI: 10.1128/aem.02096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Rachel Chen
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Kavya Thaker
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Behera DU, Gaur M, Sahoo M, Subudhi E, Subudhi BB. Development of pharmacophore models for AcrB protein and the identification of potential adjuvant candidates for overcoming efflux-mediated colistin resistance. RSC Med Chem 2024; 15:127-138. [PMID: 38283226 PMCID: PMC10809322 DOI: 10.1039/d3md00483j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Growing multi-drug resistance (MDR) among ESKAPE pathogens is a huge challenge. Increased resistance to last-resort antibiotics, like colistin, has further aggravated this. Efflux is identified as a major route of colistin resistance. So, finding an FDA-approved efflux inhibitor for potential application as an adjuvant to colistin was the primary objective of this study. E. coli-AcrB pump inhibitors and substrates were used to develop and validate the pharmacophoric model. Drugs confirming this pharmacophore were subjected to molecular docking to identify hits for the AcrB binding pocket. The efflux inhibition potential of the top hit was validated through the in vitro evaluation of the minimum inhibitory concentration (MIC) in combination with colistin. The checkerboard assay was done to demonstrate synergism, which was further corroborated by the Time-kill assay. Ten common pharmacophore hypotheses were successfully generated using substrate/inhibitors. Following enrichment analysis, AHHNR.100 was identified as the top-ranked hypothesis, and 207 unique compounds were found to conform to this hypothesis. The multi-step docking of these compounds against the AcrB protein revealed argatroban as the top non-antibiotic hit. This significantly inhibited the efflux activity of colistin-resistant clinical isolates K. pneumoniae (n = 1) and M. morganii (n = 2). Further, their combination with colistin enhanced the susceptibility of these isolates, and the effect was found to be synergistic. Accordingly, the time-kill assay of this combination showed 8-log and 2-log reductions against K. pneumoniae and M. morganii, respectively. In conclusion, this study found argatroban as a bacterial efflux inhibitor that can be potentially used to overcome efflux-mediated resistance.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
- Department of Biotechnology & Food Technology, Punjabi University Patiala 147002 India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
| |
Collapse
|
15
|
Chauhan SS, Gupta A, Srivastava A, Parthasarathi R. Discovering targeted inhibitors for Escherichia coli efflux pump fusion proteins using computational and structure-guided approaches. J Comput Chem 2024; 45:13-24. [PMID: 37656428 DOI: 10.1002/jcc.27215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Multidrug resistance pathogens causing infections and illness remain largely untreated clinically. Efflux pumps are one of the primary processes through which bacteria develop resistance by transferring antibiotics from the interior of their cells to the outside environment. Inhibiting these pumps by developing efficient derivatives appears to be a promising strategy for restoring antibiotic potency. This investigation explores literature-reported inhibitors of E. coli efflux pump fusion proteins AcrB-AcrA and identify potential chemical derivatives of these inhibitors to overcome the limitations. Using computational and structure-guided approaches, a study was conducted with the selected inhibitors (AcrA:25-AcrB:59) obtained by data mining and their derivatives (AcrA:857-AcrB:3891) to identify their inhibitory effect on efflux pump using virtual screening, molecular docking and density functional theory (DFT) calculations. The finding indicates that Compound 2 (ZINC000072136376) has shown better binding and a significant inhibitory effect on AcrA, while Compound 3 (ZINC000072266819) has shown stronger binding and substantial inhibition effect on both non-mutant and mutated AcrB subunits. The identified derivatives could exhibit a better inhibitor and provide a potential approach for restoring the actions of resistant antibiotics.
Collapse
Affiliation(s)
- Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Gupta
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Aashna Srivastava
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenomics, phenotypic, and functional traits of five novel (Earth-derived) bacterial species isolated from the International Space Station and their prevalence in metagenomes. Sci Rep 2023; 13:19207. [PMID: 37932283 PMCID: PMC10628120 DOI: 10.1038/s41598-023-44172-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habitats, and how microbes survive, proliferate and spread in space conditions, is becoming more important. The microbial tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-stain-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the ISS. The analysis of their 16S rRNA gene sequences revealed > 99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing was undertaken. For all strains, the gyrB gene exhibited < 93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average nucleotide identity and digital DNA-DNA hybridization values, when compared to any known bacterial species, were < 94% and <50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (= NRRL B-65660T = DSM 115933T), Leifsonia virtsii F6_8S_P_1AT (= NRRL B-65661T = DSM 115931T), Leifsonia williamsii F6_8S_P_1BT (= NRRL B-65662T = DSM 115932T), Paenibacillus vandeheii F6_3S_P_1CT (= NRRL B-65663T = DSM 115940T), and Sporosarcina highlanderae F6_3S_P_2T (= NRRL B-65664T = DSM 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Ceth W Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics (Basel) 2023; 12:1417. [PMID: 37760714 PMCID: PMC10525980 DOI: 10.3390/antibiotics12091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The excessive use of antibiotics has led to the emergence of multidrug-resistant (MDR) pathogens in clinical settings and food-producing animals, posing significant challenges to clinical management and food control. Over the past few decades, the discovery of antimicrobials has slowed down, leading to a lack of treatment options for clinical infectious diseases and foodborne illnesses. Given the increasing prevalence of antibiotic resistance and the limited availability of effective antibiotics, the discovery of novel antibiotic potentiators may prove useful for the treatment of bacterial infections. The application of antibiotics combined with antibiotic potentiators has demonstrated successful outcomes in bench-scale experiments and clinical settings. For instance, the use of efflux pump inhibitors (EPIs) in combination with antibiotics showed effective inhibition of MDR pathogens. Thus, this review aims to enable the possibility of using novel EPIs as potential adjuvants to effectively control MDR pathogens. Specifically, it provides a comprehensive summary of the advances in novel EPI discovery and the underlying mechanisms that restore antimicrobial activity. In addition, we also characterize plant-derived EPIs as novel potentiators. This review provides insights into current challenges and potential strategies for future advancements in fighting antibiotic resistance.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
18
|
Russell Lewis B, Uddin MR, Moniruzzaman M, Kuo KM, Higgins AJ, Shah LMN, Sobott F, Parks JM, Hammerschmid D, Gumbart JC, Zgurskaya HI, Reading E. Conformational restriction shapes the inhibition of a multidrug efflux adaptor protein. Nat Commun 2023; 14:3900. [PMID: 37463890 PMCID: PMC10354078 DOI: 10.1038/s41467-023-39615-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αβ barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Muhammad R Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Katie M Kuo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA, 30332, USA
| | - Anna J Higgins
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Laila M N Shah
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Frank Sobott
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Jerry M Parks
- Bioscience Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - James C Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA, 30332, USA.
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA, 30332, USA.
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| | - Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK.
| |
Collapse
|
19
|
Simpson AC, Sengupta P, Zhang F, Hameed A, Parker CW, Singh NK, Miliotis G, Rekha PD, Raman K, Mason CE, Venkateswaran K. Phylogenetic affiliations and genomic characterization of novel bacterial species and their abundance in the International Space Station. RESEARCH SQUARE 2023:rs.3.rs-3126314. [PMID: 37461605 PMCID: PMC10350232 DOI: 10.21203/rs.3.rs-3126314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including β-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.
Collapse
Affiliation(s)
- Anna C. Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Flora Zhang
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Asif Hameed
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Punchappady D. Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore 575018, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036, India
- Center for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology Madras, Chennai, 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Christopher E. Mason
- Department of Physiology and Biophysics, and the WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
20
|
Szal T, Chauhan SS, Lewe P, Rachad FZ, Madre M, Paunina L, Witt S, Parthasarathi R, Windshügel B. Efflux Pump-Binding 4(3-Aminocyclobutyl)Pyrimidin-2-Amines Are Colloidal Aggregators. Biomolecules 2023; 13:1000. [PMID: 37371580 PMCID: PMC10296211 DOI: 10.3390/biom13061000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Efflux pumps are a relevant factor in antimicrobial resistance. In E. coli, the tripartite efflux pump AcrAB-TolC removes a chemically diverse set of antibiotics from the bacterium. Therefore, small molecules interfering with efflux pump function are considered adjuvants for improving antimicrobial therapies. Several compounds targeting the periplasmic adapter protein AcrA and the efflux pump AcrB have been identified to act synergistically with different antibiotics. Among those, several 4(3-aminocyclobutyl)pyrimidin-2-amines have been shown to bind to both proteins. In this study, we intended to identify analogs of these substances with improved binding affinity to AcrA using virtual screening followed by experimental validation. While we succeeded in identifying several compounds showing a synergistic effect with erythromycin on E. coli, biophysical studies suggested that 4(3-aminocyclobutyl)pyrimidin-2-amines form colloidal aggregates that do not bind specifically to AcrA. Therefore, these substances are not suited for further development. Our study emphasizes the importance of implementing additional control experiments to identify aggregators among bioactive compounds.
Collapse
Affiliation(s)
- Tania Szal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Philipp Lewe
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Fatima-Zahra Rachad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
| | - Marina Madre
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Laura Paunina
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
21
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
22
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
23
|
Cao F, Kinthada R, Boehm T, D' Cunha N, Leus IV, Orth C, Zgurskaya HI, Walker JK. Identification and structure-activity relationships for a series of N, N-disubstituted 2-aminobenzothiazoles as potent inhibitors of S. aureus. Bioorg Med Chem Lett 2023; 89:129301. [PMID: 37094726 PMCID: PMC10257494 DOI: 10.1016/j.bmcl.2023.129301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
An internal collection of commercial and synthetically derived small molecule compounds was screened against several drug-resistant bacterial pathogens. Compound 1, a known N, N-disubstituted 2-aminobenzothiazole, was found to be a potent inhibitor of Staphylococcus aureus and several associated clinically relevant strains of methicillin-resistant S. aureus suggesting a possible novel mechanism of inhibition. It failed to show activity in any of the Gram-negative pathogens it was tested in. Evaluation in Escherichia coli BW25113 and Pseudomonas aeruginosa PAO1, as well as in their respective hyperporinated and efflux pump-deletion mutants revealed that activity in Gram-negative bacteria is diminished because this benzothiazole scaffold is a substrate for bacterial efflux pumps. Several analogs of 1 were synthesized to generate basic structure-activity relationships for the scaffold which highlighted that the N-propyl imidazole moiety was critical for the observed antibacterial activity.
Collapse
Affiliation(s)
- Feng Cao
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, MO 63106, United States
| | - Ramakumar Kinthada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63110, United States
| | - Terri Boehm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63110, United States
| | - Napoleon D' Cunha
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63110, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States
| | - Cari Orth
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, MO 63106, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
24
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 494] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
25
|
Russell Lewis B, Lawrence R, Hammerschmid D, Reading E. Structural mass spectrometry approaches to understand multidrug efflux systems. Essays Biochem 2023; 67:255-267. [PMID: 36504255 PMCID: PMC10070475 DOI: 10.1042/ebc20220190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Multidrug efflux pumps are ubiquitous across both eukaryotes and prokaryotes, and have major implications in antimicrobial and multidrug resistance. They reside within cellular membranes and have proven difficult to study owing to their hydrophobic character and relationship with their compositionally complex lipid environment. Advances in structural mass spectrometry (MS) techniques have made it possible to study these systems to elucidate critical information on their structure-function relationships. For example, MS techniques can report on protein structural dynamics, stoichiometry, connectivity, solvent accessibility, and binding interactions with ligands, lipids, and other proteins. This information proving powerful when used in conjunction with complementary structural biology methods and molecular dynamics (MD) simulations. In the present review, aimed at those not experts in MS techniques, we report on the current uses of MS in studying multidrug efflux systems, practical considerations to consider, and the future direction of the field. In the first section, we highlight the importance of studying multidrug efflux proteins, and introduce a range of different MS techniques and explain what information they yield. In the second section, we review recent studies that have utilised MS techniques to study and characterise a range of different multidrug efflux systems.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ryan Lawrence
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
26
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
27
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
28
|
Phan TV, Nguyen VTV, Nguyen CHH, Vu TT, Tran TD, Le MT, Trinh DTT, Tran VH, Thai KM. Discovery of AcrAB-TolC pump inhibitors: Virtual screening and molecular dynamics simulation approach. J Biomol Struct Dyn 2023; 41:12503-12520. [PMID: 36762699 DOI: 10.1080/07391102.2023.2175381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
AcrAB-TolC tripartite efflux pump, which belongs to the RND superfamily, is a main multi-drug efflux system of Escherichia coli (E. coli) because of the broad resistance on various antibiotics. With the discovering of efflux pump inhibitors (EPIs), a combination between these and antibiotics is one of the most promising therapies. Therefore, building a virtual screening model with prediction capacities for the efflux pump inhibitory activities of candidates from DrugBank and ZINC15 dataset, is one of the key goals of this project. Based on the database of 170 diverse chemical structures collected from 28 research journals, two 2D-QSAR models and a 3D-pharmacophore model have been performed. On the AcrB protein (PDB 4DX7), two binding sites have been discovered that match to the hydrophobic trap in the distal pocket and the switch loop in the proximal pocket. After virtual screening processes, twenty candidate AcrAB-TolC inhibitors have been subjected to molecular dynamics simulations, binding free energy calculations and ADMET predictions. The results indicate that three compounds namely DB09233, DB02581, and DB15224 are potential inhibitors with ΔGbind of -42.30 ± 4.58, -40.76 ± 7.30 and -31.06 ± 7.63 kcal.mol-1, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thien-Vy Phan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vu-Thuy-Vy Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- Department of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | | - Thanh-Thao Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| | - Minh-Tri Le
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dieu-Thuong Thi Trinh
- Faculty of Traditional Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Viet-Hung Tran
- Institute of Drug, Quality Control, Ho Chi Minh City, Vietnam
| | - Khac-Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh City, Vietnam
| |
Collapse
|
29
|
TolC-AcrA complex formation monitored by time dependent single-channel electrophysiology. Biochimie 2023; 205:102-109. [PMID: 36646205 DOI: 10.1016/j.biochi.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Characterizing protein-protein interaction on a single molecular level is a challenge, experimentally as well as interpretation of the data. For example, Gram-negative bacteria contain protein complexes spanning the outer and inner cell wall devoted to efflux effectively cell toxic substances. Recent seminal work revealed the high-resolution structure of such a tripartic composition TolC-AcrA-AcrB suggesting to design inhibitors preventing efflux of antibiotics. To show that electrophysiology can provide supporting information here, we reconstitute single TolC homotrimer into a planar lipid membrane, apply a transmembrane voltage and follow the assembly of AcrA to TolC using the modulation of the ion current through TolC channel during binding. In particular, the presence of AcrA in solution increases the average ionic current through TolC and, moreover, reduces the ion-current fluctuations caused by flickering of TolC. Here, we show that statistical properties of ion-current fluctuations (the power spectral density) provide a complementary measure of the interaction of the TolC-AcrA complex in presence of putative efflux pump inhibitors. Both characteristics, the average ion current across TolC and the current noise, taken into consideration together, point to a stiffening of the tip of TolC which might reduce the formation of the complex.
Collapse
|
30
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
31
|
Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microb Pathog 2022; 173:105824. [PMID: 36243382 DOI: 10.1016/j.micpath.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The continuous emergence of multidrug-resistant (MDR) bacteria has posed an increasingly serious public health threat which urges people to develop some alternatives. Gallic acid (GA) is a natural ingredient in many traditional Chinese medicines, which has many biological activities, such as antibacterial, and antiseptic. Here, clinical isolates of MDR Escherichia coli (E. coli) were used to evaluate the antibacterial effect of GA and the underlying mechanism. The results revealed that GA exerted bactericidal activity and inhibited the formation of bacterial biofilm. GA enhanced the activities of ceftiofur sodium or tetracycline against E. coli, and facilitated antibiotic accumulation in bacteria. Further analysis of morphological alterations and efflux pump gene expressions confirmed that GA damaged outer and inner membranes, and suppressed the mRNA expressions of acrA, acrB, tolC, acrD and acrF involved in membrane permeability. In addition, GA showed protective effects against bacterial infection and improved the survival rates of Galleria mellonella and BALB/c mice. These data highlight a better understanding of GA against bacteria and provide an alternative strategy for MDR bacterial infection.
Collapse
|
32
|
Phan TV, Nguyen CHH, Nguyen VTV. 3D-Pharmacophore and Molecular Docking Studies for AcrAB-TolC Efflux Pump Potential Inhibitors from DrugBank and Traditional Chinese Medical Database. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Due to the widespread resistance to several antibiotics, the AcrAB-TolC tripartite efflux pump is the primary multi-drug efflux system of Escherichia coli. One of the most promising treatments since the discovery of efflux pump inhibitors is the combination of them with antibiotics.
AIM: Based on the efflux pump inhibitor database and the structure of AcrB, the research was created the virtual screening models with prediction capabilities for the efflux pump inhibitory effects of candidates from the DrugBank and Traditional Chinese Medical databank.
Methods: The pharmacophore models were developed by MOE 2015.10 software using a database of 119 efflux pump inhibitors discovered in 12 research publications and belonged to different structural classes. The binding site was found on the AcrB protein (PDB: 4DX7) by LeadIT 2.0.2 software that corresponds to the hydrophobic trap in the proximal pocket.
Results: The potential inhibitors which satisfied the pharmacophore model and had docking scores under -20 kJ.mol-1 have been established. In which, TCM_20290, DB00303, DB04642, DB08116, TCM_29530, and 2,5-dimethyl-3-O-D-glucopyranosyl-naphthol have the best docking scores of -32.76, -26.59, -26.14, -25.62, -24.88, and -22.82 kJ.mol-1, respectively.
Conclusions: After the screening, the result was obtained six compounds may be potential efflux pump inhibitors that can be used for additional studies. In the future, further in vitro and in vivo research should be required to confirm the effects of these compounds. The ongoing battle against antibiotic resistance shows promise with the finding on initiators that can obstruct AcrAB–TolC multidrug efflux pumps.
Keywords: AcrAB-TolC, inhibitors, Escherichia coli, pharmacophore, molecular docking.
Collapse
|
33
|
Bhattacharyya S, Bhattacharyya M, Pfannenstiel DM, Nandi AK, Hwang Y, Ho K, Harshey RM. Efflux-linked accelerated evolution of antibiotic resistance at a population edge. Mol Cell 2022; 82:4368-4385.e6. [PMID: 36400010 PMCID: PMC9699456 DOI: 10.1016/j.molcel.2022.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Efflux is a common mechanism of resistance to antibiotics. We show that efflux itself promotes accumulation of antibiotic-resistance mutations (ARMs). This phenomenon was initially discovered in a bacterial swarm where the linked phenotypes of high efflux and high mutation frequencies spatially segregated to the edge, driven there by motility. We have uncovered and validated a global regulatory network connecting high efflux to downregulation of specific DNA-repair pathways even in non-swarming states. The efflux-DNA repair link was corroborated in a clinical "resistome" database: genomes with mutations that increase efflux exhibit a significant increase in ARMs. Accordingly, efflux inhibitors decreased evolvability to antibiotic resistance. Swarms also revealed how bacterial populations serve as a reservoir of ARMs even in the absence of antibiotic selection pressure. High efflux at the edge births mutants that, despite compromised fitness, survive there because of reduced competition. This finding is relevant to biofilms where efflux activity is high.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Dylan M Pfannenstiel
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Anjan K Nandi
- Department of Physical Sciences, Indian Institute of Science Education & Research, Kolkata, India
| | - YuneSahng Hwang
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Moniruzzaman M, Cooper CJ, Uddin MR, Walker JK, Parks JM, Zgurskaya HI. Analysis of Orthogonal Efflux and Permeation Properties of Compounds Leads to the Discovery of New Efflux Pump Inhibitors. ACS Infect Dis 2022; 8:2149-2160. [PMID: 36070489 PMCID: PMC9942517 DOI: 10.1021/acsinfecdis.2c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Optimization of compound permeation into Gram-negative bacteria is one of the most challenging tasks in the development of antibacterial agents. Two permeability barriers─the passive diffusion barrier of the outer membrane (OM) and active drug efflux─act synergistically to protect cells from the antibacterial action of compounds. In Escherichia coli (E. coli) and relatives, these two barriers sieve compounds based on different physicochemical properties that are defined by their interactions with OM porins and efflux pumps, respectively. In this study, we critically tested the hypothesis that the best substrates and inhibitors of efflux pumps are compounds that can effectively permeate the OM and are available at relatively high concentrations in the periplasm. For this purpose, we filtered a large subset of the ZINC15 database of commercially available compounds for compounds containing a primary amine, a chemical feature known to facilitate the uptake through E. coli general porins. The assembled library was screened by ensemble docking to AcrA, the periplasmic component of the AcrAB-TolC efflux pump, followed by experimental testing of the top predicted binders for antibacterial activities, efflux recognition, and inhibition. We found that the filtered primary amine library is a rich source of compounds with efflux-inhibiting activities and identified efflux pump inhibitors with novel chemical scaffolds effective against E. coli AcrAB-TolC and efflux pumps of multidrug-resistant clinical isolates of Acinetobacter baumannii. However, primary amines are not required for the recognition of compounds by efflux pumps and their efflux-inhibitory activities.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Connor J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Muhammad R Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| |
Collapse
|
35
|
Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. BIOLOGY 2022; 11:biology11091328. [PMID: 36138807 PMCID: PMC9495857 DOI: 10.3390/biology11091328] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Multidrug-resistant bacterial infections, especially that caused by Gram-negative bacteria, have posed serious health issues worldwide. Bacteria have different mechanisms that can confer multidrug resistance to bacteria, among these mechanisms are drug efflux pumps that play the main role in conferring multidrug resistance by recognizing then expelling a wide range of compounds, especially antibiotics, and reducing their concentration to sub-toxic levels. Small molecule inhibitors that target drug efflux pumps especially the AcrAB-TolC multidrug efflux pump, from E. coli, appear as a new promising and attractive approach that could increase the required accumulation of antimicrobials to eliminate bacteria as well as leading to reverse antibiotic resistance and prevent the development of resistance in clinically relevant bacterial pathogens and enhances the activity of antibiotics or prolong their effectiveness. Abstract Infections caused by multidrug resistance (MDR) of Gram-negative bacteria have become one of the most severe public health problems worldwide. The main mechanism that confers MDR to bacteria is drug efflux pumps, as they expel a wide range of compounds, especially antibiotics. Among the different types of drug efflux pumps, the resistance nodulation division (RND) superfamily confers MDR to various Gram-negative bacteria species. The AcrAB-TolC multidrug efflux pump, from E. coli, a member of RND, is the best-characterized example and an excellent model for understanding MDR because of an abundance of functional and structural data. Small molecule inhibitors that target the AcrAB-TolC drug efflux pump represent a new solution to reversing MDR in Gram-negative bacteria and restoring the efficacy of various used drugs that are clinically relevant to these pathogens, especially in the high shortage of drugs for multidrug-resistant Gram-negative bacteria. This review will investigate solutions of MDR in Gram-negative bacteria by studying the inhibition of the AcrAB-TolC multidrug efflux pump.
Collapse
|
36
|
Yu B, Choudhury MR, Yang X, Benoit SL, Womack E, Van Mouwerik Lyles K, Acharya A, Kumar A, Yang C, Pavlova A, Zhu M, Yuan Z, Gumbart JC, Boykin DW, Maier RJ, Eichenbaum Z, Wang B. Restoring and Enhancing the Potency of Existing Antibiotics against Drug-Resistant Gram-Negative Bacteria through the Development of Potent Small-Molecule Adjuvants. ACS Infect Dis 2022; 8:1491-1508. [PMID: 35801980 PMCID: PMC11227883 DOI: 10.1021/acsinfecdis.2c00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid and persistent emergence of drug-resistant bacteria poses a looming public health crisis. The possible task of developing new sets of antibiotics to replenish the existing ones is daunting to say the least. Searching for adjuvants that restore or even enhance the potency of existing antibiotics against drug-resistant strains of bacteria represents a practical and cost-effective approach. Herein, we describe the discovery of potent adjuvants that extend the antimicrobial spectrum of existing antibiotics and restore their effectiveness toward drug-resistant strains including mcr-1-expressing strains. From a library of cationic compounds, MD-100, which has a diamidine core structure, was identified as a potent antibiotic adjuvant against Gram-negative bacteria. Further optimization efforts including the synthesis of ∼20 compounds through medicinal chemistry work led to the discovery of a much more potent compound MD-124. MD-124 was shown to sensitize various Gram-negative bacterial species and strains, including multidrug resistant pathogens, toward existing antibiotics with diverse mechanisms of action. We further demonstrated the efficacy of MD-124 in an ex vivo skin infection model and in an in vivo murine systemic infection model using both wild-type and drug-resistant Escherichia coli strains. MD-124 functions through selective permeabilization of the outer membrane of Gram-negative bacteria. Importantly, bacteria exhibited low-resistance frequency toward MD-124. In-depth computational investigations of MD-124 binding to the bacterial outer membrane using equilibrium and steered molecular dynamics simulations revealed key structural features for favorable interactions. The very potent nature of such adjuvants distinguishes them as very useful leads for future drug development in combating bacterial drug resistance.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Manjusha Roy Choudhury
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | | | - Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Atanu Acharya
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Arvind Kumar
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Ce Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Anna Pavlova
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - James C. Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 United States
| | - David W. Boykin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
37
|
Wei S, Tian Q, Zhao X, Liu X, Husien HM, Liu M, Bo R, Li J. Tea Tree Oil Nanoemulsion Potentiates Antibiotics against Multidrug-Resistant Escherichia coli. ACS Infect Dis 2022; 8:1618-1626. [PMID: 35854664 DOI: 10.1021/acsinfecdis.2c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive efforts are underway to overcome the rising prevalence of antibiotic resistance. Combination therapy may be a potential method to treat multidrug-resistant (MDR) bacterial infections. In this study, tea tree essential oil (TTO) nanoemulsion (nanoTTO) was used in combination with antibiotics to kill microbes. Results showed that nanoTTO enhanced the activities of multiple antibiotics against MDR Escherichia coli (E. coli), and its antimicrobial activity was not changed against bacteria that were cultured in the presence of nanoTTO for 30 passages. Further studies to visualize and quantify intracellular antibiotics concentrations identified that nanoTTO increased the drug accumulation in MDR E. coli by disrupting outer and inner membranes and inhibiting the AcrAB-TolC efflux pump involved in membrane permeability. In addition, nanoTTO was effective in enhancing antibiotic efficacy in the Galleria mellonella infection model and mouse peritonitis model, suggesting a potential strategy against MDR bacterial infections.
Collapse
Affiliation(s)
- Simin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Qiming Tian
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaopan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Hosameldeen Mohamed Husien
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China.,College of Veterinary Medicine, Albutana University, Rufaa 22217, Al Jazirah, Sudan
| | - Mingjiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruonan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Jingui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
38
|
Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, Zhang X, Wang J, Wan Y. Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors. Front Pharmacol 2022; 13:926104. [PMID: 35814247 PMCID: PMC9258905 DOI: 10.3389/fphar.2022.926104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem resistance in Enterobacteriaceae caused by OXA-48 β-lactamase is a growing global health threat and has rapidly spread in many regions of the world. Developing inhibitors is a promising way to overcome antibiotic resistance. However, there are few options for problematic OXA-48. Here we identified quercetin, fisetin, luteolin, 3′,4′,7-trihydroxyflavone, apigenin, kaempferol, and taxifolin as potent inhibitors of OXA-48 with IC50 values ranging from 0.47 to 4.54 μM. Notably, the structure-activity relationship revealed that the substitute hydroxyl groups in the A and B rings of quercetin and its structural analogs improved the inhibitory effect against OXA-48. Mechanism studies including enzymatic kinetic assay, isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) analysis demonstrated that quercetin reversibly inhibited OXA-48 through a noncompetitive mode. Molecular docking suggested that hydroxyl groups at the 3′, 4′ and 7 positions in flavonoids formed hydrogen-bonding interactions with the side chains of Thr209, Ala194, and Gln193 in OXA-48. Quercetin, fisetin, luteolin, and 3′,4′,7-trihydroxyflavone effectively restored the antibacterial efficacy of piperacillin or imipenem against E. coli producing OXA-48, resulting in 2–8-fold reduction in MIC. Moreover, quercetin combined with piperacillin showed antimicrobial efficacy in mice infection model. These studies provide potential lead compounds for the development of β-lactamase inhibitors and in combination with β-lactams to combat OXA-48 producing pathogen.
Collapse
Affiliation(s)
- Yuejuan Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Cheng Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Gao
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Lixia Zhang
- Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xu Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Jun Wang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
- *Correspondence: Yi Wan,
| |
Collapse
|
39
|
Wan X, Li Q, Olsen RH, Meng H, Zhang Z, Wang J, Zheng H, Li L, Shi L. Engineering a CRISPR interference system targeting AcrAB-TolC efflux pump to prevent multidrug resistance development in Escherichia coli. J Antimicrob Chemother 2022; 77:2158-2166. [PMID: 35642356 DOI: 10.1093/jac/dkac166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We engineered a CRISPR interference (CRISPRi) system targeting the AcrAB-TolC efflux pump to prevent MDR development in Escherichia coli. METHODS Nine specific single-guide RNAs (sgRNAs) were designed to target the components of the AcrAB-TolC efflux pump, namely AcrA, AcrB and TolC. A total of thirteen CRISPRi recombinant plasmids were constructed with single or clustered sgRNAs. The transcriptional levels of the target genes, MICs of multiple antibiotics and biofilm formation in each CRISPRi strain were tested. RESULTS The CRISPRi system expressing sgRNA clusters targeting acrB and tolC simultaneously exhibited the highest inhibitory effect on AcrAB-TolC efflux pump activity in E. coli HB101, with 78.3%, 90.0% and 65.4% inhibition rates on the transcriptional levels of acrA, acrB and tolC, respectively. The CRISPRi system resulted in ∼2-, ∼8- and 16-fold increased susceptibility to rifampicin, erythromycin and tetracycline, respectively. In addition, the constructed CRISPRi system reduced biofilm formation with inhibition rates in the range of 11.2% to 58.2%. CONCLUSIONS To the best of our knowledge, this is the first report on the construction of an inducible CRISPRi system targeting the AcrAB-TolC efflux pump to prevent MDR development in E. coli. This study provides insights for future regulation and manipulation of AcrAB-TolC activity and bacterial MDR by a CRISPRi system.
Collapse
Affiliation(s)
- Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group, Xiamen, China
| | - Junlin Wang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Hanyu Zheng
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.,State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group, Xiamen, China
| |
Collapse
|
40
|
Álvarez-Chimal R, García-Pérez VI, Álvarez-Pérez MA, Tavera-Hernández R, Reyes-Carmona L, Martínez-Hernández M, Arenas-Alatorre JÁ. Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Chen M, Shi X, Yu Z, Fan G, Serysheva II, Baker ML, Luisi BF, Ludtke SJ, Wang Z. In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution. Structure 2022; 30:107-113.e3. [PMID: 34506732 PMCID: PMC8741639 DOI: 10.1016/j.str.2021.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023]
Abstract
The tripartite AcrAB-TolC assembly, which spans both the inner and outer membranes in Gram-negative bacteria, is an efflux pump that contributes to multidrug resistance. Here, we present the in situ structure of full-length Escherichia coli AcrAB-TolC determined at 7 Å resolution by electron cryo-tomography. The TolC channel penetrates the outer membrane bilayer through to the outer leaflet and exhibits two different configurations that differ by a 60° rotation relative to the AcrB position in the pump assembly. AcrA protomers interact directly with the inner membrane and with AcrB via an interface located in proximity to the AcrB ligand-binding pocket. Our structural analysis suggests that these AcrA-bridged interactions underlie an allosteric mechanism for transmitting drug-evoked signals from AcrB to the TolC channel within the pump. Our study demonstrates the power of in situ electron cryo-tomography, which permits critical insights into the function of bacterial efflux pumps.
Collapse
Affiliation(s)
- Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA
| | - Matthew L Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at the University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Wang D, Li H, Ma X, Tang Y, Tang H, Huang D, Lin M, Liu Z. Hfq Regulates Efflux Pump Expression and Purine Metabolic Pathway to Increase Trimethoprim Resistance in Aeromonas veronii. Front Microbiol 2021; 12:742114. [PMID: 34899630 PMCID: PMC8652118 DOI: 10.3389/fmicb.2021.742114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Aeromonas veronii (A. veronii) is a zoonotic pathogen. It causes clinically a variety of diseases such as dysentery, bacteremia, and meningitis, and brings huge losses to aquaculture. A. veronii has been documented as a multiple antibiotic resistant bacterium. Hfq (host factor for RNA bacteriophage Qβ replication) participates in the regulations of the virulence, adhesion, and nitrogen fixation, effecting on the growth, metabolism synthesis and stress resistance in bacteria. The deletion of hfq gene in A. veronii showed more sensitivity to trimethoprim, accompanying by the upregulations of purine metabolic genes and downregulations of efflux pump genes by transcriptomic data analysis. Coherently, the complementation of efflux pump-related genes acrA and acrB recovered the trimethoprim resistance in Δhfq. Besides, the accumulations of adenosine and guanosine were increased in Δhfq in metabonomic data. The strain Δhfq conferred more sensitive to trimethoprim after appending 1 mM guanosine to M9 medium, while wild type was not altered. These results demonstrated that Hfq mediated trimethoprim resistance by elevating efflux pump expression and degrading adenosine, and guanosine metabolites. Collectively, Hfq is a potential target to tackle trimethoprim resistance in A. veronii infection.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Sciences, Hainan University, Haikou, China.,College of Tropical Crops Hainan University, Haikou, China
| | - Hong Li
- College of Life Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- College of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- College of Life Sciences, Hainan University, Haikou, China
| | - Hongqian Tang
- College of Life Sciences, Hainan University, Haikou, China
| | - Dongyi Huang
- College of Tropical Crops Hainan University, Haikou, China
| | - Min Lin
- Chinese Academy of Agricultural Science, Beijing, China
| | - Zhu Liu
- College of Life Sciences, Hainan University, Haikou, China
| |
Collapse
|
43
|
Cacciotto P, Basciu A, Oliva F, Malloci G, Zacharias M, Ruggerone P, Vargiu AV. Molecular rationale for the impairment of the MexAB-OprM efflux pump by a single mutation in MexA. Comput Struct Biotechnol J 2021; 20:252-260. [PMID: 35024097 PMCID: PMC8717590 DOI: 10.1016/j.csbj.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Efflux pumps of the Resistance-Nodulation-cell Division (RND) superfamily contribute to intrinsic and acquired resistance in Gram-negative pathogens by expelling chemically unrelated antibiotics with high efficiency. They are tripartite systems constituted by an inner-membrane-anchored transporter, an outer membrane factor protein, and a membrane fusion protein. Multimerization of the membrane fusion protein is an essential prerequisite for full functionality of these efflux pumps. In this work, we employed complementary computational techniques to investigate the stability of a dimeric unit of MexA (the membrane fusion protein of the MexAB-OprM RND efflux pump of Pseudomonas aeruginosa), and to provide a molecular rationale for the effect of the G72S substitution, which affects MexAB-OprM functionality by impairing the assembly of MexA. Our findings indicate that: i) dimers of this protein are stable in multiple µs-long molecular dynamics simulations; ii) the mutation drastically alters the conformational equilibrium of MexA, favouring a collapsed conformation that is unlikely to form dimers or higher order assemblies. Unveiling the mechanistic aspects underlying large conformational distortions induced by minor sequence changes is informative to efforts at interfering with the activity of this elusive bacterial weapon. In this respect, our work further confirms how molecular simulations can give important contribution and useful insights to characterize the mechanism of highly complex biological systems.
Collapse
Affiliation(s)
- Pierpaolo Cacciotto
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Andrea Basciu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Francesco Oliva
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Attilio V Vargiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| |
Collapse
|
44
|
D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, Parks JM, Rybenkov VV, Ruggerone P, Zgurskaya HI, Walker JK. Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides. ACS Infect Dis 2021; 7:2650-2665. [PMID: 34379382 DOI: 10.1021/acsinfecdis.1c00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.
Collapse
Affiliation(s)
- Napoleon D’Cunha
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Keith Haynes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Enrico Margiotta
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Feng Cao
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K. Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
45
|
Durrant DE, Smith EA, Goncharova EI, Sharma N, Alexander PA, Stephen AG, Henrich CJ, Morrison DK. Development of a High-throughput NanoBRET Screening Platform to Identify Modulators of the RAS/RAF Interaction. Mol Cancer Ther 2021; 20:1743-1754. [PMID: 34158349 PMCID: PMC8419108 DOI: 10.1158/1535-7163.mct-21-0175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Activating mutations in RAS are found in approximately 30% of human cancers, resulting in the delivery of a persistent signal to critical downstream effectors that drive tumorigenesis. RAS-driven malignancies respond poorly to conventional cancer treatments and inhibitors that target RAS directly are limited; therefore, the identification of new strategies and/or drugs to disrupt RAS signaling in tumor cells remains a pressing therapeutic need. Taking advantage of the live-cell bioluminescence resonance energy transfer (BRET) methodology, we describe the development of a NanoBRET screening platform to identify compounds that modulate binding between activated KRAS and the CRAF kinase, an essential effector of RAS that initiates ERK cascade signaling. Using this strategy, libraries containing synthetic compounds, targeted inhibitors, purified natural products, and natural product extracts were evaluated. These efforts resulted in the identification of compounds that inhibit RAS/RAF binding and in turn suppress RAS-driven ERK activation, but also compounds that have the deleterious effect of enhancing the interaction to upregulate pathway signaling. Among the inhibitor hits identified, the majority were compounds derived from natural products, including ones reported to alter KRAS nanoclustering (ophiobolin A), to impact RAF function (HSP90 inhibitors and ROS inducers) as well as some with unknown targets and activities. These findings demonstrate the potential for this screening platform in natural product drug discovery and in the development of new therapeutic agents to target dysregulated RAS signaling in human disease states such as cancer.
Collapse
Affiliation(s)
- David E Durrant
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Emily A Smith
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
- Biomedical Informatics and Data Science Directorate, NCI, Frederick, Maryland
| | - Nirmala Sharma
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland
| | - Patrick A Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Curtis J Henrich
- Molecular Targets Program, Center of Cancer Research, NCI, Frederick, Maryland.
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland.
| |
Collapse
|
46
|
Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob Agents Chemother 2021; 65:e0071021. [PMID: 34097483 DOI: 10.1128/aac.00710-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin-resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-naphthylmethyl)-piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound, 1-(1-naphthyl methyl)-piperazine. Stereochemistry also played an important part in the inhibitory activity, as quinoline derivative (R)-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated with the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-naphthylmethyl)-piperazine are promising leads in the development of new anti-Acinetobacter baumannii therapeutic alternatives in combination with antibiotics for which an efflux-mediated resistance is suspected.
Collapse
|
47
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
48
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
49
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
50
|
Zgurskaya HI, Malloci G, Chandar B, Vargiu AV, Ruggerone P. Bacterial efflux transporters' polyspecificity - a gift and a curse? Curr Opin Microbiol 2021; 61:115-123. [PMID: 33940284 DOI: 10.1016/j.mib.2021.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
All mechanisms of clinical antibiotic resistance benefit from activities of polyspecific efflux pumps acting to reduce intracellular accumulation of toxins and antibiotics. In Gram-negative bacteria, the major polyspecific efflux transporters belong to the Resistance-Nodulation-cell Division (RND) superfamily of proteins, which are capable of expelling thousands of structurally diverse compounds. Recent structural and functional advances generated novel insights into mechanisms underlying the biochemical versatility of RND transporters. This opinion article reviews these mechanisms and discusses implications of the polyspecificity of RND transporters for bacterial survival and for the development of efflux pump inhibitors effective in clinics.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States.
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Brinda Chandar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, United States
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|