1
|
Wang C, Wang Z, Gao M, Zhu Y, Zhu H, Zhou L, Zhou Y, Tian X, Liu Y, Zhang Y, Sun S, Meng C, Hong X, Wang Y, Yang M, Fan N, Huang H, Chen Z, Ge Y, Li J, Jiang K, Zhang H, Qiu M, Wang H. Highly Stable and Integrable Graphene/Molybdenum Disulfide Heterojunction Field-Effect Transistor-Based miRNA Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28585-28596. [PMID: 40313004 DOI: 10.1021/acsami.5c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
MicroRNAs (miRNAs) are important noncoding RNA molecules that participate in gene regulation and are widely associated with the occurrence and development of various cancers. Developing rapid, highly sensitive, low-cost, and highly stable miRNA detection methods is of great significance for clinical diagnosis. Field-effect transistors (FETs) based on two-dimensional (2D) materials have been proven to have great potential in the field of miRNA detection due to their label-free, rapid, highly sensitive, low-power, and portable features. However, biosensors based on 2D material FETs require the application of an external gate voltage in solution, which seriously hinders the integration, miniaturization, and signal stability of the devices. This study proposes a graphene-molybdenum disulfide heterojunction (G/MoS2) FET biosensing platform to detect miRNA-21 and miRNA-155 without the need for an external gate voltage. The results demonstrate a detection time of approximately 30 min, a linear response range spanning from 10 fM to 10 nM, and limits of detection of 6.06 fM for miRNA-21 and 2.59 fM for miRNA-155. Through comparative experiments, the biosensor shows excellent selectivity and can distinguish target miRNAs from nontarget miRNAs. The G/MoS2 FET biosensor developed in this study provides a technical platform for miRNA detection and has a broad application prospect, especially in the early diagnosis of diseases and the screening of biomarkers.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Ziqian Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Yihan Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Honghai Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Lizhuo Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yujie Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xilin Tian
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yi Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yule Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Shuo Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Changle Meng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Mingmin Yang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Hao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhi Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Yanqi Ge
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Huide Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
2
|
Liu S, Qin K, Yang J, Hu T, Luo H, Wu J, Cui Z, Li T, Ding F, Wang X, Li Y, Zhai T. Direct orientational epitaxy of wafer-scale 2D van der Waals heterostructures of metal dichalcogenides. Natl Sci Rev 2025; 12:nwaf119. [PMID: 40309346 PMCID: PMC12042757 DOI: 10.1093/nsr/nwaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ke Qin
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | | | - Tao Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jingsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Zhen Cui
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Taotao Li
- School of Integrated Circuits, Nanjing University, Nanjing 210008, China
| | - Feng Ding
- Suzhou Laboratory, Suzhou 215123, China
| | - Xinran Wang
- School of Integrated Circuits, Nanjing University, Nanjing 210008, China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
3
|
Li J, Wang D, Chen X, Zhou Y, Luo H, Zhao T, Hu S, Zheng Z, Gao W, Liu X. Engineering energy bands in 0D-2D hybrid photodetectors: Cu-doped InP quantum dots on a type-III SnSe 2/MoTe 2 heterojunction. NANOSCALE HORIZONS 2025; 10:922-932. [PMID: 39982141 DOI: 10.1039/d4nh00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Two-dimensional (2D) self-driven photodetectors have emerged as a compelling area of research, offering advantages such as miniaturization, weak light detection, high photosensitivity, and low noise levels. However, current type-III 2D heterojunction photodetectors often suffer from low self-driven responsivity and medium Ilight/Idark ratios. In this work, a novel device architecture that addresses these challenges is constructed by incorporating Cu-doped InP/ZnSeS/ZnS core-shell quantum dots (QDs) onto a type-III SnSe2/MoTe2 2D heterojunction. The strategically engineered energy band structure of the Cu-doped QDs facilitates carrier transport with SnSe2/MoTe2 to form back-to-back type-II and type-III band alignments. As a result, under 532 nm illumination, the hybrid device exhibits remarkable visible light self-driven performance metrics with the help of the photogating effect: an ultra-low dark current of 23 fA, with responsivity and external quantum efficiency enhanced to 459 mA W-1 and 109%, respectively, surpassing theoretical values by fourfold compared to those of pure SnSe2/MoTe2, a low noise equivalent power (NEP) of 0.87 × 10-2 pW Hz-1/2, a realistic specific detectivity of 1.45 × 1011 Jones, a large Ilight/Idark ratio of 106 and a swift response time of 1.16 ms/1.14 ms with stable operation. These results demonstrate that energy band engineering of Cu-doped QDs can significantly enhance the performance of 2D type-III heterojunctions in the visible range, laying a foundation for future gate-tunable optoelectronic devices.
Collapse
Affiliation(s)
- Jiabin Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Dongxue Wang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Xiya Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Yao Zhou
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Huanteng Luo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Tu Zhao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Sheng Hu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| | - Xiao Liu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528200, P. R. China.
| |
Collapse
|
4
|
Huang J, Xu N, Wu Y, Ran X, Fang Y, Zhu H, Wang W, Chen H, Deng S. Interactions of Terahertz Photons with Phonons of Two-Dimensional van der Waals MoS 2/WSe 2/MoS 2 Heterostructures and Thermal Responses. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1665. [PMID: 40271938 PMCID: PMC11990753 DOI: 10.3390/ma18071665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The interaction between terahertz (THz) photons and phonons of materials is crucial for the development of THz photonics. In this work, typical two-dimensional (2D) van der Waals (vdW) transition metal chalcogenide (TMD) layers and heterostructures are used in THz time-domain spectroscopy (TDS) measurements, low-wavenumber Raman spectroscopy measurements, calculation of 2D materials' phonon spectra, and theoretical analysis of thermal responses. The TDS results reveal strong absorption of THz photons in the frequency range of 2.5-10 THz. The low-wavenumber Raman spectra show the phonon vibration characteristics and are used to establish phonon energy bands. We also set up a computational simulation model for thermal responses. The temperature increases and distributions in the individual layers and their heterostructures are calculated, showing that THz photon absorption results in significant increases in temperature and differences in the heterostructures. These give rise to interesting photothermal effects, including the Seebeck effect, resulting in voltages across the heterostructures. These findings provide valuable guidance for the potential optoelectronic application of the 2D vdW heterostructures.
Collapse
Affiliation(s)
- Jingwen Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China (H.Z.)
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China (H.Z.)
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Yumao Wu
- State Key Laboratory of Integrated Chips and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (X.R.)
| | - Xue Ran
- State Key Laboratory of Integrated Chips and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433, China; (Y.W.); (X.R.)
| | - Yue Fang
- Guangdong Province Key Laboratory of Display Material and Technology, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China (W.W.)
| | - Hongjia Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China (H.Z.)
| | - Weiliang Wang
- Guangdong Province Key Laboratory of Display Material and Technology, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China (W.W.)
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China (H.Z.)
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China (H.Z.)
| |
Collapse
|
5
|
Liu M, Cui T, Feng J, Wu Y, Bi J, Aierken A, Liu X, Wang GG, Liu Z. Low-Temperature Growth of Centimeter-Sized 2D PdSe 2 by Self-Limiting Liquid-Phase Edge Epitaxy. J Am Chem Soc 2025; 147:9122-9133. [PMID: 39801053 DOI: 10.1021/jacs.4c11531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Two-dimensional (2D) PdSe2 atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe2 crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe2 films with single-crystal domain areas exceeding 30 μm. The SLE growth mechanism, clarified by theoretical calculations and time-of-flight secondary ion mass spectrometry (ToF-SIMS), reveals that hydrogen ions on the precursor surface inhibit vertical growth while promoting lateral growth. The as-grown PdSe2 few-layer exhibits a surface roughness of 1.20 nm and an average conductivity of 1.67 × 10-6 S/m, demonstrating their smoothness and uniformity. Temperature-dependent electrical measurements and transfer characteristic curves confirm the orthorhombic PdSe2's bipolar semiconductor behavior. The photodetector based on few-layer PdSe2 films exhibit excellent optoelectronic performance in the 405-1650 nm wavelength range, achieving a responsivity of 6262.37 A W-1, a detectivity of ∼1012 Jones under 1064 nm illumination, and a fast response time of 37.1 μs, making them highly suitable for broadband photodetection applications. This work provides valuable insights into the scalable synthesis of PdSe2 few-layers and establishes a foundation for the development of PdSe2-based integrated functional devices.
Collapse
Affiliation(s)
- Mingqiang Liu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Tianhao Cui
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Junwei Feng
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinshun Bi
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Abuduwayiti Aierken
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Gui-Gen Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Wang J, Peng Y, Zhou T, Fu J, Quan W, Cheng Y, Ding H, Zhang Y. Direct Syntheses of 2D Noble Transition Metal Dichalcogenides Toward Electronics, Optoelectronics, and Electrocatalysis-Related Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407233. [PMID: 39924733 DOI: 10.1002/smll.202407233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/26/2025] [Indexed: 02/11/2025]
Abstract
2D noble transition metal dichalcogenides (nTMDCs, PdX2 and PtX2, where X═S, Se, Te) have emerged as a new class of 2D materials, owing to their unique puckered pentagonal structure in 2D PdS2 and PdSe2, largely tunable band structures or band gaps with decreasing the layer thickness at the 2D limit, strong interlayer interactions, superior optoelectronic properties, high edge catalytic properties, etc. Directly synthesizing 2D nTMDCs domains or thin films with large-area uniformity, tunable thickness, and high crystalline quality is the premise for exploring these salient properties and developing a wide range of applications. Hereby, this review summarizes recent progress in the direct syntheses and characterizations of 2D nTMDCs, mainly focusing on the thermally assisted conversion (TAC) and chemical vapor deposition (CVD) methods, by using various metal and chalcogen-contained precursors. Meanwhile, the applications of directly synthesized 2D nTMDCs in various fields, such as high-performance field effect transistors (FETs), broadband photodetectors, superior catalysts in hydrogen evolution reactions, and ultra-sensitive piezo resistance sensors, are also discussed. Finally, challenges and prospects regarding the direct syntheses of high-quality 2D nTMDCs and their applications in next-generation electronic and optoelectronic devices, as well as novel catalysts beyond noble metals are overviewed.
Collapse
Affiliation(s)
- Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Tong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yujin Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Su C, Li M, Yan H, Zhang Y, Li H, Fan W, Bai W, Liu X, Wang Q, Yin S. PdSe 2/NbSe 2 Heterojunction Photodetector with Broadband Detection and Polarization Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5213-5222. [PMID: 39778149 DOI: 10.1021/acsami.4c17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Polarized photodetectors based on anisotropic two-dimensional (2D) materials display great potential applications in communications and optoelectronics. However, the existence of high dark current, low anisotropic ratio, and response speed limits their development. In this paper, a broadband polarization angle-dependent photodetector based on the PdSe2/NbSe2 van der Waals (vdW) heterojunction has been constructed. Characterization results show that the PdSe2/NbSe2 heterojunction photodetector can suppress the dark current effectively (NbSe2 ∼4 orders of magnitude and PdSe2 ∼1 order of magnitude compared with individual material). Meanwhile, the device exhibits a broadband detection capability ranging from 405 to 980 nm. The device shows a superior responsivity of 27 mA/W, a considerable detectivity of 9.8 × 107 Jones, a large external quantum efficiency of 528%, and an ultrafast rise/decay time of 1.6/1.9 μs at 1 V bias under 638 nm laser wavelength. The photodetector also achieves a high polarization-sensitive anisotropic ratio of ∼2.62 under 638 nm laser irradiation. In addition, the heterojunction device shows outstanding polarization imaging capabilities, which can be used as the image sensor. This work proposed a PdSe2/NbSe2 vdW heterojunction device with low dark current, broadband polarized detection, and polarized visual imaging, which will promote the development and practicality of polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Can Su
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Mengyang Li
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu Zhang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China
- Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China
| | - Wenhao Fan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Weijie Bai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xinjian Liu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
8
|
Kim M, Yeom D, Seok Y, Song J, Jang H, Choi Y, Ko Y, Watanabe K, Taniguchi T, Lee K. Superior P-Type Switching in InSe Nanosheets for Complementary Multifunctional Systems. NANO LETTERS 2024; 24:16090-16098. [PMID: 39585920 DOI: 10.1021/acs.nanolett.4c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
van der Waals (vdW) indium selenide (InSe) is receiving attention for its exceptional electron mobility and moderate band gap, enabling various applications. However, the intrinsic n-type behavior of InSe has restricted its use predominantly to n-type devices, constraining its application in complementary integrated microsystems. Here, we show superior ambipolar InSe transistors with vdW bottom contacts, achieving impressive p-type on/off current ratios greater than 109 and Schottky barrier heights approaching the ideal Schottky-Mott limit. By introducing a partially gate-coupled architecture, we also demonstrate an ambipolar-to-unipolar transition and reconfigurable complementary multifunctionality, including n-type and p-type transistors as well as negative and positive rectifiers and breakdown diodes. The rectification polarity and ratio are gate-tunable from 3.5 × 107 down to ∼10 without complex heterostructures, chemical doping, and multigate layouts. The negative and positive breakdowns are reversible, with both the breakdown voltage and switching ratio, which can exceed 108, also being electrically tunable.
Collapse
Affiliation(s)
- Minsu Kim
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongju Yeom
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yongwook Seok
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jungi Song
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hanbyeol Jang
- School of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
- Samsung Semiconductor R&D Center, Yongin 17113, Republic of Korea
| | - YiTaek Choi
- School of Materials Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
- Samsung Semiconductor R&D Center, Yongin 17113, Republic of Korea
| | - Yeonghyeon Ko
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Kayoung Lee
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Chen M, Chen X, Wu Z, Huang Z, Gao W, Yang M, Xiao Y, Zhao Y, Zheng Z, Yao J, Li J. An Ultrasensitive Bi 2O 2Se/In 2S 3 Photodetector with Low Detection Limit and Fast Response toward High-Precision Unmanned Driving. ACS NANO 2024; 18:27579-27589. [PMID: 39316416 DOI: 10.1021/acsnano.4c08636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The machine vision utilized in unmanned driving systems must possess the ability to accurately perceive scenes under low-light illumination conditions. To achieve this, photodetectors with low detection limits and a fast response are essential. Current systems rely on avalanche diodes or lidars, which come with the drawbacks of increased energy consumption and complexity. Here, we present an ultrasensitive photodetector based on a two-dimensional (2D) Bi2O2Se/In2S3 heterostructure, incorporating a homotype unilateral depletion band design. This innovative architecture effectively modulates the transport of both free and photoexcited carriers, suppressing the dark current and facilitating the rapid and efficient separation of photocarriers. Owing to these features, this device exhibits a responsivity of 144 A/W, a specific detectivity of 1.2 × 1014 Jones, and a light on/off ratio of 1.1 × 105. These metrics rank among the top values reported for state-of-the-art 2D devices. Moreover, this device also demonstrates a fast response time of 170/296 μs and a low noise equivalent power of 0.57 fW/Hz1/2, attributes that endow it with ultraweak light imaging capabilities. Furthermore, we have successfully integrated this device into an unmanned driving system, providing a perspective on the design and fabrication of future optoelectronic devices.
Collapse
Affiliation(s)
- Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Xiqiang Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Ziqiao Wu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528200, Guangdong, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
10
|
Qiu Z, Luo Z, Chen M, Gao W, Yang M, Xiao Y, Huang L, Zheng Z, Yao J, Zhao Y, Li J. Dual-Electrically Configurable MoTe 2/In 2S 3 Phototransistor toward Multifunctional Applications. ACS NANO 2024; 18:27055-27064. [PMID: 39302816 DOI: 10.1021/acsnano.4c10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Photodetectors, essential for a wide range of optoelectronic applications in both military and civilian sectors, face challenges in balancing responsivity, detectivity, and response time due to their inherent unidirectional carrier transport mechanism. Multifunctional photodetectors that address these trade-offs are highly sought after for their potential to reduce costs, simplify system design, and surpass Moore's Law limitations. Herein, we present a multimodal phototransistor based on a 2D MoTe2/In2S3 heterostructure. Through dual electrical modulation employing bias voltage and gate voltage, we engineer the energy band to achieve switchable photoresponse mechanisms between photoconductive and photovoltaic modes. In photoconductive mode, the device exhibits a responsivity of 320 A/W and a specific detectivity of 1.2 × 1013 Jones. Meanwhile, in photovoltaic mode, it exhibits a light on/off ratio of 2 × 105 and response speed of 0.68/0.60 ms. These capabilities enable multifunctional applications such as high-resolution imaging across various wavelengths, a conceptual optoelectronic logic gate, and dual-channel optical communication. This work makes an advancement in the development of future multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Zhanxiong Qiu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Meifei Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, Guangdong 528200, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan, Guangdong 528200, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Le Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| |
Collapse
|
11
|
Guo D, Fu Q, Zhang G, Cui Y, Liu K, Zhang X, Yu Y, Zhao W, Zheng T, Long H, Zeng P, Han X, Zhou J, Xin K, Gu T, Wang W, Zhang Q, Hu Z, Zhang J, Chen Q, Wei Z, Zhao B, Lu J, Ni Z. Composition Modulation-Mediated Band Alignment Engineering from Type I to Type III in 2D vdW Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400060. [PMID: 39126132 DOI: 10.1002/adma.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Band alignment engineering is crucial for facilitating charge separation and transfer in optoelectronic devices, which ultimately dictates the behavior of Van der Waals heterostructures (vdWH)-based photodetectors and light emitting diode (LEDs). However, the impact of the band offset in vdWHs on important figures of merit in optoelectronic devices has not yet been systematically analyzed. Herein, the regulation of band alignment in WSe2/Bi2Te3- xSex vdWHs (0 ≤ x ≤ 3) is demonstrated through the implementation of chemical vapor deposition (CVD). A combination of experimental and theoretical results proved that the synthesized vdWHs can be gradually tuned from Type I (WSe2/Bi2Te3) to Type III (WSe2/Bi2Se3). As the band alignment changes from Type I to Type III, a remarkable responsivity of 58.12 A W-1 and detectivity of 2.91×1012 Jones (in Type I) decrease in the vdWHs-based photodetector, and the ultrafast photoresponse time is 3.2 µs (in Type III). Additionally, Type III vdWH-based LEDs exhibit the highest luminance and electroluminescence (EL) external quantum efficiencies (EQE) among p-n diodes based on Transition Metal Dichalcogenides (TMDs) at room temperature, which is attributed to band alignment-induced distinct interfacial charge injection. This work serves as a valuable reference for the application and expansion of fundamental band alignment principles in the design and fabrication of future optoelectronic devices.
Collapse
Affiliation(s)
- Dingli Guo
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qiang Fu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Guitao Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Yueying Cui
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Kaiyang Liu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Xinlei Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Yali Yu
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Weiwei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Ting Zheng
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Haoran Long
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peiyu Zeng
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Xu Han
- Advanced Research Institute for Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Zhou
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Kaiyao Xin
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Tiancheng Gu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Wenhui Wang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qi Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Zhenliang Hu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Jialin Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qian Chen
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Zhongming Wei
- Institute of Semiconductors and State Key Laboratory of Superlattices and Microstructures, Chinese Academy of Sciences, Beijing, 100083, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Junpeng Lu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhenhua Ni
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
12
|
Pan Y, Zheng T, Gao F, Qi L, Gao W, Zhang J, Li L, An K, Gu H, Chen H. High-Performance Photoinduced Tunneling Self-Driven Photodetector for Polarized Imaging and Polarization-Coded Optical Communication based on Broken-Gap ReSe 2/SnSe 2 van der Waals Heterojunction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311606. [PMID: 38497093 DOI: 10.1002/smll.202311606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Novel 2D materials with low-symmetry structures exhibit great potential applications in developing monolithic polarization-sensitive photodetectors with small volume. However, owing to the fact that at least half of them presented a small anisotropic factor of ≈2, comprehensive performance of present polarization-sensitive photodetectors based on 2D materials is still lower than the practical application requirements. Herein, a self-driven photodetector with high polarization sensitivity using a broken-gap ReSe2/SnSe2 van der Waals heterojunction (vdWH) is demonstrated. Anisotropic ratio of the photocurrent (Imax/Imin) could reach 12.26 (635 nm, 179 mW cm-2). Furthermore, after a facile combination of the ReSe2/SnSe2 device with multilayer graphene (MLG), Imax/Imin of the MLG/ReSe2/SnSe2 can be further increased up to13.27, which is 4 times more than that of pristine ReSe2 photodetector (3.1) and other 2D material photodetectors even at a bias voltage. Additionally, benefitting from the synergistic effect of unilateral depletion and photoinduced tunneling mechanism, the MLG/ReSe2/SnSe2 device exhibits a fast response speed (752/928 µs) and an ultrahigh light on/off ratio (105). More importantly, MLG/ReSe2/SnSe2 device exhibits excellent potential applications in polarized imaging and polarization-coded optical communication with quaternary logic state without any power supply. This work provides a novel feasible avenue for constructing next-generation smart polarization-sensitive photodetector with low energy consumption.
Collapse
Affiliation(s)
- Yuan Pan
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Tao Zheng
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Feng Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Ligan Qi
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Wei Gao
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Jielian Zhang
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Ling Li
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Kang An
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Huaimin Gu
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| | - Hongyu Chen
- Institute of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, P. R. China
- Guangdong Province Key Lab of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
13
|
Jeong Y, Han B, Tamayo A, Claes N, Bals S, Samorì P. Defect Engineering of MoTe 2 via Thiol Treatment for Type III van der Waals Heterojunction Phototransistor. ACS NANO 2024; 18:18334-18343. [PMID: 38960378 PMCID: PMC11256742 DOI: 10.1021/acsnano.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Molybdenum ditelluride (MoTe2) nanosheets have displayed intriguing physicochemical properties and opto-electric characteristics as a result of their tunable and small band gap (Eg ∼ 1 eV), facilitating concurrent electron and hole transport. Despite the numerous efforts devoted to the development of p-type MoTe2 field-effect transistors (FETs), the presence of tellurium (Te) point vacancies has caused serious reliability issues. Here, we overcome this major limitation by treating the MoTe2 surface with thiolated molecules to heal Te vacancies. Comprehensive materials and electrical characterizations provided unambiguous evidence for the efficient chemisorption of butanethiol. Our thiol-treated MoTe2 FET exhibited a 10-fold increase in hole current and a positive threshold voltage shift of 25 V, indicative of efficient hole carrier doping. We demonstrated that our powerful molecular engineering strategy can be extended to the controlled formation of van der Waals heterostructures by developing an n-SnS2/thiol-MoTe2 junction FET (thiol-JFET). Notably, the thiol-JFET exhibited a significant negative photoresponse with a responsivity of 50 A W-1 and a fast response time of 80 ms based on band-to-band tunneling. More interestingly, the thiol-JFET displayed a gate tunable trimodal photodetection comprising two photoactive modes (positive and negative photoresponse) and one photoinactive mode. These findings underscore the potential of molecular engineering approaches in enhancing the performance and functionality of MoTe2-based nanodevices as key components in advanced 2D-based optoelectronics.
Collapse
Affiliation(s)
- Yeonsu Jeong
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Bin Han
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Adrián Tamayo
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Nathalie Claes
- Electron
Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence,
University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence,
University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Paolo Samorì
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
14
|
Chen S, Ma J, Bu N, Zheng T, Chen J, Huang J, Luo X, Zheng Z, Huo N, Li J, Gao W. Two-Dimensional GeS/SnSe 2 Tunneling Photodiode with Bidirectional Photoresponse and High Polarization Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33740-33751. [PMID: 38907704 DOI: 10.1021/acsami.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
A two-dimensional (2D) broken-gap (type-III) p-n heterojunction has a unique charge transport mechanism because of nonoverlapping energy bands. In light of this, type-III band alignment can be used in tunneling field-effect transistors (TFETs) and Esaki diodes with tunable operation and low consumption by highlighting the advantages of tunneling mechanisms. In recent years, 2D tunneling photodiodes have gradually attracted attention for novel optoelectronic performance with a combination of strong light-matter interaction and tunable band alignment. However, an in-depth understanding of the tunneling mechanisms should be further investigated, especially for developing electronic and optoelectronic applications. Here, we report a type-III tunneling photodiode based on a 2D multilayered p-GeS/n+-SnSe2 heterostructure, which is first fabricated by the mechanical exfoliation and dry transfer method. Through the Simmons approximation, its various tunneling transport mechanisms dependent on bias and light are demonstrated as the origin of excellent bidirectional photoresponse performance. Moreover, compared to the traditional p-n photodiode, the device enables bidirectional photoresponse capability, including maximum responsivity values of 43 and 8.7 A/W at Vds = 1 and -1 V, respectively, with distinctive photoactive regions from the scanning photocurrent mapping. Noticeably, benefiting from the in-plane anisotropic structure of GeS, the device exhibits an enhanced photocurrent anisotropic ratio of 9, driven by the broader depletion region at Vds = -3 V under 635 nm irradiation. Above all, the results suggest that our designed architecture can be potentially applied to CMOS imaging sensors and polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Shengdi Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Jingyi Ma
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Nabuqi Bu
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Tao Zheng
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Jianru Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Jianming Huang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Xin Luo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, Faculty of Engineering, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
15
|
Cao H, Hu T, Zhang J, Zhao D, Chen Y, Wang X, Yang J, Zhang Y, Tang X, Bai W, Shen H, Wang J, Chu J. Electrically Tunable Multiple-Effects Synergistic and Boosted Photoelectric Performance in Te/WSe 2 Mixed-Dimensional Heterojunction Phototransistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400018. [PMID: 38502873 PMCID: PMC11165519 DOI: 10.1002/advs.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.
Collapse
Affiliation(s)
- Hechun Cao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Tao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jiyue Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dongyang Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Yan Chen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Xiaodong Tang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006P. R. China
| | - Wei Bai
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Hong Shen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
- Frontier Institute of Chip and SystemFudan UniversityShanghai200433P. R. China
| | - Junhao Chu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| |
Collapse
|
16
|
Li Z, Yan Y, Xu CY, Li Y, Geng Y. Nanoskiving of van der Waals Materials toward Edge/Basal Plane Contact Heterojunctions for High-Performance Photodetection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27640-27649. [PMID: 38759102 DOI: 10.1021/acsami.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
The unique features of edges in van der Waals materials may lead to edge-basal plane contacts that could provide new opportunities for electronic and optoelectronic devices. However, few studies have addressed edge/basal plane contact heterojunctions owing to the formidable challenges in integrating edges with the basal plane to form a heterojunction. Here, taking the example of black phosphorus (BP)/ReS2, a heterojunction with contact between the edge and the basal plane was successfully achieved by the introduction of a nanoskiving technique to fabricate BP edges with controlled orientation, followed by the dry transfer of a ReS2 flake. The deformation of BP during the nanoskiving process was clearly revealed, where interlayer slipping in the BP determined the formation of the edges. The edge/basal plane contact heterojunctions based on BP/ReS2 exhibited a reverse-rectifying behavior upon contact, and a high rectifying current was attributed to direct tunneling and Fowler-Nordheim tunneling in low and high bias regimes, respectively. As a photodetector, the heterojunction diode demonstrated an impressive responsivity of 65 A/W, a rapid response time (<10 ms), and polarization-sensitive detection under 532 nm illumination without gate biasing.
Collapse
Affiliation(s)
- Zihan Li
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| | - Yongda Yan
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| | - Cheng Yan Xu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Li
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanquan Geng
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, PR China
| |
Collapse
|
17
|
Li J, Tu P, Yang Q, Cui Y, Gao C, Zhou H, Lu J, Bian H. A novel type-II-II heterojunction for photocatalytic degradation of LEV based on the built-in electric field: carrier transfer mechanism and DFT calculation. Sci Rep 2024; 14:10643. [PMID: 38724634 PMCID: PMC11082242 DOI: 10.1038/s41598-024-60250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Heterojunctions play a crucial role in improving the absorption of visible light and performance of photocatalysts for organic contaminants degradation in water. In this work, a novel type-II-II Ag2CO3/Bi2WO6 (AB) heterojunction was synthesized by hydrothermal reaction and in situ-precipitation methods. The mechanisms of charge transfer and carrier separation at the interface of heterojunctions and the influence on the photocatalytic activity were investigated. The degradation of levofloxacin (LEV) under visible light irradiation was employed to evaluate the photocatalytic performance of AB. The results showed that 85.4% LEV was degraded by AB, which was 1.38 and 1.39 times higher than that of Bi2WO6 and Ag2CO3, respectively. The work functions of the different crystal planes in the AB heterojunction, which was calculated by density functional theory, are a significant difference. The Fermi energy (Ef) of Ag2CO3 (- 6.005 eV) is lower than Bi2WO6 (- 3.659 eV), but the conduction band (CB) is higher. Therefore, using AB heterojunctions as an example, the research explored the mechanism of type-II-II which CB and Ef of one semiconductor cannot simultaneously surpass those of another material, based on the built-in electric field theory. Through this analysis, a deeper understanding of type-II heterojunctions was achieved, and providing valuable insights into the behavior of this specific heterojunction system.
Collapse
Affiliation(s)
- Jiaquan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Peng Tu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Qian Yang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanjun Cui
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chenyang Gao
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hui Zhou
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Jun Lu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Hongxia Bian
- College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
18
|
Zhu T, Liu K, Zhang Y, Meng S, He M, Zhang Y, Yan M, Dong X, Li X, Jiang M, Xu H. Gate Voltage- and Bias Voltage-Tunable Staggered-Gap to Broken-Gap Transition Based on WSe 2/Ta 2NiSe 5 Heterostructure for Multimode Optoelectronic Logic Gate. ACS NANO 2024; 18:11462-11473. [PMID: 38632853 DOI: 10.1021/acsnano.4c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two-dimensional (2D) materials with superior properties exhibit tremendous potential in developing next-generation electronic and optoelectronic devices. Integrating various functions into one device is highly expected as that endows 2D materials great promise for more Moore and more-than-Moore device applications. Here, we construct a WSe2/Ta2NiSe5 heterostructure by stacking the p-type WSe2 and the n-type narrow gap Ta2NiSe5 with the aim to achieve a multifunction optoelectronic device. Owing to the large interface potential barrier, the heterostructure device reveals a prominent diode feature with a large rectify ratio (7.6 × 104) and a low dark current (10-12 A). Especially, gate voltage- and bias voltage-tunable staggered-gap to broken-gap transition is achieved on the heterostructure device, which enables gate voltage-tunable forward and reverse rectifying features. As results, the heterostructure device exhibits superior self-powered photodetection properties, including a high detectivity of 1.08 × 1010 Jones and a fast response time of 91 μs. Additionally, the intrinsic structural anisotropy of Ta2NiSe5 endows the heterostructure device with strong polarization-sensitive photodetection and high-resolution polarization imaging. Based on these characteristics, a multimode optoelectronic logic gate is realized on the heterostructure via synergistically modulating the light on/off, polarization angle, gate voltage, and bias voltage. This work shed light on the future development of constructing high-performance multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kai Liu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yao Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Si Meng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Mengfei He
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yingli Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Minglu Yan
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Xiaoxiang Dong
- Department of Physics, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Man Jiang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an 710069, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
19
|
Chen X, Zhang Q, Peng J, Gao W, Yang M, Yu P, Yao J, Liang Y, Xiao Y, Zheng Z, Li J. Ideal Photodetector Based on WS 2/CuInP 2S 6 Heterostructure by Combining Band Engineering and Ferroelectric Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13927-13937. [PMID: 38456299 DOI: 10.1021/acsami.3c16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Two-dimensional van der Waals (2D vdW) heterostructure photodetectors have garnered significant attention for their potential applications in next-generation optoelectronic systems. However, current 2D vdW photodetectors inevitably encounter compromises between responsivity, detectivity, and response time due to the absence of multilevel regulation for free and photoexcited carriers, thereby restricting their widespread applications. To address this challenge, we propose an efficient 2D WS2/CuInP2S6 vdW heterostructure photodetector by combining band engineering and ferroelectric modulation. In this device, the asymmetric conduction and valence band offsets effectively block the majority carriers (free electrons), while photoexcited holes are efficiently tunneled and rapidly collected by the bottom electrode. Additionally, the ferroelectric CuInP2S6 layer generates polarization states that reconfigure the built-in electric field, reducing dark current and facilitating the separation of photocarriers. Moreover, photoelectrons are trapped during long-distance lateral transport, resulting in a high photoconductivity gain. Consequently, the device achieves an impressive responsivity of 88 A W-1, an outstanding specific detectivity of 3.4 × 1013 Jones, and a fast response time of 37.6/371.3 μs. Moreover, the capability of high-resolution imaging under various wavelengths and fast optical communication has been successfully demonstrated using this device, highlighting its promising application prospects in future optoelectronic systems.
Collapse
Affiliation(s)
- Xiqiang Chen
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Qiyang Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Junhao Peng
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, Guangdong, P. R. China
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, Guangdong, P. R. China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Ying Liang
- The Basic Course Department, Guangzhou Maritime University, Guangzhou 510799, Guangdong, P. R. China
| | - Ye Xiao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| |
Collapse
|
20
|
Yuan X, Hu X, Lin Q, Zhang S. Progress of charge carrier dynamics and regulation strategies in 2D C xN y-based heterojunctions. Chem Commun (Camb) 2024; 60:2283-2300. [PMID: 38321964 DOI: 10.1039/d3cc05976f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Two-dimensional carbon nitrides (CxNy) have gained significant attention in various fields including hydrogen energy development, environmental remediation, optoelectronic devices, and energy storage owing to their extensive surface area, abundant raw materials, high chemical stability, and distinctive physical and chemical characteristics. One effective approach to address the challenges of limited visible light utilization and elevated carrier recombination rates is to establish heterojunctions for CxNy-based single materials (e.g. C2N3, g-C3N4, C3N4, C4N3, C2N, and C3N). The carrier generation, migration, and recombination of heterojunctions with different band alignments have been analyzed starting from the application of CxNy with metal oxides, transition metal sulfides (selenides), conductive carbon, and Cx'Ny' heterojunctions. Additionally, we have explored diverse strategies to enhance heterojunction performance from the perspective of carrier dynamics. In conclusion, we present some overarching observations and insights into the challenges and opportunities associated with the development of advanced CxNy-based heterojunctions.
Collapse
Affiliation(s)
- Xiaojia Yuan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xuemin Hu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Qiuhan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
21
|
Zhang X, Chen S, Ma H, Sun T, Cui X, Huo P, Man B, Yang C. Asymmetric Schottky Barrier-Generated MoS 2/WTe 2 FET Biosensor Based on a Rectified Signal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:226. [PMID: 38276744 PMCID: PMC10820193 DOI: 10.3390/nano14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.
Collapse
Affiliation(s)
- Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
22
|
Quan S, Li L, Guo S, Zhao X, Weller D, Wang X, Fu S, Liu R, Hao Y. SnS 2/MoS 2 van der Waals Heterostructure Photodetector with Ultrahigh Responsivity Realized by a Photogating Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59592-59599. [PMID: 38104345 DOI: 10.1021/acsami.3c13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Photoresponsivity is a fundamental parameter used to quantify the ability of photoelectric conversion of a photodetector device. High-responsivity photodetectors are essential for numerous optoelectronic applications. Due to the strong light-matter interactions and the high carrier mobility, two-dimensional (2D) materials are promising candidates for the next-generation photodetectors. However, poor light absorption, lack of photoconductive gain, and the interfacial recombination lead to the relatively low responsivity of 2D photodetectors. The photogating effect, which extends the lifetime of photoexcited carriers, provides a simple approach to enhance responsivity in photodetector devices. Here, the O2 plasma treatment introduced surface traps on the SnS2 surface, leading to a gate-tunable photogating effect in SnS2/MoS2 heterojunctions. The heterojunction device exhibits an ultrahigh responsibility of up to 28 A/W. Moreover, the photodetector possesses a wide spectral photoresponse spanning from 300 to 1100 nm and a high specific detectivity (D*) of 4 × 1011 Jones under a 532 nm laser at VDS = 1 V. These results demonstrate that O2 plasma treatment is an efficient and simple avenue to achieve photogating effects, which can be employed to enhance the performance of van der Waals heterostructure photodetector devices and make them suitable for future integration into advanced electronic and optoelectronic systems.
Collapse
Affiliation(s)
- Sufeng Quan
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Luyang Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shuai Guo
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Xiaoyu Zhao
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Dieter Weller
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Xuefeng Wang
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shiyou Fu
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Ruibin Liu
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yufeng Hao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Elahi E, Ahmad M, Dahshan A, Rabeel M, Saleem S, Nguyen VH, Hegazy HH, Aftab S. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics. NANOSCALE 2023; 16:14-43. [PMID: 38018395 DOI: 10.1039/d3nr04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDCs) with various physical characteristics have attracted significant interest from the scientific and industrial worlds in the years following Moore's law. The p-n junction is one of the earliest electrical components to be utilized in electronics and optoelectronics, and modern research on 2D materials has renewed interest in it. In this regard, device preparation and application have evolved substantially in this decade. 2D TMDCs provide unprecedented flexibility in the construction of innovative p-n junction device designs, which is not achievable with traditional bulk semiconductors. It has been investigated using 2D TMDCs for various junctions, including homojunctions, heterojunctions, P-I-N junctions, and broken gap junctions. To achieve high-performance p-n junctions, several issues still need to be resolved, such as developing 2D TMDCs of superior quality, raising the rectification ratio and quantum efficiency, and successfully separating the photogenerated electron-hole pairs, among other things. This review comprehensively details the various 2D-based p-n junction geometries investigated with an emphasis on 2D junctions. We investigated the 2D p-n junctions utilized in current rectifiers and photodetectors. To make a comparison of various devices easier, important optoelectronic and electronic features are presented. We thoroughly assessed the review's prospects and challenges for this emerging field of study. This study will serve as a roadmap for more real-world photodetection technology applications.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea.
| | - Muneeb Ahmad
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - A Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Muhammad Rabeel
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - Sidra Saleem
- Division of Science Education, Department of Energy Storage/Conversion Engineering for Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van Huy Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and H.M.C., Sejong University, Seoul 05006, South Korea
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea.
| |
Collapse
|
24
|
Wang S, Bai Y, Liu M, Zong X, Wang W, Mu Q, Han T, Li F, Wang S, Shan L, Long M. A high-performance long-wave infrared photodetector based on a WSe 2/PdSe 2 broken-gap heterodiode. NANOSCALE 2023; 15:17006-17013. [PMID: 37831435 DOI: 10.1039/d3nr03248e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Layered narrow bandgap quasi-two-dimensional (2D) transition metal dichalcogenides (TMDs) demonstrated excellent performance in long-wave infrared (LWIR) detection. However, the low light on/off ratio and specific detectivity (D*) due to the high dark current of the device fabricated using a single narrow bandgap material hindered its wide application. Herein, we report a type-III broken-gap band-alignment WSe2/PdSe2 van der Waals (vdW) heterostructure. The heterodiode device has a prominently low dark current and exhibits a high photoresponsivity (R) of 55.3 A W-1 and a high light on/off ratio >105 in the visible range. Notably, the WSe2/PdSe2 heterodiode shows an excellent uncooled LWIR response, with an R of ∼0.3 A W-1, a low noise equivalence power (NEP) of 4.5 × 10-11 W Hz-1/2, and a high D* of 1.8 × 108 cm Hz1/2 W-1. This work provides a new approach for designing high-performance room-temperature operational LWIR photodetectors.
Collapse
Affiliation(s)
- Suofu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Yajie Bai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Mingli Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Xiaolan Zong
- Institute for Quantum Control and Quantum Information, School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Wenhui Wang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qingge Mu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Shaoliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China.
| |
Collapse
|
25
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
26
|
Yuan H, Xu R, Ren J, Yang J, Wang S, Tian D, Fu Y, Li Q, Peng X, Wang X. Anisotropic charge transfer and gate tuning for p-SnS/n-MoS 2 vertical van der Waals diodes. NANOSCALE 2023; 15:15344-15351. [PMID: 37698246 DOI: 10.1039/d3nr03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
2D-material-based van der Waals heterostructures (vdWhs) have shown great potential in next-generation multi-functional microelectronic devices. Thanks to their sharp interface and ultrathin thickness, 2D p-n junctions with high rectification properties have been established by combining p-type monochalcogenides with n-type transition metal dichalcogenides. However, the anisotropic rectification together with the charge transfer and gate effect has not been clarified. Herein, the electrical anisotropy of p-SnS/n-MoS2 diodes was studied. Optimum ideality factors within 1.08-1.18 have been achieved for the diode with 6.6 nm thick SnS on monolayer MoS2, and a high rectification ratio of 3.1 × 104 with strong in-plane anisotropy is observed along the zigzag direction of SnS. A strong gate effect on the anisotropic series resistance has been verified and an effective tuning over the transport length of the SnS channel can be established through adjustment of the current orientation and gate voltage. A thickness-dependent minority carrier transport mechanism has also been demonstrated for the reverse drain current, and Fowler-Nordheim tunneling and direct tunneling are proposed for the increase of the reverse current of the thicker and thinner diodes, respectively. This work will provide another strategy for high-performance diodes based on vdWhs via the control of the current orientation and the gate effect.
Collapse
Affiliation(s)
- Hui Yuan
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Ruihan Xu
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Jiale Ren
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Jielin Yang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Shouyang Wang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Dongwen Tian
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Yingshuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Xiaoniu Peng
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| | - Xina Wang
- School of Physics and Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
27
|
Xia R, Peng Y, Fang L, Meng X. Electrical field and biaxial strain tunable electronic properties of the PtSe 2/Hf 2CO 2 heterostructure. RSC Adv 2023; 13:26812-26821. [PMID: 37701500 PMCID: PMC10495041 DOI: 10.1039/d3ra04363k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
The structure and electronic properties of two-dimensional vertical van der Waals PtSe2/Hf2CO2 heterostructure have been investigated based on first-principles calculations. The results show that the PtSe2 and Hf2CO2 monolayers form a type-I heterostructure with both the conduction band minimum (CBM) and valence band maximum (VBM) located at the Hf2CO2 layer. The electronic properties of PtSe2/Hf2CO2 heterostructure can be effectively adjusted by applying external electric field or biaxial strain. The transition in band alignment from type-I to type-II can be manipulated by controlling the strength and direction of the electric field. Additionally, the transition from type-I to type-II have also taken place under the strains, and the band gap of the PtSe2/Hf2CO2 heterostructure decreases with increasing the compressive or tensible strain. Under a strong strain of -8%, the PtSe2/Hf2CO2 heterostructure can transform from semiconductor to metal. These findings provide a promising method to tune the electronic properties of PtSe2/Hf2CO2 heterostructure and design a new vdW heterostructure in the applications for electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Ruizhe Xia
- School of Science, Hubei University of Technology Wuhan 430068 P. R. China
| | - Yi Peng
- School of Science, Hubei University of Technology Wuhan 430068 P. R. China
| | - Li Fang
- School of Science, Hubei University of Technology Wuhan 430068 P. R. China
| | - Xuan Meng
- School of Science, Hubei University of Technology Wuhan 430068 P. R. China
| |
Collapse
|
28
|
Zhang J, Duan L, Zhou N, Zhang L, Shang C, Xu H, Yang R, Wang X, Li X. Modulating the Function of GeAs/ReS 2 van der Waals Heterojunction with its Potential Application for Short-Wave Infrared and Polarization-Sensitive Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303335. [PMID: 37154239 DOI: 10.1002/smll.202303335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Van der Waals heterojunction (vdWs) of 2D materials with integrated or extended superior characteristics, opening up new opportunities in functional electronic and optoelectric device applications. Exploring methods to achieve multifunctional vdWs heterojunction devices is one of the most promising prospects in this area. Herein, a diverse function of forward rectifying diode, Zener tunneling diode, and backward rectifying diodes are realized in GeAs/ReS2 heterojunction by modulating the doping level of GeAs. The tunneling diode presents an interesting trend forward negative differential resistance (NDR) behavior which may facilitate the application of multi-value logic. More importantly, the GeAs/ReS2 forward rectifying diode exhibits highly sensitive photodetection in the wide-spectrum range up to 1550 nm corresponding to a short-wave infrared (SWIR) region. In addition, as two strong anisotropic 2D materials of GeAs and ReS2 , the heterojunction exhibits strong polarization-sensitive photodetection behavior with a dichroic photocurrent ratio of 1.7. This work provides an effective strategy to achieve multifunctional 2D vdW heterojunction devices and develops more possibilities to broaden their functionalities and applications.
Collapse
Affiliation(s)
- Jianbin Zhang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Linfan Duan
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Nan Zhou
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Lihui Zhang
- Xi'an Thermal Power Research Institute Co., Ltd., Xi'an, 710054, P. R. China
| | - Conghui Shang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rusen Yang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| |
Collapse
|
29
|
Huang Z, Luo Z, Deng Z, Yang M, Gao W, Yao J, Zhao Y, Dong H, Zheng Z, Li J. Integration of Self-Passivated Topological Electrodes for Advanced 2D Optoelectronic Devices. SMALL METHODS 2023; 7:e2201571. [PMID: 36932942 DOI: 10.1002/smtd.202201571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
With the rapid development of two-dimensional semiconductor technology, the inevitable chemical disorder at a typical metal-semiconductor interface has become an increasingly serious problem that degrades the performance of 2D semiconductor optoelectronic devices. Herein, defect-free van der Waals contacts have been achieved by utilizing topological Bi2 Se3 as the electrodes. Such clean and atomically sharp contacts avoid the consumption of photogenerated carriers at the interface, enabling a markedly boosted sensitivity as compared to counterpart devices with directly deposited metal electrodes. Typically, the device with 2D WSe2 channel realizes a high responsivity of 20.5 A W-1 , an excellent detectivity of 2.18 × 1012 Jones, and a fast rise/decay time of 41.66/38.81 ms. Furthermore, high-resolution visible-light imaging capability of the WSe2 device is demonstrated, indicating its promising application prospect in future optoelectronic systems. More inspiringly, the topological electrodes are universally applicable to other 2D semiconductor channels, including WS2 and InSe, suggesting its broad applicability. These results open fascinating opportunities for the development of high-performance electronics and optoelectronics.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ziwen Deng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huafeng Dong
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, 510631, P. R. China
| |
Collapse
|
30
|
Yan Y, Li M, Xia K, Yang K, Wu D, Li L, Fei G, Gan W. A two-dimensional Te/ReS 2 van der Waals heterostructure photodetector with high photoresponsivity and fast photoresponse. NANOSCALE 2023; 15:7730-7736. [PMID: 37060126 DOI: 10.1039/d2nr07185a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) semiconductors are the building blocks for high-performance optoelectronic devices. However, the performance of photoconductive photodetectors based on 2D semiconductors is hampered by low photoresponsivity and large dark current. Herein, a van der Waals heterostructure (vdWH) composed of rhenium disulfide (ReS2) and tellurium (Te) is fabricated. The Te/ReS2 vdWH photodetector exhibits a sensitive and broadband photoresponse and has high photoresponse on/off ratios under ultraviolet and visible light illumination, especially over 102 in visible light. The Te/ReS2 vdWH photodetector achieves the responsivity of 7.9 A W-1 at 365 nm, 3.02 A W-1 at 450 nm, 2.37 A W-1 at 532 nm, and 2.45 A W-1 at 660 nm. In addition, the device achieves a high specific detectivity of 1011 Jones and a fast photoresponse speed of 11.9 μs. Such high responsivity could be attributed to the efficient absorption of phonons by the Te/ReS2 vdWH and the high-quality heterostructure interfaces with a small amount of trap states. The highly crystalline structure of Te/ReS2 with a low density of defects reduces the grain boundary scattering, leading to the rapid diffusion of charge carriers. Moreover, the Te/ReS2 vdWH device exhibits a photovoltaic effect and can be employed as a self-powered photodetector (SPPD), which is sensitive to visible light of 450 nm, 532 nm, and 660 nm. Our findings demonstrate that the Te/ReS2 vdWH photodetector is an ideal building block for the next-generation electronic and optoelectronic devices in practical applications.
Collapse
Affiliation(s)
- Yafei Yan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Minxin Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Kai Xia
- University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Kemeng Yang
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Dun Wu
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| | - Liang Li
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guangtao Fei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Wei Gan
- Institute of Physical Science and Information Technology and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China.
| |
Collapse
|
31
|
Dan Z, Yang B, Song Q, Chen J, Li H, Gao W, Huang L, Zhang M, Yang M, Zheng Z, Huo N, Han L, Li J. Type-II Bi 2O 2Se/MoTe 2 van der Waals Heterostructure Photodetectors with High Gate-Modulation Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18101-18113. [PMID: 36989425 DOI: 10.1021/acsami.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, two-dimensional (2D) nonlayered Bi2O2Se-based electronics and optoelectronics have drawn enormous attention owing to their high electron mobility, facile synthetic process, stability to the atmosphere, and moderate narrow band gaps. However, 2D Bi2O2Se-based photodetectors typically present large dark current, relatively slow response speed, and persistent photoconductivity effect, limiting further improvement in fast-response imaging sensors and low-consumption broadband detection. Herein, a Bi2O2Se/2H-MoTe2 van der Waals (vdWs) heterostructure obtained from the chemical vapor deposition (CVD) approach and vertical stacking is reported. The proposed type-II staggered band alignment desirable for suppression of dark current and separation of photoinduced carriers is confirmed by density functional theory (DFT) calculations, accompanied by strong interlayer coupling and efficient built-in potential at the junction. Consequently, a stable visible (405 nm) to near-infrared (1310 nm) response capability, a self-driven prominent responsivity (R) of 1.24 A·W-1, and a high specific detectivity (D*) of 3.73 × 1011 Jones under 405 nm are achieved. In particular, R, D*, fill factor, and photoelectrical conversion efficiency (PCE) can be enhanced to 4.96 A·W-1, 3.84 × 1012 Jones, 0.52, and 7.21% at Vg = -60 V through a large band offset originated from the n+-p junction. It is suggested that the present vdWs heterostructure is a promising candidate for logical integrated circuits, image sensors, and low-power consumption detection.
Collapse
Affiliation(s)
- Zhiying Dan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Baoxiang Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Qiqi Song
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianru Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Hengyi Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Le Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Menglong Zhang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Lixiang Han
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Jingbo Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
32
|
Luo Z, Xu H, Gao W, Yang M, He Y, Huang Z, Yao J, Zhang M, Dong H, Zhao Y, Zheng Z, Li J. High-Performance and Polarization-Sensitive Imaging Photodetector Based on WS 2 /Te Tunneling Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207615. [PMID: 36605013 DOI: 10.1002/smll.202207615] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Next-generation imaging systems require photodetectors with high sensitivity, polarization sensitivity, miniaturization, and integration. By virtue of their intriguing attributes, emerging 2D materials offer innovative avenues to meet these requirements. However, the current performance of 2D photodetectors is still below the requirements for practical application owing to the severe interfacial recombination, the lack of photoconductive gain, and insufficient photocarrier collection. Here, a tunneling dominant imaging photodetector based on WS2 /Te heterostructure is reported. This device demonstrates competitive performance, including a remarkable responsivity of 402 A W-1 , an outstanding detectivity of 9.28 × 1013 Jones, a fast rise/decay time of 1.7/3.2 ms, and a high photocurrent anisotropic ratio of 2.5. These outstanding performances can be attributed to the type-I band alignment with carrier transmission barriers and photoinduced tunneling mechanism, allowing reduced interfacial trapping effect, effective photoconductive gains, and anisotropic collection of photocarriers. Significantly, the constructed photodetector is successfully integrated into a polarized light imaging system and an ultra-weak light imaging system to illustrate the imaging capability. These results suggest the promising application prospect of the device in future imaging systems.
Collapse
Affiliation(s)
- Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huakai Xu
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, Guangdong, 510631, P. R. China
| |
Collapse
|
33
|
Ahmad W, Wu J, Zhuang Q, Neogi A, Wang Z. Research Process on Photodetectors based on Group-10 Transition Metal Dichalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207641. [PMID: 36658722 DOI: 10.1002/smll.202207641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiandong Zhuang
- Physics Department, Lancaster University, Lancaster, LA14YB, UK
| | - Arup Neogi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
34
|
Tang K, Jiang M, Yang B, Xu T, Liu Z, Wan P, Kan C, Shi D. Enhancing UV photodetection performance of an individual ZnO microwire p-n homojunction via interfacial engineering. NANOSCALE 2023; 15:2292-2304. [PMID: 36636950 DOI: 10.1039/d2nr06431f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a typical broad bandgap semiconductor, ZnO has received considerable attention for developing optoelectronic devices in ultraviolet wavelengths, but suffers from a lack of high-quality single-crystalline p-type ZnO. Herein, we report the realization of a homojunction ultraviolet photodetector, which involves a p-type Sb-doped ZnO microwire (ZnO:Sb MW) and n-type ZnO layer. The p-type conductivity of the as-synthesized ZnO:Sb MWs was evidenced using an individual wire field-effect transistor. Due to its good rectifying ability and excellent photovoltaic effect, the constructed p-ZnO:Sb MW/n-ZnO homojunction is able to work as an ultraviolet photodetector in self-biased and reversely biased manners. By appropriately engineering the band alignment of the p-ZnO:Sb/n-ZnO homojunction via a MgO interface modification layer, the optimized photodetector exhibits performance-enhanced ultraviolet detection capabilities, such as the light on/off ratio reaching up to 1.6 × 108, responsivity of over 267 mA W-1 and specific detectivity of approximately 1.2 × 1014 Jones upon 365 nm light illumination at 0 V. The detector also produces faster response with rise/recovery times of 102 μs/3.6 ms. This study not only employed a novel method to synthesize genuine p-type ZnO with excellent stability and reproducibility, but also opened up substantial opportunities for developing high-performance ZnO homojunction optoelectronic devices.
Collapse
Affiliation(s)
- Kai Tang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Mingming Jiang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Bingwang Yang
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Tong Xu
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Zeng Liu
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Peng Wan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Caixia Kan
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| | - Daning Shi
- College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.
| |
Collapse
|
35
|
Huang Z, Zhou Y, Luo Z, Yang Y, Yang M, Gao W, Yao J, Zhao Y, Yang Y, Zheng Z, Li J. Integration of photovoltaic and photogating effects in a WSe 2/WS 2/p-Si dual junction photodetector featuring high-sensitivity and fast-response. NANOSCALE ADVANCES 2023; 5:675-684. [PMID: 36756495 PMCID: PMC9891068 DOI: 10.1039/d2na00552b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/26/2022] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) material-based van der Waals (vdW) heterostructures with exotic semiconducting properties have shown tremendous potential in next-generation photovoltaic photodetectors. Nevertheless, these vdW heterostructure devices inevitably suffer from a compromise between high sensitivity and fast response. Herein, an ingenious photovoltaic photodetector based on a WSe2/WS2/p-Si dual-vdW heterojunction is demonstrated. First-principles calculations and energy band profiles consolidate that the photogating effect originating from the bottom vdW heterojunction not only strengthens the photovoltaic effect of the top vdW heterojunction, but also suppresses the recombination of photogenerated carriers. As a consequence, the separation of photogenerated carriers is facilitated and their lifetimes are extended, resulting in higher photoconductive gain. Coupled with these synergistic effects, this WSe2/WS2/p-Si device exhibits both high sensitivity (responsivity of 340 mA W-1, a light on/off ratio greater than 2500, and a detectivity of 3.34 × 1011 Jones) and fast response time (rise/decay time of 657/671 μs) under 405 nm light illumination in self-powered mode. Finally, high-resolution visible-light and near-infrared imaging capabilities are demonstrated by adopting this dual-heterojunction device as a single pixel, indicating its great application prospects in future optoelectronic systems.
Collapse
Affiliation(s)
- Zihao Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University Guangzhou 510275 Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Yuchen Zhou
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
- Honor Device Co.,Ltd Shenzhen 518000 Guangdong P. R. China
| | - Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Yibing Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Mengmeng Yang
- Institute of Semiconductors, South China Normal University Foshan 528225 Guangdong P. R. China
| | - Wei Gao
- Institute of Semiconductors, South China Normal University Foshan 528225 Guangdong P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University Guangzhou 510275 Guangdong P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Yuhua Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University Guangzhou 510275 Guangdong P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University Foshan 528225 Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology Guangzhou 510631 P. R. China
| |
Collapse
|
36
|
Li J, Cao D, Chen F, Wu D, Yan Y, Du J, Yang J, Tian Y, Li X, Lin P. Polarity-Reversible Te/WSe 2 van der Waals Heterodiode for a Logic Rectifier and Polarized Short-Wave Infrared Photodetector. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53202-53212. [PMID: 36395442 DOI: 10.1021/acsami.2c17331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As a p-type elemental material with high carrier mobility, superior ambient stability, and anisotropic crystal structure, emerging two-dimensional (2D) tellurium (Te) has been considered a successor to black phosphorus for developing infrared-related optoelectronics. Nevertheless, the lack of a scalable thickness engineering strategy remains an obstacle to unleashing its full potential. Te-based electronics with logic functions are also less explored. Herein, we propose a novel wet-chemical thinning method for 2D Te, with the merits of scalability and site-specific thickness patterning capability. A polarity-switchable van der Waals (vdW) heterodiode with a high rectification ratio of 2.4 × 103 is realized on the basis of Te/WSe2. The electronic application of this unique characteristic is demonstrated by fabricating a logic half-wave rectifier, in which the rectifying states are switchable via electrostatic gating control. Besides, the narrow band gap of Te endows the device with a broad spectral response from visible to short-wave infrared. The room-temperature responsivity reaches 5.2 A W-1 at the telecom wavelength of 1.55 μm, with an external quantum efficiency of 420% and detectivity of 6.8 × 109 Jones. In particular, owing to the intrinsic in-plane anisotropy of Te, the device exhibits a favorable photocurrent anisotropic ratio of ∼3. Our study demonstrates the enormous potential of Te for novel electronics, promoting the development of elemental 2D materials.
Collapse
Affiliation(s)
- Juanjuan Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Dingwen Cao
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Fangfang Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yong Yan
- School of Physics, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junli Du
- State Grid Henan Electric Power Research Institute, Zhengzhou, Henan 450052, People's Republic of China
| | - Jinke Yang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Yongtao Tian
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
37
|
Li Y, Yin S, Du Y, Zhang H, Chen J, Wang Z, Wang S, Qin Q, Zhou M, Li L. Liquid-metal based flexible a-IZTO ultrathin films for electrical and optical applications. NANOSCALE 2022; 14:16797-16805. [PMID: 36346285 DOI: 10.1039/d2nr04535d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amorphous indium zinc tin oxide (a-IZTO) is a kind of transparent conductive oxide (TCO), which can be used in transparent electrodes, transistors, and flexible devices. At present, a key limitation of a-IZTO is the costly vacuum manufacturing technology, and its commercial production is also restricted by the complex raw material preparation process. In this article, we report a liquid metal-based van der Waals (vdW) exfoliation technique by which a-IZTO films with several nanometres thickness are fabricated. The a-IZTO films fabricated in ambient air have a size on the centimeter scale and an optical transmittance of 99.64%; they are also large-area flexible oxide films. In order to illustrate the capabilities of this technology, we fabricated thin film transistors (TFTs) and photodetectors based on a-IZTO films. An a-IZTO thin film transistor (TFT) has an on/off ratio of 106. When the Vds is 5 V, the responsivity, detectivity and external quantum efficiency of an a-IZTO photodetector are 7.57 × 104 A W-1, 4.00 × 1015 Jones and 3.68 × 105%, respectively, exhibiting one of the top performances in this field.
Collapse
Affiliation(s)
- Ying Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Shiqi Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Yuchen Du
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Hui Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Zihan Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Shaotian Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Qinggang Qin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Liang Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China.
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
| |
Collapse
|
38
|
Zhang Y, Shen W, Wu S, Tang W, Shu Y, Ma K, Zhang B, Zhou P, Wang S. High-Speed Transition-Metal Dichalcogenides Based Schottky Photodiodes for Visible and Infrared Light Communication. ACS NANO 2022; 16:19187-19198. [PMID: 36305492 DOI: 10.1021/acsnano.2c08394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to their atomically ultrathin thickness, the development of high-performance transition-metal dichalcogenides (TMDCs) based photodetectors demands device designs distinct from architectures adopted in conventional bulk semiconductor devices. Here, we demonstrate a field-induced Schottky barrier photodiode with three different TMDC materials, WSe2, MoTe2, and WS2. Owing to the high gate efficiency of a high-κ dielectric film, the Schottky barrier at metal contacts is effectively modulated by external bias, giving rise to a strong diode-like rectifying characteristic with high current on/off ratio. The WSe2 photodiode shows a linear dynamic range of 112 dB, a responsivity of 0.17 A/W, and response time of 8 ns. When this fast WSe2 device is employed for visible light communication data linking, a maximum real-time data transmission rate of 110 Mbps is achieved. Meanwhile, infrared light communication was also realized with a maximum data rate of 30 Mbps using a field-induced MoTe2 Schottky barrier photodiode as a light sensor. This work provides a general CMOS-compatible and controllable fabrication strategy for TMDC-based photodetectors.
Collapse
Affiliation(s)
- Youwei Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen518057, China
| | - Wang Shen
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Su Wu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Weijia Tang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yantao Shu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Kankan Ma
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Butian Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai200433, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen518057, China
| |
Collapse
|
39
|
Zhang H, Wang Z, Chen J, Tan C, Yin S, Zhang H, Wang S, Qin Q, Li L. Type-I PtS 2/MoS 2 van der Waals heterojunctions with tunable photovoltaic effects and high photosensitivity. NANOSCALE 2022; 14:16130-16138. [PMID: 36239166 DOI: 10.1039/d2nr04231b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advances in two-dimensional (2D) materials play an essential role in boosting modern electronics and optoelectronics. Thus far, transition metal dichalcogenides (TMDs) as emerging members of 2D materials, and the van der Waals heterostructures (vdWHs) based on TMDs have been extensively investigated owing to their prominent capabilities and unique crystal structures. In this work, an original vdWH composed of molybdenum disulfide (MoS2) and platinum disulfide (PtS2) was comprehensively studied as a field-effect transistor (FET) and photodetector. A gate-tunable rectifying behavior was obtained, stemming from the band design of PtS2/MoS2 vdWH. Upon 685 nm laser illumination, it also exhibited a superior photodetection performance with a distinctly high photoresponsivity of 403 A W-1, a comparable detectivity of 1.07 × 1011 Jones, and an excellent external quantum efficiency of 7.32 × 104%. More importantly, fast rise (24 ms) and decay (21 ms) times were obtained under 685 nm light illumination attributed to the unilateral depletion region structure. Further, the photovoltaic effect and photocurrent of the heterojunction could be modulated by a back gate voltage. All these results indicated that such 2D-TMD-based vdWHs provide a new idea for realizing high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chaoyang Tan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hanlin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shaotian Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
40
|
Cao X, Lei Z, Zhao S, Tao L, Zheng Z, Feng X, Li J, Zhao Y. Te/SnS 2 tunneling heterojunctions as high-performance photodetectors with superior self-powered properties. NANOSCALE ADVANCES 2022; 4:4296-4303. [PMID: 36321139 PMCID: PMC9552753 DOI: 10.1039/d2na00507g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The tunneling heterojunctions made of two-dimensional (2D) materials have been explored to have many intriguing properties, such as ultrahigh rectification and on/off ratio, superior photoresponsivity, and improved photoresponse speed, showing great potential in achieving multifunctional and high-performance electronic and optoelectronic devices. Here, we report a systematic study of the tunneling heterojunctions consisting of 2D tellurium (Te) and Tin disulfide (SnS2). The Te/SnS2 heterojunctions possess type-II band alignment and can transfer to type-III one under reverse bias, showing a reverse rectification ratio of about 5000 and a current on/off ratio over 104. The tunneling heterojunctions as photodetectors exhibit an ultrahigh photoresponsivity of 50.5 A W-1 in the visible range, along with a dramatically enhanced photoresponse speed. Furthermore, due to the reasonable type-II band alignment and negligible band bending at the interface, Te/SnS2 heterojunctions at zero bias exhibit excellent self-powered performance with a high responsivity of 2.21 A W-1 and external quantum efficiency of 678%. The proposed heterostructure in this work provides a useful guideline for the rational design of a high-performance self-powered photodetector.
Collapse
Affiliation(s)
- Xuanhao Cao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zehong Lei
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Shuting Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Jingbo Li
- Guangdong Key Lab of Chip and Integration Technology, Institute of Semiconductors, South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
41
|
Li G, Chen Z, Zhang H, Yu M, Zhang H, Chen J, Wang Z, Yin S, Lin W, Gong P, Zeng L, Zhu X, Wei W, Tian M, Li L. Abnormal linear dichroism transition in two-dimensional PdPS. NANOSCALE 2022; 14:14129-14134. [PMID: 36111459 DOI: 10.1039/d2nr03587a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The linear dichroism (LD) conversion shows promising applications for polarized detectors, optical transition and light propagation. However, polarity reversal always occurs at a certain wavelength in LD materials, which can only distinguish two wavelength bands as wavelength-selective photodetectors. In this study, the multi-degree-of-freedom of optical anisotropy based on 2D PdPS flakes is carefully described, in which four critical switching wavelengths are observed. Remarkably, the quadruple LD conversion shows a significant wavelength-dependent behavior, allowing us to pinpoint five wavelength bands, 200-239 nm, 239-259 nm, 259-469 nm, 469-546 nm, and 546-700 nm, for a wavelength-selective approach to photodetectors. In addition, the polarized photoresponse under 532 nm was realized with an anisotropy factor of ∼1.51 and further illustrated the in-plane anisotropy. Raman spectroscopy of PdPS flakes also shows strong phonon anisotropy. The unique wavelength-selective property shows great potential for the miniaturization and integration of photodetectors.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, P. R. China.
| | - Hanlin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Mengxi Yu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hui Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawnag Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zihan Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shiqi Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weichang Lin
- Applied Physics and Applied Mathematics Department, Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - Penglai Gong
- Key Laboratory of Optic-Electronic Information and Materials of Hebei Province, Institute of Life Science and Green Development, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Longhui Zeng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiangde Zhu
- High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, P. R. China.
| | - Wensen Wei
- High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, P. R. China.
| | - Mingliang Tian
- High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, P. R. China.
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
42
|
Yan Q, Cheng J, Wang W, Sun M, Yin Y, Peng Y, Zhou W, Tang D. Ferroelectric-gated MoSe 2photodetectors with high photoresponsivity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:475703. [PMID: 36150377 DOI: 10.1088/1361-648x/ac94af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ferroelectric transistors with semiconductors as the channel material and ferroelectrics as the gate insulator have potential applications in nanoelectronics. We report in-situ modulation of optoelectronic properties of MoSe2thin flakes on ferroelectric 0.7PbMg1/3Nb2/3O3-0.3PbTiO3(PMN-PT). Under the excitation of 638 nm laser, the photoresponsivity can be greatly boosted to 59.8 A W-1and the detectivity to 3.2 × 1010Jones, with the improvement rates of about 1500% and 450%, respectively. These results suggest hybrid structure photodetector of two-dimensional layered material and ferroelectric has great application prospects in photoelectric detector.
Collapse
Affiliation(s)
- Qijie Yan
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Jiaxin Cheng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Weike Wang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Nanchang Institute of Technology, Nanchang, Jiangxi 330044, People's Republic of China
| | - Mengjiao Sun
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yanling Yin
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yuehua Peng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Weichang Zhou
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Electronics Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
43
|
Fan JL, Hu XF, Qin WW, Liu ZY, Liu YS, Gao SJ, Tan LP, Yang JL, Luo LB, Zhang W. UV-light-assisted gas sensor based on PdSe 2/InSe heterojunction for ppb-level NO 2 sensing at room temperature. NANOSCALE 2022; 14:13204-13213. [PMID: 36047737 DOI: 10.1039/d2nr03881a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fabrication of van der Waals (vdWs) heterostructures mainly extends to two-dimensional (2D) materials. Nevertheless, the current processes for obtaining high-quality 2D films are mainly exfoliated from their bulk counterparts or by high-temperature chemical vapor deposition (CVD), which limits industrial production and is often accompanied by defects. Herein, we first fabricated the type-II p-PdSe2/n-InSe vdWs heterostructure using the ultra-high vacuum laser molecular beam epitaxy (LMBE) technique combined with the vertical 2D stacking strategy, which is reproducible and suitable for high-volume manufacturing. This work found that the introduction of 365 nm UV light illumination can significantly improve the electrical transport properties and NO2 sensing performance of the PdSe2/InSe heterojunction-based device at room temperature (RT). The detailed studies confirm that the sensor based on the PdSe2/InSe heterojunction delivers the comparable sensitivity (Ra/Rg = ∼2.6 at 10 ppm), a low limit of detection of 52 ppb, and excellent selectivity for NO2 gas under UV light illumination, indicating great potential for NO2 detection. Notably, the sensor possesses fast response and full recovery properties (275/1078 s) compared to the results in the dark. Furthermore, the mechanism of enhanced gas sensitivity was proposed based on the energy band alignment of the PdSe2/InSe heterojunction with the assistance of investigating the surface potential variations. This work may pave the way for the development of high-performance, room-temperature gas sensors based on 2D vdWs heterostructures through the LMBE technique.
Collapse
Affiliation(s)
- Jin-Le Fan
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Xue-Feng Hu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Wei-Wei Qin
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Zhi-Yuan Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Yan-Song Liu
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Shou-Jing Gao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Li-Ping Tan
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Ji-Lei Yang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| | - Lin-Bao Luo
- School of Microelectronics, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Wei Zhang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China.
- Academy of Optoelectronic Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui Province, 230009, P. R. China
| |
Collapse
|
44
|
Wang C, Ni H, Dai J, Liu T, Wu Z, Chen X, Dong Z, Qian J, Wu Z. Comparison of highly active Type-I and Type-II heterojunction photocatalytic composites synthesized by electrospinning for humic acid degradation. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Luo Z, Yang M, Wu D, Huang Z, Gao W, Zhang M, Zhou Y, Zhao Y, Zheng Z, Li J. Rational Design of WSe 2 /WS 2 /WSe 2 Dual Junction Phototransistor Incorporating High Responsivity and Detectivity. SMALL METHODS 2022; 6:e2200583. [PMID: 35871503 DOI: 10.1002/smtd.202200583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The excellent semiconducting properties and ultrathin morphological characteristics allow van der Waals (vdW) heterostructures based on 2D materials to be promising channel materials for the next-generation optoelectronic devices, especially in photodetectors. Although various 2D heterostructure-based photodetectors have been developed, the unavoidable trade-off between responsivity and detectivity remains a critical issue for these devices. Here, an ingenious phototransistor based on WSe2 /WS2 /WSe2 dual-vdW heterostructures is constructed, performing both high responsivity and detectivity. In the charge neutrality point (gate voltage of -15 V and bias voltage of 1 V), this device demonstrates a pronounced photosensitivity, accompanying with high detectivity of 1.9 × 1014 Jones, high responsivity of 35.4 A W-1 , and fast rise/fall time of 3.2/2.5 ms at 405 nm with power density of 60 µW cm-2 . Density functional theory calculations, energy band profiles, and optoelectronic characteristics jointly verify that the high performance is ascribed to the distinctive device design, which not only facilitates the separation of photogenerated carriers but also produces a strong photogating effect. As a feasible application, an automotive radar system is demonstrated, proving that the device has considerable potential for application in vehicle intelligent assisted driving.
Collapse
Affiliation(s)
- Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Dongsi Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei Gao
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
| | - Menglong Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
| | - Yuchen Zhou
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, Guangdong, 510631, P. R. China
| |
Collapse
|
46
|
Wang Z, Zhang H, Wang W, Tan C, Chen J, Yin S, Zhang H, Zhu A, Li G, Du Y, Wang S, Liu F, Li L. Type-I Heterostructure Based on WS 2/PtS 2 for High-Performance Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37926-37936. [PMID: 35961962 DOI: 10.1021/acsami.2c08827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
van der Waals (vdW) heterodiodes composed of two-dimensional (2D) layered materials led to a new prospect in photoelectron diodes and photovoltaic devices. Existing studies have shown that Type-I heterostructures have great potential to be used as photodetectors; however, the tunneling phenomena in Type-I heterostructures have not been fully revealed. Herein, a highly efficient nn+ WS2/PtS2 Type-I vdW heterostructure photodiode is constructed. The device shows an ultrahigh reverse rectification ratio of 105 owing to the transmission barrier-induced low reverse current. A unilateral depletion region is formed on WS2, which inhibits the recombination of carriers at the interface and makes the external quantum efficiency (EQE) of the device reach 67%. Due to the tunneling mechanism of the device, which allows the co-existence of a large photocurrent and a low dark current, this device achieves a light on/off ratio of over 105. In addition, this band design allows the device to maintain a high detectivity of 4.53 × 1010 Jones. Our work provides some new ideas for exploring new high-efficiency photodiodes.
Collapse
Affiliation(s)
- Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Weike Wang
- Nanchang Institute of Technology, Nanchang 330044, P. R. China
| | - Chaoyang Tan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hanlin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Ankang Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Gang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuchen Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shaotian Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Fengguang Liu
- Hefei Innovation Research Institute, School of Microelectronics, Beihang University, Hefei 230013, P. R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
47
|
Wang W, Wang W, Meng Y, Quan Q, Lai Z, Li D, Xie P, Yip S, Kang X, Bu X, Chen D, Liu C, Ho JC. Mixed-Dimensional Anti-ambipolar Phototransistors Based on 1D GaAsSb/2D MoS 2 Heterojunctions. ACS NANO 2022; 16:11036-11048. [PMID: 35758898 DOI: 10.1021/acsnano.2c03673] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incapability of modulating the photoresponse of assembled heterostructure devices has remained a challenge for the development of optoelectronics with multifunctionality. Here, a gate-tunable and anti-ambipolar phototransistor is reported based on 1D GaAsSb nanowire/2D MoS2 nanoflake mixed-dimensional van der Waals heterojunctions. The resulting heterojunction shows apparently asymmetric control over the anti-ambipolar transfer characteristics, possessing potential to implement electronic functions in logic circuits. Meanwhile, such an anti-ambipolar device allows the synchronous adjustment of band slope and depletion regions by gating in both components, thereby giving rise to the gate-tunability of the photoresponse. Coupled with the synergistic effect of the materials in different dimensionality, the hybrid heterojunction can be readily modulated by the external gate to achieve a high-performance photodetector exhibiting a large on/off current ratio of 4 × 104, fast response of 50 μs, and high detectivity of 1.64 × 1011 Jones. Due to the formation of type-II band alignment and strong interfacial coupling, a prominent photovoltaic response is explored in the heterojunction as well. Finally, a visible image sensor based on this hybrid device is demonstrated with good imaging capability, suggesting the promising application prospect in future optoelectronic systems.
Collapse
Affiliation(s)
- Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhengxun Lai
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Xiaolin Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Xiuming Bu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Chuntai Liu
- Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
48
|
Chen J, Li L, Gong P, Zhang H, Yin S, Li M, Wu L, Gao W, Long M, Shan L, Yan F, Li G. A Submicrosecond-Response Ultraviolet-Visible-Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe 3. ACS NANO 2022; 16:7745-7754. [PMID: 35499232 DOI: 10.1021/acsnano.1c11628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D material (2DM) based photodetectors with broadband photoresponse are of great value for a vast number of applications such as multiwavelength photodetection, imaging, and night vision. However, compared with traditional photodetectors based on bulk material, the relatively slow speed performance of 2DM based photodetectors hinders their practical applications. Herein, a submicrosecond-response photodetector based on ternary telluride InSiTe3 with trigonal symmetry and layered structure was demonstrated in this study. The InSiTe3 based photodetectors exhibit an ultrafast photoresponse (545-576 ns) and broadband detection capabilities from the ultraviolet (UV) to the near-infrared (NIR) optical communication region (365-1310 nm). Besides, the photodetector presents an outstanding reversible and stable photoresponse in which the response performance remains consistent within 200 000 cycles of switch operation. These significant findings suggest that InSiTe3 can be a promising candidate for constructing fast response broadband 2DM based optoelectronic devices.
Collapse
Affiliation(s)
- Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Penglai Gong
- Key Laboratory of Optic-Electronic Information and Materials of Hebei Province, Institute of Life Science and Green Development, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Hanlin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Shiqi Yin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Ming Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Liangfei Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Wenshuai Gao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Mingsheng Long
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Lei Shan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Feng Yan
- Department of Applied Physics, Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P.R. China
| | - Guanghai Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
49
|
Lee D, Choi Y, Kim J, Kim J. Recessed-Channel WSe 2 Field-Effect Transistor via Self-Terminated Doping and Layer-by-Layer Etching. ACS NANO 2022; 16:8484-8492. [PMID: 35575475 DOI: 10.1021/acsnano.2c03402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Effective channel control with low contact resistance can be accomplished through selective ion implantation in Si and III-V semiconductor technologies; however, this approach cannot be adopted for ultrathin van der Waals materials. Herein, we demonstrate a self-aligned fabrication process based on self-terminated p-doping and layer-by-layer chemical etching to achieve low contact resistance as well as a high on/off current ratio in ultrathin tungsten diselenide (WSe2) field-effect transistors (FETs). Damage-free layer-by-layer thinning of the WSe2 channel is repeated up to a thickness of approximately 1.4 nm, while maintaining the selectively p-doped source/drain regions. The device characteristics of the recessed-channel WSe2 FET are systematically monitored during this layer-by-layer recess-channel process. The WSe2 etching rate is estimated to be 2-3 layers per cycle of oxidation and subsequent chemical etching. The self-terminated tungsten oxide (WOX) layer grown through ultraviolet-ozone treatment induces robust p-doping in the neighboring (or underlying) WSe2 through the electron withdrawal mechanism, which remains in the source/drain regions after channel oxide removal. The adopted self-terminated and self-aligned recess-channel process for ultrathin WSe2 FETs enables the realization of a high on/off output current ratio (>108) and field-effect mobility (∼190 cm2/V·s), while maintaining low contact resistance (0.9-6.1 kΩ·μm) without a postannealing process. The proposed facile and reproducible doping and atomic-layer-etching method for the fabrication of a recessed-channel FET with an ultrathin body can be helpful for high-performance two-dimensional semiconductor devices and is applicable to post-Si complementary metal-oxide semiconductor devices.
Collapse
Affiliation(s)
- Dongryul Lee
- School of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Yongha Choi
- School of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Junghun Kim
- School of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jihyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
50
|
Han SS, Ko TJ, Shawkat MS, Shum AK, Bae TS, Chung HS, Ma J, Sattar S, Hafiz SB, Mahfuz MMA, Mofid SA, Larsson JA, Oh KH, Ko DK, Jung Y. Peel-and-Stick Integration of Atomically Thin Nonlayered PtS Semiconductors for Multidimensionally Stretchable Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20268-20279. [PMID: 35442029 DOI: 10.1021/acsami.2c02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various near-atom-thickness two-dimensional (2D) van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors. Herein, we explore a "peel-and-stick" approach, where a nonlayered 3D platinum sulfide (PtS) crystal, traditionally known as a cooperate mineral material, is transformed into a freestanding 2D-like membrane for electromechanical applications. The ultrathin (∼10 nm) 3D PtS films grown on large-area (>cm2) silicon dioxide/silicon (SiO2/Si) wafers are precisely "peeled" inside water retaining desired geometries via a capillary-force-driven surface wettability control. Subsequently, they are "sticked" on strain-engineered patterned substrates presenting prominent semiconducting properties, i.e., p-type transport with an optical band gap of ∼1.24 eV. A variety of mechanically deformable strain-invariant electronic devices have been demonstrated by this peel-and-stick method, including biaxially stretchable photodetectors and respiratory sensing face masks. This study offers new opportunities of 2D-like nonlayered semiconducting crystals for emerging mechanically reconfigurable and stretchable device technologies.
Collapse
Affiliation(s)
- Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Tae-Jun Ko
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Mashiyat Sumaiya Shawkat
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | | | - Tae-Sung Bae
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shahid Sattar
- Applied Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå SE-97187, Sweden
- Department of Physics and Electrical Engineering, Linnaeus University, SE-39231 Kalmar, Sweden
| | - Shihab Bin Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sohrab Alex Mofid
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - J Andreas Larsson
- Applied Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Kyu Hwan Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|