1
|
Zhang M, Hu J, Xi G, Tu J, Yang Q, Fan L, Lu Y, Sui M, Sun X, Zhang L, Tian J. Colloidal Perovskite Nanocrystal Superlattice Films with Simultaneous Polarized Emission and Orderly Electric Polarity via an In Situ Surface Cross-Linking Reaction. ACS NANO 2025; 19:7283-7293. [PMID: 39932160 DOI: 10.1021/acsnano.4c17654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Superlattices (SLs) based on colloidal nanocrystals (NCs) represent a fascinating structure with long-range and ordered NCs inside the assembled superstructures, displaying great potential application in electronic devices because of the customizable arrangement of building blocks. It is a great challenge to achieve macroscopical SL films by a solution process due to the inherent sensitivity and difficulty in controlling colloidal NCs. In this study, we propose a controllable strategy to create perovskite CsPbBr3 NC SL films through a surface in situ cross-linking reaction incorporating conjugated linoleic acid (CLA), a naturally polymerizable small molecule. CLA enables the in situ cross-linking of adjacent NCs under polarity-triggered conditions, which effectively arranges the NCs in a solid form at a molecular level to achieve fcc SL structural films. Importantly, we report for the first time NC SL films that are simultaneous with outstanding intrinsically linearly polarized emission and orderly electric polarity, which are derived from consistent dipole alignment, thus showing promising potential for application in information storage and optoelectronics. This method provides a general bottom-up approach, expanding the assembly library for fundamental studies and technological applications.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Guoqiang Xi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Tu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Yang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linhan Fan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
| | - Xuejiao Sun
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Levy S, Be'er O, Shaek S, Gorlach A, Scharf E, Ossia Y, Liran R, Cohen K, Strassberg R, Kaminer I, Banin U, Bekenstein Y. Collective Interactions of Quantum-Confined Excitons in Halide Perovskite Nanocrystal Superlattices. ACS NANO 2025; 19:963-971. [PMID: 39725860 PMCID: PMC11921029 DOI: 10.1021/acsnano.4c12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals. We demonstrate how quantum confinement governs the nature of the coupling between the nanocrystals in the ensemble. The extent of confinement is modified by controlling the nanocrystal size or by compositional control over the Bohr radius. In superlattices made of weakly confined nanocrystals, the collective emission is red-shifted with a faster emission rate, showing the key characteristics of superfluorescence. In contrast, the collective emission of stronger quantum-confined nanocrystals is blue-shifted with a slower emission rate. Both types of collective emission exhibit correlative multiphoton emission bursts, showing distinct photon bunching emission statistics. The quantum confinement changes the preferred alignment of transition dipoles within the nanocrystal and switches the relative dipole orientation between neighbors, resulting in opposite collective optical behaviors. Our results extend these collective effects to relatively high temperatures and provide a better understanding of exciton interactions and collective emission phenomena at the solid state.
Collapse
Affiliation(s)
- Shai Levy
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Orr Be'er
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Saar Shaek
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alexey Gorlach
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Einav Scharf
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yonatan Ossia
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rotem Liran
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kobi Cohen
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Rotem Strassberg
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Ido Kaminer
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Fasahat S, Schäfer B, Xu K, Fiuza-Maneiro N, Gómez-Graña S, Alonso MI, Polavarapu L, Goñi AR. Absence of Anomalous Electron-Phonon Coupling in the Near-Ambient Gap Temperature Renormalization of CsPbBr 3 Nanocrystals. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:453-463. [PMID: 40115613 PMCID: PMC11921149 DOI: 10.1021/acs.jpcc.4c06265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/07/2024] [Accepted: 12/06/2024] [Indexed: 03/23/2025]
Abstract
Metal halide perovskites exhibit a fairly linear increase of the bandgap with increasing temperature, when crystallized in a tetragonal or cubic phase. In general, both thermal expansion and electron-phonon interaction effects contribute equally to this variation of the gap with temperature. Herein, we have disentangled both contributions in the case of colloidal CsPbBr3 nanocrystals (NCs) by means of photoluminescence (PL) measurements as a function of temperature (from 80 K to ambient) and hydrostatic pressure (from atmospheric to ca. 1 GPa). At around room temperature, CsPbBr3 NCs also show a linear increase of the bandgap with temperature with a slope similar to that of the archetypal methylammonium lead iodide (MAPbI3) perovskite. This is somehow unexpected in view of the recent observations in mixed-cation Cs x MA1-x PbI3 single crystals with low Cs content, for which Cs incorporation caused a reduction by a factor of 2 in the temperature slope of the gap. This effect was ascribed to an anomalous electron-phonon interaction induced by the coupling with vibrational modes admixed with the Cs translational dynamics inside the cage voids. Thus, no trace of anomalous coupling is found in CsPbBr3 NCs. However, we managed to show that the linear temperature renormalization exhibited by the gap of CsPbBr3 NCs is shared with most metal halide perovskites, due to a common bonding/antibonding and atomic orbital character of the electronic band-edge states. In this way, we provide a deeper understanding of the gap temperature dependence in the general case when the A-site cation dynamics is not involved in the electron-phonon interaction.
Collapse
Affiliation(s)
- Shima Fasahat
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Benedikt Schäfer
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Kai Xu
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Nadesh Fiuza-Maneiro
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Sergio Gómez-Graña
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - M Isabel Alonso
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Lakshminarayana Polavarapu
- CINBIO, Materials Chemistry and Physics Group, Department of Physical Chemistry, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Mi C, Gee GC, Lander CW, Shin D, Atteberry ML, Akhmedov NG, Hidayatova L, DiCenso JD, Yip WT, Chen B, Shao Y, Dong Y. Towards non-blinking and photostable perovskite quantum dots. Nat Commun 2025; 16:204. [PMID: 39747164 PMCID: PMC11696258 DOI: 10.1038/s41467-024-55619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Surface defect-induced photoluminescence blinking and photodarkening are ubiquitous in lead halide perovskite quantum dots. Despite efforts to stabilize the surface by chemically engineering ligand binding moieties, blinking accompanied by photodegradation still poses barriers to implementing perovskite quantum dots in quantum emitters. To date, ligand tail engineering in the solid state has rarely been explored for perovskite quantum dots. We posit that attractive intermolecular interactions between low-steric ligand tails, such as π-π stacking, can promote the formation of a nearly epitaxial ligand layer that significantly reduces the quantum dot surface energy. Here, we show that single CsPbBr3 quantum dots covered by stacked phenethylammonium ligands exhibit nearly non-blinking single photon emission with high purity (~ 98%) and extraordinary photostability (12 hours continuous operation and saturated excitations), allowing the determination of size-dependent exciton radiative rates and emission line widths of CsPbBr3 quantum dots at the single particle level.
Collapse
Affiliation(s)
- Chenjia Mi
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Gavin C Gee
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Chance W Lander
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Donghoon Shin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew L Atteberry
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Novruz G Akhmedov
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Lamia Hidayatova
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Jesse D DiCenso
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Wai Tak Yip
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Bin Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
| | - Yitong Dong
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA.
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
5
|
Chan RR, Pietryga J, Landy KM, Gibson KJ, Mirkin CA. Microcrystal Growth Pathways Investigated with Machine Learning Segmentation and Classification in Scanning Electron Microscopy. ACS NANO 2024. [PMID: 39561324 DOI: 10.1021/acsnano.4c08955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Advances in electron microscopy have revolutionized material characterization on the nano- and microscales, providing important insights into local ordering, structure, and size and quality distributions. While shape and size can be rigorously quantified through microscopy, it is often limited to local structure analysis and fails to describe bulk sample quality. Herein, a flexible machine learning (ML) tool is described that can segment and classify faceted crystals in scanning electron microscopy (SEM) micrographs to determine sample quality through the crystal size and product distribution. As a case study, this tool was applied to investigate crystal growth pathways (classical nucleation and growth compared to nonclassical growth) in DNA-mediated nanoparticle assembly through size and product (single crystal, fused crystal, or noncrystal) distribution of samples containing over 13000 colloidal crystal products. Strong DNA bond strengths (controlled by DNA sequence) lead to fast nucleation that exhausts the monomer concentration, resulting in smaller colloidal crystals. Alternatively, increased thermal energy and crystallization time lead to nonclassical crystallization pathways (coalescence) that result in larger colloidal crystals. This tool is useful since experimental conditions can now be deliberately identified to control colloidal crystal size and size distribution, important considerations for researchers interested in designing and synthesizing colloidal crystal metamaterials.
Collapse
Affiliation(s)
- Rachel R Chan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jacob Pietryga
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Kaitlin M Landy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kyle J Gibson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Frank K, Henke NA, Lampe C, Lorenzen T, März B, Sun X, Haas S, Gutowski O, Dippel AC, Mayer V, Müller-Caspary K, Urban AS, Nickel B. Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals. Nat Commun 2024; 15:8952. [PMID: 39420017 PMCID: PMC11486954 DOI: 10.1038/s41467-024-53221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Colloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation. Here, we deduce the formation mechanisms of anisotropic lead halide perovskite nanocrystals, 1D nanorods and 2D nanoplatelets, by combining in situ X-ray scattering and photoluminescence spectroscopy. In both cases, emissive prolate nanoclusters form when the two precursor solutions are mixed. The ensuing antisolvent addition induces the divergent anisotropy: The intermediate nanoclusters are driven into a dense hexagonal mesophase, fusing to form nanorods. Contrastingly, nanoplatelets grow freely dispersed from dissolving nanoclusters, stacking subsequently in lamellar superstructures. Shape and size control of the nanocrystals are determined primarily by the antisolvent's dipole moment and Hansen hydrogen bonding parameter. Exploiting the interplay of antisolvent and organic ligands could enable more complex nanocrystal geometries in the future.
Collapse
Affiliation(s)
- Kilian Frank
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany
| | - Nina A Henke
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Carola Lampe
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Tizian Lorenzen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Benjamin März
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Xiao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Sylvio Haas
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, Germany
| | | | - Veronika Mayer
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany
| | - Knut Müller-Caspary
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstraße 11, Munich, Germany
| | - Alexander S Urban
- Nanospectroscopy Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, Munich, Germany.
| | - Bert Nickel
- Soft Condensed Matter Group and Center for NanoScience, Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, Munich, Germany.
| |
Collapse
|
7
|
Lapointe V, Majewski MB. Manganese-enriched CsPbCl 3 perovskite nanocrystals for self-assembled supercrystals. Chem Commun (Camb) 2024; 60:11952-11955. [PMID: 39347586 DOI: 10.1039/d4cc04104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The self-assembly of CsPbCl3 perovskite nanocrystals and their Mn2+-enriched analogs into supercrystals is reported. Increasing Mn2+ content in the nanocrystals leads to formation of larger, increasingly uniform cubic supercrystals that eventually become rod-like with higher photoluminescence quantum yields.
Collapse
Affiliation(s)
- Victoria Lapointe
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Marek B Majewski
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
8
|
Bera A, Maiti A, Pal AJ. Electronic States of Single Perovskite Quantum Dots in Weak and Strong Interaction Regimes: Implications in Electrically Pumped Quantum Emitters. NANO LETTERS 2024; 24:11544-11550. [PMID: 39254085 DOI: 10.1021/acs.nanolett.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We investigate the effect of Coulomb interactions on the electronic states of a single perovskite quantum dot (PQD), CsPbBr3, through scanning tunneling microscopy/spectroscopy (STM/S). Under a weak interaction regime, where the time-averaged occupation of electrons in a PQD remains zero, the peaks observed in the differential tunneling conductance (dI/dV) spectrum correspond to the single-particle density of states (DOS) without any electron-electron correlation. However, with a shorter tunnel distance between the STM tip and PQD, additional electrons are trapped in the QD, leading to a strong interaction regime with well-defined electronic fine structures due to the lifting of spin degeneracy in the conduction bands. Interestingly, we observe that the strong Coulomb interaction can modify the spin-orbit coupling (SOC) strength in the PQDs. We have concluded that the energy levels under a strong electron-electron interaction regime are of utmost importance since they will be applicable to electrically pumped PQD-based single photon quantum emitters.
Collapse
Affiliation(s)
- Arpan Bera
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
9
|
Ye J, Gaur D, Mi C, Chen Z, Fernández IL, Zhao H, Dong Y, Polavarapu L, Hoye RLZ. Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem Soc Rev 2024; 53:8095-8122. [PMID: 38894687 DOI: 10.1039/d4cs00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4-12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes.
Collapse
Affiliation(s)
- Junzhi Ye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Deepika Gaur
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Chenjia Mi
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Zijian Chen
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Iago López Fernández
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Haitao Zhao
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Yitong Dong
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
10
|
Singha PK, Mukhopadhyay T, Tarif E, Ali F, Datta A. Competition among recombination pathways in single FAPbBr3 nanocrystals. J Chem Phys 2024; 161:054704. [PMID: 39087543 DOI: 10.1063/5.0205940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Single particle level microscopy of immobilized FAPbBr3 nanocrystals (NCs) has elucidated the involvement of different processes in their photoluminescence (PL) intermittency. Four different blinking patterns are observed in the data from more than 100 NCs. The dependence of PL decays on PL intensities brought out in fluorescence lifetime intensity distribution (FLID) plots is rationalized by the interplay of exciton- and trion-mediated recombinations along with hot carrier (HC) trapping. The high intensity-long lifetime component is attributed to neutral exciton recombination, the low intensity-short lifetime component is attributed to trion assisted recombination, and the low intensity-long lifetime component is attributed to hot carrier recombination. Change-point analysis (CPA) of the PL blinking data reveals the involvement of multiple intermediate states. Truncated power law distribution is found to be more appropriate than power law and lognormal distribution for on and off events. Probability distributions of PL trajectories of single NCs are obtained for two different excitation fluences and wavelengths (λex = 400, 440 nm). Trapping rate (kT) prevails at higher power densities for both excitation wavelengths. From a careful analysis of the FLID and probability distributions, it is concluded that there is competition between the HC and trion assisted blinking pathways and that the contribution of these mechanisms varies with excitation wavelength as well as fluence.
Collapse
Affiliation(s)
- Prajit Kumar Singha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ejaj Tarif
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Gallagher S, Kline J, Jahanbakhshi F, Sadighian JC, Lyons I, Shen G, Hammel BF, Yazdi S, Dukovic G, Rappe AM, Ginger DS. Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr 3: A Change Point Analysis of Widefield Imaging Data. ACS NANO 2024; 18:19208-19219. [PMID: 38982590 DOI: 10.1021/acsnano.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.
Collapse
Affiliation(s)
- Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kline
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Farzaneh Jahanbakhshi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James C Sadighian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ian Lyons
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gillian Shen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Geiregat P, Erdem O, Samoli M, Chen K, Hodgkiss JM, Hens Z. The Impact of Partial Carrier Confinement on Stimulated Emission in Strongly Confined Perovskite Nanocrystals. ACS NANO 2024; 18:17794-17805. [PMID: 38913946 DOI: 10.1021/acsnano.4c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Semiconductor lead halide perovskites are excellent candidates for realizing low threshold light amplification due to their tunable and highly efficient luminescence, ease of processing, and strong light-matter interactions. However, most studies on optical gain have addressed bulk films, nanowires, or nanocrystals that exhibit little or no size quantization. Here, we show by means of a multitude of optical spectroscopy methods that small CsPbBr3 nanocrystals (NCs) exhibit a progressive red shift of the band-edge transition upon addition of electron-hole pairs, at least one carrier of which occupies a 2-fold degenerate, delocalized state in agreement with strong confinement. We demonstrate that this combination results in a threshold for biexciton gain, well below the limit of one electron-hole pair on average per NC. On the other hand, both the luminescent lifetime and the optical Stark effect of 4.7 nm CsPbBr3 NCs indicate that the oscillator strength of the band-edge transition is considerably smaller than expected from the band-edge absorption. We assign this discrepancy to a mixed confinement regime, with one delocalized and one localized charge carrier, and show that the concomitant reduction of the oscillator strength for stimulated emission accounts for the surprisingly small material gain observed in small NCs. The conclusion of mixed confinement aligns with studies reporting small and large polarons for holes and electrons in lead halide perovskite nanocrystals, respectively, and creates opportunities for understanding multiexciton photophysics in confined perovskite materials.
Collapse
Affiliation(s)
- Pieter Geiregat
- Physics and Chemistry of Nanostructures group, Department of Chemistry, Ghent University, Gent 9000, Belgium
- NOLIMITS, Core Facility for Non-Linear Microscopy and Spectroscopy, Ghent University, Gent, 9000, Belgium
| | - Onur Erdem
- Physics and Chemistry of Nanostructures group, Department of Chemistry, Ghent University, Gent 9000, Belgium
| | - Margarita Samoli
- Physics and Chemistry of Nanostructures group, Department of Chemistry, Ghent University, Gent 9000, Belgium
| | - Kai Chen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9016, New Zealand
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Zeger Hens
- Physics and Chemistry of Nanostructures group, Department of Chemistry, Ghent University, Gent 9000, Belgium
- NOLIMITS, Core Facility for Non-Linear Microscopy and Spectroscopy, Ghent University, Gent, 9000, Belgium
| |
Collapse
|
13
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
14
|
Chua XW, Dai L, Anaya M, Salway H, Ruggeri E, Bi P, Yang Z, Stranks SD, Yang L. Multifold Enhanced Photon Upconversion in a Composite Annihilator System Sensitized by Perovskite Nanocrystals. ACS NANO 2024; 18:15229-15238. [PMID: 38820532 PMCID: PMC11171765 DOI: 10.1021/acsnano.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Photon upconversion via triplet-triplet annihilation (TTA-UC) provides a pathway to overcoming the thermodynamic efficiency limits in single-junction solar cells by allowing the harvesting of sub-bandgap photons. Here, we use mixed halide perovskite nanocrystals (CsPbX3, X = Br/I) as triplet sensitizers, with excitation transfer to 9,10-diphenylanthracene (DPA) and/or 9,10-bis[(triisopropylsilyl)ethynyl]anthracene (TIPS-An) which act as the triplet annihilators. We observe that the upconversion efficiency is five times higher with the combination of both annihilators in a composite system compared to the sum of the individual single-acceptor systems. Our work illustrates the importance of using a composite system of annihilators to enhance TTA upconversion, demonstrated in a perovskite-sensitized system, with promise for a range of potential applications in light-harvesting, biomedical imaging, biosensing, therapeutics, and photocatalysis.
Collapse
Affiliation(s)
- Xian Wei Chua
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Innovis #08-03, Singapore 138634, Singapore
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Linjie Dai
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Miguel Anaya
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Departamento
Física de la Materia Condensada, Instituto de Ciencia de Materiales
de Sevilla, Universidad de Sevilla−CSIC, Calle Américo Vespucio 49, Sevilla 41012, Spain
| | - Hayden Salway
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Edoardo Ruggeri
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Pengqing Bi
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Innovis #08-03, Singapore 138634, Singapore
| | - Zhihong Yang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Innovis #08-03, Singapore 138634, Singapore
| | - Samuel D. Stranks
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Le Yang
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Innovis #08-03, Singapore 138634, Singapore
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| |
Collapse
|
15
|
Li X, Chen L, Mao D, Li J, Xie W, Dong H, Zhang L. Low-threshold cavity-enhanced superfluorescence in polyhedral quantum dot superparticles. NANOSCALE ADVANCES 2024; 6:3220-3228. [PMID: 38868834 PMCID: PMC11166106 DOI: 10.1039/d4na00188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 06/14/2024]
Abstract
Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 μJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.
Collapse
Affiliation(s)
- Xinjie Li
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Linqi Chen
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
| | - Danqun Mao
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Jingzhou Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University Shanghai 200241 China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Shanghai 201800 China
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences No. 1, Sub-Lane Xiangshan, Xihu District Hangzhou 310024 China
| |
Collapse
|
16
|
Li S, Xu X, Lin Q, Sun J, Zhang H, Shen H, Li LS, Wang L. Bright and Stable Yellow Quantum Dot Light-Emitting Diodes Through Core-Shell Nanostructure Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306859. [PMID: 38155356 DOI: 10.1002/smll.202306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Solution-processed and efficient yellow quantum dot light-emitting diodes (QLEDs) are considered key optoelectronic devices for lighting, display, and signal indication. However, limited synthesis routes for yellow quantum dots (QDs), combined with inferior stress-relaxation of the core-shell interface, pose challenges to their commercialization. Herein, a nanostructure tailoring strategy for high-quality yellow CdZnSe/ZnSe/ZnS core/shell QDs using a "stepwise high-temperature nucleation-shell growth" method is introduced. The synthesized CdZnSe-based QDs effectively smoothed the release stress of the core-shell interface and revealed a near-unit photoluminescence quantum yield, with nonblinking behavior and matched energy level, which accelerated radiative recombination and charge injection balance for device operation. Consequently, the yellow CdZnSe-based QLEDs exhibited a peak external quantum efficiency of 23.7%, a maximum luminance of 686 050 cd m-2, and a current efficiency of 103.2 cd A-1, along with an operating half-lifetime of 428 523 h at 100 cd m-2. To the best of the knowledge, the luminance and operational stability of the device are found to be the highest values reported for yellow LEDs. Moreover, devices with electroluminescence (EL) peaks at 570-605 nm exhibited excellent EQEs, surpassing 20%. The work is expected to significantly push the development of RGBY-based display panels and white LEDs.
Collapse
Affiliation(s)
- Saifei Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Xiongping Xu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Qingli Lin
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Jiahui Sun
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Han Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Lin Song Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng, 475004, China
| |
Collapse
|
17
|
Otero-Martínez C, Zaffalon ML, Ivanov YP, Livakas N, Goldoni L, Divitini G, Bora S, Saleh G, Meinardi F, Fratelli A, Chakraborty S, Polavarapu L, Brovelli S, Manna L. Ultrasmall CsPbBr 3 Blue Emissive Perovskite Quantum Dots Using K-Alloyed Cs 4PbBr 6 Nanocrystals as Precursors. ACS ENERGY LETTERS 2024; 9:2367-2377. [PMID: 39372427 PMCID: PMC11450558 DOI: 10.1021/acsenergylett.4c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 10/08/2024]
Abstract
We report a colloidal synthesis of blue emissive, stable cube-shaped CsPbBr3 quantum dots (QDs) in the strong quantum confinement regime via dissolution-recrystallization starting from pre-syntesized (K x Cs1-x )4PbBr6 nanocrystals which are then reacted with PbBr2. This is markedly different from the known case of Cs4PbBr6 nanocrystals that react within seconds with PbBr2 and get transformed into much larger, green emitting CsPbBr3 nanocrystals. Here, instead, the conversion of (K x Cs1-x )4PbBr6 nanocrystals to CsPbBr3 QDs occurs in a time span of hours, and tuning of the QD size is achieved by adjusting the concentration of the precursors. The QDs exhibit excitonic features in optical absorption that are tunable in the 420-452 nm range, accompanied by blue photoluminescence with quantum yield around 60%. Detailed spectroscopic investigations in both the single and multiexciton regime reveal the exciton fine structure and the effect of Auger recombination of these CsPbBr3 QDs, confirming theoretical predictions for this system.
Collapse
Affiliation(s)
- Clara Otero-Martínez
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Yurii P. Ivanov
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Nikolaos Livakas
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, 16146 Genova, Italy
| | - Luca Goldoni
- Material
Characterization Facility, Istituto Italiano
di Tecnologia Via Morego 30, 16163 Genova, Italy
| | - Giorgio Divitini
- Electron
Microscopy and Nanoscopy, Istituto Italiano
di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Sankalpa Bora
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Gabriele Saleh
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Andrea Fratelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Sudip Chakraborty
- Materials
Theory for Energy Scavenging (MATES) Lab, Department of Physics, Harish-Chandra Research Institute (HRI), A C.I. of
Homi Bhabha National Institute (HBNI), Jhunsi, Prayagraj 211019, India
| | - Lakshminarayana Polavarapu
- CINBIO,
Department of Physical Chemistry, Materials Chemistry and Physics
Group, Universidade de Vigo, Campus Universitario
As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnología, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
18
|
Wang B, Lim JWM, Loh SM, Mayengbam R, Ye S, Feng M, He H, Liang X, Cai R, Zhang Q, Kwek LC, Demir HV, Mhaisalkar SG, Blundell SA, Chien Sum T. Weakly Confined Organic-Inorganic Halide Perovskite Quantum Dots as High-Purity Room-Temperature Single Photon Sources. ACS NANO 2024; 18:10807-10817. [PMID: 38598660 DOI: 10.1021/acsnano.3c12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr3 QDs. However, this also increases the fluorescence intermittency. Achieving high SP purity and blinking mitigation simultaneously remains a significant challenge. Here, we transcend this limitation with room-temperature synthesized weakly confined hybrid organic-inorganic perovskite (HOIP) QDs. Superior single photon purity with a low g(2)(0) < 0.07 ± 0.03 and a nearly blinking-free behavior (ON-state fraction >95%) in 11 nm FAPbBr3 QDs are achieved at room temperature, attributed to their long exciton lifetimes (τX) and short biexciton lifetimes (τXX). The significance of the organic A-cation is further validated using the mixed-cation FAxCs1-xPbBr3. Theoretical calculations utilizing a combination of the Bethe-Salpeter (BSE) and k·p approaches point toward the modulation of the dielectric constants by the organic cations. Importantly, our findings provide valuable insights into an additional lever for engineering facile-synthesized room-temperature PQD single photon sources.
Collapse
Affiliation(s)
- Bo Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Siow Mean Loh
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Rishikanta Mayengbam
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Huajun He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiao Liang
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Leong-Chuan Kwek
- Centre for Quantum Technologies, National University of Singapore, Singapore 117543, on Singapore
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk Singapore 637616, Singapore
| | - Hilmi Volkan Demir
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- UNAM─Institute of Materials Science and Nanotechnology, The National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Subodh G Mhaisalkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Steven A Blundell
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
19
|
Aebli M, Kaul CJ, Yazdani N, Krieg F, Bernasconi C, Guggisberg D, Marczak M, Morad V, Piveteau L, Bodnarchuk MI, Verel R, Wood V, Kovalenko MV. Disorder and Halide Distributions in Cesium Lead Halide Nanocrystals as Seen by Colloidal 133Cs Nuclear Magnetic Resonance Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2767-2775. [PMID: 38558917 PMCID: PMC10976639 DOI: 10.1021/acs.chemmater.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that 133Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX3 NCs. Distinct 133Cs signals are attributed to the surface and core NC regions. Increased heterogeneous broadening of 133Cs signals, observed for smaller NCs as well as for long-chain zwitterionic capping ligands (phosphocholines, phosphoethanol(propanol)amine, and sulfobetaines), can be attributed to more significant surface disorder and multifaceted surfaces (truncated cubes). On the contrary, capping with dimethyldidodecylammonium bromide (DDAB) successfully reduces signal broadening owing to better surface passivation and sharper (001)-bound cuboid shape. DFT calculations on various sizes of NCs corroborate the notion that the surface disorder propagates over several octahedral layers. 133Cs NMR is a sensitive probe for studying halide gradients in mixed Br/Cl NCs, indicating bromide-rich surfaces and chloride-rich cores. On the contrary, mixed Br/I NCs exhibit homogeneous halide distributions.
Collapse
Affiliation(s)
- Marcel Aebli
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Christoph J. Kaul
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Nuri Yazdani
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Franziska Krieg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Caterina Bernasconi
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Dominic Guggisberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Malwina Marczak
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maryna I. Bodnarchuk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - René Verel
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
| | - Vanessa Wood
- Department
of Information Technology and Electrical Engineering, ETH Zürich, Vladimir-Prelog-Weg
1-5, Zürich CH-8093, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 1-5, Zürich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
20
|
Xia Z, Gao Y, Cai Q, Wang Y, Yang D, Li T, Dong A. Controllable synthesis of star-shaped FeCoMnO x nanocrystals and their self-assembly into superlattices with low-packing densities. Chem Commun (Camb) 2024; 60:3409-3412. [PMID: 38440958 DOI: 10.1039/d4cc00332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We present a novel method for synthesizing monodisperse, star-shaped FeCoMnOx nanocrystals with tunable concavity. Through liquid-air interfacial assembly, these colloidal nanostars can form two-dimensional superlattices, which are characterized by low packing densities. Notably, the ability to adjust the degree of concavity of nanostars allows for the tuning of the packing symmetry of the assembled superlattices.
Collapse
Affiliation(s)
- Zhe Xia
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yutong Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qingfu Cai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Lapointe V, Green PB, Chen AN, Buonsanti R, Majewski MB. Long live(d) CsPbBr 3 superlattices: colloidal atomic layer deposition for structural stability. Chem Sci 2024; 15:4510-4518. [PMID: 38516096 PMCID: PMC10952069 DOI: 10.1039/d3sc06662b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
Superlattice formation afforded by metal halide perovskite nanocrystals has been a phenomenon of interest due to the high structural order induced in these self-assemblies, an order that is influenced by the surface chemistry and particle morphology of the starting building block material. In this work, we report on the formation of superlattices from aluminum oxide shelled CsPbBr3 perovskite nanocrystals where the oxide shell is grown by colloidal atomic layer deposition. We demonstrate that the structural stability of these superlattices is preserved over 25 days in an inert atmosphere and that colloidal atomic layer deposition on colloidal perovskite nanocrystals yields structural protection and an enhancement in photoluminescence quantum yields and radiative lifetimes as opposed to gas phase atomic layer deposition on pre-assembled superlattices or excess capping group addition. Structural analyses found that shelling resulted in smaller nanocrystals that form uniform supercrystals. These effects are in addition to the increasingly static capping group chemistry initiated where oleic acid is installed as a capping ligand directly on aluminum oxide. Together, these factors lead to fundamental observations that may influence future superlattice assembly design.
Collapse
Affiliation(s)
- Victoria Lapointe
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University 7141 Sherbrooke Street West Montreal Quebec H4B 1R6 Canada
| | - Philippe B Green
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Sion CH-1950 Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Sion CH-1950 Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne Sion CH-1950 Switzerland
| | - Marek B Majewski
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University 7141 Sherbrooke Street West Montreal Quebec H4B 1R6 Canada
| |
Collapse
|
22
|
Sekh T, Cherniukh I, Kobiyama E, Sheehan TJ, Manoli A, Zhu C, Athanasiou M, Sergides M, Ortikova O, Rossell MD, Bertolotti F, Guagliardi A, Masciocchi N, Erni R, Othonos A, Itskos G, Tisdale WA, Stöferle T, Rainò G, Bodnarchuk MI, Kovalenko MV. All-Perovskite Multicomponent Nanocrystal Superlattices. ACS NANO 2024; 18:8423-8436. [PMID: 38446635 PMCID: PMC10958606 DOI: 10.1021/acsnano.3c13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.
Collapse
Affiliation(s)
- Taras
V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Thomas J. Sheehan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Andreas Manoli
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Modestos Athanasiou
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Marios Sergides
- Laboratory
of Ultrafast Science, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Oleksandra Ortikova
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federica Bertolotti
- Department
of Science and High Technology and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Antonietta Guagliardi
- Istituto
di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, 22100 Como, Italy
| | - Norberto Masciocchi
- Department
of Science and High Technology and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Rolf Erni
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Andreas Othonos
- Laboratory
of Ultrafast Science, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Grigorios Itskos
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Thilo Stöferle
- IBM
Research Europe−Zürich, Rüschlikon CH-8803, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
23
|
Tonkaev P, Grechaninova E, Iorsh I, Montanarella F, Kivshar Y, Kovalenko MV, Makarov S. Multiscale Supercrystal Meta-atoms. NANO LETTERS 2024; 24:2758-2764. [PMID: 38407023 DOI: 10.1021/acs.nanolett.3c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Evgeniia Grechaninova
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Ivan Iorsh
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Federico Montanarella
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich 8093, Switzerland
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich 8093, Switzerland
| | - Sergey Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
24
|
Bodnarchuk MI, Feld LG, Zhu C, Boehme SC, Bertolotti F, Avaro J, Aebli M, Mir SH, Masciocchi N, Erni R, Chakraborty S, Guagliardi A, Rainò G, Kovalenko MV. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS NANO 2024. [PMID: 38320982 PMCID: PMC10883123 DOI: 10.1021/acsnano.3c11579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.
Collapse
Affiliation(s)
- Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Leon G Feld
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Chenglian Zhu
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Simon C Boehme
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Jonathan Avaro
- Centre for X-ray Analytics & Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
| | - Marcel Aebli
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Showkat Hassan Mir
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, Como 22100, Italy
| | - Gabriele Rainò
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
25
|
Bechir MB, Alresheedi F. Growth methods' effect on the physical characteristics of CsPbBr 3 single crystal. Phys Chem Chem Phys 2024; 26:1274-1283. [PMID: 38105672 DOI: 10.1039/d3cp04645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This study offers an extensive exploration into approaches for cultivating CsPbBr3 SCs using inverse temperature crystallization (ITC), with a specific focus on seed-induced (method (1)) and nucleation-mediated (method (2)) growth techniques. Our findings reveal that leveraging seed-assisted growth at lower temperatures yields noteworthy enhancements in the material's optical and electrical behaviors, outperforming the outcomes achieved through nucleation-driven growth. Concretely, through the employment of the space charge limited current (SCLC) technique, an evident contrast emerges in the trap-populated threshold voltage between the seed-facilitated crystal (SC1) (measuring 0.309 V) and its nucleation-facilitated counterpart (SC2) (measuring 1.513 V), consequently giving rise to discernable dissimilarities in trap density assessments. Evidence from temperature-dependent analysis of space charge limited currents substantiates these findings, revealing trap density values of 8.81 × 109 cm-3 for SC1, juxtaposed with 2.08 × 1010 cm-3 for SC2. Additionally, the SC1 displays a notably diminished trap energy level. Furthermore, the investigation underscores the affirmative influence of method (1) at lower temperatures on the optical and crystalline characteristics of the substance. This effect is evidenced by enhanced photoluminescence (PL) reactions and reduced lattice strain (Ls), as determined through X-ray diffraction (XRD) techniques. Moreover, the research establishes the substantial impact of this enhanced crystallization technique on the photodetector (PD) attributes of the crystal. This effect induces elevated levels of detectivity and responsivity for method (1).
Collapse
Affiliation(s)
- Mohamed Ben Bechir
- Laboratory of Spectroscopic and Optical Characterization of Materials (LaSCOM), Faculty of Sciences, University of Sfax, BP1171 - 3000 Sfax, Tunisia.
| | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
26
|
Liu Y, Shao X, Gao Z, Xie Q, Ying Y, Zhu X, Pan Z, Yang J, Lin H, Tang X, Chen W, Pei W, Tu Y. In situ and General Multidentate Ligand Passivation Achieves Efficient and Ultra-Stable CsPbX 3 Perovskite Quantum Dots for White Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305664. [PMID: 37691085 DOI: 10.1002/smll.202305664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein, we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip, we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xiaolin Zhu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zhangcheng Pan
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jinpeng Yang
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hao Lin
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, P. R. China
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
27
|
Nguyen TPT, Tan LZ, Baranov D. Tuning perovskite nanocrystal superlattices for superradiance in the presence of disorder. J Chem Phys 2023; 159:204703. [PMID: 37991161 DOI: 10.1063/5.0167542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023] Open
Abstract
The cooperative emission of interacting nanocrystals is an exciting topic fueled by recent reports of superfluorescence and superradiance in assemblies of perovskite nanocubes. Several studies estimated that coherent coupling is localized to a small fraction of nanocrystals (10-7-10-3) within the assembly, raising questions about the origins of localization and ways to overcome it. In this work, we examine single-excitation superradiance by calculating radiative decays and the distribution of superradiant wave function in two-dimensional CsPbBr3 nanocube superlattices. The calculations reveal that the energy disorder caused by size distribution and large interparticle separations reduces radiative coupling and leads to the excitation localization, with the energy disorder being the dominant factor. The single-excitation model clearly predicts that, in the pursuit of cooperative effects, having identical nanocubes in the superlattice is more important than achieving a perfect spatial order. The monolayers of large CsPbBr3 nanocubes (LNC = 10-20 nm) are proposed as model systems for experimental tests of superradiance under conditions of non-negligible size dispersion, while small nanocubes (LNC = 5-10 nm) are preferred for realizing the Dicke state under ideal conditions.
Collapse
Affiliation(s)
- T P Tan Nguyen
- University Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes, France
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, P.O. Box, 124, SE-221 00 Lund, Sweden
| |
Collapse
|
28
|
Levy S, Be'er O, Veber N, Monachon C, Bekenstein Y. Tuning the Colloidal Softness of CsPbBr 3 Nanocrystals for Homogeneous Superlattices. NANO LETTERS 2023; 23:7129-7134. [PMID: 37470186 DOI: 10.1021/acs.nanolett.3c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Perovskite nanocrystal superlattices (NC SLs), made from millions of ordered crystals, support collective optoelectronic phenomena. Coupled NC emitters are highly sensitive to the structural and spectral inhomogeneities of the NC ensemble. Free electrons in scanning electron microscopy (SEM) are used to probe the cathodoluminescence (CL) properties of CsPbBr3 SLs with a ∼20 nm spatial resolution. Correlated CL-SEM measurements allow for simultaneous characterization of structural and spectral heterogeneities of the SLs. Hyperspectral CL mapping shows multipole emissive domains within a single SL. Consistently, the edges of the SLs are blue-shifted relative to the central domain by up to 65 meV. We discover a relation between NC building block colloidal softness and the extent of the CL shift. Residual uniaxial compressive strains accompanying SL formation are contributors to these emission shifts. Therefore, precise control over the colloidal softness of the NC building blocks is critical for SL engineering.
Collapse
Affiliation(s)
- Shai Levy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Orr Be'er
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Noam Veber
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Christian Monachon
- Attolight SA, EPFL Innovation Park, Building D, 1015 Lausanne, Switzerland
| | - Yehonadav Bekenstein
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
- The Solid-State Institute, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
29
|
Hallstrom J, Cherniukh I, Zha X, Kovalenko MV, Travesset A. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes. ACS NANO 2023; 17:7219-7228. [PMID: 37040619 DOI: 10.1021/acsnano.2c10079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We establish the formula representing cubic nanocrystals (NCs) as hard cubes taking into account the role of the ligands and describe how these results generalize to any other NC shapes. We derive the conditions under which the hard cube representation breaks down and provide explicit expressions for the effective size. We verify the results from the detailed potential of mean force calculations for two nanocubes in different orientations as well as with spherical nanocrystals. Our results explicitly demonstrate the relevance of certain ligand conformations, i.e., "vortices", and show that edges and corners provide natural sites for their emergence. We also provide both simulations and experimental results with single component cubic perovskite nanocrystals assembled into simple cubic superlattices, which further corroborate theoretical predictions. In this way, we extend the Orbifold Topological Model (OTM) accounting for the role of ligands beyond spherical nanocrystals and discuss its extension to arbitrary nanocrystal shapes. Our results provide detailed predictions for recent superlattices of perovskite nanocubes and spherical nanocrystals. Problems with existing united atom force fields are discussed.
Collapse
Affiliation(s)
- Jonas Hallstrom
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Ihor Cherniukh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Xun Zha
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
30
|
Behera RK, Bera S, Pradhan N. Hexahedron Symmetry and Multidirectional Facet Coupling of Orthorhombic CsPbBr 3 Nanocrystals. ACS NANO 2023; 17:7007-7016. [PMID: 36996308 DOI: 10.1021/acsnano.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The cube shape of orthorhombic phase CsPbBr3 nanocrystals possesses the ability of selective facet packing that leads to 1D, 2D, and 3D nanostructures. In solution, their transformation with linear one-dimensional packing to nanorods/nanowires is extensively studied. Here, multifacet coupling in two directions of the truncated cube nanocrystals to rod couples and then to single-crystalline rectangular rods is reported. With extensive high-resolution transmission electron microscopy image analysis, length and width directions of these nanorods are derived. For the seed cube structures, finding {110} and {002} facets has remained difficult as these possess the hexahedron symmetry and their size remains smaller; however, for nanorods, these planes and the ⟨110⟩ and ⟨001⟩ directions are clearly identified. From nanocrystal to nanorod formation, the alignment directions are observed as random (as shown in the abstract graphic), and this could vary from one to the other rods obtained in the same batch of samples. Moreover, seed nanocrystal connections are derived here as not random and are rather induced by addition of the calculated amount of additional Pb(II). The same has also been extended to nanocubes obtained from different literature methods. It is predicted that a Pb-bromide buffer octahedra layer was created to connect two cubes, and this can connect along one, two, or even more facets of cubes simultaneously to connect other cubes and form different nanostructures. Hence, these results here provide some basic fundamentals of seed cube connections, the driving force to connect those, trapping the intermediate to visualize their alignments for attachments, and identifying and establishing the orthorhombic ⟨110⟩ and ⟨001⟩ directions of the length and width of CsPbBr3 nanostructures.
Collapse
Affiliation(s)
- Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|