1
|
Zhang W, Liu S, Wang H, Wang Z, Cui L, Fu N, Wang Z. Colorimetric detection of fluoroquinolones via MOF inhibition and thiol-response oxidase-mimicking reactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126347. [PMID: 40347775 DOI: 10.1016/j.saa.2025.126347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025]
Abstract
Developing a selective colorimetric assay for fluoroquinolones (FQs) that show visible color response is highly desired, which is challenging because FQs show extremely similarity in structure and inherently absorb light in the UV color range. In this work, a selective colorimetric assay for pefloxacin (PEF) was fabricated through integrating two rection systems: the inhibition effects of PEF on the AChE-like activities of Al3+ decorated MOF-808 (MOF-808-Al) and the thiol-response oxidase-mimicking reaction of MnO2 nanosheets. The MnO2 nanosheets, due to their oxidase-mimicking properties, can oxidize the colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) into its blue-colored oxidized form, TMB+. Assisted by the synergistic action of metal-OH and Lewis acid sites, MOF-808-Al exhibits AChE-like activities. These activities catalyze the decomposition of acetylthiocholine into thiocholine. Thiocholine has a stronger reactivity compared to TMB; it can reduce the MnO2 nanosheets, which in turn prevents the color response. In addition, PEF inhibits the AChE-like activities of MOF-808-Al by blocking its active sites. The quantitative detection of PEF is accomplished by recording the blue color response of the system, both in buffer solutions and in commercial meat samples. This assay demonstrates excellent tolerance and selectivity against various interfering substances, antibiotics, and pesticides.
Collapse
Affiliation(s)
- Wenzhi Zhang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Materials Science, Hebei University, Baoding 071002, China
| | - Song Liu
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China
| | - Henggang Wang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China
| | - Zhe Wang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China
| | - Linfeng Cui
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China
| | - Nian Fu
- Hebei Key Laboratory of Photo-Electricity Information and Materials, Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Zhenguang Wang
- Hebei Technology Innovation Center for Energy Conversion Materials and Devices, Hebei Key Laboratory of Inorganic Nanomaterials, Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Material Science, Hebei Normal University, No. 20Rd. East of 2nd Ring South, Yuhua District, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
2
|
Yang Z, Dong X, Wang Z, Sun Y. A catalase-like nanozyme of high activity and stability in acidic solutions for enzyme immobilization and chemoenzymatic cascade conversion of glucose to gluconic acid. Food Chem 2025; 482:144140. [PMID: 40184740 DOI: 10.1016/j.foodchem.2025.144140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Gluconic acid is widely used in food and pharmaceutical. However, its bio-synthesis by glucose oxidase (GOx) is blocked by depletion of dissolved O2, reduction of pH value, and accumulation of hydrogen peroxide (H2O2). To remove the by-products and replenish O2, developing a nanozyme with high catalase (CAT)-like activity and stability under acidic conditions is a prescription. Herein, we developed a manganese-based nanozyme (ps-MnOx-BSA) through a stepwise strategy and encapsulated it in Fe-doped zeolitic imidazolate framework-8 (FZ). The as-prepared ps-MnOx-BSA@FZ (MFZ) exhibited not only high stability and CAT-like activity but also exceptionally no peroxidase-like activity at pH 5.5. Thereafter, GOx@MFZ was fabricated by the immobilization of GOx on MFZ and utilized for gluconic acid synthesis with a yield of 98.3 % within 30 min. GOx@MFZ retained 92.3 % of its initial activity after six batches. This work provided a novel strategy for the design of acid-resistant CAT-like nanozyme toward sustainable gluconic acid production.
Collapse
Affiliation(s)
- Ziyi Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology (Tianjin University), Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology (Tianjin University), Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhenfu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology (Tianjin University), Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
3
|
Deng S, Hao Y, Yang L, Yu T, Wang X, Liu H, Liu Y, Xie M. Construction of nanozyme based with mixed valence manganese oxide loaded on defective metal-organic frameworks for sensitive detection of biomarker procalcitonin. Biosens Bioelectron 2025; 278:117339. [PMID: 40073796 DOI: 10.1016/j.bios.2025.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Nanozymes possess the advantages of high stability, adjustable catalytic activity and simple preparation processes, which position them as a promising alternative to natural enzymes. In this work, an oxidase-like nanozyme has been prepared by loading mixed valence manganese oxides (MnxOy) on defective PCN-224 MOFs (dPCN). Dodecanoic acid was utilized to introduce abundant mesoporous defects into the dPCN, allowing manganese oxide to grow in situ on the surface and within the pores. The mixed valence state of manganese oxides endowed the MnxOy@dPCN nanozyme (MdP) with redox and catalytic properties, and the high oxidase-like catalytic performance of MdP for TMB substrate also originated from its favorable electrical conductivity and affinity to the substrate. The reactive oxygen species of the catalytic reaction were mainly singlet oxygen (1O2) and peroxyl radicals (·O2-). Without the existence of hydrogen peroxide (H2O2), the nanozyme can rapidly and efficiently oxidize TMB substrate into blue oxidation state, which has strong absorbance at 650 nm. An immunosensor for detecting biomarker procalcitonin (PCT) in human serum samples has been established based on the high catalytic property of MdP nanozyme. The immunoassay for PCT has satisfactory accuracy and repeatability, and its linear detection range can reach to be 0.05-100 ng mL-1 with a limit of detection (LOD) of 0.011 ng mL-1. The result affords a promising idea to construct oxidase-like nanozyme, and provides a method for sensitive determination of PCT in complex matrices.
Collapse
Affiliation(s)
- Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China
| | - Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China; Beijing Acad Sci & Technol, Inst Anal & Testing, Beijing Ctr Phys & Chem Anal, Beijing, 100089, China
| | - Tongtong Yu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China.
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Liu Q, Liang Z, Wang J, Wang Y, Wang J, Wang S, Du Z, Zhao L, Wei Y, Huang D. Mannose-modified multifunctional iron-based nanozyme for hepatocellular carcinoma treatment by remodeling the tumor microenvironment. Colloids Surf B Biointerfaces 2025; 250:114548. [PMID: 39923382 DOI: 10.1016/j.colsurfb.2025.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with conventional treatments often accompanied by severe side effects. Recently, nanozymes have been extensively employed in cancer therapy due to their enhanced enzymatic activities, stability compared to native enzymes. However, a standalone nanozyme exhibits insufficient targeting capability and fails to specifically localize to the pathological site. In this study, we successfully synthesized a multifunctional iron-based-nanozyme delivery system - Fe3O4-OA-DHCA-PEI-MAN@DSF modified with PEI and MAN by the thermal decomposition method. This mannose-modified nanozyme can specifically target HCC cells via an external magnetic field and mannose-mannose receptor (MRC2) binding. In addition, it exhibits good biocompatibility and pH-dependent drug release characteristics. Within the acidic tumor microenvironment, the iron-based nanozyme initiates intracellular fenton reactions, boosting reactive oxygen species (ROS) production, which ultimately induces apoptosis in HCC cells. Concurrently, the disulfiram small molecule released from the Fe3O4-OA-DHCA-PEI-MAN@DSF nanozyme binds to the FROUNT factor within monocyte-macrophages, thereby inhibiting their response to chemotactic signals emitted by liver cancer cells. This process ultimately suppresses the recruitment of macrophages by HCC cells, reshaping the tumor microenvironment and supporting effective liver cancer treatment. Moreover, this nanozyme system holds potential for MRI-guided targeted chemotherapy combined with chemodynamic therapy, aiming to refine the early diagnosis and precision treatment of hepatic carcinoma, and paving the way for the creation of sophisticated integrated nanoplatforms melding diagnostic and therapeutic functionalities.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; NHC Key Laboratory of Glycoconjuates Research Department of Biochemistry and Molecular, Biology School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaojie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| |
Collapse
|
5
|
Zhuang Y, Jian M, Yan H, Lv X, Zhang Y. Selenium as a brightening agent for peroxidase-like activity regulation of MXene@CeO 2 sensing platform. Talanta 2025; 288:127701. [PMID: 39938423 DOI: 10.1016/j.talanta.2025.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/31/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Selenium is a nutritionally essential trace element for human health, but efficient or excessive intake both causes physiological diseases. Here, we propose that selenium as a brightening agent significantly increase the peroxidase (POD)-like activity of MXene@CeO2, which CeO2 nanoparticles in-situ grow on MXene as the sensing platform. Based on the selenium-stimulated POD-like activity of MXene@CeO2, a simple, low-cost, and reliable colorimetric method is constructed for quantitative analysis of selenium. The great advantage of MXene@CeO2 platform selecting selenium as brightening agent exhibits good selectivity for other 23 interfering ions, allowing the discrimination of selenium in practical samples rapidly and precisely even at 3.5 nM. Moreover, MXene@CeO2 platform selectively catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) instead of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) under the same condition. This study not only offers a utility sensing platform for quick detection of selenium but also opens an avenue for the rational design of element sensors for point-of-care application.
Collapse
Affiliation(s)
- Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Mengqi Jian
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiqi Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Wu D, Yu Z, Qin J, Li M, Tang D. A Bimetallic Nanozyme Synergistic Effect-Driven Enzyme Cascade Nanoreactor for Instant Immunoassay. Anal Chem 2025; 97:10947-10954. [PMID: 40375690 DOI: 10.1021/acs.analchem.5c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
This study presents a colorimetric sensor for cancer screening utilizing the bifunctional enzyme activity of NiCo Prussian blue analogue (PBA), a PBA material. By introducing oxygen vacancies and employing a dual-metal doping strategy, NiCo PBA overcomes the limitations in catalytic activity observed in single-metal-doped materials (such as Ni PBA and Co PBA), significantly enhancing both peroxidase-like (POD) and catalase-like (CAT) activities. Compared to single-metal-doped Ni PBA and Co PBA, NiCo PBA exhibited a 30.08-fold increase in POD activity and a 4.83-fold increase in CAT activity, demonstrating higher sensitivity in carcinoembryonic antigen (CEA) detection. By integrating NiCo PBA with a cascade catalytic reaction principle, we developed a highly efficient and sensitive CEA detection method. NiCo PBA was utilized as a catalytic material in this method. Under the action of glucose oxidase, the decomposition of hydrogen peroxide was catalyzed by NiCo PBA, and oxygen was generated. Furthermore, a blue flocculent substance was produced when NiCo PBA was reacted with a chromogenic substrate. Through mutual verification by these two methods, the quantitative determination of CEA in serum samples was achieved. The experimental results demonstrated that the POD-like activity detection range was 0.2-50 ng mL-1, with a limit of detection (LOD) of 0.061 ng mL-1, while the CAT-like activity detection range was 0.1-20 ng mL-1, with an LOD of 0.028 ng mL-1. The sensitivity of this method was substantially increased compared to monometallic materials. Furthermore, this strategy possesses good scalability and can be adapted for the detection of various analytes by replacing different recognition units, providing an efficient detection platform for early cancer screening.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhichao Yu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiao Qin
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Meijin Li
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
7
|
Yang Y, Sun H, Han T, Hao Q, Shen H, Jing Y, Liu X, Mu S, Zhang H. Novel Nanozymes with Sample Pretreatment Function for Specific Multimodal Detection of Perfluorooctanesulfonate. Anal Chem 2025; 97:10474-10483. [PMID: 40347480 DOI: 10.1021/acs.analchem.5c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Perfluorooctanesulfonate (PFOS), a ubiquitous and persistent organic pollutant, poses severe health risks due to its bioaccumulation and recalcitrance. Despite existing detection methods, the need for rapid, sensitive, and cost-effective PFOS quantification remains unmet, particularly for on-site and mass sample analysis. Here, we introduce an innovative "three-in-one" multifunctional nanohybrid, Fe3O4@MON-F@Ru, which revolutionizes the detection of PFOS through a novel integration of nanozymes and microporous organic networks (MONs). This nanohybrid enables sensitive colorimetric and photothermal signaling for PFOS detection, addressing the long-standing challenge of selectivity in nanozyme-based analytical methods. The Fe3O4 core enables magnetic separation, while the fluorinated MONs shell specifically interacts with PFOS through F-F bonding and electrostatic forces, concurrently serving as a high-density carrier for Ru nanozymes. The presence of PFOS significantly inhibits catalytic activity, offering a rapid and specific colorimetric method with a detection limit as low as 15.4 nM. Additionally, based on the near-infrared (NIR) laser-driven photothermal properties of oxidized 3,3',5,5'-tetramethylbenzidine (TMB), the photothermal analysis for PFOS detection was also established. This study not only advances the design of nanozymes with integrated sample pretreatment capabilities but also pioneers a portable, dual-signaling sensing strategy for PFOS detection, offering profound implications for environmental monitoring and public health safety.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Taihe Han
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qilong Hao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuanxue Jing
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Qi X, Zhang S, Wang Z, Zhang H, Ma L, Jin L, Shen Y. Nanoarchitectured biomass-waste derived activated charcoal nanozymes and its application in visual analysis of nitrite in pickled food. Talanta 2025; 294:128259. [PMID: 40344843 DOI: 10.1016/j.talanta.2025.128259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/15/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The emerging field of nanozymes has introduced unprecedented opportunities and challenges for activated charcoal materials derived from biomass waste. By incorporating specific nanostructures or elements, it is possible to overcome the limitations of traditional activated charcoal, such as insufficient catalytic active sites and poor electron transfer efficiency, thereby unlocking its full potential for various applications. In this study, we successfully synthesized trace Fe-doped activated charcoal (Fe-AC) with a graphene-like structure from biomass waste. The Fe atoms were uniformly dispersed on the activated charcoal support, which possessed a high surface area. This not only significantly increased the number of catalytic active sites but also enhanced electron transfer efficiency, substrate mobility, and collision probability. Compared to pristine activated charcoal, the synthesized Fe-AC exhibited multiple enzyme-mimetic activities, including oxidase-like, peroxidase-like, and catalase-like activities. By leveraging its peroxidase-like activity in conjunction with nitrite-specific diazotization reactions, we developed a portable, smartphone-assisted, on-site ratiometric colorimetric hydrogel sensor for nitrite detection. Utilizing smartphone-based digital imaging, this sensor enabled the quantitative analysis of nitrite at concentrations ranging from 1 to 200 μmol/L, with a detection limit as low as 1 μmol/L. The approximate range of hazardous nitrite concentrations could be easily identified with the naked eye, and the proposed strategy was successfully applied to real sample analysis. This sensor not only maximizes the utilization of waste resources, thereby reducing production costs, but also offers greater economic feasibility and environmental sustainability. Given these advantages, it holds promise for broader applications in various fields.
Collapse
Affiliation(s)
- Xiaodan Qi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Shengnan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Zhifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Han Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Lianghui Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, People's Republic of China
| |
Collapse
|
9
|
Chen Y, Cheng H, Tao H, Liu J, Li Y, Li QX, Yang T, Meng S, Yang Y, Hu R. Dual-mode sensing platform based on an iodide ion synergistic covalent triazine frameworks (CTFs) for point-of-care testing (POCT) of acetylcholinesterase. Anal Chim Acta 2025; 1350:343836. [PMID: 40155166 DOI: 10.1016/j.aca.2025.343836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 04/01/2025]
Abstract
Acetylcholinesterase (AChE) plays a critical role in maintaining nervous system homeostasis and coordinating essential biological reactions. AChE is an important biomarker for early diagnosis and treatment, including Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Therefore, developing efficient and immediate sensing platforms for AChE detection is crucial for advancing early diagnostic tools. In this study, we developed a dual-mode colorimetric/photothermal sensing platform based on iodide ion-synergized covalent porphyrin-triazine backbone nanozymes (Zn-CTF/I) to detect AChE with high sensitivity and reliability. The synergistic interaction between iodide ions and zinc atoms effectively modulated the electronic structure of the catalytic active site, significantly enhancing the peroxidase-like (POD-like) activity of Zn-CTF/I. This enhancement led to a 10-fold reduction in the AChE detection limit compared to controls, with a minimum detection limit of 0.003 U L-1, outperforming other reported assays. The integration of temperature-based photothermal signals with colorimetric detection improved the platform's accuracy and reliability. The system also demonstrated excellent recovery performance in detecting AChE in complex serum samples. The proposed dual-mode sensing platform provides a sensitive, reliable, and robust tool for AChE detection, with promising applications in early diagnosis and treatment monitoring of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanyue Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Huan Cheng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Hongling Tao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Jiali Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Yulong Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China; Baoshan College of Traditional Chinese Medicine, Yunnan, Baoshan, 678000, PR China
| | - Qiu-Xia Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China.
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China.
| |
Collapse
|
10
|
Ning J, Zhu X, Hu T, Xia C, Hao P, Shi J, Fang Y, Xu J, Zhang D, Hidayat K, Qin L, Zeng J, Shen X, He Q, Chong Y. Hydrogen Incorporation Selectively Modulates the Catalytic Performance of Pd Nanozymes for Cascade-Catalytic Tumor Therapy. J Am Chem Soc 2025; 147:15519-15533. [PMID: 40289561 DOI: 10.1021/jacs.5c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Pd-based nanozymes have emerged as promising alternatives to natural enzymes, but their application is still constrained due to suboptimal activity and poor specificity. As efficient hydrogen storage nanomaterials, the specific implications of implanted hydrogen on the enzyme-mimicking activity of Pd-based nanomaterials remain largely uninvestigated. In this study, we discovered that hydrogenation process significantly enhances the enzyme-like activity of Pd-based nanomaterials, although reaction specificity varies in dependence on the synthetic route of Pd hydrides. Pd/H2 nanocubes (NCs), which are synthesized by directly injecting hydrogen gas into a solution containing Pd NCs, exhibit a selective enhancement in antioxidative activity against cytotoxic hydrogen peroxide (H2O2), superoxide anion (O2•-), and hydroxyl radical (•OH) due to the sustained release of bioreductive hydrogen. In contrast, stable Pd hydride NCs, which are prepared through the in situ catalytic decomposition of alternative sources of hydrogen atoms, exhibit a remarkable enhancement in exclusive H2O2 activation pathways, specifically exhibiting peroxidase (POD)-like and catalase (CAT)-like activities. Multiple spectroscopic characterizations and density functional theory (DFT) calculations confirmed that this high catalytic activity and specificity of PdH NCs arise from lattice tensile strain and electronic structure change. Based on these findings, a PdH/glucose oxidase (GOx) nanocomplex was developed for cascade catalysis in tumor therapy. This work not only reveals that hydride formation can influence both the activity and selectivity of Pd nanozymes but also provides a viable strategy for the precise regulation of specific enzyme-like activity in hydrogen-loading nanozymes.
Collapse
Affiliation(s)
- Jiayu Ning
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiafeng Zhu
- Key Lab of Porous Functional Materials of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Tengfei Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chao Xia
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518057, China
| | - Pengfei Hao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jia Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yijun Fang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Duo Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Khemayanto Hidayat
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Liqiang Qin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaomei Shen
- Key Lab of Porous Functional Materials of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Qianjun He
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518057, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Wang Y, Shi Y, Chen J, Wang S, Liu X, Liu M, Shi H, Zhang H, Xu Y. Photosensitive Oxidase Mimics for Spontaneous and Sustainable Pathogen Disinfection in Personal Protective Equipment. NANO LETTERS 2025; 25:7393-7402. [PMID: 40270289 DOI: 10.1021/acs.nanolett.5c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The development of personal protective equipment (PPE) is essential to control the spread of infectious diseases. However, traditional PPE has significant drawbacks, such as a lack of antibacterial capacity and nonreusability, which may result in direct or indirect secondary infections. Herein, we propose an octahedral (Fe-O6) Fe-gallate (Fe-GA) metal-organic framework nanozyme with light-enhanced oxidase-like (OXD-like) activity and extend the use onto nonwoven fabric (Fe-GA/NWF) by hot pressing. Specifically, visible-light-mediated carrier migration and the activity of the OXD-like species synergistically enhance the production of reactive oxygen species, achieving superior antibacterial effects without the addition of any chemical additives. In this case, Fe-GA/NWF spontaneously inactivates over 99.9% of real microbial aerosols and demonstrates excellent mechanical properties, reusability (15 cycles), and biocompatibility. Moreover, Fe-GA/NWF can be used as an ideal antibacterial platform for KN95 masks and protective clothing and can be extended to other substrates. This work provides a promising strategy to develop self-antibacterial PPE in complex environments.
Collapse
Affiliation(s)
- Yanjing Wang
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Yanfeng Shi
- Jiangsu Key Laboratory for Nanotechnology and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Junrong Chen
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Shang Wang
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Xiaoyan Liu
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Hao Shi
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Han Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, Shandong, China
| |
Collapse
|
12
|
Yu S, Jia P, Lin S, Hu Y, Xing K, Yao L, Jiao Y, He X, Cheng Y, Xu Z. Dual FeCo single-atom nanozymes with specific oxidase-like activity for sensitive detection of aflatoxin B 1. Talanta 2025; 294:128256. [PMID: 40339343 DOI: 10.1016/j.talanta.2025.128256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Single-atom nanozymes (SAzymes) with well-defined metal-nitrogen-carbon coordination structures are of great interest for the development of colorimetric biosensing. However, their catalytic efficiency and specificity is restricted due to the limited number of single metal atoms that can serve as catalytic centre. Therefore, the construction of SAzymes with high activity and specificity is vital but remains challenging. To address these issues, we prepared a bimetallic SAzymes with an independent iron and cobalt structure (FeCo/NC), and the oxidase-like activity was enhanced by >112.8% relative to Fe/NC. This preparation strategy increased the amount of single metal atoms loaded, resulting in a strong synergistic effect and proximity-orientation effects due to the unique structure of single Co and Fe atoms coexisting on graphene. The oxidase-mimicking activity of FeCo/NC was specifically enhanced by co doping, although the activities of peroxidase-, superoxide dismutase-, or catalase-like were not significantly affected. In light of these discoveries, as a symbol of the proof-of-concept, FeCo/NC-based colorimetric immunoassays were developed for sensitive detection of aflatoxin B1 (AFB1), achieving a linear range of 0.01-10 ng/mL and a detection limit of 0.005 ng/mL. This study provides a convenient strategy for promoting the catalytic activity and specificity of SAzymes, thereby enhancing their potential in biosensing.
Collapse
Affiliation(s)
- Shaoyi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Pei Jia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China.
| | - Shuqin Lin
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Yudie Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Keyu Xing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Li Yao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Ye Jiao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Xiaohong He
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Yunhui Cheng
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Zhou Xu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China.
| |
Collapse
|
13
|
Zhou P, Lin X, Song Y, Pang Y, Chen R. Ligand-Engineering MoS 2-Osmium Heterostructure as Highly Active and Specific Peroxidase-Mimic Nanozyme for Interference-Free and Multimode Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409610. [PMID: 40317845 DOI: 10.1002/smll.202409610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Indexed: 05/07/2025]
Abstract
It is still a challenge to fabricate nanozymes with both of high catalytic activity and specificity. Herein, a ligand engineering method is developed to fabricate osmium (Os) nanocluster-Molybdenum disulfide (MoS2) heterostructure with superior peroxidase-specific activity. It has been verified that polyvinylpyrrolidone (PVP) as ligands can confine amorphous Os nanoclusters growing on the MoS2 nanosheet, mechanism studies indicated that PVP acts as appropriate size-limiting reagent and electronic transmission bridge between of Os and MoS2 which can synergistically improve the peroxidase-specific activity. Moreover, the ligand engineering will not affect the peroxidase-mimic specificity of MoS2-Os. Further, it is found that MoS2-Os possessed superior photothermal conversion efficiency, therefore, MoS2-Os can be used as colorimetric and photothermal dual-mode tags. MoS2-Os combined lateral flow strip is established for breast cancer HER2+ exosomes colorimetric and photothermal detection with superior sensitivity and broader liner range, MoS2-Os based interference-free salivary glucose biosensor is also established with a LOD of 0.1 µM, almost 100-fold sensitivity than that of Glucose Assay Kit. Therefore, this work developed a ligand-engineering strategy to regulate Os nanocluster on MoS2 and improve the peroxidase-specific activity, the multifunctional MoS2-Os nanozyme can be used for accurate and multimode biosensing in varies scenes.
Collapse
Affiliation(s)
- Pengyou Zhou
- Capital Medical University, Beijing Key Laboratory of environment and aging, Youan street, Xitoutiao, Beijing, 100054, China
| | - Xiaorui Lin
- Capital Medical University, Beijing Key Laboratory of environment and aging, Youan street, Xitoutiao, Beijing, 100054, China
| | - Yuxin Song
- Capital Medical University, Beijing Key Laboratory of environment and aging, Youan street, Xitoutiao, Beijing, 100054, China
| | - Yuanfeng Pang
- Capital Medical University, Beijing Key Laboratory of environment and aging, Youan street, Xitoutiao, Beijing, 100054, China
| | - Rui Chen
- Capital Medical University, Beijing Key Laboratory of environment and aging, Youan street, Xitoutiao, Beijing, 100054, China
| |
Collapse
|
14
|
Wang X, Shu C, Wang G, Han P, Zheng L, Xu L, Chen Y. Recent progress of noble metal-based nanozymes: structural engineering and biomedical applications. NANOSCALE 2025; 17:10557-10580. [PMID: 40197505 DOI: 10.1039/d4nr05514d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Due to their tunable catalytic activity, high chemical stability, and favorable electronic structure, noble metal-based nanozymes that can mimic important biocatalytic processes have attracted great attention. Rational structural design of noble metal-based nanozymes can endow them with excellent enzyme-like activities, enhanced sensitivity and stability, as well as unique physicochemical functionalities towards various biomedical applications such as sensing, diagnostics, and disease treatment. This review summarizes the recent progress in structural engineering of noble metal-based nanozymes and emphasizes the relationship between key structural factors of nanozymes and their enzyme-like properties in various enzyme-mimicking reactions. The diverse applications of noble metal-based nanozymes in biosensors, antibiosis, and disease treatment are further introduced. Finally, current challenges and future research directions in noble metal-based nanozymes are discussed. This review could offer scientific guidance to design and fabricate advanced nanozymes with enhanced functionality and performance towards clinical, environmental and biomedical applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Chenhao Shu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Peng Han
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Lei Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
15
|
Zhang L, Wu G, Yao J, Wang D, Gao F, Qian Z. Hyaluronic acid-modified PtPdCo-CQ nanocatalyst with triple enzyme-like activities regulates macrophage polarization and autophagy levels for the treatment of rheumatoid arthritis. Int J Biol Macromol 2025; 309:143143. [PMID: 40233904 DOI: 10.1016/j.ijbiomac.2025.143143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and imbalanced macrophage polarization. Pro-inflammatory M1 macrophages exacerbate joint damage through excessive production of reactive oxygen species (ROS), while anti-inflammatory M2 macrophages are prone to ferroptosis, limiting the long-term efficacy of existing nanozyme therapies. This study aimed to develop a novel nanocatalyst combining efficient ROS scavenging and M2 macrophage protection to synergistically regulate macrophage polarization and autophagy levels for sustained RA remission. We designed a hyaluronic acid-modified PtPdCo-CQ nanocatalyst (HPPCQ) with triple enzyme-like activities-superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In vitro experiments demonstrated that HPPCQ activated the Nrf2/HO-1 antioxidant pathway by scavenging ROS, promoted M1-to-M2 phenotypic repolarization, and protected M2 macrophages from autophagy-dependent ferroptosis via controlled release of chloroquine (CQ). In a collagen-induced arthritis (CIA) mouse model, HPPCQ targeted inflamed joints, significantly reducing clinical scores, synovial hyperplasia, and pro-inflammatory cytokine levels (TNF-α, IL-1β). Histological analysis revealed markedly alleviated cartilage destruction and inflammatory infiltration in HPPCQ-treated mice. By integrating ROS scavenging, macrophage reprogramming, and ferroptosis inhibition, this work provides a novel therapeutic strategy with enhanced efficacy and durability for RA treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Junwei Yao
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Dajun Wang
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Fenglei Gao
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China.
| | - Zhonglai Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Deng L, Zhang L, Qi R, Chen J, Song W, Lu X. Copper Nanoparticles Loaded on N-Doped Carbon Nanotubes with Enhanced Peroxidase-Like Performance for Gallic Acid Detection in Food. Inorg Chem 2025; 64:8439-8447. [PMID: 40228228 DOI: 10.1021/acs.inorgchem.5c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The accurate monitoring of gallic acid (GA) in foodstuffs is crucial for safeguarding human health. The application of nanozymes in colorimetric assays offers a promising route for assessing the GA level. However, the development of high-efficiency and cost-effective nanozymes for quick GA detection holds a substantial challenge. In this study, copper (Cu) nanoparticles (NPs) immobilized on N-doped carbon nanotubes (NCNTs) have been prepared, exhibiting exceptional peroxidase (POD)-like activity for GA detection in food. The anchoring of Cu nanoparticles with NCNTs enables their excellent antioxidant capacity. Then, the obtained Cu NPs/NCNTs show remarkable POD-like activity in catalyzing TMB oxidation, with the attributes of long-term storage stability and reproducibility. Electrochemical assays and radical scavenging experiments reveal a dual mechanism action (involving reactive oxygen species and electron transfer) for the POD-mimicking activity. Furthermore, the developed colorimetric catalytic platform is applied to detect GA in actual tea samples, demonstrating high reliability and potential utility for GA monitoring in the food industry.
Collapse
Affiliation(s)
- Li Deng
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Linfeng Zhang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaming Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Sugiyama M, Yurtsever A, Uenodan N, Nabae Y, Fukuma T, Hayamizu Y. Hierarchical Assembly of Hemin-Peptide Catalytic Systems on Graphite Surfaces. ACS NANO 2025; 19:13760-13767. [PMID: 39957144 PMCID: PMC12004920 DOI: 10.1021/acsnano.4c15373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025]
Abstract
The formation of molecular hybrid systems with cofactors and peptides on graphite electrodes has recently been demonstrated. The design of peptide sequences is crucial for forming robust catalytic molecular systems on electrodes. However, the relationship between peptide sequences, molecular structure, and catalytic performance has not been fully explored. In this study, we employed peptides with simple dipeptide repeats, which effectively immobilize hemin, to construct a stable catalytic system and investigated the molecular basis of their self-assembly and catalytic activity by varying the sequence. Among peptides containing the dipeptide sequences (YH, VH, and LH), YH demonstrated the most efficient immobilization of hemin, which is catalytically active in electrochemical reactions. Using advanced molecular visualization techniques, specifically frequency modulation atomic force microscopy (FM-AFM), we characterized the well-ordered structures of these peptides on graphite electrodes, revealing their molecular-scale organization. Our findings in electrochemical characterizations include a quantitative evaluation of the surface density of hemin immobilized by self-assembled peptides and the catalytic activity of the peptide-hemin hybrid system under electrochemical conditions in the presence of H2O2. The strong peptide-peptide and peptide-hemin interactions, facilitated by π-π interactions of tyrosine residues, contribute to the system's stability and efficiency. The dipeptide repeats serve as a useful platform to investigate the role of important amino acids, beyond histidine, in stably immobilizing cofactors. These results highlight the potential for developing durable and efficient catalytic interfaces in electrochemical applications.
Collapse
Affiliation(s)
- Marie Sugiyama
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Ayhan Yurtsever
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Nina Uenodan
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Yuta Nabae
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| | - Takeshi Fukuma
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuhei Hayamizu
- Department
of Materials Science and Engineering, School
of Materials and Chemical Technology, Institute of Science Tokyo, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Chiang SY, Peng CH, Lin JW, Kuo JW, Lin YW, Lin CH, Chen CY. Amino-Acid-Engineered Bionanozyme Selectivity for Colorimetric Detection of Human Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20693-20704. [PMID: 40022657 DOI: 10.1021/acsami.4c22270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Nanozymes are emerging nanomaterials owing to their superior stability and enzyme-mimicking catalytic functions. However, unlike natural enzymes with inherent amino-acid-based recognition motifs for target interactions, manipulating nanozyme selectivity toward specific targets remains a major challenge. In this study, we introduce the de novo strategy using the supramolecular assembly of l-tryptophan (l-Trp) as the recognition amino acid with copper (Cu) ions for creating a human serum albumin (HSA)-responsive bionanozyme. This amino-acid-engineered bionanozyme enables selective colorimetric detection of HSA, a critical urinary biomarker for kidney diseases, overcoming the challenge that HSA is neither a typical substrate nor an inhibitor for most nanozymes. Kinetic studies and competitive tests reveal that HSA subdomain IIIA binding to l-Trp sites limits the electron-transfer-induced structural changes of l-Trp-Cu chelate rings, resulting in noncompetitive inhibition. This inhibition effect is significantly stronger than that observed for canonical amino acids, common proteins, and urinary interference species. Colorimetric monitoring of bionanozyme activity enables sensitive HSA detection with a detection limit of 1.3 nM and a quantification range of 2 nM to 10 μM. This approach is exceptionally more sensitive and offers a broader detection range compared to conventional colorimetric and fluorescent methods, suitable for diagnostics across various clinical stages of disease. This innovative rational strategy to designing and manipulating selective nanozyme-target interactions not only addresses the limitations of nanozymes but also expands their precise applications in complex biological systems.
Collapse
Affiliation(s)
- Siang-Yun Chiang
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chun-Hsiang Peng
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jhe-Wei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jia-Wei Kuo
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yang-Wei Lin
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chong-You Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
19
|
Qiu M, Man C, Zhao Q, Yang X, Zhang Y, Zhang W, Zhang X, Irudayaraj J, Jiang Y. Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives. Adv Colloid Interface Sci 2025; 338:103404. [PMID: 39884113 DOI: 10.1016/j.cis.2025.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xianlong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Joseph Irudayaraj
- Department of Bioengineering, Grainger College of Engineering, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
20
|
Wu F, Lv Z, Mao Y, Feng T, Zhu J, Deng J, Yao K, Han H. Hyaluronan-modified nanoceria for dry eye disease treatment. J Colloid Interface Sci 2025; 683:215-225. [PMID: 39733537 DOI: 10.1016/j.jcis.2024.12.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Dry eye disease (DED), a prevalent ocular disorder, affects nearly half the global population, bringing enormous health and economic burden. Currently, the predominant treatments for DED involve the administration of artificial tears, which is often hindered by continuous administration and constant reactive oxygen species (ROS) stimulus. Therefore, hyaluronan (HA)-modified cerium oxide (CeO2) nanoparticles, HA-CeO2, were developed to achieve simultaneous ROS scavenging and enhanced tear film stability. HA-CeO2 was demonstrated to effectively scavenge ROS while concurrently downregulating the expression of inflammatory factors, such as MMP9 and IL-1β. Moreover, the anti-oxidative and anti-inflammatory effects of HA-CeO2 were further confirmed through a DED mouse model. In addition, the biocompatibility and safety of HA-CeO2 make it a promising treatment option for DED associated with inflammation and oxidative stress, offering novel insights into utilizing nanozymes in treating inflammation-oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fang Wu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Zeen Lv
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Yingzheng Mao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Tianji Feng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Jiayan Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Jiaying Deng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China.
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, China.
| |
Collapse
|
21
|
Chen X, Yang Y, Chen J, He Y, Huang Y, Huang Q, Deng W, Zhu R, Huang X, Li T. Dual-driven selenium Janus single-atom nanomotors for autonomous regulating mitochondrial oxygen imbalance to catalytic therapy of rheumatoid arthritis. Redox Biol 2025; 81:103574. [PMID: 40043450 PMCID: PMC11926693 DOI: 10.1016/j.redox.2025.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
O2 deficiency and excessive reactive oxygen and nitrogen species (RONS) in macrophage mitochondria is a key factor causing oxygen imbalance in rheumatoid arthritis microenvironment (RAM). Although nanocatalytic therapy that simultaneously produce O2 and eliminate RONS offer a novel strategy for RA therapy, the therapeutic efficacy of nanozymes is limited by the lack of autonomous targeting into mitochondria. Herein, we constructed a Janus-structured nanomotor (Pd@MSe) with autonomous targeting ability by embedding Pd single-atom nanozymes into mesoporous selenium (MSe) nanozymes, and obtained a composite nanomotor (Pd@MSe-TPP) with dual-driven forces by modifying with triphenylphosphine (TPP) in MSe hemisphere. In RAM, Pd@MSe-TPP nanomotor achieved autonomously target into macrophages mitochondria with the driven of generation O2 and TPP targeting effect, moreover under the single-atom effect of the Pd nanozymes enhanced electronic transfer between nanozymes, which significantly boosted GPx catalytic activity further effectively enhanced the diffusion of Pd@MSe-TPP nanomotor, thus quickly resorted the oxygen balance. Additionally, while regulating oxygen imbalance, Pd@MSe-TPP nanomotor enable rapidly blocked the inflammatory cascade, restored mitochondrial function and alleviated inflammation, further prevented cartilage degradation and effectively inhibited RA progression. Therefore, the exquisitely designed nanoplatform to regulation arthritic microenvironment provides a new direction for the RA therapy and the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Xu Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China.
| | - Yang Yang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Jiajun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuebing He
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Ruiqi Zhu
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, PR China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, 526000, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, PR China
| |
Collapse
|
22
|
Dong X, Yan W, Zhang D, Dong X, Li Y. Biomass spinach-drived metal-free carbon dots-based nanozyme for multimodal nitrite sensing and functionalized by glucose oxidase as ROS amplifiers to enhance tumor therapy. Int J Biol Macromol 2025; 304:140875. [PMID: 39938831 DOI: 10.1016/j.ijbiomac.2025.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The metal-free carbon dots (CDs) nanozyme, which is endowed generation of multiple reactive oxygen species (ROS), followed by highly selective chemical sensing, remains a critical challenge. The exceptional biocatalytic properties of glucose oxidase (GOx) have spurred the development of GOx-functionalized nanocatalysts for cancer therapy. Here, the innovative free metal-doped CDs and CDs@GOx nanozymes with peroxidase (POD)-like activity were developed, which specifically catalyzed H₂O₂ to engender multiple ROS including •O2-, 1O2 and •OH, to oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB, indicating both nanozymes can be as ROS amplifiers to enhance tumor therapy. The introduction of NO₂- triggered a distinct color change from blue to green ascribed to the diazotization of ox-TMB along with quenching the fluorescence of CDs, which endowed high selectivity and sensitivity for NO2- detection. Furthermore, CDs catalyzed endogenous H₂O₂ within tumor cells, to effectively destroy cancer cells rather than normal cells. As expected, CDs@GOx preferentially catalyze glucose in cancer cells to further supply H2O2, allowing more ROS accumulation, thereby realizing the integration of starvation therapy and ROS therapy of cancer. Notably, in vivo anti-tumor efficacy demonstrated that CDs and CDs@GOx markedly inhibited tumor growth without external stimulation with neglected side effects. Compared to the saline group, the tumor size was reduced by 3 or 4 times for CDs and CDs@GOx, respectively. This metal-free CDs tailors a convenient and impactful nanoplatform for chemical sensing and as ROS amplifiers to enhance tumor therapy by non-invasive treatment.
Collapse
Affiliation(s)
- Xiaorui Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.
| | | | - Xiuqing Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
23
|
Wu S, Zou J, Zhang B, Lu J, Lin G, Zhang Y, Niu L. Oxygen vacancy-enriched NiO nanozymes achieved via facile annealing in argon for detection of L-Cys. Analyst 2025; 150:1338-1346. [PMID: 40018863 DOI: 10.1039/d5an00054h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Nickel oxide (NiO) nanozymes, as an excellent oxidase mimic, have been widely used in fluorescence biological detection, water pollutant analysis, food safety and cell imaging. However, a great challenge in fully realising these applications is regulating their crystalline micro-/nano-structure and composites to achieve high enzyme activity and high specific surface area. Herein, we applied a very simple thermal annealing treatment to restructure the calcined precursor of NiO. Importantly, it was found that the oxygen vacancy (OV) concentration of the targeted NiO nanozyme significantly increased when the annealing atmosphere was argon rather than air. Moreover, the as-prepared novel NiO sample (NiO-OV) nanosheets achieved about 2-fold enhancement in their specific surface area. It is believed that a higher OV concentration and larger specific surface area increase enzyme activity by accelerating the electron transfer rate and improving catalytic interfaces. The significant improvement in the enzyme activity of NiO-OV was verified using the fluorescence "turn-on" experiment of Amplex Red (AR). Finally, using the NiO-OV/AR system, we constructed a highly sensitive enzyme sensor on L-Cys with a detection limit of 37.8 nM. The sensor also displayed excellent specificity for ten typical amino acid interferents.
Collapse
Affiliation(s)
- Sihua Wu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jinhui Zou
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Baohua Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiantian Lu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Guanrong Lin
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
| |
Collapse
|
24
|
Hamed EM, Fung FM, Li SFY. Zinc Single-Atom Nanozyme As Carbonic Anhydrase Mimic for CO 2 Capture and Conversion. ACS MATERIALS AU 2025; 5:377-384. [PMID: 40093824 PMCID: PMC11907284 DOI: 10.1021/acsmaterialsau.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Single-atom nanozymes (SANs) are a class of nanozymes with metal centers that mimic the structure of metalloenzymes. Herein, we report the synthesis of Zn-N-C SAN, which mimics the action of the natural carbonic anhydrase enzyme. The two-step annealing technique led to a metal content of more than 18 wt %. Since the metal centers act as active sites, this high metal loading resulted in superior catalytic activity. Zn-SAN showed a CO2 uptake of 2.3 mmol/g and a final conversion of CO2 to bicarbonate of more than 91%. CO2 was converted via a biomimetic process by allowing its adsorption by the catalyst, followed by the addition of the catalyst to HEPES buffer (pH = 8) to start the CO2 conversion into HCO3 -. Afterward, CaCl2 was added to form a white CaCO3 precipitate, which was then filtered, dried, and weighed. Active carbon and MCM-41 were used as controls under the same reaction conditions. According to the findings, the CO2 sequestration capacity was 42 mg of CaCO3/mg of Zn-SAN. Some amino acids (AAs) with binding affinity for Zn were able to suppress the enzymatic activity of Zn-SAN by blocking the active metal centers. This strategy was used for the detection of His, Cys, Glu, and Asp with detection limits of 0.011, 0.031, 0.029, and 0.062 μM, respectively, and hence was utilized for quantifying these AAs in commercial dietary supplements.
Collapse
Affiliation(s)
- Eslam M. Hamed
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department
of Chemistry, Faculty of Science, Ain Shams
University, Abbassia, Cairo 11566, Egypt
| | - Fun Man Fung
- School
of Chemistry, University College Dublin, Belfield, Dublin 4 D04 C1P1, Ireland
| | - Sam F. Y. Li
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
25
|
Huang J, Jia X, Wang Y, Qiao Y, Jiang X. Heterojunction-Mediated Co-Adjustment of Band Structure and Valence State for Achieving Selective Regulation of Semiconductor Nanozymes. Adv Healthc Mater 2025; 14:e2400401. [PMID: 38609000 DOI: 10.1002/adhm.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Improving reaction selectivity is the next target for nanozymes to mimic natural enzymes. Currently, the majority of strategies in this field are exclusively applicable to metal-organic-based or organic-based nanozymes, while limited in regulating metal oxide-based semiconductor nanozymes. Herein, taking semiconductor Co3O4 as an example, a heterojunction strategy to precisely regulate nanozyme selectivity by simultaneously regulating three vital factors including band structure, metal valence state, and oxygen vacancy content is proposed. After introducing MnO2 to form Z-scheme heterojunctions with Co3O4 nanoparticles, the catalase (CAT)-like and peroxidase (POD)-like activities of Co3O4 can be precisely regulated since the introduction of MnO2 affects the position of the conduction bands, preserves Co in a higher oxidation state (Co3+), and increases oxygen vacancy content, enabling Co3O4-MnO2 exhibit improved CAT-like activity and reduced POD-like activity. This study proposes a strategy for improving reaction selectivity of Co3O4, which contributes to the development of metal oxide-based semiconductor nanozymes.
Collapse
Affiliation(s)
- Jiahao Huang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Qiao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Xiue Jiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Geng F, Huang M, Zhang X, Wang Y, Shao C, Xu M. Sensitive colorimetric sensing of dopamine and TYR based on enhanced HRP-like activity of CuNi/Fe LDHs nanozymes. Mikrochim Acta 2025; 192:197. [PMID: 40024977 DOI: 10.1007/s00604-025-07056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
CuNi/Fe LDHs with HRP-like activity (nanozyme) have been prepared. Contrary to the expected design, free dopamine (DA) was found to greatly enhance the catalytic performances of CuNi/Fe LDHs nanozyme. As far as we know, this is the first report that free DA boosts the catalytic performances of LDHs. Given the superior HRP-like enzyme activity of DA-CuNi/Fe LDHs, a colorimetric method for DA and tyrosinase (TYR) assay with high sensitivity and specificity was established, and it was successfully applied to quantify DA in artificial cerebrospinal fluid and TYR in newborn calf serum. The acquired insights in DA-CuNi/Fe LDHs will contribute to future rational design of other high-performance nanozymes. In addition, the novel DA and TYR assay pave a way for designing further nanozymes-based colorimetric chemo/biosensors.
Collapse
Affiliation(s)
- Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Min Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Xiaoli Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yongxiang Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Material Science, Huaibei Normal University, Huaibei, 235000, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China
| |
Collapse
|
27
|
Wang Y, Gao L, Cao Y, Yan D, Lukman R, Zhang J, Li Q, Liu J, Du F, Zhang L. Research progress on the synthesis, performance regulation, and applications of Prussian blue nanozymes. Int J Biol Macromol 2025; 295:139535. [PMID: 39761892 DOI: 10.1016/j.ijbiomac.2025.139535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
Nanocatalytic medicine offers a novel solution to address the issues of low efficacy, potential side effects, and the development of drug resistance associated with traditional therapies. Therefore, developing highly efficient and durable nanozymes is of great significance for treating diseases related to oxidative stress. In recent years, prussian blue nanoparticles (PBNPs) have been demonstrated to possess multiple enzyme-like catalytic activities and are thus referred to as prussian blue nanozymes (PBNZs). Their excellent biocompatibility and biodegradability make PBNZs promising candidates as biomedical materials. Due to their remarkable catalytic activities, PBNZs have shown great potential in various biomedical applications, such as heavy metal detoxification, antioxidative damage, and anticancer therapies. This paper systematically summarizes the Synthetic strategies of PBNZs, analyzes the regulatory factors of their catalytic performance, and highlights the corresponding modulation methods. Furthermore, the biomedical applications of PBNZs are also reviewed. This study aims to provide researchers with insights and inspirations for the design and preparation of high-performance PBNZs.
Collapse
Affiliation(s)
- Yiyang Wang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Gao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Yue Cao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Duanfeng Yan
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Rilwanu Lukman
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingxi Zhang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Quan Li
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiaying Liu
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengyi Du
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China; Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, PR China
| | - Li Zhang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, PR China.
| |
Collapse
|
28
|
Hu P, Zheng J, Wang H, Li Y, Ye T, Li Q, Lan X, Liu C, Liu C. Supramolecular Nanozymes Based on Self-Assembly of Biomolecule for Cancer Therapy. Int J Nanomedicine 2025; 20:2043-2057. [PMID: 39990286 PMCID: PMC11842878 DOI: 10.2147/ijn.s496831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/10/2025] [Indexed: 02/25/2025] Open
Abstract
Natural enzyme systems possess extraordinary functions and characteristics, making them highly appealing for use in eco-friendly technologies and innovative cancer treatments. However, their inherent instability and structural complexity often limit their practical applications, leading to the exploration of biomolecular nanozyme alternatives. Supramolecular nanozymes, constructed using self-assembly techniques and various non-covalent interactions, have emerged as a promising solution. Amino acids, peptides, and protein motifs offer flexible building blocks for constructing these nanozymes. Importantly, the well-defined structural regulation mechanisms of biomolecular nanozymes, along with their unique properties as fundamental biological modules in living systems-such as selectivity, permeability, retention, and biocompatibility-present new opportunities for cancer therapy. This review highlights recent advances in supramolecular self-assembled nanozymes, including peroxidases, oxidases, catalases, superoxide dismutases, and other nanozyme systems, as building blocks for tumor therapy. Additionally, it discusses precise functional modulation through supramolecular non-covalent interactions and their therapeutic applications in targeting the tumor microenvironment. These studies provide valuable insights that may inspire the design of novel supramolecular nanozymes with enhanced catalytic selectivity, biocompatibility, and tumor-killing efficacy.
Collapse
Affiliation(s)
- Pengcheng Hu
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Jilu Zheng
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Hongjuan Wang
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Yongxin Li
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Tao Ye
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
- School of Clinical Medicine, Shandong second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Quanjun Li
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Xiaopeng Lan
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| | - Chunzhao Liu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Chunlei Liu
- Department of Urology, Department of Primary Healthcare, Department of Cardiology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
29
|
Zhang Z, Luo E, Wang W, Huang D, Liu J, Du Z. Molecularly Imprinted Nanozymes with Substrate Specificity: Current Strategies and Future Direction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408343. [PMID: 39655386 DOI: 10.1002/smll.202408343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Indexed: 02/06/2025]
Abstract
Molecular imprinting technology (MIT) stands out for its exceptional simplicity and customization capabilities and has been widely employed in creating artificial antibodies that can precisely recognize and efficiently capture target molecules. Concurrently, nanozymes have emerged as promising enzyme mimics in the biomedical field, characterized by their remarkable stability, ease of production scalability, robust catalytic activity, and high tunability. Drawing inspiration from natural enzymes, molecularly imprinted nanozymes combine the unique benefits of both MIT and nanozymes, thereby conferring biomimetic catalysts with substrate specificity and catalytic selectivity. In this review, the latest strategies for the fabrication of molecularly imprinted nanozymes, focusing on the use of organic polymers and inorganic nanomaterials are explored. Additionally, cutting-edge techniques for generating atom-layer-imprinted islands with ultra-thin atomic-scale thickness is summarized. Their applications are particularly noteworthy in the fields of catalyst optimization, detection techniques, and therapeutic strategies, where they boost reaction selectivity and efficiency, enable precise identification and quantification of target substances, and enhance therapeutic effectiveness while minimizing adverse effects. Lastly, the prevailing challenges in the field and delineate potential avenues for future progress is encapsulated. This review will foster advancements in artificial enzyme technology and expand its applications.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030032, China
| | - Wenjuan Wang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-Biomaterials & Regenerative Medicine, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030060, China
| |
Collapse
|
30
|
Ma L, Liang Z, Hou Y, Zhang R, Fan K, Yan X. Nanozymes and Their Potential Roles in the Origin of Life. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412211. [PMID: 39723709 DOI: 10.1002/adma.202412211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Indexed: 12/28/2024]
Abstract
The origin of life has long been a central scientific challenge, with various hypotheses proposed. The chemical evolution, which supposes that inorganic molecules can transform into organic molecules and subsequent primitive cells, laid the foundation for modern theories. Inorganic minerals are believed to play crucial catalytic roles in the process. However, the harsh reaction conditions of inorganic minerals hinder the accumulation of organic molecules, preventing the efficient transition from inorganic molecules to biomacromolecules. Given the inherent physicochemical properties and enzyme-like activities, this study proposes that nanozymes, nanomaterials with enzyme-like activities, act as efficient prebiotic catalysts in the origin of life. This hypothesis is based on the following: First, unlike traditional minerals, nanominerals can catalyze organic synthesis under milder conditions. Second, nanominerals can not only protect biomolecules from radiation damage but also catalyze polymerization reactions to form functional biomacromolecules and further lipid vesicles. More importantly, nanominerals are abundant in terrestrial and extraterrestrial environments. This perspective will systematically discuss the potential roles of nanozymes in the emergence of life based on the functions of minerals and the characteristics of nanozymes. We hope the research on nanozymes and the origin of life will bridge the gap between inorganic precursors and biomolecules under primitive environments.
Collapse
Affiliation(s)
- Long Ma
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Zimo Liang
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinyin Hou
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruofei Zhang
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Xiyun Yan
- Country CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| |
Collapse
|
31
|
Qiu Y, Cheng T, Yuan B, Yip TY, Zhao C, Lee JH, Chou SW, Chen JL, Zhao Y, Peng YK. One-Pot and Gram-Scale Synthesis of Fe-Based Nanozymes with Tunable O 2 Activation Pathway and Specificity Between Associated Enzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408609. [PMID: 39676381 DOI: 10.1002/smll.202408609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Nanozymes have recently gained attention for their low cost and high stability. However, unlike natural enzymes, they often exhibit multiple enzyme-like activities, complicating their use in selective bioassays. Since H2O2 and O2 are common substrates in these reactions, controlling their activation-and thus reaction specificity-is crucial. Recent advances in tuning the chemical state of cerium have enabled control over H2O2 activation pathways for tunable peroxidase/haloperoxidase-like activities. In contrast, the control of O2 activation on an element in oxidase/laccase nanozymes and the impact of its chemical state on these activities remains unexplored. Herein, a facile one-pot method is presented for the gram-scale synthesis of Fe-based nanozymes with tunable compositions of Fe3O4 and Fe3C by adjusting preparation temperatures. The Fe3O4-containing samples exhibit superior laccase-like activity, while the Fe3C-containing counterparts demonstrate better oxidase-like activity. This divergent O2 activation behavior is linked to their surface Fe species: the abundant reactive Fe2+ in Fe3O4 promotes laccase-like activity via Fe3+-superoxo formation, whereas metallic Fe in Fe3C facilitates OH radical generation for oxidase-like activity. Controlled O2 activation pathways in these Fe-based nanozymes demonstrate improved sensitivity in the corresponding biomolecule detection, which should inform the design of nanozymes with enhanced activity and specificity.
Collapse
Affiliation(s)
- Yuwei Qiu
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tianqi Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Bo Yuan
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Tsz Yeung Yip
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, SAR, 0000, China
| | - Chao Zhao
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
| | - Jung-Hoon Lee
- Department of Chemistry, Soonchunhyang University, Asan, 31538, South Korea
| | - Shang-Wei Chou
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jian Lin Chen
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, SAR, 0000, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 0000, China
- City University of Hong Kong Chengdu Research Institute, Chengdu, 610203, China
| |
Collapse
|
32
|
Mekonnen ML, Abda EM, Csáki A, Fritzsche W. Frontiers in laccase nanozymes-enabled colorimetric sensing: A review. Anal Chim Acta 2025; 1337:343333. [PMID: 39800530 DOI: 10.1016/j.aca.2024.343333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 05/02/2025]
Abstract
In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity. They can oxidize phenolic compounds to generate a coloured product, independently or with a chromogenic agent. This chromogenic reaction provides the basis for developing simple and robust colorimetric assays for various analytes, enabling rapid and point-of-need analytical decision-making in food safety, clinical diagnostics, and environmental monitoring. This review article provides a concise overview of laccase nanozymes, including their classification and catalytic mechanisms. The article mainly discusses colorimetric and dual-mode detection methods and outlines various strategies to enhance the colorimetric sensing performance of laccase nanozymes. Additionally, the article highlights future research directions that could further improve laccase nanozyme-enabled colorimetric sensing. We hope this work will enhance the field's understanding and help future researchers identify gaps in developing simple, low-cost colorimetric sensors.
Collapse
Affiliation(s)
- Menbere Leul Mekonnen
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany; Industrial Chemistry Department, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 1647, Ethiopia; Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 1647, Ethiopia.
| | - Ebrahim M Abda
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa, P.O. Box 1647, Ethiopia; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Andrea Csáki
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.
| |
Collapse
|
33
|
Liu Y, Liu J, Chen Y, Zhang G, Wang Q, Li Y. Integrated Microneedles and Hydrogel Biosensor Platform: Toward a Diagnostic Device for Collection and Dual-Mode Sensing of Monkeypox Virus A29 Protein. Anal Chem 2025; 97:1539-1545. [PMID: 39804107 DOI: 10.1021/acs.analchem.4c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch. The IMHB allowed for specific extraction of monkeypox virus (MPXV) directly from lesional skin and virus detection in both electrochemical and colorimetric modes. A bifunctional signal probe 3,3',5,5'-tetramethylbenzidine (TMB) was loaded in a hydrogel patch, providing measurable signals for dual-mode sensing. Additionally, a control area was designed in this platform to collect blank samples from normal skin, enabling ratio analysis and quality control functions. This dual-mode ratiometric sensing strategy exhibited a wide range of 10-1000 ng/mL for MPXV A29 protein, with detection limits of 0.1632 and 0.3017 ng/mL for electrochemical and colorimetric assay, respectively. The developed IMHB platform provides a novel way for rapid on-site determination of MPXV, demonstrating the potential for quick intervention in the early stages of infectious diseases.
Collapse
Affiliation(s)
- Yujian Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yequn Chen
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Guanghui Zhang
- Department of Laboratory Medicine, Shenzhen Hengsheng Hospital, Shenzhen 518102, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yingchun Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
34
|
Li J, Zhou X, Mao G, Zhu G, Yi Y. Self-reduction of gold@platinum bimetallic nanoparticles on Ti 3C 2T x MXene nanoribbons coupled with hydrogel and smartphone technology for colorimetric detection of silver ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:688-697. [PMID: 39690957 DOI: 10.1039/d4ay01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In recent years, numerous colorimetric methods have been developed for the detection of silver ions (Ag+), yet there remains a need for a simple, sensitive, real-time and quantitative sensing platform. Herein, Ti3C2Tx MXene nanoribbons (Ti3C2TxNRs) were utilized as the carrier material, and gold@platinum (Au@Pt) bimetallic nanoparticles were decorated onto the Ti3C2TxNR surface, for the first time, via a facile self-reduction method. The resulting Au@Pt-Ti3C2TxNR nanohybrid exhibited excellent catalytic activity, facilitating the oxidation of 3,3',5,5'-tetramethylbenzidine, a colorless substrate, to generate a blue product (oxTMB), displaying prominent peroxidase-like activity. In the presence of Ag+, a remarkable inhibiting effect was observed on the catalytic activity of the Au@Pt-Ti3C2TxNR nanohybrids, effectively halting the generation of oxTMB. Based on this, the as-obtained Au@Pt-Ti3C2TxNR nanozyme was then utilized to develop a novel colorimetric sensing platform for Ag+ detection, with a low detection limit of 1.57 nM and a wide linear detection range from 5.0 nM to 9.0 μM. In addition, by combining the unique advantages of hydrogel materials and smartphone technology, a simple, real-time and quantitative platform for Ag+ monitoring was constructed, highlighting its potential for practical applications in Ag+ detection.
Collapse
Affiliation(s)
- Jing Li
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Xun Zhou
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Yinhui Yi
- School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, P. R. China
| |
Collapse
|
35
|
Xing J, Ma X, Yu Y, Xiao Y, Chen L, Yuan W, Wang Y, Liu K, Guo Z, Tang H, Fan K, Jiang W. A Cardiac-Targeting and Anchoring Bimetallic Cluster Nanozyme Alleviates Chemotherapy-Induced Cardiac Ferroptosis and PANoptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405597. [PMID: 39467094 PMCID: PMC11714205 DOI: 10.1002/advs.202405597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Indexed: 10/30/2024]
Abstract
Doxorubicin (DOX), a potent antineoplastic agent, is commonly associated with cardiotoxicity, necessitating the development of strategies to reduce its adverse effects on cardiac function. Previous research has demonstrated a strong correlation between DOX-induced cardiotoxicity and the activation of oxidative stress pathways. This work introduces a novel antioxidant therapeutic approach, utilizing libraries of tannic acid and N-acetyl-L-cysteine-protected bimetallic cluster nanozymes. Through extensive screening for antioxidative enzyme-like activity, an optimal bimetallic nanozyme (AuRu) is identified that possess remarkable antioxidant characteristics, mimicking catalase-like enzymes. Theoretical calculations reveal the surface interactions of the prepared nanozymes that simulate the hydrogen peroxide decomposition process, showing that these bimetallic nanozymes readily undergo OH⁻ adsorption and O₂ desorption. To enhance cardiac targeting, the atrial natriuretic peptide is conjugated to the AuRu nanozyme. These cardiac-targeted bimetallic cluster nanozymes, with their anchoring capability, effectively reduce DOX-induced cardiomyocyte ferroptosis and PANoptosis without compromising tumor treatment efficacy. Thus, the therapeutic approach demonstrates significant reductions in chemotherapy-induced cardiac cell death and improvements in cardiac function, accompanied by exceptional in vivo biocompatibility and stability. This study presents a promising avenue for preventing chemotherapy-induced cardiotoxicity, offering potential clinical benefits for cancer patients.
Collapse
Affiliation(s)
- Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Xiaohan Ma
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Yanan Yu
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Yangfan Xiao
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Lu Chen
- Department of Cardiovascular Diseases the First Clinical Medical CollegeShanxi Medical UniversityTaiyuanShanxi030001China
| | - Weining Yuan
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Keyu Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangShandong261053China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of Biomacromolecules (CAS)CAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Laboratory in ZhongyuanHenan Academy of Innovations in Medical ScienceZhengzhouHenan451163China
| | - Wei Jiang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineCentral China Subcenter of National Center for Cardiovascular DiseasesHenan Cardiovascular Disease CenterFuwai Central‐China Cardiovascular HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhou450046China
- Henan Key Laboratory of Chronic Disease ManagementCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Zhengzhou Key Laboratory of Cardiovascular AgingCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouHenan451464China
- Academy of Medical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
36
|
Hou H, Jia W, Zhang A, Su M, Bu Y, Liu L, Du B. Unveiling Generally-ignored Co-substrate Effect of Catalase-inherent Peroxidase Mimic for Self-verifiable Detection of High-concentration Hydrogen Peroxide. SMALL METHODS 2025; 9:e2400847. [PMID: 39221463 DOI: 10.1002/smtd.202400847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
One nanoparticle possessing both peroxidase (POD) and catalase (CAT) activities is a prevalent co-substrate nanozyme system, distinct from the extensively researched cascade nanozyme system. During the sensing of hydrogen peroxide by POD, the impact of CAT is actually ignored in most studies. In this study, the CAT effect on hydrogen peroxide detection is thoroughly investigated based on POD catalysis by finely tuning the relative activity of POD and CAT. It is discovered that the CAT effect can be changed by delaying the injection of chromogenic substrate after adding hydrogen peroxide and that the linear range grows with the delayed time. Then, a theoretical mechanism showed that the time-delay mediated CAT effect magnification does not change the Vmax, but it causes Km to linearly increase with delayed time, consistent with the experiment results. Furthermore, the detection of high concentrations of hydrogen peroxide is successfully realized in contact lens care solutions by utilizing time-delay-mediated POD/CAT nanozyme. On the other hand, its linear range-tunable characteristic is used to produce multiple standard curves, then enabled self-verifying hydrogen peroxide detection. Overall, this work investigates the role of CAT in CAT-inherent POD nanozymes both theoretically and experimentally, and confirms POD/CAT nanozyme's priority in developing high-performance sensors.
Collapse
Affiliation(s)
- Haiwei Hou
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weijuan Jia
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Aoxue Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Minyang Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
37
|
Feng M, Zhang X, Huang Y. Developing oxygen vacancy-rich CuMn 2O 4/carbon dots dual-function nanozymes via Chan-Lam coupling reaction for the colorimetric/fluorescent determination of D-penicillamine. Biosens Bioelectron 2025; 267:116864. [PMID: 39442436 DOI: 10.1016/j.bios.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Defect engineering is a promising approach to construct high performance nanozymes due to its ability to regulate their physical and chemical properties. However, how to construct defects to improve the activity of nanozymes remains a challenge. Herein, for the first time, the Chan-Lam coupling reaction is used to construct the oxygen vacancy (OV)-rich CuMn2O4/carbon dots (CDs) (OV-CuMn2O4/CDs) dual-function nanozymes with fluorescent (FL) and oxidase-like properties, via regulating the low-valent metal ions (Cu+ and Mn2+) and Ov contents in the spinel CuMn2O4 and in-situ growth of β-cyclodextrin (β-CD)-derived CDs. Expectedly, relative to CuMn2O4, the OV-CuMn2O4/CDs exhibited 35.8%, 8.5%, and 14.6% rise in the contents of Cu+, Mn2+ and Ov, respectively. Abundant Ov provides more O2 adsorption/activation sites, and the charge transfer between Ov and metal atoms increases the charge density around metal atoms. This produces more low-valent metals (like Cu+ and Mn2+) to promote the electron transfer from metal to O atoms and O-O bond cleavage. Thus, the oxidase-like activity of OV-CuMn2O4/CDs is 4.1 times that of CuMn2O4. Also, the in-situ growth of β-CD-derived carbon dots on CuMn2O4 endows OV-CuMn2O4/CDs selective target recognition. Thus, a sensitive and selective colorimetric and fluorescence dual-mode method was established for determining D-penicillamine (D-PA), with the limit of detection of 0.25 and 0.048 μM, respectively. The method was applied to D-PA determination in real samples. This work demonstrates the Chan-Lam coupling reaction can be used to construct high performance nanozymes for developing dual-mode sensor for the detection of targets.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
38
|
Zhang J, Dong H, Liu B, Yang D. Biomimetic Materials for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408543. [PMID: 39575483 DOI: 10.1002/smll.202408543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
The rise of antibiotic resistance poses a critical threat to global health, necessitating the development of novel antibacterial strategies to mitigate this growing challenge. Biomimetic materials, inspired by natural biological systems, have emerged as a promising solution in this context. These materials, by mimicking biological entities such as plants, animals, cells, viruses, and enzymes, offer innovative approaches to combat bacterial infections effectively. This review delves into the integration of biomimicry with materials science to develop antibacterial agents that are not only effective but also biocompatible and less likely to induce resistance. The study explores the design and function of various biomimetic antibacterial materials, highlighting their therapeutic potential in anti-infection applications. Further, the study provides a comprehensive summary of recent advancements in this field, illustrating how these materials have been engineered to enhance their efficacy and safety. The review also discusses the critical challenges facing the transition of these biomimetic strategies from the laboratory to clinical settings, such as scalability, cost-effectiveness, and long-term stability. Lastly, the study discusses the vast opportunities that biomimetic materials hold for the future of antibacterial therapy, suggesting that continued research and multidisciplinary collaboration will be essential to realize their full potential.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Bing Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
39
|
Chen X, Huang Y, Yang S, Wang S, Chen L, Yu X, Gan N, Huang S. In-situ nanozyme catalytic amplification coupled with a universal antibody orientation strategy based electrochemical immunosensor for AD-related biomarker. Biosens Bioelectron 2024; 266:116738. [PMID: 39241336 DOI: 10.1016/j.bios.2024.116738] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
An in-situ nanozyme signal tag combined with a DNA-mediated universal antibody-oriented strategy was proposed to establish a high-performance immunosensing platform for Alzheimer's disease (AD)-related biomarker detection. Briefly, a Zr-based metal-organic framework (MOF) with peroxidase (POD)-like activity was synthesized to encapsulating the electroactive molecule methylene blue (MB), and subsequently modified with a layer of gold nanoparticles on its surface. This led to the creation of double POD-like activity nanozymes surrounding the MB molecule to form a nanozyme signal tag. A large number of hydroxyl radicals were generated by the nanozyme signal tag with the help of H2O2, which catalyzed MB molecules in situ to achieve efficient signal amplification. Subsequently, a DNA-aptamer-mediated universal antibody-oriented strategy was proposed to enhance the binding efficiency for the antigen (target). Meanwhile, a poly adenine was incorporated at the end of the aptamer, facilitating binding to the gold electrode and providing anti-fouling properties due to the hydrophilicity of the phosphate group. Under optimal conditions, this platform was successfully employed for highly sensitive detection of AD-associated tau protein and BACE1, achieving limits of detection with concentrations of 3.34 fg/mL and 1.67 fg/mL, respectively. It is worth mentioning that in the tau immunosensing mode, 20 clinical samples from volunteers of varying ages were analyzed, revealing significantly higher tau expression levels in the blood samples of elderly volunteers compared to young volunteers. This suggests that the developed strategy holds great promise for early AD diagnosis.
Collapse
Affiliation(s)
- Xiyu Chen
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yang Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo Yang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin Chen
- Department of Pharmacy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, China
| | - Xiyong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Shengfeng Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
40
|
Wen W, Lang Y, Li Z, Li L, Li HW, Li Y, Wen G. A Fe/Zn Dual Single-Atom Nanozyme with High Peroxidase Activities for Detection of Penicillin G. Anal Chem 2024; 96:19248-19257. [PMID: 39570177 DOI: 10.1021/acs.analchem.4c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Penicillin G (PG) is a common antibiotic, and its accumulation in the environment can pose a threat to the ecological system and ultimately impact human health. Nanozymes have emerged as highly stable enzyme mimics that can be utilized as sensors to achieve the sensitive detection of specific antibiotics. Herein, we report on a dual single-atom Fe/Zn nanozyme (DSAzyme) synthesized from Fe-imidazole as the guest and zeolite imidazole framework-8 as the host. The DSAzyme exhibits intriguing properties that mimic the activities of two natural enzymes: peroxidase and lactamase. Both activities are utilized for the design of a colorimetric sensor for the specific detection of PG: the peroxidase activity enables color generation from 3,3',5,5'-tetramethylbenzidine and H2O2, and the lactamase activity provides the recognition of PG. The nanozyme consists of many Fe-N4 and Zn-N4 site and mechanistic characterizations by experimental investigations and theoretical calculations identify Fe-N4 as the main active center for the peroxidase activity and Zn-N4 as the main binding site for PG. The sensor can achieve a limit of detection of 47 nM, is able to detect PG from real-life samples, remains fully functional after 8-month storage, and retain high activities after reuse for fives times. Taken together, our study provides a new approach to the detection of antibiotics in environmental samples.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Environmental Science and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Yifei Lang
- Institute of Environmental Science and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Zhongping Li
- Institute of Environmental Science and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan 030006, China
| | - Li Li
- First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Hung-Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Guangming Wen
- School of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, China
| |
Collapse
|
41
|
He S, Ma L, Zheng Q, Wang Z, Chen W, Yu Z, Yan X, Fan K. Peptide nanozymes: An emerging direction for functional enzyme mimics. Bioact Mater 2024; 42:284-298. [PMID: 39285914 PMCID: PMC11403911 DOI: 10.1016/j.bioactmat.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The abundance of molecules on early Earth likely enabled a wide range of prebiotic chemistry, with peptides playing a key role in the development of early life forms and the evolution of metabolic pathways. Among peptides, those with enzyme-like activities occupy a unique position between peptides and enzymes, combining both structural flexibility and catalytic functionality. However, their full potential remains largely untapped. Further exploration of these enzyme-like peptides at the nanoscale could provide valuable insights into modern nanotechnology, biomedicine, and even the origins of life. Hence, this review introduces the groundbreaking concept of "peptide nanozymes (PepNzymes)", which includes single peptides exhibiting enzyme-like activities, peptide-based nanostructures with enzyme-like activities, and peptide-based nanozymes, thus enabling the investigation of biological phenomena at nanoscale dimensions. Through the rational design of enzyme-like peptides or their assembly with nanostructures and nanozymes, researchers have found or created PepNzymes capable of catalyzing a wide range of reactions. By scrutinizing the interactions between the structures and enzyme-like activities of PepNzymes, we have gained valuable insights into the underlying mechanisms governing enzyme-like activities. Generally, PepNzymes play a crucial role in biological processes by facilitating small-scale enzyme-like reactions, speeding up molecular oxidation-reduction, cleavage, and synthesis reactions, leveraging the functional properties of peptides, and creating a stable microenvironment, among other functions. These discoveries make PepNzymes useful for diagnostics, cellular imaging, antimicrobial therapy, tissue engineering, anti-tumor treatments, and more while pointing out opportunities. Overall, this research provides a significant journey of PepNzymes' potential in various biomedical applications, pushing them towards new advancements.
Collapse
Affiliation(s)
- Shaobin He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Zihang Yu
- Department of Biomedical Engineering, Hajim School of Engineering & Applied Sciences, University of Rochester, Rochester, 14627, USA
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| |
Collapse
|
42
|
Wang S, Wang T, Wang Z, Liu G, Ji R, Zang Y, Lin S, Lu J, Zhou H, Wang Q. An integrated bipolar electrode with shared cathode for dual-mode detection and imaging of CEA. Biosens Bioelectron 2024; 265:116704. [PMID: 39182411 DOI: 10.1016/j.bios.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In this paper, we designed a novel shared cathode bipolar electrode chip based on Ohm 's law and successfully constructed a dual-mode dual-signal biosensor platform (DD-cBPE). The device integrates ELISA, ECL, and ECL imaging to achieve highly sensitive detection and visual imaging of carcinoembryonic antigen (CEA). The unique circuit structure of the device not only realizes the dual signal detection of the target, but also breaks the traditional signal amplification concept. The total resistance of the system is reduced by series-parallel connection of BPE, and the total current in the circuit is increased. In addition, Au@NiCo2O4@MnO2 nanozyme activity probe was introduced into the common cathode to enhance the conductivity of the material. At the same time, due to the excellent peroxidase (POD) activity of NiCo2O4@MnO2, the decomposition of H2O2 was accelerated, so that more electrons flowed to the BPE anode, and finally the dual amplification of the ECL signal was realized. The device affects the current in the circuit by regulating the concentration of the co-reactant TPrA, thereby affecting the resistance of the system. Finally, different luminescent reagents emit light at the same potential and the luminous efficiency is similar. In addition, the chip does not need external resistance regulation, which improves the sensitivity of the immunosensor and meets the needs of timely detection. It provides a new idea for the deviceization of bipolar electrodes and has broad application prospects in biosensors, clinical detection, and environmental monitoring.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Zehua Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Gengjun Liu
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Rui Ji
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yufei Zang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shengxiang Lin
- CHU de Québec Research Center and Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - Jiaoyang Lu
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
43
|
Li Y, Wu SQ, Nan F, Deng W, Li K, Jarhen N, Zhou Y, Ma Q, Qu Y, Chen C, Ren Y, Yin XB. Single-Atom Iridium Nanozyme-Based Persistent Luminescence Nanoparticles for Multimodal Imaging-Guided Combination Tumor Therapy. Adv Healthc Mater 2024; 13:e2402544. [PMID: 39344246 DOI: 10.1002/adhm.202402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/23/2024] [Indexed: 10/01/2024]
Abstract
Persistent luminescence nanoparticles (PLNPs) can achieve autofluorescence-free afterglow imaging, while near-infrared (NIR) emission realizes deep tissue imaging. Nanozymes integrate the merits of nanomaterials and enzyme-mimicking activities with simple preparation. Here PLNPs are prepared of Zn1.2Ga1.6Ge0.2O4:Cr0.0075 with NIR emission at 700 nm. The PLNPs are then incubated with IrCl3 solution, and the nanoparticles are collected and annealed at 750 °C to obtain iridium@PLNPs. Iridium is observed on the PLNPs at the atomic level as a single-atom nanozyme with peroxidase-like catalytic activity, photothermal conversion, and computed tomography (CT) contrast capability. After coating with exosome membrane (EM), the Ir@PLNPs@EM composite exhibits long-lasting NIR luminescence, peroxidase-like catalytic activity, photothermal conversion, and CT contrast capability, with the targeting capability and biocompatibility from EM. Thus, NIR afterglow/photothermal/CT trimodal imaging-guided photothermal-chemodynamic combination therapy is realized as validated with the in vitro and in vivo inhibition of tumor growth, while toxicity and side effects are avoided as drug-free treatment. This work offers a promising avenue for advanced single-atom nanozyme@PLNPs to promote the development of nanozymes and PLNPs for clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shu-Qi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fang Nan
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Deng
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kaixuan Li
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Nur Jarhen
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yitong Zhou
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qianli Ma
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuanyuan Qu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chaoxiang Chen
- Department of Biological Engineering, College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yujing Ren
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
44
|
Xu K, Zou Y, Lin C, Zhang L, Tan M, Li M, Wu J, Li X, He Y, Liu P, Li K, Cai K. Cascade catalysis nanozyme for interfacial functionalization in combating implant infections associated with diabetes via sonodynamic therapy and adaptive immune activation. Biomaterials 2024; 311:122649. [PMID: 38850718 DOI: 10.1016/j.biomaterials.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chuanchuan Lin
- Department of Blood Transfusion, Laboratory of Radiation Biology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Liangshuai Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
45
|
Chen S, Luo X, Ma R, Guo Z, Zhao J, Gao J, He R, Jin W. Promotes M1-polarization and diabetic wound healing using Prussian blue nanozymes. Int Immunopharmacol 2024; 141:113009. [PMID: 39191123 DOI: 10.1016/j.intimp.2024.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Long-term inflammation and impaired angiogenesis are the main reasons for the difficulty of diabetic wound healing. What to do to effectively promote vascular endothelial cell response and immune cell reprogramming is the key to diabetic skin healing. However, contemporary therapies cannot simultaneously coordinate the promotion of vascular endothelial cells and macrophage polarization, which leads to an increased rate of disability in patients with chronic diabetes. Therefore, we developed a method of repair composed of self-assembling Prussian blue nanoenzymes, which achieved synergistic support for the immune microenvironment, and also contributed to macrophage polarization in the tissue regeneration cycle, and enhanced vascular endothelial cell activity. The template hydrothermal synthesis PB-Zr nanoplatform was prepared and locally applied to wounds to accelerate wound healing through the synergistic effect of reactive oxygen species (ROS). PB-Zr significantly normalized the wound microenvironment, thereby inhibiting ROS production and inflammatory response, which may be because it inhibited the M1 polarization of macrophages in a rat model of wound. PB-Zr treatment significantly promoted the activity of vascular endothelial cells, which better promoted the growth and regeneration of other tissues in the body. The results confirmed the disease microenvironment of PB-Zr-mediated wound therapy and indicated its application in other inflammation-related diseases.
Collapse
Affiliation(s)
- ShuRui Chen
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Xiang Luo
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China
| | - Ruixi Ma
- Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Zeyu Guo
- Department of Orthopedic, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jiyu Zhao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinpeng Gao
- Department of Orthopedic, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Rongrong He
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, China.
| | - Wen Jin
- Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
46
|
Gong D, Liu L, Xiao Z, Yang Z, Hu Y, Sheng T, Liu Y, Miao Z, Zha Z. pH-activated metal-organic layer nanozyme for ferroptosis tumor therapy. J Colloid Interface Sci 2024; 680:937-947. [PMID: 39549353 DOI: 10.1016/j.jcis.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Nanozymes have made great achievements in the research of tumor therapy. However, due to the complex tumor microenvironment, the catalytic activity and biosafety of nanozymes are limited. High catalytic efficiency is a relentless pursuit for the preparation of high-performance nanozymes. Dimensional reduction from 3D nanoscale metal-organic frameworks (nMOFs) to 2D nanoscale metal-organic layers (nMOLs) increases the encounters frequency of nanozymes and substrate, which facilitates the diffusion of reactive oxygen species (ROS) from nMOLs, thus significantly improving the effectiveness of chemodynamic therapy. In this study, He@Ce-BTC nMOF and He@Ce-BTB nMOL based on Ce6 SBUs were synthesized by solvothermal reaction. Compared with the 3D nMOFs, the 2D nanozymes He@Ce-BTB nMOL possessed enhanced ROS catalytic efficiency, were able to be activated by the tumor acidic microenvironment with the polymerase mimetic activities (CAT, POD, GSH-OXD) that enhances the lipid peroxidation process and accelerates the process of ferroptosis thereby killing tumor cells. In addition, He@Ce-BTB does not affect normal tissue cells, thus avoiding diffusion-induced side effects. He@Ce-BTB has shown excellent therapeutic effects in vitro and in vivo, which indicates its potential for clinical application, and is expected to become a new generation of drugs for the treatment of tumors.
Collapse
Affiliation(s)
- Deyan Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Sinopharm Group Guorui Pharmaceutical Co. LTD, Huainan 232001, China
| | - Lu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Pharmacy, Huaibei People's Hospital Affiliated to Bengbu Medical College, Huaibei, Anhui 235000, China
| | - Ziwen Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhuonan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Yaoyu Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Taikui Sheng
- Sinopharm Group Guorui Pharmaceutical Co. LTD, Huainan 232001, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
47
|
Mathur P, Kumawat M, Nagar R, Singh R, Daima HK. Tailoring metal oxide nanozymes for biomedical applications: trends, limitations, and perceptions. Anal Bioanal Chem 2024; 416:5965-5984. [PMID: 39009769 DOI: 10.1007/s00216-024-05416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Nanomaterials with enzyme-like properties are known as 'nanozymes'. Nanozymes are preferred over natural enzymes due to their nanoscale characteristics and ease of tailoring of their physicochemical properties such as size, structure, composition, surface chemistry, crystal planes, oxygen vacancy, and surface valence state. Interestingly, nanozymes can be precisely controlled to improve their catalytic ability, stability, and specificity which is unattainable by natural enzymes. Therefore, tailor-made nanozymes are being favored over natural enzymes for a range of potential applications and better prospects. In this context, metal oxide nanoparticles with nanozyme-mimicking characteristics are exclusively being used in biomedical sectors and opening new avenues for future nanomedicine. Realising the importance of this emerging area, here, we discuss the mechanistic actions of metal oxide nanozymes along with their key characteristics which affect their enzymatic actions. Further, in this critical review, the recent progress towards the development of point-of-care (POC) diagnostic devices, cancer therapy, drug delivery, advanced antimicrobials/antibiofilm, dental caries, neurodegenerative diseases, and wound healing potential of metal oxide nanozymes is deliberated. The advantages of employing metal oxide nanozymes, their potential limitations in terms of nanotoxicity, and possible prospects for biomedical applications are also discussed with future recommendations.
Collapse
Affiliation(s)
- Parikshana Mathur
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Mamta Kumawat
- Department of Biotechnology, JECRC University, Sitapura Extension, Jaipur, 303905, Rajasthan, India
| | - Rashi Nagar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India
| | - Ragini Singh
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522302, Andhra Pradesh, India.
| | - Hemant Kumar Daima
- Nanomedicine and Nanotoxicity Research Laboratory, Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindari, Kishangarh 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
48
|
Song Y, Wang Z, Liao J, Zhang X, Yan J, Luo H, Huang KJ, Tan X, Ya Y. Dual-electrode signal amplification self-powered biosensing platform based on nanozyme boosting target-induced DNA nanospace array for ultrasensitive detection of sugarcane Pokkah Boeng disease pathogenic bacteria. Int J Biol Macromol 2024; 281:136423. [PMID: 39393731 DOI: 10.1016/j.ijbiomac.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Sugarcane is a crop with significant economic importance worldwide. However, pokkah boeng disease poses a serious threat to its production and the sustainable development. There is a pressing necessity for precise and portable detection methods. We develop a dual-electrode signal amplification biosensing platform, for highly sensitive detection of sugarcane pokkah boeng disease pathogenic bacteria. This innovative platform integrates highly catalytic AuNPs/Mn3O4 nanozymes with N-GDY, along with a target-induced development of DNA nanostructure arrays. AuNPs/N-GDY serves as dual electrode substrates, and AuNPs/Mn3O4 nanozymes are surface-loaded as the bioanode. The biocathode is constructed by introducing DNA nanospace arrays onto the electrode through target-induced methods. [Ru(NH3)6]3+ is embedded into the nucleic acid double-helix scaffold via electrostatic adsorption, generating an EOCV signal that is strongly correlated with the target concentration. To further enhance sensitivity, the detection platform is combined with a capacitor to amplify the detection signal, utilizing its high power density, which results in a 22.5-fold increase in sensitivity. The method offers a linear detection range of 0.0001 to 10,000 pM and an detection limit of 32.5 aM (S/N = 3). This method supplies a novel approach for real-time monitoring and competent oversight of pokkah boeng disease pathogenic bacteria.
Collapse
Affiliation(s)
- YuJie Song
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - ZePing Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jie Liao
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiaoqiu Zhang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jun Yan
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hu Luo
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Xuecai Tan
- Education Department of Guangxi Zhuang Autonomous Region, Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Yu Ya
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
49
|
Chen T, Jiang Y, Wu Y, Lai M, Huang X, Gu Z, Wu J, Gan Y, Chen H, Zhi W, Sun P, Cai F, Li T, Zhou H, Zheng J. Doughnut-shaped bimetallic Cu-Zn-MOF with peroxidase-like activity for colorimetric detection of glucose and antibacterial applications. Talanta 2024; 279:126544. [PMID: 39032456 DOI: 10.1016/j.talanta.2024.126544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Metal-organic frameworks (MOFs), especially bimetallic MOFs, have attracted widespread attention for simulating the structure and function of natural enzymes. In this study, different morphologies of bimetallic Cu-Zn-MOF with different peroxidase (POD)-like activities were prepared by simply controlling the molar ratio of Cu2+ and Zn2+. Among them, the doughnut-shaped Cu9-Zn1-MOF exhibited the largest POD-like activity. Cu9-Zn1-MOF was combined with glucose oxidase to construct a sensitive and selective glucose colorimetric biosensor with a linear detection range of 10-300 μM and a detection limit of 7.1 μm. Furthermore, Cu9-Zn1-MOF can efficiently convert hydrogen peroxide (H2O2) into hydroxyl radicals that effectively kill both gram-negative and gram-positive bacteria at low H2O2 level. The results of this study may promote the synthesis of bimetallic MOFs and broaden their applications in the biomedical field.
Collapse
Affiliation(s)
- Tingting Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yunchuan Jiang
- Department of Anatomy, Division of Basic Medicine, YongZhou Vocational Technical College, Yongzhou, 425100, China
| | - Yinbing Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meilin Lai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xueqin Huang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Zimin Gu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiamin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuhui Gan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haoming Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weixia Zhi
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China
| | - Fei Cai
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Ting Li
- Wuwei Occupational College, Wuwei, 733000, China.
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
50
|
Cao X, Liu T, Wang X, Yu Y, Li Y, Zhang L. Recent Advances in Nanozyme-Based Sensing Technology for Antioxidant Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6616. [PMID: 39460096 PMCID: PMC11511242 DOI: 10.3390/s24206616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Antioxidants are substances that have the ability to resist or delay oxidative damage. Antioxidants can be used not only for the diagnosis and prevention of vascular diseases, but also for food preservation and industrial production. However, due to the excessive use of antioxidants, it can cause environmental pollution and endanger human health. It can be seen that the development of antioxidant detection technology is important for environment/health maintenance. It is found that traditional detection methods, including high performance liquid chromatography, gas chromatography, etc., have shortcomings such as cumbersome operation and high cost. In contrast, the nanozyme-based detection method features advantages of low cost, simple operation, and rapidity, which has been widely used in the detection of various substances such as glucose and antioxidants. This article focuses on the latest research progress of nanozymes for antioxidant detection. Nanozymes for antioxidant detection are classified according to enzyme-like types. Different types of nanozyme-based sensing strategies and detection devices are summarized. Based on the summary and analysis, one can find that the development of commercial nanozyme-based devices for the practical detection of antioxidants is still challenging. Some emerging technologies (such as artificial intelligence) should be fully utilized to improve the detection sensitivity and accuracy. This article aims to emphasize the application prospects of nanozymes in antioxidant detection and to provide new ideas and inspiration for the development of detection methods.
Collapse
Affiliation(s)
- Xin Cao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
- College of Intelligent Manufacturing and Modern Industry, Xinjiang University, Urumqi 830017, China
| | - Tianyu Liu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Xianping Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yueting Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| | - Yangguang Li
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832000, China
| | - Lu Zhang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (X.C.); (T.L.); (X.W.); (Y.Y.)
| |
Collapse
|