1
|
Wan B, Liang L, Zhong K, Ma Y, Wang H, Wang Z, Sun S, Lu T, Chen Y, Zhu Y. Structure-Guided Optimization of 2-Aminoquinazoline Hematopoietic Progenitor Kinase 1 Inhibitors for Improved Oral Bioavailability and Synergistic Antitumor Immunity. J Med Chem 2025; 68:10439-10460. [PMID: 40325350 DOI: 10.1021/acs.jmedchem.5c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a pivotal T-cell immunity suppressor, offers transformative potential to overcome immune checkpoint resistance, yet existing inhibitors fail to balance potency, selectivity, and pharmacokinetics. We developed a spatially resolved strategy within a unified chemical framework of our 2-aminoquinazoline core, integrating (1) high-affinity engagement of the HPK1 hinge-region subpocket (Leu23/Phe93/Gly95) through bidentate hydrogen bonding and hydrophobic packing with (2) strategic occupation of a solvent-exposed allosteric site to sterically block CYP3A4/2C9/2D6-mediated oxidative metabolism. Optimized compound 39 demonstrated subnanomolar binding affinity (IC50 = 0.70 nM) with moderate selectivity, combined with high metabolic stability in human liver microsomes (CLint < 1 mL/min/kg) and favorable oral bioavailability (>100%) in mice. In CT26 models, compound 39 synergized with anti-PD-1 (60% tumor growth inhibition) by expanding IFN-γ+CD8+ tumor-infiltrating lymphocytes (7-fold) and enhancing splenic IFN-γ production (3-fold). This work validates 2-aminoquinazolines as a novel HPK1 chemotype addressing metabolic instability─a key hurdle in kinase drug discovery.
Collapse
Affiliation(s)
- Boheng Wan
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Li Liang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Kaihong Zhong
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yiran Ma
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Hui Wang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ziang Wang
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Shilong Sun
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Tao Lu
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
2
|
Isawi IH, Obeidat RM, Alnabulsi S, Al Zoubi R. Identification of Novel HPK1 Hit Inhibitors: From In Silico Design to In Vitro Validation. Int J Mol Sci 2025; 26:4366. [PMID: 40362603 PMCID: PMC12072202 DOI: 10.3390/ijms26094366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a negative regulator of T-cells, B-cells, and dendritic cells, has gained attention in antitumor immunotherapy research over the past decade. No HPK1 inhibitor has yet reached clinical approval, largely due to selectivity and drug-like limitations. Leveraging the available structural insights into HPK1, we conducted a rational hit identification using a structure-based virtual screening of over 600,000 drug-like molecules from ASINEX and OTAVA databases. A series of molecular docking studies, in vitro kinase assays, and molecular dynamics simulations were conducted to identify viable HPK1 inhibitor hits. This approach resulted in two promising novel hit scaffolds, 4H-Pyrido[1,2-a] thieno[2,3-d] pyrimidin-4-one (ISR-05) and quinolin-2(1H)-one (ISR-03), neither of which has previously been reported as an HPK1 inhibitor. ISR-05 and ISR-03 exhibited IC50 values of 24.2 ± 5.07 and 43.9 ± 0.134 µM, respectively, in kinase inhibition assays. These hits constitute tractable starting points for future hit-to-lead optimization aimed at developing more effective HPK1 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Israa H. Isawi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.M.O.); (S.A.); (R.A.Z.)
| | | | | | | |
Collapse
|
3
|
Varela MT, Dias GG, de Oliveira LFN, de Oliveira RG, Aguiar FD, Nogueira JP, Cruz LR, Dias LC. Spirocyclic compounds as innovative tools in drug discovery for medicinal chemists. Eur J Med Chem 2025; 287:117368. [PMID: 39952099 DOI: 10.1016/j.ejmech.2025.117368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
The occurrence of spirocyclic motifs in clinical candidates and approved drugs is on the rise. This is related to the improvement of drug-like properties that can be achieved by introducing this sp3-rich system into bioactive compounds. Given the increasing number of synthetic methodologies and building blocks available, spirocycles are becoming widely accessible to medicinal chemists. From restricting conformation to induce a better fit with the target, to modulation of physicochemical and pharmacokinetic properties, spirocycles are being used to address several challenges in drug discovery. This review covers general aspects of the chemistry of spirocycles, highlighting some key strategies for their preparation. As reported in publications over the past five years, we demonstrate that, beyond the exploration of structure-activity relationships (SAR) in medicinal chemistry, the use of spirocycles is an attractive approach for enhancing properties such as potency, selectivity, physicochemistry, and pharmacokinetics.
Collapse
Affiliation(s)
- Marina T Varela
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - Gleiston G Dias
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - Luiz Fernando N de Oliveira
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - Ramon G de Oliveira
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - Francielle D Aguiar
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - João Pedro Nogueira
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil
| | - Luiza R Cruz
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil; Drugs for Neglected Diseases Initiative, Rua São José, 70, 20010-020, Rio de Janeiro, Brazil.
| | - Luiz C Dias
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Rua Monteiro Lobato 270, 13083-862, Campinas, Brazil.
| |
Collapse
|
4
|
Mao J, Zhou L, Wu Y, Wang K, Ye X, Wang T, Yang J, Tong J, Miao Q, Jiang S, Xiao Y, Zhang K. Discovery of 1,2,4-benzotriazine derivatives as new hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem 2025; 156:108158. [PMID: 39826501 DOI: 10.1016/j.bioorg.2025.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), which negatively regulates immune signaling, has emerged as an attractive small-molecule drug target for tumor immunotherapy. Herein, we report the discovery of the 1,2,4-benzotriazine derivatives as new potent HPK1 inhibitors. Notably, compound A29 exhibited improved HPK1 inhibitory activity relative to compound 1 in the ADP-Glo kinase assay (IC50 = 2.70 and 13.6 nM, respectively). The pronounced inhibitory activity of A29 against downstream p-SLP76 in Jurkat T cells (IC50 = 8.1 nM) as well as the ability to induce the production of interleukin 2 (IL-2) in human peripheral blood mononuclear cells (PBMCs) confirmed its cellular target engagement and immune stimulatory effect. Consistently, this lead compound significantly enhanced T-cell killing ability against murine colon cancer cells CT26 or MC38 in a co-culture system. Furthermore, A29 was efficacious in a CT26 xenograft mouse model alone, and significantly enhanced the antitumor efficacy of an anti-PD-1 antibody. This work provides a promising lead for the development of effective HPK1 inhibitors for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Mao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuxing Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Tong
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Miao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Wu F, Li H, Li W, Zhang L, An Q, Sun J, Zhang Q, Sun Y, Xu L, Yu J, Diao X, Li J, Meng L, Xu S. Design, Synthesis, and biological evaluation of 7H-Pyrrolo[2,3-d]pyrimidines as potent HPK1 kinase inhibitors. Bioorg Med Chem 2025; 119:118079. [PMID: 39874881 DOI: 10.1016/j.bmc.2025.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) has emerged as a promising target for cancer immunotherapy due to its critical role as a negative regulator of T cell receptor (TCR) signaling. Despite this potential, no HPK1 inhibitors have been approved for cancer treatment, underscoring the need for structurally novel inhibitors. Herein, we describe the design, synthesis and biological evaluation of a series of potent HPK1 inhibitors based on our previously identified hit 9. Among them, compound 24 demonstrated strong HPK1 inhibition (IC50 of 10.1 nM) and effectively suppressed phosphorylation of the downstream protein SLP76. Notably, compound 24 exhibited enhanced potency in promoting IL-2 secretion in Jurkat T cells, reduced cellular toxicity, and improved liver microsomal stability compared to hit 9. Overall, this study provides a promising lead compound for further optimization as a candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Li
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laishun Zhang
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Jiaqi Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Li
- Zunyi Medical University-Zhuhai Campus, Zhuhai, China; Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, CAS, Zhongshan 528400 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai 201203 China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Qixia District, Nanjing 210023 China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024 China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Gallego RA, Cho-Schultz S, Del Bel M, Dechert-Schmitt AM, Donaldson JS, He M, Jalaie M, Kania R, Matthews J, McTigue M, Tuttle JB, Risley H, Zhou D, Zhou R, Ahmad OK, Bernier L, Berritt S, Braganza J, Chen Z, Cianfrogna JA, Collins M, Costa Jones C, Cronin CN, Davis C, Dress K, Edwards M, Farrell W, France SP, Grable N, Johnson E, Johnson TW, Jones R, Knauber T, Lafontaine J, Loach RP, Maestre M, Miller N, Moen M, Monfette S, Morse P, Nager AR, Niosi M, Richardson P, Rohner AK, Sach NW, Timofeevski S, Tucker JW, Vetelino B, Zhang L, Nair SK. Discovery of PF-07265028, A Selective Small Molecule Inhibitor of Hematopoietic Progenitor Kinase 1 (HPK1) for the Treatment of Cancer. J Med Chem 2024; 67:22002-22038. [PMID: 39651809 DOI: 10.1021/acs.jmedchem.4c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hematopoietic progenitor kinase 1 (HPK1/MAP4K1) represents a high interest target for the treatment of cancer through an immune-mediated mechanism. Herein we present highlights of the drug discovery campaign within the lactam/azalactam series of inhibitors that yielded a small molecule (21, PF-07265028), which was advanced to a phase 1 clinical trial (NCT05233436). Key components of the discovery effort included optimization of potency through mitigation of ligand strain as guided by the use of cocrystal structures, mitigation of ADME liabilities (plasma instability and fraction metabolism by CYP2D6), and optimization of kinase selectivity, particularly over immune-modulating kinases with high homology to HPK1. Structure-based drug design via leveraging cocrystal structures and lipophilic efficiency analysis proved to be valuable tools that ultimately enabled the delivery of a clinical-quality small molecule inhibitor of HPK1.
Collapse
Affiliation(s)
- Rebecca A Gallego
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sujin Cho-Schultz
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Matthew Del Bel
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | | | - Joyann S Donaldson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mingying He
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mehran Jalaie
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rob Kania
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jean Matthews
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michele McTigue
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Jamison B Tuttle
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Hud Risley
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Dahui Zhou
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ru Zhou
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Omar K Ahmad
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Louise Bernier
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Simon Berritt
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John Braganza
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Zecheng Chen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Julie A Cianfrogna
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Michael Collins
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Cinthia Costa Jones
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ciaran N Cronin
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Carl Davis
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Klaus Dress
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Martin Edwards
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - William Farrell
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Scott P France
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Nicole Grable
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Eric Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Ted W Johnson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jennifer Lafontaine
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Richard P Loach
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael Maestre
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Nichol Miller
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Moen
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Peter Morse
- Pharmacokinetics, Dynamics and Metabolism Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Andrew Ross Nager
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Mark Niosi
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Paul Richardson
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Allison K Rohner
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Neal W Sach
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Sergei Timofeevski
- Oncology Research Unit Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| | - Joseph W Tucker
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Beth Vetelino
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lei Zhang
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - Sajiv K Nair
- Oncology Medicinal Chemistry Worldwide Research and Development, Pfizer, Inc., 10770 Science Center Drive, La Jolla, California 92121, United States
| |
Collapse
|
7
|
Peng J, Ding X, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of 1(2H)-phthalazinone and 1(2H)-isoquinolinone derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2024; 279:116877. [PMID: 39303515 DOI: 10.1016/j.ejmech.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have been a revelation for treating several cancers, an unmet need remains to broaden ICI therapeutic scope and increase their response rates in clinical trials. Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T cell activation and has previously been identified as a promising target for immunotherapy. Herein, we report the discovery of a series of HPK1 inhibitors with novel 1(2H)-phthalazinone and 1(2H)-isoquinolinone scaffolds. Among them, compound 24 demonstrated potent in vitro activity (HPK1 IC50 value of 10.4 nM) and cellular activity (pSLP76 EC50 = 41 nM & IL-2 EC50 = 108 nM). Compound 24 exhibited favorable mouse and rat pharmacokinetic profiles with reasonable oral exposure. Compound 24 showed potent in vivo anti-tumor activity in a CT26 syngeneic tumor model with 95 % tumor growth inhibition in combination with anti-PD-1.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Suite 1303, No. 333, Sec. 1, Keelung Rd, Xinyi District, Taipei, 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China.
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai, 201203, China; Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, United Arab Emirates.
| |
Collapse
|
8
|
Duan Y, Guo Z, Zhong W, Chen J, Xu S, Liu J, Xu J. An updated review of small-molecule HPK1 kinase inhibitors (2016-present). Future Med Chem 2024; 16:2431-2450. [PMID: 39582317 PMCID: PMC11622775 DOI: 10.1080/17568919.2024.2420630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine-threonine kinase specific to hematopoiesis and a member of the MAP4K family of Ste20-related protein kinases. Targeting HPK1 to ameliorate T cell exhaustion and enhance T cell functions is a promising strategy for clinical immunotherapies. Numerous studies have reported the progress in developing effective HPK1 inhibitors and elucidating their mechanisms of action. However, most inhibitors affect multiple signaling pathways, resulting in unintended side effects that limit their clinical development and application. Herein, we reviewed HPK1-related signaling pathways, clinical candidates and recent advances in small-molecule inhibitors targeting HPK1. Additionally, we present our perspectives on current challenges and potential future research field, hoping to provide inspiration for the development of novel HPK1 inhibitors.
Collapse
Affiliation(s)
- Yiping Duan
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Zhichao Guo
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Wenyi Zhong
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jichao Chen
- Nanjing University Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, Peoples Republic China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jie Liu
- Department of Organic Chemistry, China Pharmaceutical University, School of Science, Nanjing, Jiangsu, 211198, Peoples Republic China
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu, 211198, Peoples Republic China
| |
Collapse
|
9
|
Peng J, Ding X, Chen CXJ, Shih PY, Meng Q, Ding X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors. ACS Med Chem Lett 2024; 15:2032-2041. [PMID: 39563821 PMCID: PMC11571053 DOI: 10.1021/acsmedchemlett.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) negatively affects T cell activation and proliferation and is a promising target for immunotherapy. Although HPK1 inhibitors have shown promising efficacy in preclinical models, none have been approved for clinical use. One significant challenge in developing an HPK1 inhibitor is the difficulty in designing a potent inhibitor with good kinase selectivity and pharmacokinetic properties. Here, we report a series of spiro HPK1 inhibitors with good potency and selectivity. Specifically, compound 16 exhibited potent HPK1 inhibition (IC50 = 2.67 nM), adequate selectivity toward the MAP4K family (>100-fold), and good selectivity against selected kinases (>300-fold). Compound 16 demonstrated moderate in vivo clearance and reasonable oral exposure in mice and rats. Notably, compound 16 possessed good antitumor efficacy in the CT26 murine colon cancer and a synergistic effect when combined with anti-PD-1. These exciting preclinical results support the continued development of this class of HPK1 inhibitors.
Collapse
Affiliation(s)
- Jingjing Peng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Celia X J Chen
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Pei-Yu Shih
- Insilico Medicine Taiwan Ltd, Taipei 110, Taiwan
| | - Qingyuan Meng
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Limited, Masdar City, Abu Dhabi 145748, UAE
| |
Collapse
|
10
|
Xu J, Li Y, Chen X, Yang J, Xia H, Huang W, Zeng S. Opportunities and challenges for targeting HPK1 in cancer immunotherapy. Bioorg Chem 2024; 153:107866. [PMID: 39369461 DOI: 10.1016/j.bioorg.2024.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Hematopoietic Progenitor Kinase 1 (HPK1, also known as MAP4K1) is a hematopoiesis-specific serine/threonine kinase that belongs to the MAP4K family of Ste20-related protein kinases. HPK1 has been identified as a negative regulator of T-cell receptor signaling. Recent studies have indicated that the inhibition or knockout of HPK1 kinase function can effectively alleviate T cell exhaustion, enhance T cell functionality, and improve the therapeutic efficacy of tumor immunotherapy. In recent years, small molecule chemical drugs targeting HPK1 have made significant progress and have become a hot topic in the research and development of tumor immunotherapy drugs. However, the advancement of small molecule drugs that target HPK1 is hindered by various challenges, including the limited selectivity, insufficient immune stimulation, and the ambiguity surrounding role of non-kinase scaffold functions of HPK1 in tumor immune responses. This review briefly describes the biological structure of HPK1 and its related signaling pathways in tumor immunity, systematically discusses the latest research progress in small molecule chemical drugs targeting HPK1. Finally, we summarize and prospect the opportunities and challenges in the drug development of small molecule chemical drugs targeting HPK1 in tumor immunity.
Collapse
Affiliation(s)
- Jiamei Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yingzhou Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xinyi Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Junyi Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Heye Xia
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Shenxin Zeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
11
|
Varvuolytė G, Řezníčková E, Bieliauskas A, Kleizienė N, Vojáčková V, Opichalová A, Žukauskaitė A, Kryštof V, Šačkus A. Synthesis and photodynamic activity of new 5-[(E)-2-(3-alkoxy-1-phenyl-1H-pyrazol-4-yl)ethenyl]-2-phenyl-3H-indoles. Arch Pharm (Weinheim) 2024; 357:e2400282. [PMID: 38969965 DOI: 10.1002/ardp.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
A series of new indole-pyrazole hybrids 8a-m were synthesized through the palladium-catalyzed ligandless Heck coupling reaction from easily accessible unsubstituted, methoxy- or fluoro-substituted 4-ethenyl-1H-pyrazoles and 5-bromo-3H-indoles. These compounds exerted cytotoxicity to melanoma G361 cells when irradiated with blue light (414 nm) and no cytotoxicity in the dark at concentrations up to 10 µM, prompting us to explore their photodynamic effects. The photodynamic properties of the example compound 8d were further investigated in breast cancer MCF-7 cells. Evaluation revealed comparable anticancer activities of 8d in both breast and melanoma cancer cell lines within the submicromolar range. The treatment induced a massive generation of reactive oxygen species, leading to different types of cell death depending on the compound concentration and the irradiation intensity.
Collapse
Affiliation(s)
- Gabrielė Varvuolytė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Eva Řezníčková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Veronika Vojáčková
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Alena Opichalová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
12
|
Tellis JC, Wei B, Siu M, An L, Chan GK, Chen Y, Du X, Gazzard L, Hu B, Kiefer J, Kakiuchi-Kiyota S, Lainchbury M, Linehan JL, Luo X, Malhotra S, Mendonca R, Pang J, Ran Y, Sethuraman V, Seward E, Sneeringer C, Su D, Wang W, Wu P, Moffat JG, Heffron TP, Choo EF, Chan BK. Discovery of GNE-6893, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of HPK1. ACS Med Chem Lett 2024; 15:1606-1614. [PMID: 39291002 PMCID: PMC11403726 DOI: 10.1021/acsmedchemlett.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) serves a key immunosuppressive role as a negative regulator of T-cell receptor (TCR) signaling. HPK1 loss-of-function is associated with augmentation of immune function and has demonstrated synergy with immune checkpoint inhibitors in syngeneic mouse cancer models. These data offer compelling evidence for the use of selective small molecule inhibitors of HPK1 in cancer immunotherapy. We identified a novel series of isoquinoline HPK1 inhibitors through fragment-based screening that displayed promising levels of biochemical potency and activity in functional cell-based assays. We used structure-based drug design to introduce key selectivity elements while simultaneously addressing pharmacokinetic liabilities. These efforts culminated in a molecule demonstrating subnanomolar biochemical inhibition of HPK1 and strong in vitro augmentation of TCR signaling in primary human T-cells. Further profiling of this molecule revealed excellent kinase selectivity (347/356 kinases <50% inhibition @ 0.1 μM), a favorable in vitro safety profile, and good projected human pharmacokinetics.
Collapse
Affiliation(s)
- John C Tellis
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - BinQing Wei
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael Siu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Le An
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Grace Kayan Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yong Chen
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Xiangnan Du
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lewis Gazzard
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Baihua Hu
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - James Kiefer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Michael Lainchbury
- Charles River Laboratories, 8-9 Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Jonathan L Linehan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xifeng Luo
- Pharmaron Beijing Co., No. 6 Tai He Road, BDA, Beijing 100176, P.R. China
| | - Sushant Malhotra
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rohan Mendonca
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jodie Pang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinqing Ran
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Vijay Sethuraman
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Eileen Seward
- Charles River Laboratories, 8-9 Spire Green, Flex Meadow, Harlow, Essex CM19 5TR, United Kingdom
| | - Chris Sneeringer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Dian Su
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ping Wu
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - John G Moffat
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Timothy P Heffron
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Edna F Choo
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bryan K Chan
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Chitre AS, Wu P, Walters BT, Wang X, Bouyssou A, Du X, Lehoux I, Fong R, Arata A, Chan J, Wang D, Franke Y, Grogan JL, Mellman I, Comps-Agrar L, Wang W. HPK1 citron homology domain regulates phosphorylation of SLP76 and modulates kinase domain interaction dynamics. Nat Commun 2024; 15:3725. [PMID: 38697971 PMCID: PMC11066036 DOI: 10.1038/s41467-024-48014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed β-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.
Collapse
Affiliation(s)
| | - Ping Wu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangdan Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Xiangnan Du
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Isabelle Lehoux
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Rina Fong
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alisa Arata
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joyce Chan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Die Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yvonne Franke
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jane L Grogan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
- GraphiteBio, Incl., 1400 Sierra Point Parkway, Brisbane, CA, 94005, USA
| | - Ira Mellman
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Weiru Wang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
- Frontier Medicines, 151 Oyster Point Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
An L, De Bruyn T, Pang J, Ubhayakar S, Salphati L, Zhang X, Liu L, Li R, Chan B, Dey A, Levy ES. Early Stage Preclinical Formulation Strategies to Alter the Pharmacokinetic Profile of Two Small Molecule Therapeutics. Pharmaceuticals (Basel) 2024; 17:179. [PMID: 38399394 PMCID: PMC10892288 DOI: 10.3390/ph17020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Early stage chemical development presents numerous challenges, and achieving a functional balance is a major hurdle, with many early compounds not meeting the clinical requirements for advancement benchmarks due to issues like poor oral bioavailability. There is a need to develop strategies for achieving the desired systemic concentration for these compounds. This will enable further evaluation of the biological response upon a compound-target interaction, providing deeper insight into the postulated biological pathways. Our study elucidates alternative drug delivery paradigms by comparing formulation strategies across oral (PO), intraperitoneal (IP), subcutaneous (SC), and intravenous (IV) routes. While each modality boasts its own set of merits and constraints, it is the drug's formulation that crucially influences its pharmacokinetic (PK) trajectory and the maintenance of its therapeutic levels. Our examination of model compounds G7883 and G6893 highlighted their distinct physio-chemical attributes. By harnessing varied formulation methods, we sought to fine-tune their PK profiles. PK studies showcased G7883's extended half-life using an SC oil formulation, resulting in a 4.5-fold and 2.5-fold enhancement compared with the IP and PO routes, respectively. In contrast, with G6893, we achieved a prolonged systemic coverage time above the desired target concentration through a different approach using an IV infusion pump. These outcomes underscore the need for tailored formulation strategies, which are dictated by the compound's innate properties, to reach the optimal in vivo systemic concentrations. Prioritizing formulation and delivery optimization early on is pivotal for effective systemic uptake, thereby facilitating a deeper understanding of biological pathways and expediting the overall clinical drug development timeline.
Collapse
Affiliation(s)
- Le An
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Tom De Bruyn
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Jodie Pang
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Savita Ubhayakar
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Laurent Salphati
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Xing Zhang
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Liling Liu
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Ruina Li
- Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (T.D.B.); (J.P.); (S.U.); (L.S.); (X.Z.); (L.L.); (R.L.)
| | - Bryan Chan
- Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Anwesha Dey
- Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| | - Elizabeth S. Levy
- Small Molecules Pharmaceutics, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA;
| |
Collapse
|
16
|
Xie C, Liu B, Song Z, Yang Y, Dai M, Gao Y, Yao Y, Ding C, Ai J, Zhang A. Design, Synthesis, and Pharmacological Evaluation of Isoindoline Analogues as New HPK1 Inhibitors. J Med Chem 2023; 66:16201-16221. [PMID: 37990878 DOI: 10.1021/acs.jmedchem.3c01571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is an important negative regulator in T-cell receptor signaling and as a promising key target for immunotherapy. Herein, based on the reported HPK1 inhibitor 2 featuring an isofuranone component, a structural optimization approach was conducted leading to several series of derivatives characterized by containing an isoindoline structural motif. Compound 49 was identified as a new potent HPK1 inhibitor with an IC50 value of 0.9 nM, more potent than compound 2 (5.5 nM). It also has an improved IV profile in rats and enhanced aqueous solubility. It effectively inhibited pSLP76 and reinvigorated T-cell receptor (TCR) signaling, promoting T-cell function and cytokine production both in naïve and antigen-specific T cells. Furthermore, compound 49 reversed the inhibition on T-cell activity mediated by classic immunosuppressive factors in the tumor microenvironment (TME). In the murine CT-26 tumor model, this compound reinvigorated the T cell and synergistically enhanced the antitumor efficacy of anti-PD1 at a well-tolerant dosage.
Collapse
Affiliation(s)
- Chenghu Xie
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilan Song
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ye Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengdi Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujia Yao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
17
|
Zhang J, Li Y, Tang H, Zhou Q, Tong L, Ding J, Xie H, Xiong B, Liu T. Design and synthesis of 1H-pyrazolo[3,4-d]pyrimidine derivatives as hematopoietic progenitor kinase 1 (HPK1) inhibitors. Bioorg Chem 2023; 140:106811. [PMID: 37659145 DOI: 10.1016/j.bioorg.2023.106811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Despite immune checkpoint inhibitors' tremendous success in the treatment of tumors, the moderate response rate limits their widespread use. Hematopoietic progenitor kinase 1 (HPK1) is served as an essential negative regulator of T-cell receptor, which has been identified as a promising target for enhancing antitumor immunity. However, the development of a selective HPK1 inhibitor is still challenging. Herein, we reported a novel series of 1H-pyrazolo[3,4-d]pyrimidine derivatives as HPK1 inhibitors by structure-based rational design. The optimal compound 10n significantly inhibited HPK1 with an IC50 value of 29.0 nM and the phosphorylation of SLP76 at a concentration as low as 0.1 μM. Furthermore, compound 10n exhibited good selectivity over a panel of 25 kinases, including GLK from the same MAP4K family. Together, the current study provided a novel, potent, and selective HPK1 inhibitor, acting as a lead compound for the future development of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Li
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Haotian Tang
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhou
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Linjiang Tong
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jian Ding
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Hua Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
18
|
Cao Q, Tibbetts JD, Wrigley GL, Smalley AP, Cresswell AJ. Modular, automated synthesis of spirocyclic tetrahydronaphthyridines from primary alkylamines. Commun Chem 2023; 6:215. [PMID: 37794068 PMCID: PMC10550966 DOI: 10.1038/s42004-023-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Spirocyclic tetrahydronaphthyridines (THNs) are valuable scaffolds for drug discovery campaigns, but access to this 3D chemical space is hampered by a lack of modular and scalable synthetic methods. We hereby report an automated, continuous flow synthesis of α-alkylated and spirocyclic 1,2,3,4-tetrahydro-1,8-naphthyridines ("1,8-THNs"), in addition to their regioisomeric 1,6-THN analogues, from abundant primary amine feedstocks. An annulative disconnection approach based on photoredox-catalysed hydroaminoalkylation (HAA) of halogenated vinylpyridines is sequenced in combination with intramolecular SNAr N-arylation. To access the remaining 1,7- and 1,5-THN isomers, a photoredox-catalysed HAA step is telescoped with a palladium-catalysed C-N bond formation. Altogether, this provides a highly modular access to four isomeric THN cores from a common set of unprotected primary amine starting materials, using the same bond disconnections. The simplifying power of the methodology is illustrated by a concise synthesis of the spirocyclic THN core of Pfizer's MC4R antagonist PF-07258669.
Collapse
Affiliation(s)
- Qiao Cao
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua D Tibbetts
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Gail L Wrigley
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | | | | |
Collapse
|
19
|
Toure M, Johnson T, Li B, Schmidt R, Ma H, Neagu C, Lopez AU, Wang Y, Guler S, Xiao Y, Henkes R, Ho K, Zhang S, Chu CL, Gundra UM, Porichis F, Li L, Maurer CK, Fang Z, Musil D, DiPoto M, Friis E, Jones R, Jones C, Cummings J, Chekler E, Tanzer EM, Huck B, Sherer B. Discovery of quinazoline HPK1 inhibitors with high cellular potency. Bioorg Med Chem 2023; 92:117423. [PMID: 37531921 DOI: 10.1016/j.bmc.2023.117423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is regarded as a highly validated target in pre-clinical immune oncology. HPK1 has been described as regulating multiple critical signaling pathway in both adaptive and innate cells. In support of this role, HPK1 KO T cells show enhanced sensitivity to TCR activation and HPK1 KO mice display enhanced anti-tumor activity. Taken together, inhibition of HPK1 has the potential to induce enhanced anti-tumor immune response. Herein, we described the discovery of highly potent HPK1 inhibitors starting form a weak HTS hit. Using a structure-based drug design, HPK1 inhibitors exhibiting excellent cellular single-digit nanomolar potency in both proximal (pSLP76) and distal (IL-2) biomarkers along with sustained elevation of IL-2 cytokine secretion were discovered.
Collapse
Affiliation(s)
- Momar Toure
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States.
| | - Theresa Johnson
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Bin Li
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Ralf Schmidt
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Hong Ma
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Constantin Neagu
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Andrea Unzue Lopez
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Yanping Wang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Satenig Guler
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - YuFang Xiao
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Renate Henkes
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Kevin Ho
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Susan Zhang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Chia Lin Chu
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Uma Mahesh Gundra
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Filippos Porichis
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Long Li
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Christine Katharina Maurer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Zhizhou Fang
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Djordje Musil
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Maria DiPoto
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Emily Friis
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Reinaldo Jones
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Christopher Jones
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - James Cummings
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Eugene Chekler
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Eva Maria Tanzer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Bayard Huck
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| | - Brian Sherer
- Discovery & Development Technologies, Medicinal Chemistry, EMD Serono Research & Development Institute, Inc., Billerica, MA 01821, United States
| |
Collapse
|
20
|
Zhou L, Ye X, Wang K, Shen H, Wang T, Zhang X, Jiang S, Xiao Y, Zhang K. Discovery of diaminotriazine carboxamides as potent inhibitors of hematopoetic progenitor kinase 1. Bioorg Chem 2023; 138:106682. [PMID: 37339563 DOI: 10.1016/j.bioorg.2023.106682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a member of mitogen-activated protein kinase kinase kinase kinase (MAP4K) family of Ste20 serine/threonine kinases, is a negative regulator of T-cell receptor (TCR) signaling. Inactivating HPK1 kinase has been reported to be sufficient to elicit antitumor immune response. Therefore, HPK1 has attracted much attention as a promising target for tumor immunotherapy. A few of HPK1 inhibitors have been reported, and none of them have been approved for clinical applications. Hence, more effective HPK1 inhibitors are needed. Herein, a series of structurally novel diaminotriazine carboxamides were rationally designed, synthesized and evaluated for their inhibitory activity against HPK1 kinase. Most of them exhibited potent inhibitory potency against HPK1 kinase. In particular, compound 15b showed more robust HPK1 inhibitory activity than that of 11d developed by Merck in kinase activity assay (IC50 = 3.1 and 8.2 nM, respectively). The significant inhibitory potency against SLP76 phosphorylation in Jurkat T cells further confirmed the efficacy of compound 15b. In human peripheral blood mononuclear cell (PBMC) functional assays, compound 15b more significantly induced the production of interleukin 2 (IL-2) and interferon γ (IFN-γ) relative to 11d. Furthermore, 15b alone or in combination with anti-PD-1 antibodies showed potent in vivo antitumor efficacy in MC38 tumor-bearing mice. Compound 15b represents a promising lead for the development of effective HPK1 small-molecule inhibitors.
Collapse
Affiliation(s)
- Lixin Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiuquan Ye
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongtao Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Zhu H, Song X, Pan Y, Li M, Chen L, Xiao P, Du R, Dong Z, Yang CG. Design, synthesis, and biological evaluation of novel spirocyclic compounds as potential anti-glioblastoma agents. Eur J Med Chem 2023; 258:115595. [PMID: 37385078 DOI: 10.1016/j.ejmech.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with extremely limited clinical treatment options. Because of the blood-brain barrier (BBB), it is difficult for anti-GBM drug candidates to enter the brain to exert their therapeutic effects. The spirocyclic skeleton structure exhibits good lipophilicity and permeability, enabling small-molecule compounds to cross the BBB. Herein, we designed and synthesized novel 3-oxetanone-derived spirocyclic compounds containing a spiro[3.4]octane ring and determined their structure-activity relationship for antiproliferation in GBM cells. Among these, the chalcone-spirocycle hybrid 10m/ZS44 exhibited high antiproliferative activity in U251 cells and permeability in vitro. Furthermore, 10m/ZS44 activated the SIRT1/p53-mediated apoptosis pathway to inhibit proliferation in U251 cells, whereas it minimally impaired other cell-death pathways, such as pyroptosis or necroptosis. In a mouse xenograft model, 10m/ZS44 exhibited a substantial inhibitory effect on GBM tumor growth without showing obvious toxicity. Overall, 10m/ZS44 represents a promising spirocyclic compound for the treatment of GBM.
Collapse
Affiliation(s)
- Heping Zhu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihui Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Wu F, Li H, An Q, Sun Y, Yu J, Cao W, Sun P, Diao X, Meng L, Xu S. Discovery of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 254:115355. [PMID: 37062169 DOI: 10.1016/j.ejmech.2023.115355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cells and is a negative regulator of T cell receptor (TCR) signaling. Recent studies have demonstrated that HPK1 is a promising therapeutic target for cancer immunotherapy. However, despite significant progress in the development of HPK1 inhibitors, none of them has been approved for cancer therapy. Development of HPK1 inhibitors with a structurally distinct scaffold is still needed. Herein, we describe the design and synthesis of a series of HPK1 inhibitors with a 7H-pyrrolo[2,3-d]pyrimidine scaffold, exemplified by 31. Compound 31 showed potent inhibitory activity against HPK1 with an IC50 value of 3.5 nM and favorable selectivity within a panel of kinases. It also potently inhibited the phosphorylation level of SLP76, a substrate of HPK1, and enhanced the IL-2 secretion in Jurkat cells (human T cell leukemia). Our findings provide new clues for further optimization and development to generate HPK1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Huiyu Li
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jinghua Yu
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenting Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Pu Sun
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingxing Diao
- Shanghai Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linghua Meng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, #555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Science, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
23
|
Shi H, Tang H, Li Y, Chen D, Liu T, Chen Y, Wang X, Chen L, Wang Y, Xie H, Xiong B. Development of a series of quinazoline-2,5-diamine derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors. Eur J Med Chem 2023; 248:115064. [PMID: 36621137 DOI: 10.1016/j.ejmech.2022.115064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a serine/threonine kinase that serves as the negative regulator of multiple immune signaling pathways. Genetic studies using HPK1 knockout and kinase-dead mice suggested that inhibiting HPK1 either alone or in combination with immune checkpoint blockade could be a promising strategy in cancer immunotherapy. Herein, we report the design, synthesis and structure-activity relationship (SAR) study of a series of potent HPK1 inhibitors bearing quinazoline-2,5-diamine scaffold. Three rounds of SAR exploration led to the identification of 9h, the most potent compound in this series which harbors a 2-methyl-1,2,3,4-tetrahydroisoquinolin-7-yl substituent. Further biological assessments using human immune cells demonstrated that 9h could strongly inhibit downstream phosphorylation, augment interleukin-2 (IL-2) production and reverse prostaglandin E2 (PGE2)-induced immune suppression. Overall, our study on these quinazoline-2,5-diamine derivatives provided not only a tool compound for the community to help with elucidating the HPK1 pharmacology, but also a reliable reference for subsequent development of HPK1 inhibitors.
Collapse
Affiliation(s)
- Huanyu Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Haotian Tang
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yan Li
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yuting Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ying Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hua Xie
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
24
|
Ye Q, Liu K, Ye HF, Pan J, Sokolsky A, Wang A, Zhang K, Hummel JR, Kong L, Behshad E, He X, Conlen P, Stump K, Ye M, Diamond S, Covington M, Yeleswaram S, Atasoylu O, Vechorkin O, Yao W. Discovery of Pyrazolopyridine Derivatives as HPK1 Inhibitors. ACS Med Chem Lett 2023; 14:5-10. [PMID: 36655125 PMCID: PMC9841581 DOI: 10.1021/acsmedchemlett.2c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
In spite of the great success of immune checkpoint inhibitors in immune-oncology therapy, an urgent need still exists to identify alternative approaches to broaden the scope of therapeutic coverage. Hematopoietic progenitor kinase 1 (HPK1), also known as MAP4K1, functions as a negative regulator of activation signals generated by the T cell antigen receptor. Herein we report the discovery of novel pyrazolopyridine derivatives as selective inhibitors of HPK1. The structure-activity relationship campaign led to the discovery of compound 16, which has shown promising enzymatic and cellular potency with encouraging kinome selectivity. The outstanding pharmacokinetic profiles of 16 in rats and monkeys supported further evaluations of its efficacy and safety in preclinical models.
Collapse
Affiliation(s)
- Qinda Ye
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kai Liu
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Hai-Fen Ye
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Jun Pan
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Alexander Sokolsky
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Anlai Wang
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Ke Zhang
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Joshua R. Hummel
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Ling Kong
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Elham Behshad
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Xin He
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Patricia Conlen
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Kristine Stump
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Min Ye
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Sharon Diamond
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Maryanne Covington
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Swamy Yeleswaram
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Onur Atasoylu
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Oleg Vechorkin
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| | - Wenqing Yao
- Incyte Research Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United States
| |
Collapse
|
25
|
Sokolsky A, Vechorkin O, Hummel JR, Styduhar ED, Wang A, Nguyen MH, Ye HF, Liu K, Zhang K, Pan J, Ye Q, Atasoylu O, Behshad E, He X, Conlen P, Stump K, Ye M, Diamond S, Covington M, Yeleswaram S, Yao W. Potent and Selective Biaryl Amide Inhibitors of Hematopoietic Progenitor Kinase 1 (HPK1). ACS Med Chem Lett 2023; 14:116-122. [PMID: 36655134 PMCID: PMC9841582 DOI: 10.1021/acsmedchemlett.2c00241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Herein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole 5b as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced in vitro ADME profiles and promising pharmacokinetics.
Collapse
Affiliation(s)
- Alexander Sokolsky
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Oleg Vechorkin
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Joshua R. Hummel
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Evan D. Styduhar
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Anlai Wang
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Minh H. Nguyen
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Hai Fen Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kai Liu
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Ke Zhang
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Jun Pan
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Qinda Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Onur Atasoylu
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Elham Behshad
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Xin He
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Patricia Conlen
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Kristine Stump
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Min Ye
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Sharon Diamond
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Maryanne Covington
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Swamy Yeleswaram
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| | - Wenqing Yao
- Incyte Research
Institute, 1801 Augustine Cut-Off, Wilmington, Delaware 19803, United
States
| |
Collapse
|
26
|
Wang MS, Wang ZZ, Li ZL, Gong Y, Duan CX, Cheng QH, Huang W, Yang GF. Discovery of Macrocycle-Based HPK1 Inhibitors for T-Cell-Based Immunotherapy. J Med Chem 2023; 66:611-626. [PMID: 36542759 DOI: 10.1021/acs.jmedchem.2c01551] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell activation, and targeting HPK1 is considered a promising strategy for improving responses to antitumor immune therapies. The biggest challenge of HPK1 inhibitor design is to achieve a higher selectivity to GLK, an HPK1 homology protein as a positive regulator of T-cell activation. Herein, we report the design of a series of macrocycle-based HPK1 inhibitors via a conformational constraint strategy. The identified candidate compound 5i exhibited HPK1 inhibition with an IC50 value of 0.8 nM and 101.3-fold selectivity against GLK. Compound 5i also displayed good oral bioavailability (F = 27-49%) in mice and beagles and favorable metabolic stability (T1/2 > 186.4 min) in human liver microsomes. More importantly, compound 5i demonstrated a clear synergistic effect with anti-PD-1 in both MC38 (MSI) and CT26 (MSS) syngeneic tumor mouse models. These results showed that compound 5i has a great potential in immunotherapy.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Zi-Long Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Cheng-Xiang Duan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Qian-Hui Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. of China
| |
Collapse
|
27
|
Zhou L, Wang T, Zhang K, Zhang X, Jiang S. The development of small-molecule inhibitors targeting HPK1. Eur J Med Chem 2022; 244:114819. [DOI: 10.1016/j.ejmech.2022.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
|
28
|
Griffiths O, Ley SV. Multicomponent Direct Assembly of N-Heterospirocycles Facilitated by Visible-Light-Driven Photocatalysis. J Org Chem 2022; 87:13204-13223. [PMID: 36103403 PMCID: PMC9552240 DOI: 10.1021/acs.joc.2c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 11/29/2022]
Abstract
N-heterospirocycles are interesting structural units found in both natural products and medicinal compounds but have relatively few reliable methods for their synthesis. Here, we enlist the photocatalytic generation of N-centered radicals to construct β-spirocyclic pyrrolidines from N-allylsulfonamides and alkenes. A variety of β-spirocyclic pyrrolidines have been constructed, including drug derivatives, in moderate to very good yields. Further derivatization of the products has also been demonstrated as has a viable scale-up procedure, making use of flow chemistry techniques.
Collapse
Affiliation(s)
- Oliver
M. Griffiths
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Steven V. Ley
- Yusuf Hamied Department
of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
29
|
Zhu Q, Chen N, Tian X, Zhou Y, You Q, Xu X. Hematopoietic Progenitor Kinase 1 in Tumor Immunology: A Medicinal Chemistry Perspective. J Med Chem 2022; 65:8065-8090. [PMID: 35696642 DOI: 10.1021/acs.jmedchem.2c00172] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic progenitor kinase 1 (HPK1), a hematopoietic cell-restricted member of the serine/threonine Ste20-related protein kinases, is a negative regulator of the T cell receptor, B cell receptor, and dendritic cells. Loss of HPK1 kinase function increases cytokine secretion and enhances T cell signaling, virus clearance, and tumor growth inhibition. Therefore, HPK1 is considered a promising target for tumor immunotherapy. Several HPK1 inhibitors have been reported to regulate T cell function. In addition, HPK1-targeting PROTACs, which can induce the degradation of HPK1, have also been developed. Here, we provide an overview of research concerning HPK1 protein structure, function, and inhibitors and propose perspectives and insights for the future development of agents targeting HPK1.
Collapse
Affiliation(s)
- Qiangsheng Zhu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Nannan Chen
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinjian Tian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yeling Zhou
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - QiDong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|