1
|
Alshehry Y, Liu X, Zhang Y, Zhu G. Investigation of the impact of lipid nanoparticle compositions on the delivery and T cell response of circRNA vaccine. J Control Release 2025; 381:113617. [PMID: 40107513 PMCID: PMC11994274 DOI: 10.1016/j.jconrel.2025.113617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Circular RNA (circRNA) is an emerging class of vaccines for various diseases, such as cancer immunotherapy. For cancer therapeutic vaccines, it is critical to deliver circRNA to lymphoid tissues such as lymph nodes (LNs) and dendritic cells (DCs) and then elicit antigen-specific T cell responses. Lipid nanoparticles (LNPs) have shown great success for mRNA vaccines and may also have great potential as nanocarriers for circRNA vaccines. Here, we studied the impact of LNP composition on the efficiency of immune delivery, protein expression, and the T cell responses for circRNA vaccine. First, we used model mRNA and circRNA encoding firefly luciferase (mRNA-fLuc) to study protein expression and used two small circRNA vaccines to study T cell responses. We investigated a combination of six ionizable lipids, three helper lipids, and six different molar ratios of cholesterol and β-sitosterol for their impact on the physicochemical properties of RNA LNPs, in vitro DC transfection, in vivo protein expression in draining LNs, and antigen-specific T cell responses. Among these ionizable lipids, SM-102 was the most effective for DC transfection and enabling circRNA vaccines to elicit T cell responses. DOPE and β-sitosterol incorporation in LNPs resulted in efficient protein expression, albeit β-sitosterol incorporation appeared to be associated with reduced T cell response. Overall, circRNA was efficiently delivered to DCs and macrophages in mouse draining lymph nodes by LNPs of SM-102 (50 %), cholesterol (38.5 %), DOPE (10 %), and DMG-PEG2000 (1.5 %), resulting in the induction of potent antigen-specific CD8+ T cell response in mice. These findings may provide insights into designing the compositions of LNPs as the carrier for circRNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Bioinnovations in Brain Cancer, Biointerfaces Institute, Ann Arbor, MI 48109, USA; The Developmental Therapeutics Program, Rogel Cancer Center, Ann Arbor, MI 48109, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Abdreshov SN, Demchenko GA, Yeshmukhanbet AN, Yessenova MA, Mankibaeva SA, Atanbaeva GK, Kulbayeva MS. Morphofunctional Alteration of Mesenteric Lymph Nodes in the Inflammation of the Abdominal Cavity. BIOLOGY 2024; 13:166. [PMID: 38534436 DOI: 10.3390/biology13030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
This paper provides data regarding the ratios of the functional structures of lymph nodes after inflammation in the abdominal organs. Lymph systems, including lymph nodes, function as filters of tissues and tissue fluids and are places of origin and lymphocyte production for normal physiological functions. They display specific morphological and functional responses in reaction to endogenous and exogenous substances. The morphological pattern of the mesenteric lymph node in experimental rat groups reflects a decrease in its immune function due to the processes of inflammation in the abdominal cavity. These processes work together with the associated organs and their involvement in the abdominal lymph nodes, in which there are discharges of the structure of the paracortical zone under conditions of reduced lymphogenic processes, according to the decrease in the size of the paracortex and the ratios of lymphoid nodes with and without germinal centers. Histological and morphometric analyses show changes in the mesenteric lymph node. These analyses are characterized by changes in the cortical and medullary substances, while the proportion of the cortical structure decreases. We also noted an increase in the number of macrophages in the lymphoid nodes and cerebral sinus, as well as a decrease in the number of mature plasmocytes, the paracortex, and the pulp strands. These changes indicate immunosuppressive effects on the lymph node. Under the conditions of inflammation, the formation of a mixed immune response occurs.
Collapse
Affiliation(s)
- Serik N Abdreshov
- Laboratory of Physiology Lymphatic System, Institute of Genetics and Physiology SC MSHE RK, Almaty 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Georgii A Demchenko
- Laboratory of Physiology Lymphatic System, Institute of Genetics and Physiology SC MSHE RK, Almaty 050060, Kazakhstan
| | - Anar N Yeshmukhanbet
- Laboratory of Physiology Lymphatic System, Institute of Genetics and Physiology SC MSHE RK, Almaty 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Makpal A Yessenova
- Laboratory of Physiology Lymphatic System, Institute of Genetics and Physiology SC MSHE RK, Almaty 050060, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Sandugash A Mankibaeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Gulshat K Atanbaeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Marzhan S Kulbayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
5
|
Burian EA, Franks PJ, Borman P, Quéré I, Karlsmark T, Keeley V, Sugama J, Cestari M, Moffatt CJ. Factors associated with cellulitis in lymphoedema of the arm - an international cross-sectional study (LIMPRINT). BMC Infect Dis 2024; 24:102. [PMID: 38238718 PMCID: PMC10797905 DOI: 10.1186/s12879-023-08839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Lymphoedema is a globally neglected health care problem and a common complication following breast cancer treatment. Lymphoedema is a well-known predisposing factor for cellulitis, but few have investigated the risk factors for cellulitis in this patient cohort on an international level. The aim of this study was to identify the frequency of cellulitis in patients with lymphoedema of the arm, including potential risk factors for cellulitis. METHODS An international, multi-centre, cross-sectional study including patients with clinically assessed arm lymphoedema. The primary outcome was the incidence of cellulitis located to the arm with lymphoedema within the last 12 months, and its potential associated risk factors. The secondary outcome was life-time prevalence of cellulitis. Adults with clinically-assessed arm lymphoedema/chronic oedema (all causes) and able to give informed consent were included. End-of-life-patients or those judged as not in the patient's best interest were excluded. Both univariable and multivariable analysis were performed. RESULTS A total of 2160 patients were included from Australia, Denmark, France, Ireland, Italy, Japan, Turkey and United Kingdom. Secondary lymphoedema was present in 98% of the patients; 95% of these were judged as related to cancer or its treatment. The lifetime prevalence of cellulitis was 22% and 1-year incidence 11%. Following multivariable analysis, factors associated with recent cellulitis were longer swelling duration and having poorly controlled lymphoedema. Compared to having lymphoedema less than 1 year, the risk increased with duration: 1-2 years (OR 2.15), 2-5 years (OR 2.86), 5-10 years (OR 3.15). Patients with well-controlled lymphoedema had a 46% lower risk of cellulitis (OR 0.54, 95% CI 0.39-0.73, p < 0.001). More advanced stages of lymphoedema were associated with cellulitis even after adjustment for swelling duration and control of swelling by logistic regression (stage II OR 5.44, stage III OR 9.13, p = 0.002), demonstrated in a subgroup analysis. CONCLUSION Patients with advanced arm lymphoedema are at particular risk of developing cellulitis. Prevention of lymphoedema progression is crucial. The results lend towards a positive effect of having well-treated lymphoedema on the frequency of cellulitis.
Collapse
Affiliation(s)
- Ewa Anna Burian
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Bispebjerg Bakke 23, Copenhagen, 2400, Denmark.
| | - Peter J Franks
- Centre for Research and Implementation of Clinical Practice, London, UK
| | - Pinar Borman
- Medical Faculty, Department of Physical Medicine and Rehabilitation, Ankara Medipol University, Ankara, Turkey
| | - Isabelle Quéré
- CHU Montpellier, University of Montpellier, IDESP, Montpellier, France
| | - Tonny Karlsmark
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Bispebjerg Bakke 23, Copenhagen, 2400, Denmark
| | - Vaughan Keeley
- Lymphoedema Department, University Hospitals of Derby and Burton NHS Trust, Derby and University of Nottingham Medical School, Nottingham, UK
| | - Junko Sugama
- Research Centre for Implementation Nursing Science Initiative, Research Promotion Headquarters, Fujita Health University, Aichi, Japan
| | | | - Christine J Moffatt
- Department of Dermato-Venereology & Wound Healing Centre, Bispebjerg Hospital, Bispebjerg Bakke 23, Copenhagen, 2400, Denmark
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
6
|
Zhang K, Shen X, Han L, Wang M, Lian S, Wang K, Li C. Effects on the intestinal morphology, inflammatory response and microflora in piglets challenged with enterotoxigenic Escherichia coli K88. Res Vet Sci 2023; 157:50-61. [PMID: 36871456 DOI: 10.1016/j.rvsc.2023.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in piglets, which leads to great economic losses. In this study, the ternary crossbred weaned piglets were orally administered with 1.5 × 1011 CFU ETEC K88 for three days. The results showed the ratio of villus length to crypt depth decreased in the duodenum and ileum after ETEC K88 infection. The expression of tight junction proteins ZO-1 in the jejunum and ileum, occludin in the jejunum and colon, and claudin-1 in the colon were down-regulated. The expression of IL-8 in the duodenum and jejunum, IL-13 in the colon, and TNF-α in the jejunum and colon were up-regulated. The expression of pBD1 in the colon, pBD2 in the jejunum, and pBD3 in the duodenum increased after infection. Meanwhile, the expression of TLR4, p38 MAPK and NF-κB p65 increased in all intestinal segments. Moreover, the expression of IL-8 in superficial cervical lymph nodes (SCLN), TNF-α in mesenteric lymph nodes (MLN), and IL-13 in inguinal lymph nodes (ILN) and MLN were up-regulated. The expression of pBD1 and pBD2 in SCLN and MLN, and pBD3 in SCLN were up-regulated. Acidobacteria and Proteobacteria were the most abundant phyla in both groups by analysis of intestinal microflora using 16 s rRNA sequencing, and the relative abundances of bacteria were found to be changed by Metastats software and LEfSe analysis. Our results indicated that cytokines and pBDs had different roles in different intestinal segments or different lymph nodes against ETEC K88, and gut microbiota was influenced after infection.
Collapse
Affiliation(s)
- Kun Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Xiaoyang Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Lu Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China; Henan Animal Husbandry Service, Zhengzhou, Henan, People's Republic of China
| | - Mengyun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Shaoqiang Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| | - Chunli Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, People's Republic of China.
| |
Collapse
|
7
|
Multi-drug resistant bacteria isolates from lymphatic filariasis patients in the Ahanta West District, Ghana. BMC Microbiol 2022; 22:245. [PMID: 36221074 PMCID: PMC9552459 DOI: 10.1186/s12866-022-02624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Antimicrobial resistance is associated with increased morbidity in secondary infections and is a global threat owning to the ubiquitous nature of resistance genes in the environment. Recent estimate put the deaths associated with bacterial antimicrobial resistance in 2019 at 4.95 million worldwide. Lymphatic filariasis (LF), a Neglected Tropical Disease (NTD), is associated with the poor living in the tropical regions of the world. LF patients are prone to developing acute dermatolymphangioadenitis (ADLA), a condition that puts them at risk of developing secondary bacterial infections due to skin peeling. ADLA particularly worsens the prognosis of patients leading to usage of antibiotics as a therapeutic intervention. This may result in inappropriate usage of antibiotics due to self-medication and non-compliance; exacerbating antimicrobial resistance in LF patients. In this perspective, we assessed the possibilities of antimicrobial resistance in LF patients. We focused on antibiotic usage, antibiotic resistance in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolates and looked at genes (mecA and Extended-spectrum beta-lactamase [blaCTX-M, blaSHV and blaTEM]) coding for resistance in multi-drug resistant (MDR) bacterial isolates. Results Of the sixty (60) participants, fifty-four (n = 54, 90%) were within 31–60 years of age, twenty (n = 20, 33.33%) were unemployed and thirty-eight (n = 38, 50.67%) had wounds aged (in months) seven (7) months and above. Amoxicillin (54%) and chloramphenicol (22%) were the most frequently used antibiotics for self-medication. Staphylococcus aureus isolates (n = 26) were mostly resistant to penicillin (n = 23, 88.46%) and least resistant to erythromycin (n = 2, 7.69%). Escherichia coli isolates (n = 5) were resistant to tetracycline (n = 5, 100%) and ampicillin (n = 5, 100%) but were sensitive to meropenem (n = 5, 100%). Pseudomonas aeruginosa isolates (n = 8) were most resistant to meropenem (n = 3, 37.50%) and to a lesser ciprofloxacin (n = 2, 25%), gentamicin (n = 2, 25%) and ceftazidime (n = 2, 25%). Multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA), cephalosporin resistant Escherichia coli. and carbapenem resistant Pseudomonas aeruginosa were four (n = 4, 15.38%), two (n = 2, 40%) and two (n = 2, 25%) respectively. ESBL (blaCTX-M) and mecA genes were implicated in the resistance mechanism of Escherichia coli and MRSA, respectively. Conclusion The findings show presence of MDR isolates from LF patients presenting with chronic wounds; thus, the need to prioritize resistance of MDR bacteria into treatment strategies optimizing morbidity management protocols. This could guide antibiotic selection for treating LF patients presenting with ADLA. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02624-9.
Collapse
|
8
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
10
|
Assessment of Host Immune Responses to Fungal Pathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Shi N, Xia W, Ji K, Feng Y, Li H, He G, Tang A. Anatomy and nomenclature of tree shrew lymphoid tissues. Exp Anim 2021; 71:173-183. [PMID: 34853240 PMCID: PMC9130038 DOI: 10.1538/expanim.21-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The immune response plays a key role in the disease development of the organism, while immune function serves as an important indicator for animal models evaluation. The tree shrew
(Tupaia belangeri chinensis), as a new laboratory animal with a close genetic relationship with primates, has been used to construct various disease models. However, the
immune system of tree shrews, especially anatomical descriptions of lymph nodes, is still relatively unknown. In this study, a total of 16 different lymph nodes were identified, including
superficial lymph nodes and deep lymph nodes. Superficial lymph nodes were located in the head and neck region (submandibular lymph node, parotid lymph node, deep and superficial cervical
lymph nodes) and at the forelimb (axillary and accessory axillary lymph nodes, subscapular lymph node) and hindlimb (popliteal, sciatic, and inguinal lymph nodes). Deep lymph nodes comprise
mediastinal lymph nodes located in thoracic cavity and abdominal lymph nodes that are mainly located in each mesentery (mesenteric, gastric, pancreatic-duodenal, renal lymph nodes) or along
the major vessels (iliac lymph nodes). In addition, we described the spleen and thymus of the tree shrew, as well as two lymphoid tissues in the top wall of the nasal cavity and the
oropharynx. This study mainly describes the tree shrew immune system from an anatomical and histopathological perspective and provides fundamental research references for the establishment
of various animal models of tree shrews.
Collapse
Affiliation(s)
- Nan Shi
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Ketong Ji
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Yiwei Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Hua Li
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Guangyao He
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| | - Anzhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education of the People's Republic of China
| |
Collapse
|
12
|
Neupane AS, Kubes P. Imaging reveals novel innate immune responses in lung, liver, and beyond. Immunol Rev 2021; 306:244-257. [PMID: 34816440 DOI: 10.1111/imr.13040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Highly dynamic immune responses are generated toward pathogens or injuries, in vivo. Multiple immune cell types participate in various facets of the response which leads to a concerted effort in the removal and clearance of pathogens or injured tissue and a return to homeostasis. Intravital microscopy (IVM) has been extensively utilized to unravel the dynamics of immune responses, visualizing immune cell behavior in intact living tissues, within a living organism. For instance, the phenomenon of leukocyte recruitment cascade. Importantly, IVM has led to a deep appreciation that immune cell behavior and responses in individual organs are distinct, but also can influence one another. In this review, we discuss how IVM as a tool has been used to study the innate immune responses in various tissues during homeostasis, injury, and infection.
Collapse
Affiliation(s)
- Arpan Sharma Neupane
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Carpentier KS, Sheridan RM, Lucas CJ, Davenport BJ, Li FS, Lucas ED, McCarthy MK, Reynoso GV, May NA, Tamburini BAJ, Hesselberth JR, Hickman HD, Morrison TE. MARCO + lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO J 2021; 40:e108966. [PMID: 34618370 PMCID: PMC8591538 DOI: 10.15252/embj.2021108966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Ryan M Sheridan
- RNA Bioscience InitiativeUniversity of Colorado School of MedicineAuroraCOUSA
| | - Cormac J Lucas
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Bennett J Davenport
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Frances S Li
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Erin D Lucas
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Mary K McCarthy
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis UnitLaboratory of Clinical Microbiology and ImmunologyNational Institutes of Allergy and Infectious DiseasesNIHBethesdaMDUSA
| | - Nicholas A May
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Beth A J Tamburini
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of Colorado Anschutz Medical Campus School of MedicineAuroraCOUSA
| | - Jay R Hesselberth
- RNA Bioscience InitiativeUniversity of Colorado School of MedicineAuroraCOUSA
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraCOUSA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis UnitLaboratory of Clinical Microbiology and ImmunologyNational Institutes of Allergy and Infectious DiseasesNIHBethesdaMDUSA
| | - Thomas E Morrison
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
14
|
Assessing Lymphatic Uptake of Lipids Using Magnetic Resonance Imaging: A Feasibility Study in Healthy Human Volunteers with Potential Application for Tracking Lymph Node Delivery of Drugs and Formulation Excipients. Pharmaceutics 2021; 13:pharmaceutics13091343. [PMID: 34575420 PMCID: PMC8470042 DOI: 10.3390/pharmaceutics13091343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Dietary lipids and some pharmaceutical lipid excipients can facilitate the targeted delivery of drugs to the intestinal lymphatics. Here, the feasibility of magnetic resonance imaging (MRI) for imaging lipid uptake into the intestinal lymphatics was assessed, shedding light on which lymph nodes can be targeted using this approach. Three healthy male volunteers were scanned at 3.0 T at baseline, 120, 180, 240, and 300 min post high-fat meal. A sagittal multi-slice image was acquired using a diffusion-weighted whole-body imaging sequence with background suppression (DWIBS) (pre inversion TI = 260 ms). Changes in area, major, and minor axis length were compared at each time point. Apparent diffusion coefficient (ADC) was calculated (b = 0 and 600 s/mm2) across eight slices. An average of 22 nodes could be visualised across all time points. ADC increased at 120 and 180 min compared to the baseline in all three participants by an average of 9.2% and 6.8%, respectively. In two participants, mean node area and major axis lengths increased at 120 and 180 min relative to the baseline. In conclusion, the method described shows potential for repeated lymph node measurements and the tracking of lipid uptake into the lymphatics. Further studies should focus on methodology optimisation in a larger cohort.
Collapse
|
15
|
Jakovija A, Chtanova T. Neutrophil Interactions with the Lymphatic System. Cells 2021; 10:cells10082106. [PMID: 34440875 PMCID: PMC8393351 DOI: 10.3390/cells10082106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels and lymph nodes designed to balance fluid homeostasis and facilitate host immune defence. Neutrophils are rapidly recruited to sites of inflammation to provide the first line of protection against microbial infections. The traditional view of neutrophils as short-lived cells, whose role is restricted to providing sterilizing immunity at sites of infection, is rapidly evolving to include additional functions at the interface between the innate and adaptive immune systems. Neutrophils travel via the lymphatics from the site of inflammation to transport antigens to lymph nodes. They can also enter lymph nodes from the blood by crossing high endothelial venules. Neutrophil functions in draining lymph nodes include pathogen control and modulation of adaptive immunity. Another facet of neutrophil interactions with the lymphatic system is their ability to promote lymphangiogenesis in draining lymph nodes and inflamed tissues. In this review, we discuss the significance of neutrophil migration to secondary lymphoid organs and within the lymphatic vasculature and highlight emerging evidence of the neutrophils’ role in lymphangiogenesis.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- St Vincent’s School of Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tatyana Chtanova
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
16
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Expression of Lymphatic Markers in the Berger's Space and Bursa Premacularis. Int J Mol Sci 2021; 22:ijms22042086. [PMID: 33669860 PMCID: PMC7923221 DOI: 10.3390/ijms22042086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
We previously reported that the bursa premacularis (BPM), a peculiar vitreous structure located above the macula, contains numerous cells expressing markers of lymphatic endothelial cells, such as podoplanin and LYVE-1. Herein, we examined the expression of lymphatic markers in the Berger’s space (BS), BPM, and vitreous core (VC). BS, BPM, and VC specimens were selectively collected in macular hole and epiretinal membrane patients during vitrectomy and were then immunostained with antibodies for podoplanin, LYVE-1, and fibrillin-1 and -2. By visualization using triamcinolone acetonide, the BS was recognized as a sac-like structure with a septum located behind the lens as well as BPM. Those tissues adhered to the lens or retina in a circular manner by means of a ligament-like structure. Immunostaining showed intense expression of podoplanin and LYVE-1 in the BS. Both BS and BPM stained strongly positive for fibrillin-1 and -2. The VC was faintly stained with antibodies for those lymph-node markers. Our findings indicate that both BS and BPM possibly belong to the lymphatic system, such as lymph nodes, draining excess fluid and waste products into lymphatic vessels in the dura mater of the optic nerve and the ciliary body, respectively, via intravitreal canals.
Collapse
|
18
|
Nacher M, Alsibai KD, Adenis A, Blaizot R, Abboud P, Demar M, Djossou F, Epelboin L, Misslin C, Ntab B, Valdes A, Couppié P. Reduced Severity in Patients With HIV-Associated Disseminated Histoplasmosis With Deep Lymphadenopathies: A Trench War Remains Within the Lymph Nodes? Front Cell Infect Microbiol 2021; 10:598701. [PMID: 33628743 PMCID: PMC7897652 DOI: 10.3389/fcimb.2020.598701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background Disseminated histoplasmosis is a major killer of patients with advanced HIV. It is proteiform and often hard to diagnose in the absence of diagnostic tests. We aimed to describe disseminated histoplasmosis with lymphadenopathies in French Guiana and to compare survival and severity of those patients to patients without lymphadenopathies. Methods A retrospective cohort study was performed on data records collected between January 1, 1981 and October 1, 2014. Results Among 349 cases of disseminated histoplasmosis 168 (48.3%) had superficial lymphadenopathies and 133(38.1%) had deep lymphadenopathies. The median LDH concentration, ferritin concentration, TGO concentration, and WHO performance status were lower among patients with deep lymphadenopathies than those without deep lymphadenopathies. There was a significant decrease in the risk of early death (<1 month) among those with deep lymphadenopathies relative to those without (OR=0.26 (95%CI=0.10-0.60), P=0.0006) and in the overall risk of death (OR=0.33 (95%CI=0.20-0.55), P<0.0001). These associations remained strongly significant after adjusting for time period, CD4 counts, age, delay between beginning of symptoms and hospital admission, antifungal and antiretroviral treatment. Conclusions The present data show that in patients with advanced HIV and disseminated histoplasmosis, the presence of deep lymphadenopathies is associated with fewer markers of severity and a lower risk of death. To our knowledge it is the first study to show this. The presence of deep lymphadenopathies is hypothesized to reflect the patient's partially effective defense against H. capsulatum.
Collapse
Affiliation(s)
- Mathieu Nacher
- CIC INSERM 1424, Centre hospitalier Andree Rosemon Cayenne, Cayenne, French Guiana.,DFR Santé, Université de Guyane, Cayenne, French Guiana
| | - Kinan Drak Alsibai
- Department of Pathology, Centre hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Antoine Adenis
- CIC INSERM 1424, Centre hospitalier Andree Rosemon Cayenne, Cayenne, French Guiana.,DFR Santé, Université de Guyane, Cayenne, French Guiana
| | - Romain Blaizot
- DFR Santé, Université de Guyane, Cayenne, French Guiana.,Department of Dermatology, Centre hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Philippe Abboud
- Service des Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- Laboratory, Centre hospitalier Andrée Rosemon Cayenne, Cayenne, French Guiana.,UMR Tropical Biome and Immunopathology, Université de Guyane, Cayenne, French Guiana
| | - Félix Djossou
- Service des Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon Cayenne, Cayenne, French Guiana
| | - Loïc Epelboin
- Service des Maladies Infectieuses et Tropicales, Centre hospitalier Andrée Rosemon Cayenne, Cayenne, French Guiana
| | - Caroline Misslin
- Service de Médecine, Centre hospitalier de l'Ouest Guyanais, Saint Laurent du Maroni, French Guiana
| | - Balthazar Ntab
- Département d'Information Médicale, Centre hospitalier de l'Ouest Guyanais, Saint Laurent du Maroni, French Guiana
| | - Audrey Valdes
- Equipe Opérationnelle d'hygiène hospitalière, Centre hospitalier Andrée Rosemon Cayenne, Cayenne, French Guiana
| | - Pierre Couppié
- DFR Santé, Université de Guyane, Cayenne, French Guiana.,Department of Dermatology, Centre hospitalier Andrée Rosemon, Cayenne, French Guiana
| |
Collapse
|