1
|
Wang G, Jiang L, Yan Y, Kong F, Li Q, Zhang J, Hou S, Wang B, Wang X, Kong H, Deng G, Shi J, Tian G, Zeng X, Chen H, Li C. Cellular SLC35B4 promotes internalization during influenza A virus entry. mBio 2025; 16:e0019425. [PMID: 40130891 PMCID: PMC12077083 DOI: 10.1128/mbio.00194-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
SLC35B4, a nucleotide sugar transporter that mediates the transport of UDP-GlcNAc and UDP-xylose, was found to be required for the replication of influenza A virus (IAV) of the H5N1 subtype in our genome-wide siRNA library screen. We found that defective IAV replication in SLC35B4-deficient A549 cells was independent of virus strain specificity, and the virulence of IAV in Slc35b4 knockdown mice was also decreased. By examining the individual stages of the IAV replication cycle, we discovered that the amount of internalized IAV was significantly reduced in SLC35B4-knockout A549 cells. Mechanistically, SLC35B4 facilitated IAV replication by transporting UDP-xylose, which attaches to the serine residue of heparan sulfate proteoglycans (HSPGs) in the heparan sulfate (HS) biosynthesis pathway. Knockdown of associated host factors (i.e., XYLT2, B4GALT7, EXT1, and EXT2) in the HS biosynthesis pathway also impaired IAV replication. Furthermore, we revealed that AGRN, a unique HSPG family member, was important for the endocytosis of IAV in A549 cells. Moreover, we found that the homeostasis of the AGRN protein was regulated by HS modification mediated by the initial UDP-xylose transporter SLC35B4, thereby affecting the expression level of endocytic adapter AP2B1 to influence IAV internalization. Collectively, these findings establish that SLC35B4 is an important regulator of IAV replication and uncover the underlying mechanisms by which SLC35B4 employs UDP-xylose transport activity to promote IAV internalization.IMPORTANCEThe entry process of IAV represents a favorable target for drug development. In this study, we identified SLC35B4 as an important host factor for the efficient replication of different subtypes of IAV in vitro and for the virulence of IAV in mice. We revealed that SLC35B4 employed its UDP-xylose transport activity to promote the HS biosynthesis pathway, thereby assisting IAV internalization into target cells in the early stage of viral infection. Consistently, several downstream factors in the HS biosynthesis pathway, i.e., XYLT2, B4GALT7, EXT1, and EXT2, as well as a specific HSPG member AGRN were also important for the replication of IAV. Furthermore, the UDP-xylose-transporting activity of SLC35B4 was involved in the regulation of the homeostasis of the AGRN protein by HS modification, which influenced virus internalization by affecting the expression levels of AP2B1. Together, the identification of the SLC35B4-XYLT2-B4GALT7-EXT1-EXT2-AGRN-AP2B1 axis may shed light on the development of potential anti-IAV therapeutics.
Collapse
Affiliation(s)
- Guangwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Ya Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Fandi Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qibing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shuangshuang Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Bo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Huihui Kong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Banerjee T, Frazier C, Koti N, Yates P, Bowie E, Liermann M, Johnson D, Willis SH, Santra S. Development of Receptor-Integrated Magnetically Labeled Liposomes for Investigating SARS-CoV-2 Fusion Interactions. Anal Chem 2025; 97:4490-4498. [PMID: 39925203 PMCID: PMC11883728 DOI: 10.1021/acs.analchem.4c05966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The impacts of highly pathogenic enveloped viruses, such as SARS-CoV-2, have turned scientific inquiry toward the fusion mechanisms responsible for viral pathogenesis and to seek cost-effective and adaptable strategies to mitigate future outbreaks. Current approaches for studying SARS-CoV-2 fusion include computational studies, pan-coronavirus viral inhibitors, and modified peptides and lipopeptides, along with various nanotechniques. Although these methodologies have illuminated the fusion mechanisms, they possess key limitations that prevent their widespread utility in outbreaks, including high financial or instrumental costs, operational proficiency, cytotoxicity, or viral specificity. This work measures changes in spin-spin T2 magnetic (transverse) relaxation times using a benchtop NMR instrument and introduces a bioanalytical approach to quickly quantify fusion interactions between the SARS-CoV-2 spike protein and liposome-coated iron oxide nanosensors (LIONs). Additionally, this study modifies the LION platform by appending the angiotensin-converting enzyme (ACE2) receptor, thereby creating LIONs-ACE2 that mimics the ACE2 host cell receptor targeted by SARS-CoV-2. Furthermore, SARS-CoV-2 fusion to other receptors reported to be involved is also examined. Environmental factors impacting fusion, such as calcium ion concentration, cholesterol composition, pH, neutralizing antibodies, and lower temperature, are investigated. Finally, molecular dynamics (MD) simulation studies reveal that the receptor binding domain (RBD) of the spike protein interacts more favorably with ACE2 than the lipid bilayer in the opened conformation, yet the closed conformation of RBD interacts with the bilayer with a similar energy as with ACE2. These findings reveal how the LION platform offers a customizable, fast-acting, inexpensive, and accessible mechanism for examining the fusion process of SARS-CoV-2 and other enveloped viruses.
Collapse
Affiliation(s)
- Tuhina Banerjee
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Clayton Frazier
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Neelima Koti
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Paris Yates
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Elizabeth Bowie
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - Megan Liermann
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| | - David Johnson
- Computational
Chemical Biology Core, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66018, United States of America
| | - Sharon H Willis
- Integral
Molecular Incorporation, One uCity Square 25 N. 38th Street, Suite 800, Philadelphia, Pennsylvania 19104, United States of America
| | - Santimukul Santra
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Avenue, Springfield, Missouri 65897, United States of America
| |
Collapse
|
3
|
Hou YN, Zhang LJ, Du L, Fu DD, Li J, Liu L, Xu PF, Zheng YW, Pang DW, Tang HW. Analyzing the factors affecting virus invasion by quantitative single-particle analysis. Virulence 2024; 15:2367671. [PMID: 38910312 PMCID: PMC11197921 DOI: 10.1080/21505594.2024.2367671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024] Open
Abstract
Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.
Collapse
Affiliation(s)
- Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ya-Wen Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin, China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Mateos N, Gutierrez-Martinez E, Angulo-Capel J, Carlon-Andres I, Padilla-Parra S, Garcia-Parajo MF, Torreno-Pina JA. Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells. ACS NANO 2024; 18:28881-28893. [PMID: 39387532 PMCID: PMC11503779 DOI: 10.1021/acsnano.4c09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Viral capture and entry to target cells are the first crucial steps that ultimately lead to viral infection. Understanding these events is essential toward the design and development of suitable antiviral drugs and/or vaccines. Viral capture involves dynamic interactions of the virus with specific receptors in the plasma membrane of the target cells. In the last years, single virus tracking has emerged as a powerful approach to assess real time dynamics of viral processes in living cells and their engagement with specific cellular components. However, direct visualization of the early steps of multireceptor viral interactions at the single level has been largely impeded by the technical challenges associated with imaging individual multimolecular systems at relevant spatial (nanometer) and temporal (millisecond) scales. Here, we present a four-color, high-density quantum dot spatiotemporal mapping methodology to capture real-time interactions between individual virus-like-particles (VLPs) and three different viral (co-) receptors on the membrane of primary living immune cells derived from healthy donors. Together with quantitative tools, our approach revealed the existence of a coordinated spatiotemporal diffusion of the three different (co)receptors prior to viral engagement. By varying the temporal-windows of cumulated single-molecule localizations, we discovered that such a concerted diffusion impacts on the residence time of HIV-1 and SARS-CoV-2 VLPs on the host membrane and potential viral infectivity. Overall, our methodology offers the possibility for systematic analysis of the initial steps of viral-host interactions and could be easily implemented for the investigation of other multimolecular systems at the single-molecule level.
Collapse
Affiliation(s)
- Nicolas Mateos
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Enric Gutierrez-Martinez
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jessica Angulo-Capel
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Irene Carlon-Andres
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
| | - Sergi Padilla-Parra
- Department
of Infectious Diseases, King’s College
London, Faculty of Life Sciences & Medicine, London WC2R 2LS, United Kingdom
- Randall
Division of Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, United Kingdom
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Maria F. Garcia-Parajo
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Juan A. Torreno-Pina
- ICFO—Institut
de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
5
|
Du L, Hou YN, Fu DD, Li J, Ao J, Ma AX, Wan QQ, Wang ZG, Liu SL, Zhang LJ, Pang DW. Revealing Different Pathways for Influenza A Virus To Reach Microtubules after Endocytosis by Quantum Dot-Based Single-Virus Tracking. ACS NANO 2024; 18:23090-23103. [PMID: 39143650 DOI: 10.1021/acsnano.4c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Actin- and microtubule (MT)-based transport systems are essential for intracellular transport. During influenza A virus (IAV) infection, MTs provide long tracks for virus trafficking toward the nucleus. However, the role of the actin cytoskeleton in IAV entry and especially the transit process is still ambiguous. Here, by using quantum dot-based single-virus tracking, it was revealed that the actin cytoskeleton was crucial for the virus entry via clathrin-mediated endocytosis (CME). After entry via CME, the virus reached MTs through three different pathways: the virus (1) was driven by myosin VI to move along actin filaments to reach MTs (AF); (2) was propelled by actin tails assembled by an Arp2/3-dependent mechanism to reach MTs (AT); and (3) directly reached MTs without experiencing actin-related movement (NA). Therefore, the NA pathway was the main one and the fastest for the virus to reach MTs. The AT pathway was activated only when plenty of viruses entered the cell. The viruses transported by the AF and AT pathways shared similar moving velocities, durations, and displacements. This study comprehensively visualized the role of the actin cytoskeleton in IAV entry and transport, revealing different pathways for IAV to reach MTs after entry. The results are of great significance for globally understanding IAV infection and the cellular endocytic transport pathway.
Collapse
Affiliation(s)
- Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Qian-Qian Wan
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Li-Juan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
6
|
Cárdenas M, Michelson S, Galleguillos C, Vásquez-Martínez Y, Cortez-San Martin M. Modulation of infectious Salmon Anaemia virus infection by clathrin-mediated endocytosis and macropinocytosis inhibitors. Res Vet Sci 2024; 171:105223. [PMID: 38520841 DOI: 10.1016/j.rvsc.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.
Collapse
Affiliation(s)
- Matías Cárdenas
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sofía Michelson
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Claudia Galleguillos
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Medicine School, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Ma AX, Yu C, Zhang MY, Ao J, Liu HY, Zhang MQ, Sun QQ, Fu DD, Du L, Li J, Liu SL, Wang ZG, Pang DW. One-Step Dual-Color Labeling of Viral Envelope and Intraviral Genome with Quantum Dots Harnessing Virus Infection. NANO LETTERS 2024; 24:2544-2552. [PMID: 38349341 DOI: 10.1021/acs.nanolett.3c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Labeling the genome and envelope of a virus with multicolor quantum dots (QDs) simultaneously enables real-time monitoring of viral uncoating and genome release, contributing to our understanding of virus infection mechanisms. However, current labeling techniques require genetic modification, which alters the virus's composition and infectivity. To address this, we utilized the CRISPR/Cas13 system and a bioorthogonal metabolic method to label the Japanese encephalitis virus (JEV) genome and envelopes with different-colored QDs in situ. This technique allows one-step two-color labeling of the viral envelope and intraviral genome with QDs harnessing virus infection. In combination with single-virus tracking, we visualized JEV uncoating and genome release in real time near the endoplasmic reticulum of live cells. This labeling strategy allows for real-time visualization of uncoating and genome release at the single-virus level, and it is expected to advance the study of other viral infection mechanisms.
Collapse
Affiliation(s)
- Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Cong Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Ming-Yu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Meng-Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Qian-Qian Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Liu HY, Hu Y, Yu C, Wang ZG, Liu SL, Pang DW. Quantitative single-virus tracking for revealing the dynamics of SARS-CoV-2 fusion with plasma membrane. Sci Bull (Beijing) 2024; 69:502-511. [PMID: 37993331 DOI: 10.1016/j.scib.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Viral envelope fusion with the host plasma membrane (PM) for genome release is a hallmark step in the life cycle of many enveloped viruses. This process is regulated by a complex network of biomolecules on the PM, but robust tools to precisely elucidate the dynamic mechanisms of virus-PM fusion events are still lacking. Here, we developed a quantitative single-virus tracking approach based on highly efficient dual-color labelling of viruses and batch trajectory analysis to achieve the spatiotemporal quantification of fusion events. This approach allows us to comprehensively analyze the membrane fusion mechanism utilized by pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the single-virus level and precisely elucidate how the relevant biomolecules synergistically regulate the fusion process. Our results revealed that SARS-CoV-2 may promote the formation of supersaturated clusters of cholesterol to facilitate the initiation of the membrane fusion process and accelerate the viral genome release.
Collapse
Affiliation(s)
- Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Cong Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
9
|
Ao J, Ma AX, Li J, Wang CY, Fu DD, Du L, Yu C, Liu SL, Wang ZG, Pang DW. Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection. ACS NANO 2024; 18:4507-4519. [PMID: 38270127 DOI: 10.1021/acsnano.3c11309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exosomes play an important role in the spread of viral infections and immune escape. However, the exact ability and mechanisms by which exosomes produced during viral infections (vExos) infect host cells are still not fully understood. In this study, we developed a dual-color exosome labeling strategy that simultaneously labels the external and internal structures of exosomes with quantum dots to enable in situ monitoring of the transport process of vExos in live cells using the single-particle tracking technique. Our finding revealed that vExos contains the complete influenza A virus (IAV) genome and viral ribonucleoprotein complexes (vRNPs) proteins but lacks viral envelope proteins. Notably, these vExos have the ability to infect cells and produce progeny viruses. We also found that vExos are transported in three stages, slow-fast-slow, and move to the perinuclear region via microfilaments and microtubules. About 30% of internalized vExos shed the external membrane and release the internal vRNPs into the cytoplasm by fusion with endolysosomes. This study suggested that vExos plays a supporting role in IAV infection by assisting with IAV propagation in a virus-independent manner. It emphasizes the need to consider the infectious potential of vExos and draws attention to the potential risk of exosomes produced by viral infections.
Collapse
Affiliation(s)
- Jian Ao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chun-Yu Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Lei Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Cong Yu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
10
|
Liu HY, Li X, Wang ZG, Liu SL. Virus-mimicking nanosystems: from design to biomedical applications. Chem Soc Rev 2023; 52:8481-8499. [PMID: 37929845 DOI: 10.1039/d3cs00138e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Nanomedicine, as an interdisciplinary discipline involving the development and application of nanoscale materials and technologies, is rapidly developing under the impetus of bionanotechnology and has attracted a great deal of attention from researchers. Especially, with the global outbreak of COVID-19, the in-depth investigation of the infection mechanism of the viruses has made the study of virus-mimicking nanosystems (VMNs) a popular research topic. In this review, we initiate with a brief historical perspective on the emergence and development of VMNs for providing a comprehensive view of the field. Next, we present emerging design principles and functionalization strategies for fabricating VMNs in light of viral infection mechanisms. Then, we describe recent advances in VMNs in biology, with a major emphasis on representative examples. Finally, we summarize the opportunities and challenges that exist in this field, hoping to provide new insights and inspiration to develop VMNs for disease diagnosis and treatment and to attract the interest of more researchers from different fields.
Collapse
Affiliation(s)
- Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
11
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
12
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
13
|
Single-virus tracking with quantum dots in live cells. Nat Protoc 2023; 18:458-489. [PMID: 36451053 DOI: 10.1038/s41596-022-00775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022]
Abstract
Single-virus tracking (SVT) offers the opportunity to monitor the journey of individual viruses in real time and to explore the interactions between viral and cellular structures in live cells, which can assist in characterizing the complex infection process and revealing the associated dynamic mechanisms. However, the low brightness and poor photostability of conventional fluorescent tags (e.g., organic dyes and fluorescent proteins) greatly limit the development of the SVT technique, and challenges remain in performing multicolor SVT over long periods of time. Owing to the outstanding photostability, high brightness and narrow emission with tunable color range of quantum dots (QDs), QD-based SVT (QSVT) enables us to follow the fate of individual viruses interacting with different cellular structures at the single-virus level for milliseconds to hours, providing more accurate and detailed information regarding viral infection in live cells. So far, the QSVT technique has yielded spectacular achievements in uncovering the mechanisms associated with virus entry, trafficking and egress. Here, we provide a detailed protocol for QSVT implementation using the viruses that we have previously studied systematically as an example. The specific procedures for performing QSVT experiments in live cells are described, including virus preparation, the QD labeling strategies, imaging approaches, image processing and data analysis. The protocol takes 1-2 weeks from the preparation of viruses and cellular specimens to image acquisition, and 1 d for image processing and data analysis.
Collapse
|
14
|
Sun X, Cui Z. Microbiological Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Huang Y, Li Y, Chen Z, Chen L, Liang J, Zhang C, Zhang Z, Yang J. Nisoldipine Inhibits Influenza A Virus Infection by Interfering with Virus Internalization Process. Viruses 2022; 14:v14122738. [PMID: 36560742 PMCID: PMC9785492 DOI: 10.3390/v14122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Yang
- Correspondence: ; Tel.: +86-020-6164-8590
| |
Collapse
|
16
|
Johnson C, Exell J, Lin Y, Aguilar J, Welsher KD. Capturing the start point of the virus-cell interaction with high-speed 3D single-virus tracking. Nat Methods 2022; 19:1642-1652. [PMID: 36357694 PMCID: PMC10154077 DOI: 10.1038/s41592-022-01672-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
The early stages of the virus-cell interaction have long evaded observation by existing microscopy methods due to the rapid diffusion of virions in the extracellular space and the large three-dimensional cellular structures involved. Here we present an active-feedback single-particle tracking method with simultaneous volumetric imaging of the live cell environment called 3D-TrIm to address this knowledge gap. 3D-TrIm captures the extracellular phase of the infectious cycle in what we believe is unprecedented detail. We report what are, to our knowledge, previously unobserved phenomena in the early stages of the virus-cell interaction, including skimming contact events at the millisecond timescale, orders of magnitude change in diffusion coefficient upon binding and cylindrical and linear diffusion modes along cellular protrusions. Finally, we demonstrate how this method can move single-particle tracking from simple monolayer culture toward more tissue-like conditions by tracking single virions in tightly packed epithelial cells. This multiresolution method presents opportunities for capturing fast, three-dimensional processes in biological systems.
Collapse
Affiliation(s)
| | - Jack Exell
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Yuxin Lin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
17
|
Singh S, Raina D, Rishipathak D, Babu KR, Khurana R, Gupta Y, Garg K, Rehan F, Gupta SM. Quantum dots in the biomedical world: A smart advanced nanocarrier for multiple venues application. Arch Pharm (Weinheim) 2022; 355:e2200299. [PMID: 36058643 DOI: 10.1002/ardp.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
Quantum dots (QDs) are semiconducting nanoparticles having different optical and electrical properties when compared to larger particles. They exhibit photoluminescence when irradiated with ultraviolet light, which is due to the transition of an excited electron from the valence band to the conductance band followed by the return of the exciting electron back into the valence band. The size and material of QDs can affect their optical and other properties too. The QDs possess special attributes like high brightness, protection from photobleaching, photostability, color tunability, low toxicity, low production cost, a multiplexing limit, and a high surface-to-volume proportion, which make them a promising tool for biomedical applications. Here, in this study, we summarize the utilization of QDs in different applications including bioimaging, diagnostics, immunostaining, single-cell analysis, drug delivery, and protein detection. Moreover, we discuss the advantages and challenges of using QDs in biomedical applications when compared with other conventional tools.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Deepika Raina
- School of Pharmacy, Graphic era hill University, Dehradun, Uttarakhand, India
| | - Dinesh Rishipathak
- Department of Pharmaceutical Chemistry, MET's Institute of Pharmacy, Nashik, Maharashtra, India
| | - Kamesh R Babu
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Riya Khurana
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Yogesh Gupta
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh, Haryana, India
| | - Kartik Garg
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh, Haryana, India
| | - Farah Rehan
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shraddha M Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| |
Collapse
|
18
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
19
|
Zhang MQ, Wang ZG, Fu DD, Zhang JM, Liu HY, Liu SL, Pang DW. Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Anal Chem 2022; 94:7567-7575. [PMID: 35581735 DOI: 10.1021/acs.analchem.2c00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mammalian cell display technology uses eukaryotic protein expression system to display proteins on cell surfaces and has become an important method in biological research. Although mammalian cell display technology has many advantages and development potential, certain attributes of the displayed protein remain uncharacterized, such as whether the displayed proteins re-enter the cell and how displayed proteins move into the cell. Here, we present the endocytosis mechanism, motility behavior, and transport kinetics of displayed proteins determined using HaloTag as the displayed protein and quantum dot-based single-particle tracking. The displayed protein enters the cell through clathrin-mediated endocytosis and is transported through the cell in three stages, which is dependent on microfilaments and microtubules. The dynamic information obtained in this study provides answers to questions about endocytosis and postendocytosis transport of displayed proteins and, therefore, is expected to facilitate the development of surface display technology.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ju-Mei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
20
|
Feng N, Li C, Shen J, Hu Y, Fodjo EK, Zhang L, Chen S, Fan Q, Wang L. 1,4-Benzenedithiol-Bridged Nanogap-Based Individual Particle Surface-Enhanced Raman Spectroscopy Mechanical Probe for Revealing the Endocytic Force. ACS NANO 2022; 16:6605-6614. [PMID: 35420023 DOI: 10.1021/acsnano.2c00995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1,4-Benzenedithiol (BDT)-bridged core-satellite assemblies, as surface-enhanced Raman spectroscopy (SERS) mechanical probes, can be employed for real-time monitoring of the dynamics of endocytic forces and the accompanying trajectory of nanoparticles during the endocytosis process. These mechanical probes exhibit good responses in terms of SERS intensity ratios while undergoing mechanical pressure. Force tracing and the accompanying trajectory of nanoparticles are resolved accurately to render the endocytosis process in live cells. Density functional theory simulation results further proved the sensing scheme due to the electrons transforming between BDT and gold nanoparticles. Furthermore, this SERS mechanical probe is a valid method to visualize endocytic forces at multiple locations and establish a direct criterion to discriminate between cancer cells and normal cells.
Collapse
Affiliation(s)
- Ning Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingjing Shen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yanling Hu
- School of Electrical and Control, Nanjing Polytechnic Institute, 188 Xinle Road, Nanjing 211500, China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter, University of Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Cote d'Ivoire
| | - Lei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
21
|
Yu C, Wang ZG, Ma AX, Liu SL, Pang DW. Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking. Anal Chem 2022; 94:5624-5633. [PMID: 35357801 DOI: 10.1021/acs.analchem.1c05387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear trafficking of viral genome is an essential cellular process in the life cycles of viruses. Despite substantial progress in uncovering a wide variety of complicated mechanisms of virus entry, intracellular transport of viral components, virus assembly, and egress, the temporal and spatial dynamics of viral genes trafficking within the nucleus remains poorly understood. Herein, using single-particle tracking, we explored the real-time dynamic nuclear trafficking of influenza A virus (IAV) genes packaged as the viral ribonucleoprotein complexes (vRNPs) by combining a four-plasmid DNA transfection system for the reconstruction of green fluorescent protein (GFP)-labeled vRNPs and a spinning disk super-resolution fluorescence microscope. We found that IAV infection significantly induced the formation of actin microfilaments (F-actin) in the nucleus. In combination with the fluorescent protein-tagged nuclear F-actin probe, we visualized the directed movement of GFP-labeled vRNPs foci along the nuclear F-actin with a speed of 0.18 μm/s, which is similar to the microfilaments-dependent slow directed motion of IAVs in the cytoplasm. The disruption of nuclear F-actin after treatment with microfilament inhibitors caused a considerable decrease in vRNPs motility and suppressed the nuclear export of newly produced vRNPs, indicating that the slow, directed movement plays a crucial role in facilitating the nuclear egress of vRNPs. Our findings identified a nuclear F-actin-dependent pathway for IAV vRNPs transporting from the nucleus into the cytoplasm, which may in turn uncover a novel target for antiviral treatment.
Collapse
Affiliation(s)
- Cong Yu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Sphingomyelin-Sequestered Cholesterol Domain Recruits Formin-Binding Protein 17 for Constricting Clathrin-Coated Pits in Influenza Virus Entry. J Virol 2022; 96:e0181321. [PMID: 35020471 DOI: 10.1128/jvi.01813-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).
Collapse
|
23
|
Wang ZG, Zhao L, Chen LL, Liu HY, Wang L, Hu Y, Shi XH, Zhao D, Liu SL, Pang DW. Spatiotemporal Quantification of Endosomal Acidification on the Viral Journey. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104200. [PMID: 34786839 DOI: 10.1002/smll.202104200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Many enveloped viruses utilize endocytic pathways and vesicle trafficking to infect host cells, where the acidification of virus-containing endosomes triggers the virus-endosome fusion events. Therefore, simultaneous correlation of intracellular location, local pH, and individual virus dynamics is important for gaining insight into viral infection mechanisms. Here, an imaging approach is developed for spatiotemporal quantification of endosomal acidification on the viral journey in host cells using a fluorescence resonance energy transfer based ratiometric pH sensor consisting of a photostable and high-brightness QD, pH-sensitive fluorescent dyes, and virus-binding proteins. Ratiometric analysis of sensor-based single-virus tracking data enables to dissect a two-step endosomal acidification process during the infection of influenza viruses and elucidates the occurrence of the fission and sorting of virus-containing endosomes to recycling endosomes after initial acidification. This technique should serve as a robust approach for in situ quantification of endosomal acidification on the viral journey.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lu-Lu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
24
|
Microbiological Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
25
|
Ning Y, Wei L, Lin S, Jiang Y, Wang N, Xiao L. Dissection the endocytic routes of viral capsid proteins-coated upconversion nanoparticles by single-particle tracking. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Khan ZU, Uchiyama MK, Khan LU, Araki K, Goto H, Felinto MCFC, de Souza AO, de Brito HF, Gidlund M. Wide visible-range activatable fluorescence ZnSe:Eu 3+/Mn 2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging. J Mater Chem B 2021; 10:247-261. [PMID: 34878486 DOI: 10.1039/d1tb01870a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.
Collapse
Affiliation(s)
- Zahid Ullah Khan
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Latif Ullah Khan
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil.,Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan.
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Hiro Goto
- Faculty of Medicine, University of São Paulo (USP), Zip Code 05403-000, São Paulo, SP, Brazil
| | | | - Ana Olivia de Souza
- Development and Innovation Laboratory, Butantan Institute, Zip Code 05503-900, São Paulo, SP, Brazil
| | - Hermi Felinto de Brito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| | - Magnus Gidlund
- Department of Immunology, Institute of Biomedical Sciences-IV, University of São Paulo (USP), Zip Code 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Gorshkov K, Susumu K, Wolak M, Oh E. Fluorescent quantum dots enable SARS-CoV-2 antiviral drug discovery and development. Expert Opin Drug Discov 2021; 17:225-230. [PMID: 34817309 DOI: 10.1080/17460441.2022.2005025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION SARS-CoV-2 is a highly infectious and deadly coronavirus whose study requires the use of a biosafety level 3 (BSL-3) containment facility to investigate viral biology and pathogenesis, which limits the study of live virus and slows progress toward finding suitable treatments for infection. While vaccines from several companies have proven very effective in combating the virus, few treatments exist for those who do succumb to the viral-induced systemic disease called COVID-19. AREAS COVERED This short review focuses on fluorescent quantum dot-based modeling of SARS-CoV-2. New BSL-2 viral models are essential for finding small molecules and biologics that may be effective in stopping viral infection, as well as treating already infected individuals. Nanoparticles are invaluable tools for biological research as they can be used to both model pathogens and serve as a platform for developing vaccines. EXPERT OPINION Visualizing viral activity with fluorescent quantum dots enables both biochemical and cell-based assays to detect virus-host receptor interactions, cellular activity after binding to the cell plasma membrane, screening for interventions using small-molecule drug repurposing, and testing of novel biologics. Quantum dots can also be used for diagnostic assays, vaccine development, and importantly, pan-antiviral drugs to address variants that may escape the immune response.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, Rockville, MD, USA.,Bristol-Myers Squibb, Lead Development and Optimization, High Content Screening, Princeton, NJ, USA
| | - Kimihiro Susumu
- Jacobs Corporation, Hanover, MD, USA.,Optical Sciences Division, Naval Research Laboratory, Washington, DC, USA
| | - Mason Wolak
- Optical Sciences Division, Naval Research Laboratory, Washington, DC, USA
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
28
|
Wang ZG, Liu SL, Pang DW. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Acc Chem Res 2021; 54:2991-3002. [PMID: 34180662 DOI: 10.1021/acs.accounts.1c00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent research has highlighted the immense potential of the quantum dot (QD)-based single-virus tracking (SVT) technique in virology. In these experiments, the infection behaviors of single viruses or viral components, labeled with QDs, could be tracked on time scales of milliseconds to hours in host cells. The trajectories of individual viruses are reconstructed with nanometer accuracy, and the underlying dynamic information on virus infection can be extracted to uncover the infection mechanisms of viruses. Therefore, QD-based single-virus tracking (QSVT) is an exquisitely selective and powerful approach to investigating how viruses are internalized in host cells dynamically to release their genome for viral replication and assembly that ensure the completion of viral life cycles.QDs are better candidates than organic dyes and fluorescent proteins for virus labeling and subsequent SVT due to the following considerations: (i) the high brightness of QDs makes it possible to label a virus with sufficient brightness using very few QDs or even just one QD; (ii) the extraordinary photostability of QDs allows one to track the infection process long term and quantify low probability events; (iii) the color-tunable emission property of QDs ensures multicolor labeling of various components of a virus simultaneously; and (iv) the abundant surface ligands of QDs facilitate the conjugation of a virus with a variety of labeling strategies. Therefore, the photoproperties of QDs make it possible to perform multicolor long-term SVT experiments quantitatively. Nowadays, the QD-based SVT (QSVT) technique has made prodigious achievements in unraveling the entry, trafficking, and uncoating mechanisms of viruses. This fascinating technique can provide spatiotemporal dynamic information on the viral journey in unprecedented detail and has revolutionized our understanding of virus infection.In this Account, we first introduce the advantages and the limitations of conventional SVT in virological research and the unique features of QDs as labels in the SVT field. We subsequently focus on the principles and related methods of QSVT and the current state of QD chemistry and QD-based virus labeling that resolves many issues associated with the tracking of individual viruses in live cells. Then we emphasize some new findings by this technique in the study of infection mechanisms. Finally, we will provide our insights into future challenges on this topic. With this Account, we hope to further stimulate the development of QSVT with a combined effort from different disciplines and, more importantly, to accelerate the applications of QSVT in virological research.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Jain V, Shelby T, Patel T, Mekhedov E, Petersen JD, Zimmerberg J, Ranaweera A, Weliky DP, Dandawate P, Anant S, Sulthana S, Vasquez Y, Banerjee T, Santra S. A Bimodal Nanosensor for Probing Influenza Fusion Protein Activity Using Magnetic Relaxation. ACS Sens 2021; 6:1899-1909. [PMID: 33905237 DOI: 10.1021/acssensors.1c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Viral fusion is a critical step in the entry pathway of enveloped viruses and remains a viable target for antiviral exploration. The current approaches for studying fusion mechanisms include ensemble fusion assays, high-resolution cryo-TEM, and single-molecule fluorescence-based methods. While these methods have provided invaluable insights into the dynamic events underlying fusion processes, they come with their own limitations. These often include extensive data and image analysis in addition to experimental time and technical requirements. This work proposes the use of the spin-spin T2 relaxation technique as a sensitive bioanalytical method for the rapid quantification of interactions between viral fusion proteins and lipids in real time. In this study, new liposome-coated iron oxide nanosensors (LIONs), which mimic as magnetic-labeled host membranes, are reported to detect minute interactions occurring between the membrane and influenza's fusion glycoprotein, hemagglutinin (HA). The influenza fusion protein's interaction with the LION membrane is detected by measuring changes in the sensitive spin-spin T2 magnetic relaxation time using a bench-top NMR instrument. More data is gleaned from including the fluorescent dye DiI into the LION membrane. In addition, the effects of environmental factors on protein-lipid interaction that affect fusion such as pH, time of incubation, trypsin, and cholesterol were also examined. Furthermore, the efficacy and sensitivity of the spin-spin T2 relaxation assay in quantifying similar protein/lipid interactions with more native configurations of HA were demonstrated using virus-like particles (VLPs). Shorter domains derived from HA were used to start a reductionist path to identify the parts of HA responsible for the NMR changes observed. Finally, the known fusion inhibitor Arbidol was employed in our spin-spin T2 relaxation-based fusion assay to demonstrate the application of LIONs in real-time monitoring of this aspect of fusion for evaluation of potential fusion inhibitors.
Collapse
Affiliation(s)
- Vedant Jain
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tyler Shelby
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Truptiben Patel
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Elena Mekhedov
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jennifer D Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ahinsa Ranaweera
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David P Weliky
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Prasad Dandawate
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology and Department of Surgery, The University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Shoukath Sulthana
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yolanda Vasquez
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
30
|
Li S, Guo X, Gao R, Sun M, Xu L, Xu C, Kuang H. Recent Progress on Biomaterials Fighting against Viruses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005424. [PMID: 33644954 DOI: 10.1002/adma.202005424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Indexed: 05/24/2023]
Abstract
Viruses not only pose severe threats to public health, but also influence the development of society. Over the past decade, rapid advances have been seen in the application of nanomaterials to virus research. As an interdisciplinary field, nanotechnology offers powerful functions because the structures of nanomaterials are unique, with remarkable physicochemical properties and excellent biocompatibility. Nanomaterials have been developed for virus detection and tracking and for antiviral strategies, to better understand viruses and reduce viral infections, implying a bright future for this field. Herein, the recent advances are systematically summarized regarding the nanomaterials used in viral studies. Representative applications of nanomaterials to viral detection and tracking are described. The antiviral effects achieved with nanomaterials based on different mechanisms are also described, including entry inhibition, inhibition of viral replication, and immunological enhancement. The current challenges and future opportunities in this promising field are also discussed.
Collapse
Affiliation(s)
- Si Li
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiao Guo
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
31
|
Xia L, Zhang LJ, Tang HW, Pang DW. Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Anal Chem 2021; 93:5211-5217. [PMID: 33728900 DOI: 10.1021/acs.analchem.0c05377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules (MTs) are the main component of cytoskeletons, providing long tracks for cargo trafficking across the cytoplasm. In the past years, transport along MTs was frequently reported to be rapid directed motions with speeds of several micrometers per second, but is that all the truth? Using single-particle tracking, we roundly and precisely analyzed the dynamic behaviors of three kinds of cargoes transported along MTs in two types of cells. It was found that during the transport processes, the directed motions of the cargoes were frequently interrupted by nondirected motions which greatly reduced the translocation rate toward the nucleus. What is more, in addition to the widely reported rapid directed motions, a type of directed motions with most speeds below 0.5 μm/s occurred more frequently. On the whole, these slow directed motions took longer than the rapid directed motions and resulted in displacements same as those of the rapid ones. To sum up, while travelling along MTs toward the cell interior, endocytosed cargoes moved alternately in rapid-directed, slow-directed and nondirected modes. In this process, the rapid- and the slow-directed motions contributed almost equally to the cargoes' translocation. This work provides original insights into the transport on MTs, facilitating a more comprehensive understanding of intracellular trafficking.
Collapse
Affiliation(s)
- Li Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
32
|
Li Y, Wang J, Hou W, Shan Y, Wang S, Liu F. Dynamic Dissection of the Endocytosis of Porcine Epidemic Diarrhea Coronavirus Cooperatively Mediated by Clathrin and Caveolae as Visualized by Single-Virus Tracking. mBio 2021; 12:e00256-21. [PMID: 33785615 PMCID: PMC8092227 DOI: 10.1128/mbio.00256-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses (CoVs) have caused severe diseases in humans and animals. Endocytic pathways, such as clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME), play an important role for CoVs to penetrate the cell membrane barrier. In this study, a novel CoV entry manner is unraveled in which clathrin and caveolae can cooperatively mediate endocytosis of porcine epidemic diarrhea coronavirus (PEDV). Using multicolor live-cell imaging, the dynamics of the fluorescently labeled clathrin structures, caveolae structures, and PEDV were dissected. During CavME of PEDV, we found that clathrin structures can fuse with caveolae near the cell plasma membrane, and the average time of PEDV penetrating the cell membrane was within ∼3 min, exhibiting a rapid course of PEDV entry. Moreover, based on the dynamic recruitment of clathrin and caveolae structures and viral motility, the direct evidence also shows that about 20% of PEDVs can undergo an abortive entry via CME and CavME. Additionally, the dynamic trafficking of PEDV from clathrin and caveolae structures to early endosomes, and from early endosomes to late endosomes, and viral fusion were directly dissected, and PEDV fusion mainly occurred in late endosomes within ∼6.8 min after the transport of PEDV to late endosomes. Collectively, this work systematically unravels the early steps of PEDV infection, which expands our understanding of the mechanism of CoV infection.IMPORTANCE Emerging and re-emerging coronaviruses cause serious human and animal epidemics worldwide. For many enveloped viruses, including coronavirus, it is evident that breaking the plasma membrane barrier is a pivotal and complex process, which contains multiple dynamic steps. Although great efforts have been made to understand the mechanisms of coronavirus endocytic pathways, the direct real-time imaging of individual porcine epidemic diarrhea coronavirus (PEDV) internalization has not been achieved yet. In this study, we not only dissected the kinetics of PEDV entry via clathrin-mediated endocytosis and caveolae-mediated endocytosis and the kinetics of endosome trafficking and viral fusion but also found a novel productive coronavirus entry manner in which clathrin and caveolae can cooperatively mediate endocytosis of PEDV. Moreover, we uncovered the existence of PEDV abortive endocytosis. In summary, the productive PEDV entry via the cooperation between clathrin and caveolae structures and the abortive endocytosis of PEDV provide new insights into coronavirus penetrating the plasma membrane barrier.
Collapse
Affiliation(s)
- Yangyang Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Hou
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
- Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education and Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Kang J, Tahir A, Wang H, Chang J. Applications of nanotechnology in virus detection, tracking, and infection mechanisms. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1700. [PMID: 33511770 PMCID: PMC7995016 DOI: 10.1002/wnan.1700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022]
Abstract
Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drug for most of the viruses emphasizes the rapid and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Nanotechnology is an emerging field with applications in various domains, where nano‐biomedical science has many significant contributions such as effective delivery of drugs/therapeutic molecules to specific organs, imaging, sensitive detection of virus, and their accurate tracking in host cells. The nanomaterials reported for virus detection and tracking mainly include magnetic and gold NPs, ZnO/Pt‐Pd, graphene, and quantum dots (QDs). In addition, the single virus tracking technology (SVT) allowed to track the life cycle stages of an individual virus for better understanding of their dynamics within the living cells. Inorganic as well as non‐metallic fluorescent materials share the advantages of high photochemical stability, a wide range of light absorption curves and polychromatic emission. Hence, are considered as potential fluorescent nano‐probes for SVT. However, there are still some challenges: (i) clinical false positive rate of some detection methods is still high; (ii) in the virus tracking process, less adaptability of QDs owing to larger size, flicker, and possible interference with virus function; and (iii) in vivo tracking of a single virus, in real time needs further refinement. In the future, smaller, non‐toxic, and chemically stable nanomaterials are needed to improve the efficiency and accuracy of detection, and monitoring of virus infections to curb the mortalities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology‐Inspired Nanomaterials > Protein and Virus‐Based Structures
Collapse
Affiliation(s)
- Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ayesha Tahir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Bao MN, Zhang LJ, Tang B, Fu DD, Li J, Du L, Hou YN, Zhang ZL, Tang HW, Pang DW. Influenza A Viruses Enter Host Cells via Extracellular Ca2+ Influx-Involved Clathrin-Mediated Endocytosis. ACS APPLIED BIO MATERIALS 2021; 4:2044-2051. [DOI: 10.1021/acsabm.0c00968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Meng-Ni Bao
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dan-Dan Fu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Jing Li
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Lei Du
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Ning Hou
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
35
|
In vivo cell tracking with viral vector mediated genetic labeling. J Neurosci Methods 2020; 350:109021. [PMID: 33316318 DOI: 10.1016/j.jneumeth.2020.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Cell tracking is a useful technique to monitor specific cell populations for their morphology, development, proliferation, migration, interaction, function, and other properties, both in vitro and in vivo. Using different materials and methodologies to label the target cells directly or indirectly, the dynamic biological processes in living organisms can be visualized with appropriate detection techniques. Viruses, with the unique ability to deliver exogenous genes into host cells, have been used as vectors to mediate gene transfer. Genetic labeling of target cells by viral vectors endows the cells to express reporter genes with high efficiency and specificity. In conjunction with corresponding imaging techniques, cells labeled with different genetic reporters mediated by different viral vectors can be monitored across spatial and temporal scales to fulfill various purposes and address different questions. In the present review, we introduce the basic principle of viral vectors in cell tracking and highlight the examples of cell tracking in various research areas.
Collapse
|
36
|
Zhu N, Wong PK. Advances in Viral Diagnostic Technologies for Combating COVID-19 and Future Pandemics. SLAS Technol 2020; 25:513-521. [PMID: 32833548 PMCID: PMC8960186 DOI: 10.1177/2472630320953798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens the health of the global population and challenges our preparedness for pandemic threats. Previous outbreaks of coronaviruses and other viruses have suggested the importance of diagnostic technologies in fighting viral outbreaks. Nucleic acid detection techniques are the gold standard for detecting SARS-CoV-2. Viral antigen tests and serological tests that detect host antibodies have also been developed for studying the epidemiology of COVID-19 and estimating the population that may have immunity to SARS-CoV-2. Nevertheless, the availability, cost, and performance of existing viral diagnostic technologies limit their practicality, and novel approaches are required for improving our readiness for global pandemics. Here, we review the principles and limitations of major viral diagnostic technologies and highlight recent advances of molecular assays for COVID-19. In addition, we discuss emerging technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR) systems, high-throughput sequencing, and single-cell and single-molecule analysis, for improving our ability to understand, trace, and contain viral outbreaks. The prospects of viral diagnostic technologies for combating future pandemic threats are presented.
Collapse
Affiliation(s)
- Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
37
|
Abstract
Quantum dots (QDs) possess optical properties of superbright fluorescence, excellent photostability, narrow emission spectra, and optional colors. Labeled with QDs, single molecules/viruses can be rapidly and continuously imaged for a long time, providing more detailed information than when labeled with other fluorophores. While they are widely used to label proteins in single-molecule-tracking studies, QDs have rarely been used to study virus infection, mainly due to a lack of accepted labeling strategies. Here, we report a general method to mildly and readily label enveloped viruses with QDs. Lipid-biotin conjugates were used to recognize and mark viral lipid membranes, and streptavidin-QD conjugates were used to light them up. Such a method allowed enveloped viruses to be labeled in 2 h with specificity and efficiency up to 99% and 98%, respectively. The intact morphology and the native infectivity of viruses were preserved. With the aid of this QD labeling method, we lit wild-type and mutant Japanese encephalitis viruses up, tracked their infection in living Vero cells, and found that H144A and Q258A substitutions in the envelope protein did not affect the virus intracellular trafficking. The lipid-specific QD labeling method described in this study provides a handy and practical tool to readily "see" the viruses and follow their infection, facilitating the widespread use of single-virus tracking and the uncovering of complex infection mechanisms.IMPORTANCE Virus infection in host cells is a complex process comprising a large number of dynamic molecular events. Single-virus tracking is a versatile technique to study these events. To perform this technique, viruses must be fluorescently labeled to be visible to fluorescence microscopes. The quantum dot is a kind of fluorescent tag that has many unique optical properties. It has been widely used to label proteins in single-molecule-tracking studies but rarely used to study virus infection, mainly due to the lack of an accepted labeling method. In this study, we developed a lipid-specific method to readily, mildly, specifically, and efficiently label enveloped viruses with quantum dots by recognizing viral envelope lipids with lipid-biotin conjugates and recognizing these lipid-biotin conjugates with streptavidin-quantum dot conjugates. It is not only applicable to normal viruses, but also competent to label the key protein-mutated viruses and the inactivated highly virulent viruses, providing a powerful tool for single-virus tracking.
Collapse
|
38
|
Yang YB, Tang YD, Hu Y, Yu F, Xiong JY, Sun MX, Lyu C, Peng JM, Tian ZJ, Cai XH, An TQ. Single Virus Tracking with Quantum Dots Packaged into Enveloped Viruses Using CRISPR. NANO LETTERS 2020; 20:1417-1427. [PMID: 31930919 DOI: 10.1021/acs.nanolett.9b05103] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Labeling viruses with high-photoluminescence quantum dots (QDs) for single virus tracking provides a visual tool to aid our understanding of viral infection mechanisms. However, efficiently labeling internal viral components without modifying the viral envelope and capsid remains a challenge, and existing strategies are not applicable to most viruses. Here, we have devised a strategy using the clustered regularly interspaced short palindromic repeats (CRISPR) imaging system to label the nucleic acids of Pseudorabies virus (PRV) with QDs. In this strategy, QDs were conjugated to viral nucleic acids with the help of nuclease-deactivated Cas9/gRNA complexes in the nuclei of living cells and then packaged into PRV during virion assembly. The processes of PRV-QD adsorption, cytoplasmic transport along microtubules, and nuclear entry were monitored in real time in both Vero and HeLa cells, demonstrating the utility and efficiency of the strategy in the study of viral infection.
Collapse
Affiliation(s)
- Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Yue Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Fang Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Jun-Yao Xiong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Harbin 150069 , China
| |
Collapse
|
39
|
Wang J, Li Y, Wang S, Liu F. Dynamics of transmissible gastroenteritis virus internalization unraveled by single-virus tracking in live cells. FASEB J 2020; 34:4653-4669. [PMID: 32017270 PMCID: PMC7163995 DOI: 10.1096/fj.201902455r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) is a swine enteropathogenic coronavirus that causes significant economic losses in swine industry. Current studies on TGEV internalization mainly focus on viral receptors, but the internalization mechanism is still unclear. In this study, we used single‐virus tracking to obtain the detailed insights into the dynamic events of the TGEV internalization and depict the whole sequential process. We observed that TGEVs could be internalized through clathrin‐ and caveolae‐mediated endocytosis, and the internalization of TGEVs was almost completed within ~2 minutes after TGEVs attached to the cell membrane. Furthermore, the interactions of TGEVs with actin and dynamin 2 in real time during the TGEV internalization were visualized. To our knowledge, this is the first report that single‐virus tracking technique is used to visualize the entire dynamic process of the TGEV internalization: before the TGEV internalization, with the assistance of actin, clathrin, and caveolin 1 would gather around the virus to form the vesicle containing the TGEV, and after ~60 seconds, dynamin 2 would be recruited to promote membrane fission. These results demonstrate that TGEVs enter ST cells via clathrin‐ and caveolae‐mediated endocytic, actin‐dependent, and dynamin 2‐dependent pathways.
Collapse
Affiliation(s)
- Jian Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Yangyang Li
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China.,Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
41
|
Yang C, Liu Y, Xu C, Bai A, Hu Y. A sensitive fluorescent sensor based on the photoinduced electron transfer mechanism for cefixime and ctDNA. J Mol Recognit 2020; 33:e2816. [DOI: 10.1002/jmr.2816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng‐Zhang Yang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yong‐Chang Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Cheng Xu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Ai‐Min Bai
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| | - Yan‐Jun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical EngineeringHubei Normal University Huangshi PR China
| |
Collapse
|
42
|
Zhang X, Wang F, Sheng JL, Sun MX. Advances and Application of DNA-functionalized Nanoparticles. Curr Med Chem 2020; 26:7147-7165. [DOI: 10.2174/0929867325666180501103620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023]
Abstract
DNA-functionalized nanoparticle (DfNP) technology, the integration of DNA with
nanotechnology, has emerged over recent decades as a promising biofunctionalization tool in
the light of biotechnological approaches. The development of DfNPs has exhibited significant
potential for several biological and biomedical applications. In this review, we focus on the
mechanism of a series of DNA-NP nanocomposites and highlight the superstructures of
DNA-based NPs. We also summarize the applications of these nanocomposites in cell imaging,
cancer therapy and bioanalytical detection.
Collapse
Affiliation(s)
- Xun Zhang
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| | - Fei Wang
- Shanghai Tuberculosis Key Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jin-Liang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
43
|
Liang Z, Li P, Wang C, Singh D, Zhang X. Visualizing the Transport of Porcine Reproductive and Respiratory Syndrome Virus in Live Cells by Quantum Dots-Based Single Virus Tracking. Virol Sin 2019; 35:407-416. [PMID: 31872331 DOI: 10.1007/s12250-019-00187-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/09/2019] [Indexed: 01/10/2023] Open
Abstract
Quantum dots (QDs)-based single particle analysis technique enables real-time tracking of the viral infection in live cells with great sensitivity over a long period of time. The porcine reproductive and respiratory syndrome virus (PRRSV) is a small virus with the virion size of 40-60 nm which causes great economic losses to the swine industry worldwide. A clear understanding of the viral infection mechanism is essential for the development of effective antiviral strategies. In this study, we labeled the PRRSV with QDs using the streptavidin-biotin labeling system and monitored the viral infection process in live cells. Our results indicated that the labeling method had negligible effect on viral infectivity. We also observed that prior to the entry, PRRSV vibrated on the plasma membrane, and entered the cells via endosome mediated cell entry pathway. Viruses moved in a slow-fast-slow oscillatory movement pattern and finally accumulated in a perinuclear region of the cell. Our results also showed that once inside the cell, PRRSV moved along the microtubule, microfilament and vimentin cytoskeletal elements. During the transport process, virus particles also made contacts with non-muscle myosin heavy chain II-A (NMHC II-A), visualized as small spheres in cytoplasm. This study can facilitate the application of QDs in virus infection imaging, especially the smaller-sized viruses and provide some novel and important insights into PRRSV infection mechanism.
Collapse
Affiliation(s)
- Zhenpu Liang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Pengjuan Li
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Caiping Wang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Xiaoxia Zhang
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), Henan Agricultural University, Zhengzhou, 450000, China.
| |
Collapse
|
44
|
Chen M, Pan XH, Liu Q, Huo SX, Cao SH, Zhai YY, Zhao Y, Li YQ. Variable-Angle Nanoplasmonic Fluorescence Microscopy: An Axially Resolved Method for Tracking the Endocytic Pathway. Anal Chem 2019; 91:13658-13664. [DOI: 10.1021/acs.analchem.9b02845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Min Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Xiao-Hui Pan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Si-Xin Huo
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shuo-Hui Cao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yan-Yun Zhai
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yan Zhao
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yao-Qun Li
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
45
|
Ratnatilaka Na Bhuket P, Luckanagul JA, Rojsitthisak P, Wang Q. Chemical modification of enveloped viruses for biomedical applications. Integr Biol (Camb) 2019; 10:666-679. [PMID: 30295307 DOI: 10.1039/c8ib00118a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The unique characteristics of enveloped viruses including nanometer size, consistent morphology, narrow size distribution, versatile functionality and biocompatibility have attracted attention from scientists to develop enveloped viruses for biomedical applications. The biomedical applications of the viral-based nanoparticles include vaccine development, imaging and targeted drug delivery. The modification of the structural elements of enveloped viruses is necessary for the desired functions. Here, we review the chemical approaches that have been utilized to develop bionanomaterials based on enveloped viruses for biomedical applications. We first provide an overview of the structures of enveloped viruses which are composed of nucleic acids, structural and functional proteins, glycan residues and lipid envelope. The methods for modification, including direct conjugation, metabolic incorporation of functional groups and peptide tag insertion, are described based on the biomolecular types of viral components. Layer-by-layer technology is also included in this review to illustrate the non-covalent modification of enveloped viruses. Then, we further elaborate the applications of chemically-modified enveloped viruses, virus-like particles and viral subcomponents in biomedical research.
Collapse
Affiliation(s)
- Pahweenvaj Ratnatilaka Na Bhuket
- Biomedicinal Chemistry Program, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | | | | | | |
Collapse
|
46
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Real-time analysis of quantum dot labeled single porcine epidemic diarrhea virus moving along the microtubules using single particle tracking. Sci Rep 2019; 9:1307. [PMID: 30718724 PMCID: PMC6362069 DOI: 10.1038/s41598-018-37789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
In order to study the infection mechanism of porcine epidemic diarrhea virus (PEDV), which causes porcine epidemic diarrhea, a highly contagious enteric disease, we combined quantum dot labeled method, which could hold intact infectivity of the labeled viruses to the largest extent, with the single particle tracking technique to dynamically and globally visualize the transport behaviors of PEDVs in live Vero cells. Our results were the first time to uncover the dynamic characteristics of PEDVs moving along the microtubules in the host cells. It is found that PEDVs kept restricted motion mode with a relatively stable speed in the cell membrane region; while performed a slow-fast-slow velocity pattern with different motion modes in the cell cytoplasm region and near the microtubule organizing center region. In addition, the return movements of small amount of PEDVs were also observed in the live cells. Collectively, our work is crucial for understanding the movement mechanisms of PEDV in the live cells, and the proposed work also provided important references for further analysis and study on the infection mechanism of PEDVs.
Collapse
|
48
|
Liu J, Xu M, Tang B, Hu L, Deng F, Wang H, Pang DW, Hu Z, Wang M, Zhou Y. Single-Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803788. [PMID: 30589216 DOI: 10.1002/smll.201803788] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/24/2018] [Indexed: 06/09/2023]
Abstract
The Bunyavirales is one of the largest groups of RNA viruses, which encompasses many strains that are highly pathogenic to animals and humans. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans, with a high fatality rate of up to 30%. To date, the entry process of bunyavirus infection remains obscure. Here, using quantum dot (QD)-based single-particle tracking and multicolor imaging, the dynamic molecular process of SFTSV entry and penetration is systematically dissected. The results show that internalization of SFTSV into host cells is initiated by recruiting clathrin onto the cell membrane for the formation of clathrin-coated pits and further pinching off from the plasma membrane to form discrete vesicles. These vesicular carriers further deliver virions to Rab5+ early endosomes, and then to Rab7+ late endosomes. The intracellular transport of virion-carrying endocytic vesicles is dependent first on actin filaments at the cell periphery, and then on microtubules toward the cell interior. The final fusion events occur at ≈15-60 min post-entry, and are triggered by the acidic environment at ≈pH5.6 within the late endosomes. These results reveal the multistep SFTSV entry process and the dynamic virus-host interactions involved.
Collapse
Affiliation(s)
- Jia Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingyue Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute of Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Liangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, and The Institute of Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
49
|
Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Quantum Dot Based Biotracking and Biodetection. Anal Chem 2018; 91:532-547. [DOI: 10.1021/acs.analchem.8b04721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
50
|
Liu J, Yu C, Gui JF, Pang DW, Zhang QY. Real-Time Dissecting the Entry and Intracellular Dynamics of Single Reovirus Particle. Front Microbiol 2018; 9:2797. [PMID: 30515143 PMCID: PMC6256031 DOI: 10.3389/fmicb.2018.02797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Reoviruses are non-enveloped viruses with wide host range, can cause serious infections in animals, plants and microorganism, e.g., aquareovirus, which is capable of causing serious haemorrhagic in aquatic animals. To date, the entry process of aquareovirus infection remains obscure. Real-time single-virus tracking are effective tools for exploring the details in viral infection process, which are crucial for understanding the pathogenic mechanism. Here, we used quantum dots-based single particle tracking technology combined with biochemical assays and ultrastructural observation to reveal unobservable infection steps and map dynamic interactions between a reovirus, Scophthalmus maximus reovirus (SMReV), and its host cell in real time. The results showed that the single membrane-bound reovirus particle can enter into the cell within several seconds through nascent clathrin-caoted pits, and most of the particles could internalize into cytoplasm within 30 min post-infection. The specific inhibitors analysis also showed that entry of SMREV depended on clathrin-mediated endocytosis rather than cavolin-mediated endocytosis. The motion analysis of internalized single particle indicated that the reovirus initially experienced slow and directed motion in the actin-enriched cell periphery, while it underwent relatively faster and directed movement toward the cell interior, suggesting that transport of SMReV was dependent on the cytoskeleton. Further, dual-labeling of virus and cytoskeleton and inhibitor analysis both demonstrated that transport of internalized SMReV was firstly dependent on actin filaments at the cell periphery, and then on microtubules toward the cell interior. Then visualization of SMReV trafficking in the endosomes revealed that the internalized reovirus particles were sorted from early endosomes to late endosomes, then part of them were delivered to lysosome. This study for the first time revealed the entry pathway, intracellular dynamic and the infection fate of fish reovirus in host cell in real time and in situ, which provided new insights into the infection mechanism of non-enveloped viruses.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cong Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|