1
|
Sugo Y, Obata S, Manabe H, Nogawa O, Toda K, Ishioka NS, Ohira SI, Mori M. Sequential separation-to-purification of radioactive copper using a combination of flow electrolysis and ion transfer devices. Talanta 2025; 292:127945. [PMID: 40117870 DOI: 10.1016/j.talanta.2025.127945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Preparation of the copper radioisotope 64Cu (t1/2 = 12.7 h) for use in positron emission tomography (PET) cancer diagnosis is an active area of research. This study describes a sequential separation and purification system that can quantitatively recover 64Cu generated by irradiating a 64NiO target with a proton beam, developed using a flow electrolysis device (FED) and electrodialysis ion-transfer device (ITD). The system operates as follows: (1) 64Cu2+ dissolved by HCl is deposited on the carbon working electrode in the FED by applying -0.8 V and the coexisting stable Ni2+ is excluded; (2) the 64Cu is eluted by 10 mmol/L HNO3, applying +1.0 V to the FED; (3) the 64Cu2+ is then injected into the sample channel in the ITD; and (4) transferred from the sample channel to the cation acceptor channel with 100 mM acetic acid, which is required to synthesize a labeled antibody in the PET, applying +40 V to the ITD. The final recovery of 64Cu2+ was 96 ± 2 %. The developed process took 15 min to complete under the conditions used in this study. The picomolar levels of copper radioisotope were recovered from the large amount of target metal and transferred from strongly acidic to weakly acidic solution without a heating process.
Collapse
Affiliation(s)
- Yumi Sugo
- Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, QST, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Syohei Obata
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Graduate School of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Ouju Nogawa
- Graduate School of Applied Natural Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S Ishioka
- Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, QST, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | - Masanobu Mori
- Graduate School of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan; Graduate School of Applied Natural Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.
| |
Collapse
|
2
|
Co CM, Mulgaonkar A, Zhou N, Nguyen T, Harris S, Sherwood A, Ea V, Rubitschung K, Castellino LM, Öz OK, Sun X, Tang L. d-[5- 11C]-Glutamine Positron Emission Tomography Imaging for Diagnosis and Therapeutic Monitoring of Orthopedic Implant Infections. ACS Infect Dis 2025; 11:144-154. [PMID: 39410659 PMCID: PMC12002399 DOI: 10.1021/acsinfecdis.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Orthopedic implant infections (OIIs) present diagnostic and therapeutic challenges, owing to the lack of methods to distinguish between active infection and sterile inflammation. To address this unmet need, d-amino-acid-based radiotracers with unique metabolic profiles in microorganisms have emerged as a novel class of infection-specific imaging agents. Given the pivotal role of d-glutamine in bacterial biofilm formation and virulence, herein, we explored the potential of positron emission tomography (PET) imaging with d-[5-11C]-Glutamine (d-[5-11C]-Gln) for early detection and treatment monitoring of OIIs. In vitro studies confirmed an active uptake of d-[5-11C]-Gln by Staphylococcus aureus (S. aureus) biofilm commonly associated with OIIs. In vivo evaluations included PET imaging comparisons with d-[5-11C]-Gln vs l-[5-11C]-Gln or 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) in a rat OII model with tibial implantation of sterile or S. aureus-colonized stainless-steel screws before and after treatment. These studies demonstrated that the uptake of d-[5-11C]-Gln was significantly higher in the infected screws than that in sterile screws (∼3.4-fold, p = 0.008), which displayed significantly higher infection-to-background muscle uptake ratios (∼2-fold, p = 0.011) with d-[5-11C]-Gln as compared to l-[5-11C]-Gln. Following a 3 week vancomycin treatment, imaging with d-[5-11C]-Gln showed a significant reduction in uptake at the infected sites (∼3-fold, p = 0.0008). Further regression analyses revealed a superior correlation of residual infection-associated radiotracer uptake with the postimaging ex vivo bacterial counts for d-[5-11C]-Gln (k = 0.473, R2 = 0.796) vs [18F]-FDG (k = 0.212, R2 = 0.434), suggesting that d-[5-11C]-Gln PET had higher sensitivity for detecting residual bacterial burden than [18F]-FDG PET. Our results demonstrate the translational potential of d-[5-11C]-Gln PET imaging for noninvasive detection and treatment monitoring of OIIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Vicki Ea
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
| | - Laila M Castellino
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UTSW, Dallas, TX 75390, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
- Center for Mineral Metabolism and Clinical Research, UTSW, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390, USA
- Advanced Imaging Research Center, UTSW, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
3
|
Koatale PC, Welling MM, Mdanda S, Mdlophane A, Takyi-Williams J, Durandt C, van den Bout I, Cleeren F, Sathekge MM, Ebenhan T. Evaluation of [ 68Ga]Ga-DOTA-AeK as a Potential Imaging Tool for PET Imaging of Cell Wall Synthesis in Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1150. [PMID: 39338315 PMCID: PMC11434960 DOI: 10.3390/ph17091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The ability of bacteria to recycle exogenous amino acid-based peptides and amino sugars for peptidoglycan biosynthesis was extensively investigated using optical imaging. In particular, fluorescent AeK-NBD was effectively utilized to study the peptidoglycan recycling pathway in Gram-negative bacteria. Based on these promising results, we were inspired to develop the radioactive AeK conjugate [68Ga]Ga-DOTA-AeK for the in vivo localization of bacterial infection using PET/CT. An easy-to-implement radiolabeling procedure for DOTA-AeK with [68Ga]GaCI3 followed by solid-phase purification was successfully established to obtain [68Ga]Ga-DOTA-AeK with a radiochemical purity of ≥95%. [68Ga]Ga-DOTA-AeK showed good stability over time with less protein binding under physiological conditions. The bacterial incorporation of [68Ga]Ga-DOTA-AeK and its fluorescent Aek-NBD analog were investigated in live and heat-killed Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Unfortunately, no conclusive in vitro intracellular uptake of [68Ga]Ga-DOTA-AeK was observed for E. coli or S. aureus live and heat-killed bacterial strains (p > 0.05). In contrast, AeK-NBD showed significantly higher intracellular incorporation in live bacteria compared to the heat-killed control (p < 0.05). Preliminary biodistribution studies of [68Ga]Ga-DOTA-AeK in a dual-model of chronic infection and inflammation revealed limited localization at the infection site with non-specific accumulation in response to inflammatory markers. Finally, our study demonstrates proof that the intracellular incorporation of AeK is necessary for successful bacteria-specific imaging using PET/CT. Therefore, Ga-68 was not a suitable radioisotope for tracing the bacterial uptake of AeK tripeptide, as it required chelation with a bulky metal chelator such as DOTA, which may have limited its active membrane transportation. An alternative for optimization is to explore diverse chemical structures of AeK that would allow for radiolabeling with 18F or 11C.
Collapse
Affiliation(s)
- Palesa C. Koatale
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mick M. Welling
- Department of Radiology, Interventional Molecular Imaging Laboratory, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Amanda Mdlophane
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - John Takyi-Williams
- Therapeutics Systems Research Laboratories (TSRL), Inc., Ann Arbor, MI 48109, USA;
| | - Chrisna Durandt
- Department of Medical Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria 0001, South Africa;
- South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria 0001, South Africa
| | - Iman van den Bout
- Department of Physiology, University of Pretoria, Pretoria 0001, South Africa;
| | - Frederik Cleeren
- Department of Pharmacy and Pharmacological Sciences, Radiopharmaceutical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (P.C.K.); (S.M.); (A.M.); (M.M.S.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
4
|
Betts HM, Luckett JC, Hill PJ. Pilot Evaluation of S-(3-[ 18F]Fluoropropyl)-D-Homocysteine and O-(2-[ 18F]Fluoroethyl)-D-Tyrosine as Bacteria-Specific Radiotracers for PET Imaging of Infection. Mol Imaging Biol 2024; 26:704-713. [PMID: 38942967 PMCID: PMC11282134 DOI: 10.1007/s11307-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE There is currently no ideal radiotracer for imaging bacterial infections. Radiolabelled D-amino acids are promising candidates because they are actively incorporated into the peptidoglycan of the bacterial cell wall, a structural feature which is absent in human cells. This work describes fluorine-18 labelled analogues of D-tyrosine and D-methionine, O-(2-[18F]fluoroethyl)-D-tyrosine (D-[18F]FET) and S-(3-[18F]fluoropropyl)-D-homocysteine (D-[18F]FPHCys), and their pilot evaluation studies as potential radiotracers for imaging bacterial infection. PROCEDURES D-[18F]FET and D-[18F]FPHCys were prepared in classical fluorination-deprotection reactions, and their uptake in Staphylococcus aureus and Pseudomonas aeruginosa was evaluated over 2 h. Heat killed bacteria were used as controls. A clinically-relevant foreign body model of S. aureus infection was established in Balb/c mice, as well as a sterile foreign body to mimic inflammation. The ex vivo biodistribution of D-[18F]FPHCys in the infected and inflamed mice was evaluated after 1 h, by dissection and gamma counting. The uptake was compared to that of [18F]FDG. RESULTS In vitro uptake of both D-[18F]FET and D-[18F]FPHCys was specific to live bacteria. Uptake was higher in S. aureus than in P. aeruginosa for both radiotracers, and of the two, higher for D-[18F]FPHCys than D-[18F]FET. Blocking experiments with non-radioactive D-[19F]FPHCys confirmed specificity of uptake. In vivo, D-[18F]FPHCys had greater accumulation in S. aureus infection compared with sterile inflammation, which was statistically significant. As anticipated, [18F]FDG showed no significant difference in uptake between infection and inflammation. CONCLUSIONS D-[18F]FPHCys uptake was higher in infected tissues than inflammation, and represents a fluorine-18 labelled D-AA with potential to detect a S. aureus reference strain (Xen29) in vivo. Additional studies are needed to evaluate uptake of this radiotracer in clinical isolates.
Collapse
Affiliation(s)
- Helen M Betts
- Department of Nuclear Medicine, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
- School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Jeni C Luckett
- School of Life Sciences, University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD, UK
| | - Philip J Hill
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE17 5RD, UK
| |
Collapse
|
5
|
Pandey A, Chopra S, Cleary SJ, López-Álvarez M, Quimby FM, Alanizi AAA, Sakhamuri S, Zhang N, Looney MR, Craik CS, Wilson DM, Evans MJ. Imaging the Granzyme Mediated Host Immune Response to Viral and Bacterial Pathogens In Vivo Using Positron Emission Tomography. ACS Infect Dis 2024; 10:2108-2117. [PMID: 38819300 DOI: 10.1021/acsinfecdis.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Simon J Cleary
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Fiona M Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Aryn A A Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Sasank Sakhamuri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ningjing Zhang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Mark R Looney
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
7
|
Alanizi AA, Sorlin AM, Parker MFL, López-Álvarez M, Qin H, Lee SH, Blecha J, Rosenberg OS, Engel J, Ohliger MA, Flavell RR, Wilson DM. Bioorthogonal Radiolabeling of Azide-Modified Bacteria Using [ 18F]FB-sulfo-DBCO. Bioconjug Chem 2024; 35:517-527. [PMID: 38482815 PMCID: PMC11036355 DOI: 10.1021/acs.bioconjchem.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Purpose: This study was motivated by the need for better positron emission tomography (PET)-compatible tools to image bacterial infection. Our previous efforts have targeted bacteria-specific metabolism via assimilation of carbon-11 labeled d-amino acids into the bacterial cell wall. Since the chemical determinants of this incorporation are not fully understood, we sought a high-throughput method to label d-amino acid derived structures with fluorine-18. Our strategy employed a chemical biology approach, whereby an azide (-N3) bearing d-amino acid is incorporated into peptidoglycan muropeptides, with subsequent "click" cycloaddition with an 18F-labeled strained cyclooctyne partner. Procedures: A water-soluble, 18F-labeled and dibenzocyclooctyne (DBCO)-derived radiotracer ([18F]FB-sulfo-DBCO) was synthesized. This tracer was incubated with pathogenic bacteria treated with azide-bearing d-amino acids, and incorporated 18F was determined via gamma counting. In vitro uptake in bacteria previously treated with azide-modified d-amino acids was compared to that in cultures treated with amino acid controls. The biodistribution of [18F]FB-sulfo-DBCO was studied in a cohort of healthy mice with implications for future in vivo imaging. Results: The new strain-promoted azide-alkyne cycloaddition (SPAAC) radiotracer [18F]FB-sulfo-DBCO was synthesized with high radiochemical yield and purity via N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB). Accumulation of [18F]FB-sulfo-DBCO was significantly higher in several bacteria treated with azide-modified d-amino acids than in controls; for example, we observed 7 times greater [18F]FB-sulfo-DBCO ligation in Staphylococcus aureus cultures incubated with 3-azido-d-alanine versus those incubated with d-alanine. Conclusions: The SPAAC radiotracer [18F]FB-sulfo-DBCO was validated in vitro via metabolic labeling of azide-bearing peptidoglycan muropeptides. d-Amino acid-derived PET radiotracers may be more efficiently screened via [18F]FB-sulfo-DBCO modification.
Collapse
Affiliation(s)
- Aryn A. Alanizi
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Alexandre M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Matthew F. L. Parker
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony
Brook, New York 11794, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Hecong Qin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
8
|
Sorlin A, López-Álvarez M, Biboy J, Gray J, Rabbitt SJ, Rahim JU, Lee SH, Bobba KN, Blecha J, Parker MF, Flavell RR, Engel J, Ohliger M, Vollmer W, Wilson DM. Peptidoglycan-Targeted [ 18F]3,3,3-Trifluoro-d-alanine Tracer for Imaging Bacterial Infection. JACS AU 2024; 4:1039-1047. [PMID: 38559735 PMCID: PMC10976610 DOI: 10.1021/jacsau.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Jacob Biboy
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Joe Gray
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
| | - Sarah J. Rabbitt
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Junaid Ur Rahim
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sang Hee Lee
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| | - Mathew F.L. Parker
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Psychiatry, Renaissance School of Medicine
at Stony Brook University, Stony Brook, New York 11794, United States
| | - Robert R. Flavell
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael Ohliger
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - Waldemar Vollmer
- The
Centre for Bacterial Cell Biology, Newcastle
University Newcastle, Newcastle
upon Tyne NE2 4AX, United Kingdom
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane 4072, Australia
| | - David M. Wilson
- Department
of Radiology, Biomedical Imaging University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Valero-Martínez C, Castillo-Morales V, Gómez-León N, Hernández-Pérez I, Vicente-Rabaneda EF, Uriarte M, Castañeda S. Application of Nuclear Medicine Techniques in Musculoskeletal Infection: Current Trends and Future Prospects. J Clin Med 2024; 13:1058. [PMID: 38398371 PMCID: PMC10889833 DOI: 10.3390/jcm13041058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Nuclear medicine has become an indispensable discipline in the diagnosis and management of musculoskeletal infections. Radionuclide tests serve as a valuable diagnostic tool for patients suspected of having osteomyelitis, spondylodiscitis, or prosthetic joint infections. The choice of the most suitable imaging modality depends on various factors, including the affected area, potential extra osseous involvement, or the impact of previous bone/joint conditions. This review provides an update on the use of conventional radionuclide imaging tests and recent advancements in fusion imaging scans for the differential diagnosis of musculoskeletal infections. Furthermore, it examines the role of radionuclide scans in monitoring treatment responses and explores current trends in their application. We anticipate that this update will be of significant interest to internists, rheumatologists, radiologists, orthopedic surgeons, rehabilitation physicians, and other specialists involved in musculoskeletal pathology.
Collapse
Affiliation(s)
- Cristina Valero-Martínez
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Valentina Castillo-Morales
- Nuclear Medicine Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (V.C.-M.); (I.H.-P.)
| | - Nieves Gómez-León
- Radiology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain;
| | - Isabel Hernández-Pérez
- Nuclear Medicine Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (V.C.-M.); (I.H.-P.)
| | - Esther F. Vicente-Rabaneda
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Miren Uriarte
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
| | - Santos Castañeda
- Rheumatology Service, Hospital Universitario de La Princesa, IIS-Princesa, 28006 Madrid, Spain; (C.V.-M.); (E.F.V.-R.); (M.U.)
- Cathedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| |
Collapse
|
10
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
11
|
Lee SH, Kim JM, López-Álvarez M, Wang C, Sorlin AM, Bobba KN, Pichardo-González PA, Blecha J, Seo Y, Flavell RR, Engel J, Ohliger MA, Wilson DM. Imaging the Bacterial Cell Wall Using N-Acetyl Muramic Acid-Derived Positron Emission Tomography Radiotracers. ACS Sens 2023; 8:4554-4565. [PMID: 37992233 PMCID: PMC10749472 DOI: 10.1021/acssensors.3c01477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Imaging infections in patients is challenging using conventional methods, motivating the development of positron emission tomography (PET) radiotracers targeting bacteria-specific metabolic pathways. Numerous techniques have focused on the bacterial cell wall, although peptidoglycan-targeted PET tracers have been generally limited to the short-lived carbon-11 radioisotope (t1/2 = 20.4 min). In this article, we developed and tested new tools for infection imaging using an amino sugar component of peptidoglycan, namely, derivatives of N-acetyl muramic acid (NAM) labeled with the longer-lived fluorine-18 (t1/2 = 109.6 min) radioisotope. Muramic acid was reacted directly with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP) to afford the enantiomeric NAM derivatives (S)-[18F]FMA and (R)-[18F]FMA. Both diastereomers were easily isolated and showed robust accumulation by human pathogens in vitro and in vivo, including Staphylococcus aureus. These results form the basis for future clinical studies using fluorine-18-labeled NAM-derived PET radiotracers.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Jung Min Kim
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Chao Wang
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Alexandre M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Priamo A. Pichardo-González
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
- UCSF
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department
of Pharmaceutical Chemistry, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Joanne Engel
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University
of California, San Francisco, San
Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San
Francisco, California 94158, United States
| |
Collapse
|
12
|
Alberto S, Ordonez AA, Arjun C, Aulakh GK, Beziere N, Dadachova E, Ebenhan T, Granados U, Korde A, Jalilian A, Lestari W, Mukherjee A, Petrik M, Sakr T, Cuevas CLS, Welling MM, Zeevaart JR, Jain SK, Wilson DM. The Development and Validation of Radiopharmaceuticals Targeting Bacterial Infection. J Nucl Med 2023; 64:1676-1682. [PMID: 37770110 PMCID: PMC10626374 DOI: 10.2967/jnumed.123.265906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.
Collapse
Affiliation(s)
- Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome "Sapienza," Rome, Italy
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chanda Arjun
- Radiopharmaceutical Program, Board of Radiation and Isotope Technology, Mumbai, India
| | - Gurpreet Kaur Aulakh
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Ulises Granados
- Department of Nuclear Medicine, Hospital Internacional de Colombia-Fundación Cardiovascular de Colombia, Piedecuesta, Colombia
| | - Aruna Korde
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Amirreza Jalilian
- Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Wening Lestari
- National Nuclear Energy Agency, South Tangerang, Indonesia
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Milos Petrik
- Institute of Molecular and Translational Medicine and Czech Advanced Technology and Research Institute, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tamer Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Jan Rijn Zeevaart
- Nuclear Medicine, University of Pretoria, and Radiochemistry, Applied Radiation, South African Nuclear Energy Corporation, Pelindaba, South Africa
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
13
|
Parker MFL, López-Álvarez M, Alanizi AA, Luu JM, Polvoy I, Sorlin AM, Qin H, Lee S, Rabbitt SJ, Pichardo-González PA, Ordonez AA, Blecha J, Rosenberg OS, Flavell RR, Engel J, Jain SK, Ohliger MA, Wilson DM. Evaluating the Performance of Pathogen-Targeted Positron Emission Tomography Radiotracers in a Rat Model of Vertebral Discitis-Osteomyelitis. J Infect Dis 2023; 228:S281-S290. [PMID: 37788505 PMCID: PMC11009497 DOI: 10.1093/infdis/jiad159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Vertebral discitis-osteomyelitis (VDO) is a devastating infection of the spine that is challenging to distinguish from noninfectious mimics using computed tomography and magnetic resonance imaging. We and others have developed novel metabolism-targeted positron emission tomography (PET) radiotracers for detecting living Staphylococcus aureus and other bacteria in vivo, but their head-to-head performance in a well-validated VDO animal model has not been reported. METHODS We compared the performance of several PET radiotracers in a rat model of VDO. [11C]PABA and [18F]FDS were assessed for their ability to distinguish S aureus, the most common non-tuberculous pathogen VDO, from Escherichia coli. RESULTS In the rat S aureus VDO model, [11C]PABA could detect as few as 103 bacteria and exhibited the highest signal-to-background ratio, with a 20-fold increased signal in VDO compared to uninfected tissues. In a proof-of-concept experiment, detection of bacterial infection and discrimination between S aureus and E coli was possible using a combination of [11C]PABA and [18F]FDS. CONCLUSIONS Our work reveals that several bacteria-targeted PET radiotracers had sufficient signal to background in a rat model of S aureus VDO to be potentially clinically useful. [11C]PABA was the most promising tracer investigated and warrants further investigation in human VDO.
Collapse
Affiliation(s)
- Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, New York
| | - Marina López-Álvarez
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Aryn A Alanizi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Justin M Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Alexandre M Sorlin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Sanghee Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Sarah J Rabbitt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco
- UCSF Department of Microbiology and Immunology, San Francisco, California
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
14
|
Gennari F, Pagano M, Toncelli A, Lisanti MT, Paoletti R, Roversi PF, Tredicucci A, Giaccone M. Terahertz imaging for non-invasive classification of healthy and cimiciato-infected hazelnuts. Heliyon 2023; 9:e19891. [PMID: 37809509 PMCID: PMC10559270 DOI: 10.1016/j.heliyon.2023.e19891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The development of new non-invasive approaches able to recognize defective food is currently a lively field of research. In particular, a simple and non-destructive method able to recognize defective hazelnuts, such as cimiciato-infected ones, in real-time is still missing. This study has been designed to detect the presence of such damaged hazelnuts. To this aim, a measurement setup based on terahertz (THz) radiation has been developed. Images of a sample of 150 hazelnuts have been acquired in the low THz range by a compact and portable active imaging system equipped with a 0.14 THz source and identified as Healthy Hazelnuts (HH) or Cimiciato Hazelnut (CH) after visual inspection. All images have been analyzed to find the average transmission of the THz radiation within the sample area. The differences in the distribution of the two populations have been used to set up a classification scheme aimed at the discrimination between healthy and injured samples. The performance of the classification scheme has been assessed through the use of the confusion matrix on 50 samples. The False Positive Rate (FPR) and True Negative Rate (TNR) are 0% and 100%, respectively. On the other hand, the True Positive Rate (TPR) and False Negative Rate (FNR) are 75% and 25%, respectively. These results are relevant from the perspective of the development of a simple, automatic, real-time method for the discrimination of cimiciato-infected hazelnuts in the processing industry.
Collapse
Affiliation(s)
- Fulvia Gennari
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
| | - Mario Pagano
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Alessandra Toncelli
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43/44, 56126, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
- Istituto Nanoscienze – CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Maria Tiziana Lisanti
- Università degli Studi di Napoli Federico II, Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, viale Italia 60, 83100, Avellino, Italy
| | - Riccardo Paoletti
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
- Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Sezione di Fisica, Università di Siena, via Roma 56, 53100, Siena, Italy
| | - Pio Federico Roversi
- CREA, Research Centre for Plant Protection and Certification, 50125, Firenze, Italy
| | - Alessandro Tredicucci
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), Lungarno Pacinotti 43/44, 56126, Pisa, Italy
- Istituto Nanoscienze – CNR, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Matteo Giaccone
- Institute for Mediterranean Agricultural and Forestry Systems, National Research Council, 80055 P.le Enrico, Fermi 1 - Loc. Porto del Granatello, 80055, Portici, Naples, Italy
| |
Collapse
|
15
|
Sorlin A, López-Álvarez M, Rabbitt SJ, Alanizi AA, Shuere R, Bobba KN, Blecha J, Sakhamuri S, Evans MJ, Bayles KW, Flavell RR, Rosenberg OS, Sriram R, Desmet T, Nidetzky B, Engel J, Ohliger MA, Fraser JS, Wilson DM. Chemoenzymatic Syntheses of Fluorine-18-Labeled Disaccharides from [ 18F] FDG Yield Potent Sensors of Living Bacteria In Vivo. J Am Chem Soc 2023; 145:17632-17642. [PMID: 37535945 PMCID: PMC10436271 DOI: 10.1021/jacs.3c03338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/05/2023]
Abstract
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with β-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (β-1,3), and cellobiose (β-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sarah J. Rabbitt
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Aryn A. Alanizi
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Rebecca Shuere
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sasank Sakhamuri
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kenneth W. Bayles
- Department
of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department
of Medicine University of California, San
Francisco, San Francisco, California 94158, United States
| | - Renuka Sriram
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Tom Desmet
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz 8010, Austria
| | - Joanne Engel
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - James S. Fraser
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
16
|
Sorlin AM, López-Álvarez M, Rabbitt SJ, Alanizi AA, Shuere R, Bobba KN, Blecha J, Sakhamuri S, Evans MJ, Bayles KW, Flavell RR, Rosenberg OS, Sriram R, Desmet T, Nidetzky B, Engel J, Ohliger MA, Fraser JS, Wilson DM. Chemoenzymatic syntheses of fluorine-18-labeled disaccharides from [ 18 F]FDG yield potent sensors of living bacteria in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541529. [PMID: 37293043 PMCID: PMC10245702 DOI: 10.1101/2023.05.20.541529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ 18 F]-fluoro-D-glucose ([ 18 F]FDG), the most common tracer used in clinical imaging, to form [ 18 F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [ 18 F]FDG was reacted with β-D-glucose-1-phosphate in the presence of maltose phosphorylase, both the α-1,4 and α-1,3-linked products 2-deoxy-[ 18 F]-fluoro-maltose ([ 18 F]FDM) and 2-deoxy-2-[ 18 F]-fluoro-sakebiose ([ 18 F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (β-1,3), and cellobiose (β-1,4) phosphorylases to synthesize 2-deoxy-2-[ 18 F]fluoro-trehalose ([ 18 F]FDT), 2-deoxy-2-[ 18 F]fluoro-laminaribiose ([ 18 F]FDL), and 2-deoxy-2-[ 18 F]fluoro-cellobiose ([ 18 F]FDC). We subsequently tested [ 18 F]FDM and [ 18 F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. The lead sakebiose-derived tracer [ 18 F]FSK was stable in human serum and showed high uptake in preclinical models of myositis and vertebral discitis-osteomyelitis. Both the synthetic ease, and high sensitivity of [ 18 F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of this tracer to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [ 18 F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
Collapse
|
17
|
Zhang Y, Hao M, Li L, Luo Q, Deng S, Yang Y, Liu Y, Fang W, Song E. Research progress of contrast agents for bacterial infection imaging in vivo. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Polvoy I, Seo Y, Parker M, Stewart M, Siddiqua K, Manacsa HS, Ravanfar V, Blecha J, Hope TA, Vanbrocklin H, Flavell RR, Barry J, Hansen E, Villanueva-Meyer JE, Engel J, Rosenberg OS, Wilson DM, Ohliger MA. Imaging joint infections using D-methyl- 11C-methionine PET/MRI: initial experience in humans. Eur J Nucl Med Mol Imaging 2022; 49:3761-3771. [PMID: 35732972 PMCID: PMC9399217 DOI: 10.1007/s00259-022-05858-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Non-invasive imaging is a key clinical tool for detection and treatment monitoring of infections. Existing clinical imaging techniques are frequently unable to distinguish infection from tumors or sterile inflammation. This challenge is well-illustrated by prosthetic joint infections that often complicate joint replacements. D-methyl-11C-methionine (D-11C-Met) is a new bacteria-specific PET radiotracer, based on an amino acid D-enantiomer, that is rapidly incorporated into the bacterial cell wall. In this manuscript, we describe the biodistribution, radiation dosimetry, and initial human experience using D-11C-Met in patients with suspected prosthetic joint infections. METHODS 614.5 ± 100.2 MBq of D-11C-Met was synthesized using an automated in-loop radiosynthesis method and administered to six healthy volunteers and five patients with suspected prosthetic joint infection, who were studied by PET/MRI. Time-activity curves were used to calculate residence times for each source organ. Absorbed doses to each organ and body effective doses were calculated using OLINDA/EXM 1.1 with both ICRP 60 and ICRP 103 tissue weighting factors. SUVmax and SUVpeak were calculated for volumes of interest (VOIs) in joints with suspected infection, the unaffected contralateral joint, blood pool, and soft tissue background. A two-tissue compartment model was used for kinetic modeling. RESULTS D-11C-Met was well tolerated in all subjects. The tracer showed clearance from both urinary (rapid) and hepatobiliary (slow) pathways as well as low effective doses. Moreover, minimal background was observed in both organs with resident micro-flora and target organs, such as the spine and musculoskeletal system. Additionally, D-11C-Met showed increased focal uptake in areas of suspected infection, demonstrated by a significantly higher SUVmax and SUVpeak calculated from VOIs of joints with suspected infections compared to the contralateral joints, blood pool, and background (P < 0.01). Furthermore, higher distribution volume and binding potential were observed in suspected infections compared to the unaffected joints. CONCLUSION D-11C-Met has a favorable radiation profile, minimal background uptake, and fast urinary extraction. Furthermore, D-11C-Met showed increased uptake in areas of suspected infection, making this a promising approach. Validation in larger clinical trials with a rigorous gold standard is still required.
Collapse
Affiliation(s)
- Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
- Department of Nuclear Engineering, University of California, Berkeley, CA USA
| | - Matthew Parker
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Megan Stewart
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Khadija Siddiqua
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Harrison S. Manacsa
- Department of Orthopedic Surgery, University of California, San Francisco, CA USA
| | - Vahid Ravanfar
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Henry Vanbrocklin
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Jeffrey Barry
- Department of Orthopedic Surgery, University of California, San Francisco, CA USA
| | - Erik Hansen
- Department of Orthopedic Surgery, University of California, San Francisco, CA USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, CA USA
- Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, CA USA
| | - Oren S. Rosenberg
- Department of Medicine, University of California, San Francisco, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA USA
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Ave., San Francisco, CA 94143 USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA 94107 USA
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, CA USA
- Department of Radiology and Biomedical Imaging, University of California, 1001 Potrero Ave. 1x55D, San Francisco, CA 94110 USA
| |
Collapse
|
19
|
Co CM, Mulgaonkar A, Zhou N, Harris S, Öz OK, Tang L, Sun X. PET Imaging of Active Invasive Fungal Infections with d-[5- 11C]-Glutamine. ACS Infect Dis 2022; 8:1663-1673. [PMID: 35869564 DOI: 10.1021/acsinfecdis.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.
Collapse
Affiliation(s)
- Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ning Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
20
|
Scott PJH. Unnatural amino acids offer new hope for accurate bacterial infection PET imaging in prosthetic joint infection. Eur J Nucl Med Mol Imaging 2022; 49:3610-3612. [PMID: 35652961 DOI: 10.1007/s00259-022-05857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Sugo Y, Ohira SI, Manabe H, Maruyama YH, Yamazaki N, Miyachi R, Toda K, Ishioka NS, Mori M. Highly Efficient Separation of Ultratrace Radioactive Copper Using a Flow Electrolysis Cell. ACS OMEGA 2022; 7:15779-15785. [PMID: 35571765 PMCID: PMC9096931 DOI: 10.1021/acsomega.2c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.
Collapse
Affiliation(s)
- Yumi Sugo
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Yo-hei Maruyama
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Naoaki Yamazaki
- Graduate
School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryoma Miyachi
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S. Ishioka
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Masanobu Mori
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
22
|
Afzelius P, Morsing MK, Nielsen OL, Alstrup AKO, Jensen SB, Jødal L. Lymph Nodes Draining Infections Investigated by PET and Immunohistochemistry in a Juvenile Porcine Model. Molecules 2022; 27:molecules27092792. [PMID: 35566137 PMCID: PMC9104488 DOI: 10.3390/molecules27092792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND [18F]FDG and [11C]methionine accumulate in lymph nodes draining S. aureus -infected foci. The lymph nodes were characterized by weight, [11C]methionine- and [18F]FDG-positron emissions tomography (PET)/computed tomography (CT), and immunohistochemical (IHC)-staining. METHODS 20 pigs inoculated with S. aureus into the right femoral artery were PET/CT-scanned with [18F]FDG, and nine of the pigs were additionally scanned with [11C]methionine. Mammary, medial iliac, and popliteal lymph nodes from the left and right hind limbs were weighed. IHC-staining for calculations of area fractions of Ki-67, L1, and IL-8 positive cells was done in mammary and popliteal lymph nodes from the nine pigs. RESULTS The pigs developed one to six osteomyelitis foci. Some pigs developed contiguous infections of peri-osseous tissue and inoculation-site abscesses. Weights of mammary and medial iliac lymph nodes and their [18F]FDG maximum Standardized Uptake Values (SUVFDGmax) showed a significant increase in the inoculated limb compared to the left limb. Popliteal lymph node weight and their FDG uptake did not differ significantly between hind limbs. Area fractions of Ki-67 and IL-8 in the right mammary lymph nodes and SUVMetmax in the right popliteal lymph nodes were significantly increased compared with the left side. CONCLUSION The PET-tracers [18F]FDG and [11C]methionine, and the IHC- markers Ki-67 and IL-8, but not L1, showed increased values in lymph nodes draining soft tissues infected with S. aureus. The increase in [11C]methionine may indicate a more acute lymph node response, whereas an increase in [18F]FDG may indicate a more chronic response.
Collapse
Affiliation(s)
- Pia Afzelius
- Department of Clinical Physiology and Nuclear Medicine Zealand Koege, University Hospital of Copenhagen, 4600 Copenhagen, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark; (S.B.J.); (L.J.)
- Correspondence:
| | - Malene Kjelin Morsing
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.K.M.); (O.L.N.)
| | - Ole Lerberg Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.K.M.); (O.L.N.)
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, Skejby, 8200 Aarhus, Denmark
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark; (S.B.J.); (L.J.)
- Department of Chemistry and Biosciences, Aalborg University, 9220 Aalborg, Denmark
| | - Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark; (S.B.J.); (L.J.)
| |
Collapse
|
23
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:11552. [PMID: 34768982 PMCID: PMC8584017 DOI: 10.3390/ijms222111552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Andrew P. Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA;
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Robert W. Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Dane K. Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.B.); (L.C.)
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.L.F.); (L.L.)
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (K.R.); (A.S.); (A.C.)
| |
Collapse
|
25
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, Lavery L, Öz OK. Pathophysiology and Molecular Imaging of Diabetic Foot Infections. Int J Mol Sci 2021; 22:ijms222111552. [PMID: 34768982 DOI: 10.3390/ijms222111552.pmid:34768982;pmcid:pmc8584017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 05/27/2023] Open
Abstract
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host's immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Andrew P Crisologo
- Department of Plastic Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0558, USA
| | - Kavita Bhavan
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Robert W Haley
- Department of Internal Medicine, Epidemiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Dane K Wukich
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Laila Castellino
- Department of Internal Medicine, Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Helena Hwang
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Javier La Fontaine
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Lawrence Lavery
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| | - Orhan K Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA
| |
Collapse
|
26
|
Jødal L, Afzelius P, Alstrup AKO, Jensen SB. Radiotracers for Bone Marrow Infection Imaging. Molecules 2021; 26:3159. [PMID: 34070537 PMCID: PMC8198735 DOI: 10.3390/molecules26113159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Radiotracers are widely used in medical imaging, using techniques of gamma-camera imaging (scintigraphy and SPECT) or positron emission tomography (PET). In bone marrow infection, there is no single routine test available that can detect infection with sufficiently high diagnostic accuracy. Here, we review radiotracers used for imaging of bone marrow infection, also known as osteomyelitis, with a focus on why these molecules are relevant for the task, based on their physiological uptake mechanisms. The review comprises [67Ga]Ga-citrate, radiolabelled leukocytes, radiolabelled nanocolloids (bone marrow) and radiolabelled phosphonates (bone structure), and [18F]FDG as established radiotracers for bone marrow infection imaging. Tracers that are under development or testing for this purpose include [68Ga]Ga-citrate, [18F]FDG, [18F]FDS and other non-glucose sugar analogues, [15O]water, [11C]methionine, [11C]donepezil, [99mTc]Tc-IL-8, [68Ga]Ga-Siglec-9, phage-display selected peptides, and the antimicrobial peptide [99mTc]Tc-UBI29-41 or [68Ga]Ga-NOTA-UBI29-41. CONCLUSION Molecular radiotracers allow studies of physiological processes such as infection. None of the reviewed molecules are ideal for the imaging of infections, whether bone marrow or otherwise, but each can give information about a separate aspect such as physiology or biochemistry. Knowledge of uptake mechanisms, pitfalls, and challenges is useful in both the use and development of medically relevant radioactive tracers.
Collapse
Affiliation(s)
- Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
| | - Pia Afzelius
- Zealand Hospital, Køge, Copenhagen University Hospital, DK-4600 Køge, Denmark;
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine & PET, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, DK-9000 Aalborg, Denmark;
- Department of Chemistry and Biosciences, Aalborg University, DK-9220 Aalborg, Denmark
| |
Collapse
|
27
|
|
28
|
Du X, Wang W, Wu C, Jia B, Li W, Qiu L, Jiang P, Wang J, Li YQ. Enzyme-responsive turn-on nanoprobes for in situ fluorescence imaging and localized photothermal treatment of multidrug-resistant bacterial infections. J Mater Chem B 2021; 8:7403-7412. [PMID: 32658955 DOI: 10.1039/d0tb00750a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sensitive diagnosis and elimination of multidrug-resistant bacterial infections at an early stage remain paramount challenges. Herein, we present a gelatinase-responsive turn-on nanoprobe for in situ near-infrared (NIR) fluorescence imaging and localized photothermal treatment (PTT) of in vivo methicillin-resistant Staphylococcus aureus (MRSA) infections. The designed nanoprobe (named AuNS-Apt-Cy) is based on gold nanostars functionalized with MRSA-identifiable aptamer and gelatinase-responsive heptapeptide linker (CPLGVRG)-cypate complexes. The AuNS-Apt-Cy nanoprobe is non-fluorescent in aqueous environments due to the fluorescence resonance energy transfer between the gold nanostar core and cypate dye. We demonstrate that the AuNS-Apt-Cy nanoprobe can achieve MRSA targeting and accumulation as well as gelatinase (overexpressed in MRSA environments)-responsive turn-on NIR fluorescence due to the cleavage of the CPLGVRG linker and localized in vitro PTT via a mechanism involving bacterial cell wall and membrane disruption. In vivo experiments show that the AuNS-Apt-Cy nanoprobe can enable rapid (1 h post-administration) and in situ turn-on NIR fluorescence imaging with high sensitivity (105 colony-forming units) in diabetic wound and implanted bone plate mouse models. Remarkably, the AuNS-Apt-Cy nanoprobe can afford efficient localized PTT of diabetic wound and implanted bone plate-associated MRSA infections under the guidance of turn-on NIR fluorescence imaging, showing robust capability for early diagnosis and treatment of in vivo MRSA infections. In addition, the nanoprobe exhibits negligible damage to surrounding healthy tissues during PTT due to its targeted accumulation in the MRSA-infected site, guaranteeing its excellent in vivo biocompatibility and solving the main bottlenecks that hinder the clinical application of PTT-based antibacterial strategies.
Collapse
Affiliation(s)
- Xuancheng Du
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
30
|
Ordoñez AA, Jain SK. Imaging of Bacterial Infections. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL. Chemical Biology Tools for Examining the Bacterial Cell Wall. Cell Chem Biol 2020; 27:1052-1062. [PMID: 32822617 DOI: 10.1016/j.chembiol.2020.07.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
Bacteria surround themselves with cell walls to maintain cell rigidity and protect against environmental insults. Here we review chemical and biochemical techniques employed to study bacterial cell wall biogenesis. Recent advances including the ability to isolate critical intermediates, metabolic approaches for probe incorporation, and isotopic labeling techniques have provided critical insight into the biochemistry of cell walls. Fundamental manuscripts that have used these techniques to discover cell wall-interacting proteins, flippases, and cell wall stoichiometry are discussed in detail. The review highlights that these powerful methods and techniques have exciting potential to identify and characterize new targets for antibiotic development.
Collapse
Affiliation(s)
- Ashley R Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Rebecca A Gordon
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003-9298, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst 01003-9298, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
32
|
Parker MFL, Flavell RR, Luu JM, Rosenberg OS, Ohliger MA, Wilson DM. Small Molecule Sensors Targeting the Bacterial Cell Wall. ACS Infect Dis 2020; 6:1587-1598. [PMID: 32433879 DOI: 10.1021/acsinfecdis.9b00515] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review highlights recent efforts to detect bacteria using engineered small molecules that are processed and incorporated similarly to their natural counterparts. There are both scientific and clinical justifications for these endeavors. The use of detectable, cell-wall targeted chemical probes has elucidated microbial behavior, with several fluorescent labeling methods in widespread laboratory use. Furthermore, many existing efforts including ours, focus on developing new imaging tools to study infection in clinical practice. The bacterial cell wall, a remarkably rich and complex structure, is an outstanding target for bacteria-specific detection. Several cell wall components are found in bacteria but not mammals, especially peptidoglycan, lipopolysaccharide, and teichoic acids. As this review highlights, the development of laboratory tools for fluorescence microscopy has vastly outstripped related positron emission tomography (PET) or single photon emission computed tomography (SPECT) radiotracer development. However, there is great synergy between these chemical strategies, which both employ mimicry of endogenous substrates to incorporate detectable structures. As the field of bacteria-specific imaging grows, it will be important to understand the mechanisms involved in microbial incorporation of radionuclides. Additionally, we will highlight the clinical challenges motivating this imaging effort.
Collapse
Affiliation(s)
- Matthew F. L. Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Justin M. Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California 94110, United States
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
33
|
Kalita M, Parker MFL, Luu JM, Stewart MN, Blecha JE, VanBrocklin HF, Evans M, Flavell RR, Rosenberg OS, Ohliger MA, Wilson DM. Arabinofuranose-derived positron-emission tomography radiotracers for detection of pathogenic microorganisms. J Labelled Comp Radiopharm 2020; 63:231-239. [PMID: 32222086 PMCID: PMC7364301 DOI: 10.1002/jlcr.3835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Detection of bacteria-specific metabolism via positron emission tomography (PET) is an emerging strategy to image human pathogens, with dramatic implications for clinical practice. In silico and in vitro screening tools have recently been applied to this problem, with several monosaccharides including l-arabinose showing rapid accumulation in Escherichia coli and other organisms. Our goal for this study was to evaluate several synthetically viable arabinofuranose-derived 18 F analogs for their incorporation into pathogenic bacteria. PROCEDURES We synthesized four radiolabeled arabinofuranose-derived sugars: 2-deoxy-2-[18 F]fluoro-arabinofuranoses (d-2-18 F-AF and l-2-18 F-AF) and 5-deoxy-5-[18 F]fluoro-arabinofuranoses (d-5-18 F-AF and l-5-18 F-AF). The arabinofuranoses were synthesized from 18 F- via triflated, peracetylated precursors analogous to the most common radiosynthesis of 2-deoxy-2-[18 F]fluoro-d-glucose ([18 F]FDG). These radiotracers were screened for their uptake into E. coli and Staphylococcus aureus. Subsequently, the sensitivity of d-2-18 F-AF and l-2-18 F-AF to key human pathogens was investigated in vitro. RESULTS All 18 F radiotracer targets were synthesized in high radiochemical purity. In the screening study, d-2-18 F-AF and l-2-18 F-AF showed greater accumulation in E. coli than in S. aureus. When evaluated in a panel of pathologic microorganisms, both d-2-18 F-AF and l-2-18 F-AF demonstrated sensitivity to most gram-positive and gram-negative bacteria. CONCLUSIONS Arabinofuranose-derived 18 F PET radiotracers can be synthesized with high radiochemical purity. Our study showed absence of bacterial accumulation for 5-substitued analogs, a finding that may have mechanistic implications for related tracers. Both d-2-18 F-AF and l-2-18 F-AF showed sensitivity to most gram-negative and gram-positive organisms. Future in vivo studies will evaluate the diagnostic accuracy of these radiotracers in animal models of infection.
Collapse
Affiliation(s)
- Mausam Kalita
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew F. L. Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Justin M. Luu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Megan N. Stewart
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph E. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren S. Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
34
|
Parker ML, Luu JM, Schulte B, Huynh TL, Stewart MN, Sriram R, Yu MA, Jivan S, Turnbaugh PJ, Flavell RR, Rosenberg OS, Ohliger MA, Wilson DM. Sensing Living Bacteria in Vivo Using d-Alanine-Derived 11C Radiotracers. ACS CENTRAL SCIENCE 2020; 6:155-165. [PMID: 32123733 PMCID: PMC7047270 DOI: 10.1021/acscentsci.9b00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/05/2023]
Abstract
Incorporation of d-amino acids into peptidoglycan is a unique metabolic feature of bacteria. Since d-amino acids are not metabolic substrates in most mammalian tissues, this difference can be exploited to detect living bacteria in vivo. Given the prevalence of d-alanine in peptidoglycan muropeptides, as well as its role in several antibiotic mechanisms, we targeted this amino acid for positron emission tomography (PET) radiotracer development. d-[3-11C]Alanine and the dipeptide d-[3-11C]alanyl-d-alanine were synthesized via asymmetric alkylation of glycine-derived Schiff-base precursors with [11C]methyl iodide in the presence of a cinchonidinium phase-transfer catalyst. In cell experiments, both tracers showed accumulation by a wide variety of both Gram-positive and Gram-negative pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. In a mouse model of acute bacterial myositis, d-[3-11C]alanine was accumulated by living microorganisms but was not taken up in areas of sterile inflammation. When compared to existing clinical nuclear imaging tools, specifically 2-deoxy-2-[18F]fluoro-d-glucose and a gallium citrate radiotracer, d-alanine showed more bacteria-specific uptake. Decreased d-[3-11C]alanine uptake was also observed in antibiotic-sensitive microbes after antimicrobial therapy, when compared to that in resistant organisms. Finally, prominent uptake of d-[3-11C]alanine uptake was seen in rodent models of discitis-osteomyelitis and P. aeruginosa pneumonia. These data provide strong justification for clinical translation of d-[3-11C]alanine to address a number of important human infections.
Collapse
Affiliation(s)
- Matthew
F. L. Parker
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Justin M. Luu
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Brailee Schulte
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Tony L. Huynh
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Megan N. Stewart
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Renuka Sriram
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Michelle A. Yu
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Salma Jivan
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Peter J. Turnbaugh
- Department
of Microbiology and Immunology, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department
of Medicine, University of California, San
Francisco, San Francisco, California 94158, United States
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology, Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
35
|
Mota F, Ordonez AA, Firth G, Ruiz-Bedoya CA, Ma MT, Jain SK. Radiotracer Development for Bacterial Imaging. J Med Chem 2020; 63:1964-1977. [PMID: 32048838 DOI: 10.1021/acs.jmedchem.9b01623] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial infections remain a major threat to humanity and are a leading cause of death and disability. Antimicrobial resistance has been declared as one of the top ten threats to human health by the World Health Organization, and new technologies are urgently needed for the early diagnosis and monitoring of deep-seated and complicated infections in hospitalized patients. This review summarizes the radiotracers as applied to imaging of bacterial infections. We summarize the recent progress in the development of pathogen-specific imaging and the application of radiotracers in understanding drug pharmacokinetics as well as the local biology at the infection sites. We also highlight the opportunities for medicinal chemists in radiotracer development for bacterial infections, with an emphasis on target selection and radiosynthetic approaches. Imaging of infections is an emerging field. Beyond clinical applications, these technologies could provide unique insights into disease pathogenesis and expedite bench-to-bedside translation of new therapeutics.
Collapse
Affiliation(s)
- Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - George Firth
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|