1
|
Xue Y, Wang F, Su X, Li M, Yan H, Zheng S, Ma Y, Dong J, Liu Y, Lin Q, Wang K. Reproductive toxicity and molecular mechanisms of benzo[a]pyrene exposure on ovary, testis, and brood pouch of sex-role-reversed seahorses (Hippocampus erectus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125569. [PMID: 39716499 DOI: 10.1016/j.envpol.2024.125569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
As a flagship taxa for marine ecosystems, seahorses possess a unique reproductive strategy of "male pregnancy". They are severely threatened by marine petroleum-based pollution but the molecular mechanism involved remains unclear. We evaluated the toxic effects and mechanisms of sub-acute exposure to benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon (PAH), at three environmental related dosages (0.5, 5, and 50 μg/L) on the reproductive organs of sex-role-reversed lined seahorses (Hippocampus erectus). BaP induced ovary, testis and brood pouch tissue damage in a concentration-dependent manner. Transcriptomic results suggested that reproductive organs of the seahorse could undergo biotransformation and detoxification of BaP via the P450 enzyme system; the differential expression of key genes related to these pathways determined the differences in the accumulation of toxic substances in the reproductive organs. Moreover, toxic substances directly induced differential tissue damage in situ by activating tissue-specific signaling pathways: BaP-induced ovarian apoptosis and failure by upregulation of the pro-apoptotic genes, vadc1, traf2b, tnfsf10, and pycard (P < 0.05); inhibition of testicular function through disruption of genes associated with "ECM-receptor interaction", "Tight junction", and "Spermatogenesis" pathways; and interference with brood pouch immune responses, significantly suppressing the expression of ripk1, il-1b, casp3a, apaf1, calr, and canx (P < 0.05), thereby impairing "Apoptosis", "Phagosome", and "Necroptosis" processes, ultimately compromising brood pouch maintenance. Toxic substances exacerbate damage to the reproductive organs in seahorses by disrupting Ca2+ homeostasis. At environmentally-relevant concentrations of BaP, the reproductive efficiency of seahorses may be severely affected, increasing the risk of a decline in the abundance and diversity of wild populations.
Collapse
Affiliation(s)
- Yuanyuan Xue
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Fang Wang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264025, China
| | - Xiaolei Su
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Mingzhu Li
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Hansheng Yan
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Shiyi Zheng
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Yicong Ma
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Jie Dong
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Kai Wang
- School of Fisheries, Ludong University, Yantai, 264025, China; Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Rappold R, Kalogeropoulos K, La Regina G, auf dem Keller U, Slack E, Vogel V. Relaxation of mucosal fibronectin fibers in late gut inflammation following neutrophil infiltration in mice. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:4. [PMID: 39917413 PMCID: PMC11794144 DOI: 10.1038/s44341-024-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/13/2024] [Indexed: 02/09/2025]
Abstract
The continuously remodeled extracellular matrix (ECM) plays a pivotal role in gastrointestinal health and disease, yet its precise functions remain elusive. In this study, we employed laser capture microdissection combined with low-input proteomics to investigate ECM remodeling during Salmonella-driven inflammation. To complement this, we probed how fibronectin fiber tension is altered using a mechanosensitive peptide probe. While fibronectin fibers in healthy intestinal tissue are typically stretched, many lose their tension in intestinal smooth muscles only hours after infection, despite the absence of bacteria in that area. In contrast, within the mucosa, where Salmonella is present starting 12 h post infection, fibronectin fiber relaxation occurred exclusively during late-stage infection at 72 h and was localized to already existing clusters of infiltrated neutrophils. Using N-terminomics, we identified three new cleavage sites in fibronectin in the inflamed cecum. The unique, tissue layer-specific changes in the molecular compositions and ECM fiber tension revealed herein might trigger new therapeutic strategies to fight acute intestinal inflammation.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Gianna La Regina
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
3
|
Bhattarai P, Yilmaz E, Cakir EÖ, Korkmaz HY, Lee AJ, Ma Y, Celikkaya H, Cosacak MI, Haage V, Wang X, Nelson N, Lin W, Zhang Y, Nuriel T, Jülich D, Iş Ö, Holley SA, de Jager P, Fisher E, Tubbesing K, Teich AF, Bertucci T, Temple S, Ertekin-Taner N, Vardarajan BN, Mayeux R, Kizil C. APOE- ε4-induced Fibronectin at the blood-brain barrier is a conserved pathological mediator of disrupted astrocyte-endothelia interaction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634732. [PMID: 39975303 PMCID: PMC11838230 DOI: 10.1101/2025.01.24.634732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Blood-brain barrier (BBB) dysfunction is a key feature of Alzheimer's disease (AD), particularly in individuals carrying the APOE-ε4 allele. This dysfunction worsens neuroinflammation and hinders the removal of toxic proteins, such as amyloid-beta (Aβ42), from the brain. In post-mortem brain tissues and in animal models, we previously reported that fibronectin accumulates at the BBB predominantly in APOE-ε4 carriers. Furthermore, we found a loss-of-function variant in the fibronectin 1 ( FN1 ) gene significantly reduces aggregated fibronectin levels and decreases AD risk among APOE-ε4 carriers. Yet, the molecular mechanisms downstream of fibronectin at the BBB remain unclear. The extracellular matrix (ECM) plays a crucial role in maintaining BBB homeostasis and orchestrating the interactions between BBB cell types, including endothelia and astrocytes. Understanding the mechanisms affecting the ECM and BBB cell types will be critical for developing effective therapies against AD, especially among APOE-ε4 carriers. Here, we demonstrate that APOE-ε4 , Aβ42, and inflammation drive the induction of FN1 expression in several models including zebrafish, mice, iPSC-derived human 3D astrocyte and 3D cerebrovascular cell cultures, and in human brains. Fibronectin accumulation disrupts astroglial-endothelial interactions and the signalling cascade between vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor (HBEGF) and Insulin-like growth factor 1 (IGF1). This accumulation of fibronectin in APOE-ε4- associated AD potentiates BBB dysfunction, which strongly implicates reducing fibronectin deposition as a potential therapeutic target for AD. Graphical abstract Accessibility text This image illustrates the effects of different APOE isoforms (ApoE-ε3 and ApoE-ε4) on blood-brain barrier (BBB) integrity, focusing on the molecular interactions between astrocytes and endothelial cells. This figure emphasizes the detrimental effects of ApoE-ε4 on BBB integrity via fibronectin accumulation and altered signaling pathways. The top section provides a schematic overview of the blood-brain barrier, highlighting astrocytes, endothelial cells, and their interface. The left panel represents the ApoE-ε3 condition: Normal fibronectin (FN1) levels support healthy interactions between astrocytes and endothelial cells. Growth factors, including VEGFA, HBEGF, and IGF1, maintain BBB integrity through their respective receptors (VEGFR and EGFR). Green arrows indicate activation of these signaling pathways. The right panel depicts the ApoE-ε4 condition: Elevated fibronectin (FN1) disrupts astrocyte-endothelium interactions. FN1 binds integrins and activates focal adhesion kinase (FAK), inhibiting VEGFA, which is required for endothelial HBEGF that in turn activates IGF1 signaling. Red symbols indicate inhibition of HBEGF, VEGFA, and IGF1 pathways, leading to BBB dysfunction. Highlights APOE-ε4 drives fibronectin deposition in Alzheimer's, disrupting astrocyte-endothelia interactions. APOE-ε4 and fibronectin co-localize, forming aggregates at blood-brain barrier (BBB). Fibronectin alters the signaling between VEGF, IGF1, and HBEGF impairing BBB function. Reducing fibronectin restores BBB integrity and offsets APOE-ε4 pathology.
Collapse
|
4
|
Ali EW, Adam KM, Elangeeb ME, Ahmed EM, Abuagla HA, MohamedAhmed AAE, Edris AM, Eltieb EI, Osman HMA, Idris ES. Exploring the Structural and Functional Consequences of Deleterious Missense Nonsynonymous SNPs in the EPOR Gene: A Computational Approach. J Pers Med 2024; 14:1111. [PMID: 39590603 PMCID: PMC11595312 DOI: 10.3390/jpm14111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Mutations in the EPOR gene can disrupt its normal signaling pathways, leading to hematological disorders such as polycythemia vera and other myeloproliferative diseases. METHODOLOGY In this study, a range of bioinformatics tools, including SIFT, PolyPhen-2, SNAP2, SNPs & Go, PhD-SNP, I-Mutant2.0, MuPro, MutPred, ConSurf, HOPE, and Interpro were used to assess the deleterious effects of missense nonsynonymous single nucleotide polymorphisms (nsSNPs) on protein structure and function. Furthermore, molecular dynamics simulations (MDS) were conducted to assess the structural deviations of the identified mutant variants in comparison to the wild type. RESULTS The results identified two nsSNPs, R223P and G302S, as deleterious, significantly affecting protein structure and function. Both substitutions occur in functionally conserved regions and are predicted to be pathogenic, associated with altered molecular mechanisms. The MDSs indicated that while the wild-type EPOR maintained optimal stability, the G302S and R223P variants exhibited substantial deviations, adversely affecting overall protein stability and compactness. CONCLUSIONS The computational analysis of missense nsSNPs in the EPOR gene identified two missense SNPs, R223P and G302S, as deleterious, occurring at highly conserved regions, and having substantial effects on erythropoietin receptor (EPO-R) protein structure and function, suggesting their potential pathogenic consequences.
Collapse
Affiliation(s)
- Elshazali Widaa Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 551, Bisha 67714, Saudi Arabia; (K.M.A.); (M.E.E.); (E.M.A.); (H.A.A.); (A.A.E.M.); (A.M.E.); (E.I.E.); (H.M.A.O.); (E.S.I.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li W, Moretti L, Su X, Yeh CR, Torres MP, Barker TH. Strain-dependent glutathionylation of fibronectin fibers impacts mechano-chemical behavior and primes an integrin switch. Nat Commun 2024; 15:8751. [PMID: 39384749 PMCID: PMC11479631 DOI: 10.1038/s41467-024-52742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The extracellular matrix (ECM) is a protein polymer network that physically supports cells within a tissue. It acts as an important physical and biochemical stimulus directing cell behaviors. For fibronectin (Fn), a predominant component of the ECM, these physical and biochemical activities are inextricably linked as physical forces trigger conformational changes that impact its biochemical activity. Here, we analyze whether oxidative post-translational modifications, specifically glutathionylation, alter Fn's mechano-chemical characteristics through stretch-dependent protein modification. ECM post-translational modifications represent a potential for time- or stimulus-dependent changes in ECM structure-function relationships that could persist over time with potentially significant impacts on cell and tissue behaviors. In this study, we show evidence that glutathionylation of Fn ECM fibers is stretch-dependent and alters Fn fiber mechanical properties with implications on the selectivity of engaging integrin receptors. These data demonstrate the existence of multimodal post-translational modification mechanisms within the ECM with high relevance to the microenvironmental regulation of downstream cell behaviors.
Collapse
Affiliation(s)
- Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Leandro Moretti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chiuan-Ren Yeh
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Montes AR, Barroso A, Wang W, O'Connell GD, Tepole AB, Mofrad MRK. Integrin mechanosensing relies on a pivot-clip mechanism to reinforce cell adhesion. Biophys J 2024; 123:2443-2454. [PMID: 38872310 PMCID: PMC11630637 DOI: 10.1016/j.bpj.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Cells intricately sense mechanical forces from their surroundings, driving biophysical and biochemical activities. This mechanosensing phenomenon occurs at the cell-matrix interface, where mechanical forces resulting from cellular motion, such as migration or matrix stretching, are exchanged through surface receptors, primarily integrins, and their corresponding matrix ligands. A pivotal player in this interaction is the α5β1 integrin and fibronectin (FN) bond, known for its role in establishing cell adhesion sites for migration. However, upregulation of the α5β1-FN bond is associated with uncontrolled cell metastasis. This bond operates through catch bond dynamics, wherein the bond lifetime paradoxically increases with greater force. The mechanism sustaining the characteristic catch bond dynamics of α5β1-FN remains unclear. Leveraging molecular dynamics simulations, our approach unveils a pivot-clip mechanism. Two key binding sites on FN, namely the synergy site and the RGD (Arg-Gly-Asp) motif, act as active points for structural changes in α5β1 integrin. Conformational adaptations at these sites are induced by a series of hydrogen bond formations and breaks at the synergy site. We disrupt these adaptations through a double mutation on FN, known to reduce cell adhesion. A whole-cell finite-element model is employed to elucidate how the synergy site may promote dynamic α5β1-FN binding, resisting cell contraction. In summary, our study integrates molecular- and cellular-level modeling to propose that FN's synergy site reinforces cell adhesion through enhanced binding dynamics and a mechanosensitive pivot-clip mechanism. This work sheds light on the interplay between mechanical forces and cell-matrix interactions, contributing to our understanding of cellular behaviors in physiological and pathological contexts.
Collapse
Affiliation(s)
- Andre R Montes
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Anahi Barroso
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Wei Wang
- Berkeley City College, Berkeley, California; Berkeley Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Grace D O'Connell
- Berkeley Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Adrian B Tepole
- Tepole Mechanics and Mechanobiology Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana.
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
7
|
Bhattarai P, Gunasekaran TI, Belloy ME, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Turgutalp B, Sukumar G, Alba C, McGrath EM, Hupalo DN, Bacikova D, Le Guen Y, Lantigua R, Medrano M, Rivera D, Recio P, Nuriel T, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Greicius M, Dalgard CL, Zody M, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta Neuropathol 2024; 147:70. [PMID: 38598053 PMCID: PMC11006751 DOI: 10.1007/s00401-024-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Tamil Iniyan Gunasekaran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dörthe Jülich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Hüseyin Tayran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bengisu Turgutalp
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Camille Alba
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Elisa Martinez McGrath
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Daniel N Hupalo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Dagmar Bacikova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Lantigua
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Patricia Recio
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Scott Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Zody
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, NY, 10032, USA
| | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Trachsel B, Imobersteg S, Valpreda G, Singer G, Grabherr R, Ormos M, Burger IA, Kubik-Huch RA, Schibli R, Vogel V, Béhé M. Relaxed fibronectin: a potential novel target for imaging endometriotic lesions. EJNMMI Res 2024; 14:17. [PMID: 38340184 DOI: 10.1186/s13550-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Endometriosis is characterized by the ectopic occurrence of endometrial tissue. Though considered benign, endometriotic lesions possess tumor-like properties such as tissue invasion and remodeling of the extracellular matrix. One major clinical hurdle concerning endometriosis is its diagnosis. The diagnostic modalities ultrasound and MRI are often unable to detect all lesions, and a clear correlation between imaging and clinical symptoms is still controversial. Therefore, it was our aim to identify a potential target to image active endometriotic lesions. RESULTS For our studies, we employed the preclinical radiotracer [111In]In-FnBPA5, which specifically binds to relaxed fibronectin-an extracellular matrix protein with key functions in homeostasis that has been implicated in the pathogenesis of diseases such as cancer and fibrosis. We employed this tracer in biodistribution as well as SPECT/CT studies in mice and conducted immunohistochemical stainings on mouse uterine tissue as well as on patient-derived endometriosis tissue. In biodistribution and SPECT/CT studies using the radiotracer [111In]In-FnBPA5, we found that radiotracer uptake in the myometrium varies with the estrous cycle of the mouse, leading to higher uptake of [111In]In-FnBPA5 during estrogen-dependent phases, which indicates an increased abundance of relaxed fibronectin when estrogen levels are high. Finally, immunohistochemical analysis of patient samples demonstrated that there is preferential relaxation of fibronectin in the proximity of the endometriotic stroma. CONCLUSION Estrous cycle stages characterized by high estrogen levels result in a higher abundance of relaxed fibronectin in the murine myometrium. This finding together with a first proof-of-concept study employing human endometriosis tissues suggests that relaxed fibronectin could be a potential target for the development of a diagnostic radiotracer targeting endometriotic lesions. With [111In]In-FnBPA5, the matching targeting molecule is in preclinical development.
Collapse
Affiliation(s)
- Belinda Trachsel
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefan Imobersteg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Giulia Valpreda
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Gad Singer
- Kantonsspital Baden, 5404, Baden, Switzerland
| | | | - Mark Ormos
- Kantonsspital Baden, 5404, Baden, Switzerland
| | | | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland.
| |
Collapse
|
9
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
10
|
Bhattarai P, Gunasekaran TI, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Lantigua R, Medrano M, Rivera D, Recio P, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in Fibronectin 1 ( FN1 ) protects against APOEe4 in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573895. [PMID: 38260431 PMCID: PMC10802344 DOI: 10.1101/2024.01.02.573895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
|
11
|
Bian B, Ge C, Wu F, Fan Y, Kong J, Li K, Bian H, Miao Q. Wogonin Attenuates Bleomycin-Induced Pulmonary Fibrosis and Oxidative Stress Injury via the MAPK Signaling Pathway. Biol Pharm Bull 2024; 47:2165-2172. [PMID: 39756931 DOI: 10.1248/bpb.b24-00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Idiopathic pulmonary fibrosis (PF) is an irreversible and chronic inflammatory condition with limited therapeutic options and a high mortality rate. We aimed to determine the possible role and mechanisms of wogonin (WGN) on PF. A rat model of PF was established with intratracheally administrated with bleomycin (BLM), followed by intravenously injecting with WGN and weekly body weight measurements for four weeks. Hematoxylin-eosin (H&E) and Masson's trichrome staining were implemented for histopathological analysis. In addition, the levels of fibrotic proteins and indicators of the mitogen-activated protein kinase (MAPK) pathway were assessed with Western blot. RT-quantitative (q)PCR experiment was conducted to investigate the fibrotic proteins' mRNA expression. Ultimately, the concentrations of glutathione peroxidase (GSH-PX), malonaldehyde (MDA), and superoxide dismutase (SOD) were ascertained with appropriate kits. The results showed that WGN administration significantly reversed BLM-induced body weight reduction, alleviated pathological fibrosis, and reduced the Ashcroft score and the lung wet-to-dry weight ratio. Additionally, WGN suppressed the rise of fibrotic protein levels in BLM-treated rat's lung tissues. Furthermore, WGN attenuated BLM-stimulated oxidative stress, as evidenced by the increased GSH-PX and SOD levels and decreased MDA levels in vivo. Finally, wogonin supplements significantly lowered the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK phosphorylation levels in the BLM-treated rat's lung tissues. In conclusion, our study proved that PF induced by BLM administration can be mitigated by WGN treatment via suppressing the MAPK pathway, indicating that WGN is a candidate therapeutic agent for managing PF.
Collapse
Affiliation(s)
- Bo Bian
- Traditional Chinese Medical College, North China University of Science and Technology
| | - Chang Ge
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Fanwu Wu
- Traditional Chinese Medical College, North China University of Science and Technology
| | - Yiling Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences
| | | | - Kai Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology
| | - Hua Bian
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology
| | - Qing Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences
| |
Collapse
|
12
|
Stefanelli VL, Mintz B, Gandhi A, Smith J. Design matters: A comparison of natural versus synthetic skin substitutes across benchtop and porcine wound healing metrics: An experimental study. Health Sci Rep 2023; 6:e1462. [PMID: 37538960 PMCID: PMC10394260 DOI: 10.1002/hsr2.1462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Background and Aims Skin substitutes, essential tools for helping close full thickness wounds with minimal scarring, are available in both collagen-based and synthetic polyurethane constructions. Here we explore fundamental differences between two frequently used skin substitutes and discuss how these differences may impact in vivo performance. Methods Polyurethane- and collagen-based matrices were characterized in vitro for pore size via scanning electron microscopy, hydrophobicity via liquid contact angle, conformability via bending angle, and biocompatibility via fibroblast and keratinocyte adhesion and proliferation. These matrices were then evaluated in a full-thickness excisional pig wound study followed by histological analysis. Statistical analysis was performed using t-tests or one-way analysis of variances with Tukey's multiple post hoc comparisons, where appropriate. Results Average pore diameter in the tested polyurethane matrix was over four times larger than that of the collagen matrix (589 ± 297 µm vs. 132 ± 91 µm). Through liquid contact angle measurement, the collagen matrix (not measurable) was found to be hydrophilic compared to the hydrophobic polyurethane matrix (>90°). The collagen matrix was significantly more conformable than the polyurethane matrix (9 ± 2° vs. 84 ± 5° bending angle, respectively). Fibroblast and keratinocyte adhesion and proliferation assays elucidated a significantly greater ability of both cell types to attach and proliferate on collagen versus polyurethane. While the porcine study showed minimal contraction of either matrix material, histological findings between the two treatments were markedly different. Collagen matrices were associated with early fibroblast infiltration and fibroplasia, whereas polyurethane matrices elicited a strong multinucleated giant cell response and produced a network of comparatively aligned collagen fibrils. Conclusions The more favorable in vitro properties of the collagen matrix led to less inflammation and better overall tissue response in vivo. Overall, our findings demonstrate how the choice of biomaterial and its design directly translate to differing in vivo mechanisms of action and overall tissue quality.
Collapse
Affiliation(s)
| | - Benjamin Mintz
- Exploratory R&DIntegra LifeSciencesPrincetonNew JerseyUSA
| | - Ankur Gandhi
- Exploratory R&DIntegra LifeSciencesPrincetonNew JerseyUSA
| | - Jason Smith
- Exploratory R&DIntegra LifeSciencesPrincetonNew JerseyUSA
| |
Collapse
|
13
|
Melamed S, Zaffryar-Eilot S, Nadjar-Boger E, Aviram R, Zhao H, Yaseen-Badarne W, Kalev-Altman R, Sela-Donenfeld D, Lewinson O, Astrof S, Hasson P, Wolfenson H. Initiation of fibronectin fibrillogenesis is an enzyme-dependent process. Cell Rep 2023; 42:112473. [PMID: 37148241 DOI: 10.1016/j.celrep.2023.112473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023] Open
Abstract
Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members. This oxidation induces fibronectin clustering, which promotes early adhesion, alters cellular response to soft matrices, and enhances force transmission to the matrix. In contrast, absence of fibronectin oxidation abrogates fibrillogenesis, perturbs cell-matrix adhesion, and compromises mechanosensation. Moreover, fibronectin oxidation promotes cancer cell colony formation in soft agar as well as collective and single-cell migration. These results reveal a force-independent enzyme-dependent mechanism that initiates fibronectin fibrillogenesis, establishing a critical step in cell adhesion and mechanosensing.
Collapse
Affiliation(s)
- Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Wesal Yaseen-Badarne
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
14
|
Kong Q, Zhou J, Ma C, Wei Z, Chen Y, Cheng Y, Wu W, Zhou Z, Tang Y, Liu X. Inhibition of long noncoding RNA Gm41724 alleviates pressure overload-induced cardiac fibrosis by regulating lamina-associated polypeptide 2α. Pharmacol Res 2023; 188:106677. [PMID: 36702426 DOI: 10.1016/j.phrs.2023.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Cardiac fibrosis is a pathological process underlying myocardial remodeling and is characterized by excessive deposition of the myocardial extracellular matrix. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. In this study, we investigated the role of a novel lncRNA, Gm41724, in cardiac fibrosis induced by pressure overload. High-throughput whole transcriptome sequencing analysis was performed to detect differentially expressed lncRNAs in cardiac fibroblasts (CFs) with or without TGF-β1 treatment. Differential expression analysis and gene set enrichment analysis identified Gm41724 as a potential molecule targeting fibrosis. Gm41724 positively regulated the activation of CFs induced by TGF-β1 and pressure overload. Knocking down Gm41724 could inhibit the differentiation of CFs into myofibroblasts and alleviate cardiac fibrosis induced by pressure overload. Mechanistically, comprehensive identification of RNA-binding proteins by mass spectrometry (CHIRP-MS) and RNA immunoprecipitation (RIP) assay combined with other methods of molecular biological revealed the important role of Gm41724 binding to lamina-associated polypeptide 2α (lap2α) for the activation of CFs. Further mechanistic studies indicated that the regulator of G protein signaling 4 (Rgs4), as the downstream effector of Gm41724/lap2α, regulated CFs activation. Our results implicated the involvement of Gm41724 in cardiac fibrosis induced by pressure overload and it is expected to be a promising target for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junteng Zhou
- Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chi Ma
- Laboratory Animal Center, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zisong Wei
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
| | - Yong Tang
- School of Health and Rehabilitation, International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China.
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Single and multi-dose drug loaded electrospun fiber mats for wound healing applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Missirlis D, Heckmann L, Haraszti T, Spatz JP. Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials 2022; 287:121646. [PMID: 35785752 DOI: 10.1016/j.biomaterials.2022.121646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
The established link between deregulated tissue mechanics and various pathological states calls for the elucidation of the processes through which cells interrogate and interpret the mechanical properties of their microenvironment. In this work, we demonstrate that changes in the presentation of the extracellular matrix protein fibronectin on the surface of viscoelastic silicone elastomers have an overarching effect on cell mechanosensing, that is independent of bulk mechanics. Reduction of surface hydrophilicity resulted in altered fibronectin adsorption strength as monitored using atomic force microscopy imaging and pulling experiments. Consequently, primary human fibroblasts were able to remodel the fibronectin coating, adopt a polarized phenotype and migrate directionally even on soft elastomers, that otherwise were not able to resist the applied traction forces. The findings presented here provide valuable insight on how cellular forces are regulated by ligand presentation and used by cells to probe their mechanical environment, and have implications on biomaterial design for cell guidance.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany.
| | - Lara Heckmann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, Postal Address: Forkenbeckstr. 50, D-52056, Aachen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, Postal Address: INF 253, D-69120, Heidelberg, Germany
| |
Collapse
|
17
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
18
|
Keller KE, Peters DM. Pathogenesis of glaucoma: Extracellular matrix dysfunction in the trabecular meshwork-A review. Clin Exp Ophthalmol 2022; 50:163-182. [PMID: 35037377 DOI: 10.1111/ceo.14027] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
The trabecular meshwork regulates aqueous humour outflow from the anterior chamber of the eye. It does this by establishing a tunable outflow resistance, defined by the interplay between cells and their extracellular matrix (ECM) milieu, and the molecular interactions between ECM proteins. During normal tissue homeostasis, the ECM is remodelled and trabecular cell behaviour is modified, permitting increased aqueous fluid outflow to maintain intraocular pressure (IOP) within a relatively narrow physiological pressure. Dysfunction in the normal homeostatic process leads to increased outflow resistance and elevated IOP, which is a primary risk factor for glaucoma. This review delineates some of the changes in the ECM that lead to gross as well as some more subtle changes in the structure and function of the ECM, and their impact on trabecular cell behaviour. These changes are discussed in the context of outflow resistance and glaucoma.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health &Science University, Portland, Oregon, USA
| | - Donna M Peters
- Department of Pathology & Laboratory Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
19
|
The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cell Mol Bioeng 2021; 14:427-440. [PMID: 34777602 DOI: 10.1007/s12195-021-00672-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Tissue fibrosis is characterized by progressive extracellular matrix (ECM) stiffening and loss of viscoelasticity that ultimately impairs organ functionality. Cells bind to the ECM through integrins, where αv integrin engagement in particular has been correlated with fibroblast activation into contractile myofibroblasts that drive fibrosis progression. There is a significant unmet need for in vitro hydrogel systems that deconstruct the complexity of native tissues to better understand the individual and combined effects of stiffness, viscoelasticity, and integrin engagement on fibroblast behavior. Methods We developed hyaluronic acid hydrogels with independently tunable cell-instructive properties (stiffness, viscoelasticity, ligand presentation) to address this challenge. Hydrogels with mechanics matching normal or fibrotic lung tissue were synthesized using a combination of covalent crosslinks and supramolecular interactions to tune viscoelasticity. Cell adhesion was mediated through incorporation of either RGD peptide or engineered fibronectin fragments promoting preferential integrin engagement via αvβ3 or α5β1. Results On fibrosis-mimicking stiff elastic hydrogels, preferential αvβ3 engagement promoted increased spreading, actin stress fiber organization, and focal adhesion maturation as indicated by paxillin organization in human lung fibroblasts. In contrast, preferential α5β1 binding suppressed these metrics. Viscoelasticity, mimicking the mechanics of healthy tissue, largely curtailed fibroblast spreading and focal adhesion organization independent of adhesive ligand type, highlighting its role in reducing fibroblast-activating behaviors. Conclusions Together, these results provide new insights into how mechanical and adhesive cues collectively guide disease-relevant cell behaviors. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00672-1.
Collapse
|
20
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
22
|
Ben Abla A, Boeuf G, Elmarjou A, Dridi C, Poirier F, Changotade S, Lutomski D, Elm’selmi A. Engineering of Bio-Adhesive Ligand Containing Recombinant RGD and PHSRN Fibronectin Cell-Binding Domains in Fusion with a Colored Multi Affinity Tag: Simple Approach for Fragment Study from Expression to Adsorption. Int J Mol Sci 2021; 22:ijms22147362. [PMID: 34298982 PMCID: PMC8303147 DOI: 10.3390/ijms22147362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
Engineering of biomimetic motives have emerged as promising approaches to improving cells’ binding properties of biomaterials for tissue engineering and regenerative medicine. In this study, a bio-adhesive ligand including cell-binding domains of human fibronectin (FN) was engineered using recombinant protein technology, a major extracellular matrix (ECM) protein that interacts with a variety of integrins cell-surface’s receptors and other ECM proteins through specific binding domains. 9th and 10th fibronectin type III repeat containing Arginine-Glycine-Aspartic acid (RGD) and Pro-His-Ser-Arg-Asn (PHSRN) synergic site (FNIII9-10) were expressed in fusion with a Colored Multi Affinity Tag (CMAT) to develop a simplified production and characterization process. A recombinant fragment was produced in the bacterial system using E. coli with high yield purified protein by double affinity chromatography. Bio-adhesive surfaces were developed by passive coating of produced fragment onto non adhesive surfaces model. The recombinant fusion protein (CMAT-FNIII9/10) demonstrated an accurate monitoring capability during expression purification and adsorption assay. Finally, biological activity of recombinant FNIII9/10 was validated by cellular adhesion assay. Binding to α5β1 integrins were successfully validated using a produced fragment as a ligand. These results are robust supports to the rational development of bioactivation strategies for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Amina Ben Abla
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Guilhem Boeuf
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
| | - Ahmed Elmarjou
- Plateforme de Production D’Anticorps et de Protéines Recombinantes, Institut Curie/CNRS UMR144, 75248 Paris, France;
| | - Cyrine Dridi
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Florence Poirier
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Sylvie Changotade
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Didier Lutomski
- Unité de Recherche Biomatériaux Innovants et Interfaces URB2i, Université Paris Sorbonne Nord, 74 Rue Marcel Cachin, 93017 Bobigny, France; (F.P.); (S.C.); (D.L.)
| | - Abdellatif Elm’selmi
- EBInnov, Ecole de Biologie Industrielle, 49 Avenue des Genottes, 95000 Cergy, France; (A.B.A.); (G.B.); (C.D.)
- Correspondence: ; Tel.: +33-1-85-76-66-90 or +33-1-85-76-67-16
| |
Collapse
|
23
|
Hannan RT, Miller AE, Hung RC, Sano C, Peirce SM, Barker TH. Extracellular matrix remodeling associated with bleomycin-induced lung injury supports pericyte-to-myofibroblast transition. Matrix Biol Plus 2021; 10:100056. [PMID: 34195593 PMCID: PMC8233458 DOI: 10.1016/j.mbplus.2020.100056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Of the many origins of pulmonary myofibroblasts, microvascular pericytes are a known source. Prior literature has established the ability of pericytes to transition into myofibroblasts, but provide limited insight into molecular cues that drive this process during lung injury repair and fibrosis. Fibronectin and RGD-binding integrins have long been considered pro-fibrotic factors in myofibroblast biology, and here we test the hypothesis that these known myofibroblast cues coordinate pericyte-to-myofibroblast transitions. Specifically, we hypothesized that αvβ3 integrin engagement on fibronectin induces pericyte transition into myofibroblastic phenotypes in the murine bleomycin lung injury model. Myosin Heavy Chain 11 (Myh11)-CreERT2 lineage tracing in transgenic mice allows identification of cells of pericyte origin and provides a robust tool for isolating pericytes from tissues for further evaluation. We used this murine model to track and characterize pericyte behaviors during tissue repair. The majority of Myh11 lineage-positive cells are positive for the pericyte surface markers, PDGFRβ (55%) and CD146 (69%), and display typical pericyte morphology with spatial apposition to microvascular networks. After intratracheal bleomycin treatment of mice, Myh11 lineage-positive cells showed significantly increased contractile and secretory markers, as well as αv integrin expression. According to RNASeq measurements, many disease and tissue-remodeling genesets were upregulated in Myh11 lineage-positive cells in response to bleomycin-induced lung injury. In vitro, blocking αvβ3 binding through cycloRGDfK prevented expression of the myofibroblastic marker αSMA relative to controls. In response to RGD-containing provisional matrix proteins present in lung injury, pericytes may alter their integrin profile.
Collapse
Affiliation(s)
- Riley T. Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Andrew E. Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Ruei-Chun Hung
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Catherine Sano
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, VA, United States
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA, United States
| |
Collapse
|
24
|
Tang L, Liu YL, Qin G, Lin Q, Zhang YH. Effects of tributyltin on gonad and brood pouch development of male pregnant lined seahorse (Hippocampus erectus) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124854. [PMID: 33370696 DOI: 10.1016/j.jhazmat.2020.124854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The male pregnancy of seahorses is unique, but their reproductive response to environmental disturbances has not yet been clarified. Tributyltin (TBT) is known to have an endocrine disrupting effect on the reproductive system of coastal marine organisms. This study evaluated the potential effects of exposure to environmentally relevant concentrations of TBT on the development of gonads and brood pouch of the lined seahorse (Hippocampus erectus). Physiological, histological, and transcriptional analyses were conducted, and results showed that high levels of TBT bioaccumulation occurred in male and female seahorses. TBT led to ovarian follicular atresia and apoptosis with the elevation of androgen levels, accompanied by the induction of genes associated with lysosomes and autophagosomes. Comparative transcriptional analyses revealed the likely inhibition of spermatogenesis via the suppression of cyclic AMP and androgen synthesis. Notably, the transcriptional profiles showed that TBT potentially affects the immune system, angiogenesis, and embryo nourishment of the brood pouch, which indicates that it has negative effects on the male reproductive system of seahorses. In summary, this study reveals that environmental levels of TBT potentially affect the reproductive efficiency of seahorses, and may ultimately lead to a reduction in their populations in coastal environments.
Collapse
Affiliation(s)
- Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ya-Li Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
25
|
Wu Z, Huang S, Zheng X, Gu S, Xu Q, Gong Y, Zhang J, Fu B, Tang L. Regulatory long non-coding RNAs of hepatic stellate cells in liver fibrosis (Review). Exp Ther Med 2021; 21:351. [PMID: 33732324 PMCID: PMC7903415 DOI: 10.3892/etm.2021.9782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis (LF) is a continuous wound healing process caused by numerous chronic hepatic diseases and poses a major threat to human health. Activation of hepatic stellate cells (HSCs) is a critical event in the development of hepatic fibrosis. Long non-coding RNAs (lncRNAs) that are involved in HSC activation, participate in the development of LF and are likely to be therapeutic targets for LF. In the present review, the cellular signaling pathways of LF with respect to HSCs were discussed. In particular, this present review highlighted the current knowledge on the role of lncRNAs in activating or inhibiting LF, revealing lncRNAs that are likely to be biomarkers or therapeutic targets for LF. Additional studies should be performed to elucidate the potential of lncRNAs in the diagnosis and prognosis of LF and to provide novel therapeutic approaches for the reversion of LF.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoqin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiwen Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
26
|
Cao M, Xiao D, Ding X. The anti-tumor effect of ursolic acid on papillary thyroid carcinoma via suppressing Fibronectin-1. Biosci Biotechnol Biochem 2020; 84:2415-2424. [PMID: 32942951 DOI: 10.1080/09168451.2020.1813543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
This study aims to discover the effects of ursolic acid (UA) on papillary thyroid carcinoma (PTC). Human PTC cells were under UA treatment, and cell viability, clone formation, and apoptosis were measured by MTT assay, clone formation assay, and flow cytometry, respectively. Expressions of apoptosis- and epithelial-mesenchymal transition (EMT)-related markers were determined via qRT-PCR and western blot. Fibronectin-1 (FN1) expression in thyroid carcinoma was analyzed by GEPIA2 and qRT-PCR. The effects of overexpressed FN1 on UA-treated cells were detected following the previous procedures. Cell viability, proliferation, and EMT-related marker expressions were inhibited, while cell apoptosis and apoptosis-related marker expressions were promoted by UA. FN1 was higher expressed in thyroid carcinoma and downregulated by UA. Effects of FN1 on cell viability, proliferation, and apoptosis- and EMT-related marker expressions were partially reversed by UA. UA inhibited human PTC cell viability, proliferation, and EMT but promoted apoptosis via suppressing FN1.
Collapse
Affiliation(s)
- Mingxiang Cao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Di Xiao
- Department of Anesthesiology, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| | - Xubei Ding
- Department of Thyroid and Breast Surgery, Jingmen No.1 People's Hospital , Jingmen, Hubei Province, China
| |
Collapse
|
27
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
28
|
Chen YC, Chuang TY, Liu CW, Liu CW, Lee TL, Lai TC, Chen YL. Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-κB-dependent pathway in lung epithelial cells. Part Fibre Toxicol 2020; 17:41. [PMID: 32799885 PMCID: PMC7429884 DOI: 10.1186/s12989-020-00373-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Particulate matters (PMs) in ambient air pollution are closely related to the incidence of respiratory diseases and decreased lung function. Our previous report demonstrated that PMs-induced oxidative stress increased the expression of proinflammatory intracellular adhesion molecule-1 (ICAM-1) through the IL-6/AKT/STAT3/NF-κB pathway in A549 cells. However, the role of O-PMs in epithelial-mesenchymal transition (EMT) development and pulmonary fibrosis and the related mechanisms have not been determined. The aim of this study was to investigate the effects of O-PMs on the pathogenesis of EMT and pulmonary fibrosis as well as the expression of ETS-1 and NF-κB p65, in vitro and in vivo. Results O-PMs treatment induced EMT development, fibronectin expression, and cell migration. O-PMs affected the expression of the EMT-related transcription factors NF-κB p65 and ETS-1. Interference with NF-κB p65 significantly decreased O-PMs-induced fibronectin expression. In addition, O-PMs affected the expression of fibronectin, E-cadherin, and vimentin through modulating ETS-1 expression. ATN-161, an antagonist of integrin α5β1, decreased the expression of fibronectin and ETS-1 and EMT development. EMT development and the expression of fibronectin and ETS-1 were increased in the lung tissue of mice after exposure to PMs for 7 and 14 days. There was a significant correlation between fibronectin and ETS-1 expression in human pulmonary fibrosis tissue. Conclusion O-PMs can induce EMT and fibronectin expression through the activation of transcription factors ETS-1 and NF-κB in A549 cells. PMs can induce EMT development and the expression of fibronectin and ETS-1 in mouse lung tissues. These findings suggest that the ETS-1 pathway could be a novel and alternative mechanism for EMT development and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tzu-Yi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, No. 168 Ching-Kuo Road, Taoyuan, Taiwan, Republic of China. .,Department of Internal Medicine, College of Medicine and National Taiwan University Hospital, No.7, Chung-Shan South Road, Taipei, Taiwan, Republic of China.
| | - Chen-Wei Liu
- Department of Basic Medical Science, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Chi-Wei Liu
- Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan, Republic of China
| | - Tzu-Lin Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Tsai-Chun Lai
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec 1, Jen-Ai Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|
29
|
Fonta CM, Arnoldini S, Jaramillo D, Moscaroli A, Oxenius A, Behe M, Vogel V. Fibronectin fibers are highly tensed in healthy organs in contrast to tumors and virus-infected lymph nodes. Matrix Biol Plus 2020; 8:100046. [PMID: 33543039 PMCID: PMC7852196 DOI: 10.1016/j.mbplus.2020.100046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) acts as reservoir for a plethora of growth factors and cytokines some of which are hypothesized to be regulated by ECM fiber tension. Yet, ECM fiber tension has never been mapped in healthy versus diseased organs. Using our recently developed tension nanoprobe derived from the bacterial adhesin FnBPA5, which preferentially binds to structurally relaxed fibronectin fibers, we discovered here that fibronectin fibers are kept under high tension in selected healthy mouse organs. In contrast, tumor tissues and virus-infected lymph nodes exhibited a significantly higher content of relaxed or proteolytically cleaved fibronectin fibers. This demonstrates for the first time that the tension of ECM fibers is significantly reduced upon pathological tissue transformations. This has wide implications, as the active stretching of fibronectin fibers adjusts critical cellular niche parameters and thereby tunes the reciprocal cell-ECM crosstalk. Mapping the tensional state of fibronectin fibers opens novel and unexpected diagnostic opportunities. Mechanobiology of extracellular matrix changes upon pathological transformations. Fibronectin is significantly more relaxed in tumors than in healthy organs. Relaxed fibronectin is found close to myofibroblasts and dense collagen fibers. Viral infection reduces fibronectin fiber tension in lymph nodes. Use of a tension-sensitive adhesin to probe fibronectin fiber tension in tissues
Collapse
Key Words
- CAFs, cancer associated fibroblasts
- CLEC-2, C-type Lectin Receptor
- Cancer
- DCs, dendritic cells
- ECM, extracellular matrix
- Extracellular matrix
- FRCs, fibroblastic reticular cells
- Fibronectin
- IHC, immunohistochemistry
- IL-7, Interleukin 7
- LCMV, lymphocytic choriomeningitis virus
- Lymph node
- MMPs, matrix metalloproteinases
- Mechanobiology
- PDPN, podoplanin
- SHG, second harmonic generation
- TGF-β, Transforming Growth Factor-beta
- Virus infection
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Charlotte M Fonta
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Simon Arnoldini
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Alessandra Moscaroli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
30
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
31
|
Guillon E, Das D, Jülich D, Hassan AR, Geller H, Holley S. Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development. eLife 2020; 9:48964. [PMID: 32228864 PMCID: PMC7108867 DOI: 10.7554/elife.48964] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
An extracellular matrix of Fibronectin adheres the neural tube to the two flanking columns of paraxial mesoderm and is required for normal vertebrate development. Here, we find that the bilaterally symmetric interfaces between the zebrafish neural tube and paraxial mesoderm function as optimally engineered adhesive lap joints with rounded edges, graded Fibronectin ‘adhesive’ and an arced adhesive spew filet. Fibronectin is a ‘smart adhesive’ that remodels to the lateral edges of the neural tube-paraxial mesoderm interfaces where shear stress is highest. Fibronectin remodeling is mechanically responsive to contralateral variation morphogenesis, and Fibronectin-mediated inter-tissue adhesion is required for bilaterally symmetric morphogenesis of the paraxial mesoderm. Strikingly, however, perturbation of the Fibronectin matrix rescues the neural tube convergence defect of cadherin 2 mutants. Therefore, Fibronectin-mediated inter-tissue adhesion dynamically coordinates bilaterally symmetric morphogenesis of the vertebrate trunk but predisposes the neural tube to convergence defects that lead to spina bifida. In embryos, the spinal cord starts out as a flat sheet of cells that curls up to form a closed cylinder called the neural tube. The folding tube is attached to the surrounding tissues through an extracellular matrix of proteins and sugars. Overlapping strands of a protein from the extracellular matrix called Fibronectin connect the neural tube to adjacent tissues, like a kind of biological glue. However, it remained unclear what effect this attachment had on the embryonic development of the spinal cord. Connecting two overlapping objects with glue to form what is known as an ‘adhesive lap joint’ is common in fields such as woodworking and aeronautical engineering. The glue in these joints comes under shearing stress whenever the two objects it connects try to pull apart. But, thanks to work in engineering, it is possible to predict how different joints will perform under tension. Now, Guillon et al. have deployed these engineering principles to shed light on neural tube development. Using zebrafish embryos and computational models, Guillon et al. investigated what happens when the strength of the adhesive lap joints in the developing spine changes. This revealed that Fibronectin works like a smart adhesive: rather than staying in one place like a conventional glue, it moves around. As the neural tube closes, cells remodel the Fibronectin, concentrating it on the areas under the highest stress. This seemed to both help and hinder neural tube development. On the one hand, by anchoring the tube equally to the left and right sides of the embryo, the Fibronectin glue helped the spine to develop symmetrically. On the other hand, the strength of the adhesive lap joints made it harder for the neural tube to curl up and close. If the neural tube fails to close properly, it can lead to birth defects like spina bifida. One of the best-known causes of these birth defects in humans is a lack of a vitamin known as folic acid. Cell culture experiments suggest that this might have something to do with the mechanics of the cells during development. It may be that faulty neural tubes could close more easily if they were able to unglue themselves from the surrounding tissues. Further use of engineering principles could shed more light on this idea in the future.
Collapse
Affiliation(s)
- Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Abdel-Rahman Hassan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Hannah Geller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Scott Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
32
|
Zheng M, Ambesi A, J. McKeown-Longo P. Role of TLR4 Receptor Complex in the Regulation of the Innate Immune Response by Fibronectin. Cells 2020; 9:cells9010216. [PMID: 31952223 PMCID: PMC7017243 DOI: 10.3390/cells9010216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts. In the current study, we evaluated the requirement of the canonical TLR4/MD2/CD14 receptor complex in the regulation of FnIII-1c induced cytokine release. Using dermal fibroblasts and human embryonic kidney (HEK) cells, we found that all the components of the TLR4/MD2/CD14 complex were required for the release of the fibro-inflammatory cytokine, interleukin 8 (IL-8) in response to both FnIII-1c and the canonical TLR4 ligand, lipopolysaccharide (LPS). However, FnIII-1c mediated IL-8 release was strictly dependent on membrane-associated CD14, while LPS could use soluble CD14. These findings demonstrate that LPS and FnIII-1c share a similar but not identical mechanism of TLR4 activation in human dermal fibroblasts.
Collapse
|
33
|
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 2019; 100:223-234. [PMID: 31593773 DOI: 10.1016/j.actbio.2019.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Decellularized tissues offer a unique tool for developing regenerative biomaterials or in vitro platforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, the epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen I, fibronectin, laminin, and dECM in varying combinations as an in vitro coating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E-cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings revealed potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds. STATEMENT OF SIGNIFICANCE: Efforts to produce a transplantable organ-scale biomaterial for lung regeneration has not been entirely successful to date, due to incomplete cell-cell junction formation, ultimately leading to severe edema in vivo. To fully understand the process of alveolar junction formation on ECM-derived biomaterials, this research has characterized and tailored decellularized ECM (dECM) to mitigate reductions in barrier strength or cell attachment caused by abnormal ECM compositions or detergent damage to dECM. These results indicate that laminin-driven Epac signaling plays a vital role in the stabilization of the alveolar barrier. Addition of laminin or Epac agonists during alveolar regeneration can reduce epithelial permeability within bioengineered lungs.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Amanda R Pellegrino
- Department of Biomedical Engineering and Nursing, Duquesne University, 600 Forbes Ave, Pittsburg, Pennsylvania 15282, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall St, Richmond, Virginia 23298, United States.
| |
Collapse
|
34
|
Faralli JA, Filla MS, Peters DM. Role of Fibronectin in Primary Open Angle Glaucoma. Cells 2019; 8:E1518. [PMID: 31779192 PMCID: PMC6953041 DOI: 10.3390/cells8121518] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/08/2023] Open
Abstract
Primary open angle glaucoma (POAG) is the most common form of glaucoma and the 2nd most common cause of irreversible vision loss in the United States. Nearly 67 million people have the disease worldwide including >3 million in the United States. A major risk factor for POAG is an elevation in intraocular pressure (IOP). The increase in IOP is believed to be caused by an increase in the deposition of extracellular matrix proteins, in particular fibronectin, in a region of the eye known as the trabecular meshwork (TM). How fibronectin contributes to the increase in IOP is not well understood. The increased density of fibronectin fibrils is thought to increase IOP by altering the compliance of the trabecular meshwork. Recent studies, however, also suggest that the composition and organization of fibronectin fibrils would affect IOP by changing the cell-matrix signaling events that control the functional properties of the cells in the trabecular meshwork. In this article, we will discuss how changes in the properties of fibronectin and fibronectin fibrils could contribute to the regulation of IOP.
Collapse
Affiliation(s)
- Jennifer A. Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Mark S. Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
| | - Donna M. Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.A.F.); (M.S.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
35
|
A Matricryptic Conformation of the Integrin-Binding Domain of Fibronectin Regulates Platelet-Derived Growth Factor-Induced Intracellular Calcium Release. Cells 2019; 8:cells8111351. [PMID: 31671632 PMCID: PMC6912537 DOI: 10.3390/cells8111351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Platelet-derived growth factor (PDGF) signaling is dysregulated in a wide variety of diseases, making PDGF an attractive therapeutic target. However, PDGF also affects numerous signaling cascades essential for tissue homeostasis, limiting the development of PDGF-based therapies that lack adverse side-effects. Recent studies showed that fibroblast-mediated assembly of extracellular matrix (ECM) fibronectin fibrils attenuates PDGF-induced intracellular calcium release by selectively inhibiting phosphoinositol 3-kinase (PI3K) activation while leaving other PDGF-mediated signaling cascades intact. In the present study, a series of recombinant fibronectin-derived fusion proteins were used to localize the sequences in fibronectin that are responsible for this inhibition. Results demonstrate that attenuation of PDGF-induced intracellular calcium release by the fibronectin matrix mimetic, FNIII1H,8-10 requires α5β1 integrin ligation, but is not dependent upon the matricryptic, heparin-binding site of FNIII1. Intact cell-binding fibronectin fragments were also unable to attenuate PDGF-induced intracellular calcium release. In contrast, a novel integrin-binding fragment that adopts an extended and aligned conformational state, inhibited both PI3K activation and intracellular calcium release in response to PDGF. Taken together, these studies provide evidence that attenuation of PDGF-induced intracellular calcium release by fibronectin is mediated by a novel conformation of the α5β1 integrin-binding, FNIII9-10 modules, that is expressed by fibrillar fibronectin.
Collapse
|
36
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
37
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
38
|
Stefanelli VL, Choudhury S, Hu P, Liu Y, Schwenzer A, Yeh CR, Chambers DM, von Beck K, Li W, Segura T, Midwood KS, Torres M, Barker TH. Citrullination of fibronectin alters integrin clustering and focal adhesion stability promoting stromal cell invasion. Matrix Biol 2019; 82:86-104. [PMID: 31004743 PMCID: PMC7168757 DOI: 10.1016/j.matbio.2019.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) microenvironment is increasingly implicated in the instruction of pathologically relevant cell behaviors, from aberrant transdifferentation to invasion and beyond. Indeed, pathologic ECMs possess a panoply of alterations that provide deleterious instructions to resident cells. Here we demonstrate the precise manner in which the ECM protein fibronectin (FN) undergoes the posttranslational modification citrullination in response to peptidyl-arginine deiminase (PAD), an enzyme associated with innate immune cell activity and implicated in systemic ECM-centric diseases, like cancer, fibrosis and rheumatoid arthritis. FN can be citrullinated in at least 24 locations, 5 of which reside in FN's primary cell-binding domain. Citrullination of FN alters integrin clustering and focal adhesion stability with a concomitant enhancement in force-triggered integrin signaling along the FAK-Src and ILK-Parvin pathways within fibroblasts. In vitro migration and in vivo wound healing studies demonstrate the ability of citrullinated FN to support a more migratory/invasive phenotype that enables more rapid wound closure. These findings highlight the potential of ECM, particularly FN, to "record" inflammatory insults via post-translational modification by inflammation-associated enzymes that are subsequently "read" by resident tissue fibroblasts, establishing a direct link between inflammation and tissue homeostasis and pathogenesis through the matrix.
Collapse
Affiliation(s)
- Victoria L Stefanelli
- Georgia Institute of Technology, Atlanta, GA, USA; Emory University, Atlanta, GA, USA
| | | | - Ping Hu
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Dwight M Chambers
- Georgia Institute of Technology, Atlanta, GA, USA; Emory University, Atlanta, GA, USA
| | | | - Wei Li
- Georgia Institute of Technology, Atlanta, GA, USA; University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
39
|
Elowsson Rendin L, Löfdahl A, Åhrman E, Müller C, Notermans T, Michaliková B, Rosmark O, Zhou XH, Dellgren G, Silverborn M, Bjermer L, Malmström A, Larsson-Callerfelt AK, Isaksson H, Malmström J, Westergren-Thorsson G. Matrisome Properties of Scaffolds Direct Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2019; 20:ijms20164013. [PMID: 31426504 PMCID: PMC6719040 DOI: 10.3390/ijms20164013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.
Collapse
Affiliation(s)
- Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden.
| | - Anna Löfdahl
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Emma Åhrman
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Catharina Müller
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Thomas Notermans
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Barbora Michaliková
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Mölndal 431 53, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Martin Silverborn
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 85, Sweden
| | - Anders Malmström
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | | | - Hanna Isaksson
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Johan Malmström
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | | |
Collapse
|
40
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
41
|
Abstract
Cells need to be anchored to extracellular matrix (ECM) to survive, yet the role of ECM in guiding developmental processes, tissue homeostasis, and aging has long been underestimated. How ECM orchestrates the deterioration of healthy to pathological tissues, including fibrosis and cancer, also remains poorly understood. Inquiring how alterations in ECM fiber tension might drive these processes is timely, as mechanobiology is a rapidly growing field, and many novel mechanisms behind the mechanical forces that can regulate protein, cell, and tissue functions have recently been deciphered. The goal of this article is to review how forces can switch protein functions, and thus cell signaling, and thereby inspire new approaches to exploit the mechanobiology of ECM in regenerative medicine as well as for diagnostic and therapeutic applications. Some of the mechanochemical switching concepts described here for ECM proteins are more general and apply to intracellular proteins as well.
Collapse
Affiliation(s)
- Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department for Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
42
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y, Xu B, Yu Y, Liang Z, Yang Y. LncRNA: Shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res Rev 2019; 52:17-31. [PMID: 30954650 DOI: 10.1016/j.arr.2019.04.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is universally observed in multiple aging-related diseases and progressions and is characterized by excess accumulation of the extracellular matrix. Fibrosis occurs in various human organs and eventually results in organ failure. Noncoding RNAs (ncRNAs) have emerged as essential regulators of cellular signaling and relevant human diseases. In particular, the enigmatic class of long noncoding RNAs (lncRNAs) is a kind of noncoding RNA that is longer than 200 nucleotides and does not possess protein coding ability. LncRNAs have been identified to exert both promotive and inhibitory effects on the multifaceted processes of fibrosis. A growing body of studies has revealed that lncRNAs are involved in fibrosis in various organs, including the liver, heart, lung, and kidney. As lncRNAs have been increasingly identified, they have become promising targets for anti-fibrosis therapies. This review systematically highlights the recent advances regarding the roles of lncRNAs in fibrosis and sheds light on the use of lncRNAs as a potential treatment for fibrosis.
Collapse
|
43
|
Hoffmann GA, Wong JY, Smith ML. On Force and Form: Mechano-Biochemical Regulation of Extracellular Matrix. Biochemistry 2019; 58:4710-4720. [PMID: 31144496 DOI: 10.1021/acs.biochem.9b00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extracellular matrix is well-known for its structural role in supporting cells and tissues, and its important biochemical role in providing signals to cells has increasingly become apparent. These structural and biochemical roles are closely coupled through mechanical forces: the biochemistry of the extracellular matrix determines its mechanical properties, mechanical forces control release or display of biochemical signals from the extracellular matrix, and the mechanical properties of the matrix in turn influence the mechanical set point at which signals are sent. In this Perspective, we explain how the extracellular matrix is regulated by strain and mechanical forces. We show the impact of biochemistry and mechanical forces on in vivo assembly of extracellular matrix and illustrate how matrix can be generated in vitro using a variety of methods. We cover how the matrix can be characterized in terms of mechanics, composition, and conformation to determine its properties and to predict interactions. Finally, we explore how extracellular matrix remodeling, ligand binding, and hemostasis are regulated by mechanical forces. These recently discovered mechano-biochemical interactions have important functions in wound healing and disease progression. It is likely that mechanically altered extracellular matrix interactions are a commonly recurring theme, but due to limited tools to generate extracellular matrix fibers in vitro and lack of high-throughput methods to detect these interactions, it is hypothesized that many of these interactions have yet to be discovered.
Collapse
Affiliation(s)
- Gwendolyn A Hoffmann
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| | - Joyce Y Wong
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| | - Michael L Smith
- Department of Biomedical Engineering , Boston University , 44 Cummington Mall , Boston , Massachusetts 02215 , United States
| |
Collapse
|
44
|
Bradshaw MJ, Hoffmann GA, Wong JY, Smith ML. Fibronectin fiber creep under constant force loading. Acta Biomater 2019; 88:78-85. [PMID: 30780000 DOI: 10.1016/j.actbio.2019.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Viscoelasticity is a fundamental property of virtually all biological materials, and proteinaceous, fibrous materials that constitute the extracellular matrix (ECM) are no exception. Viscoelasticity may be particularly important in the ECM since cells can apply mechanical stress resulting from cell contractility over very long periods of time. However, measurements of ECM fiber response to long-term constant force loading are scarce, despite the increasing recognition that mechanical strain regulates the biological function of some ECM fibers. We developed a dual micropipette system that applies constant force to single fibers for up to 8 h. We utilized this system to study the time dependent response of fibronectin (Fn) fibers to constant force, as Fn fibers exhibit tremendous extensibility before mechanical failure as well as strain dependent alterations in biological properties. These data demonstrate the Fn fibers continue to stretch under constant force loading for at least 8 h and that this long-term creep results in plastic deformation of Fn fibers, in contrast to elastic deformation of Fn fibers under short-term, but fast loading rate extension. These data demonstrate that physiologically-relevant loading may impart mechanical features to Fn fibers by switching them into an extended state that may have altered biological functions. STATEMENT OF SIGNIFICANCE: Measurements of extracellular matrix (ECM) fiber response to constant force loading are scarce, so we developed a novel technique for applying constant force to single ECM fibers. We used this technique to measure constant force creep of fibronectin fibers since these fibers have been shown to be mechanotransducers whose functions can be altered by mechanical strain. We found that fibronectin fibers creep under constant force loading for the duration of the experiment and that this creep behavior resembles a power law. Furthermore, we found that constant force creep results in plastic deformation of the fibers, which suggests that the mechanobiological switching of fibronectin can only occur once after long-term loading.
Collapse
Affiliation(s)
- Mark J Bradshaw
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, United States
| | - Gwendolyn A Hoffmann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Michael L Smith
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
45
|
Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of integrin ανβ3 to integrin α5β1-induced clusters enables focal adhesion maturation and cell spreading. J Cell Sci 2019; 133:jcs.232702. [DOI: 10.1242/jcs.232702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The major fibronectin (FN) binding integrins α5β1 and αvβ3 exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically-tunable, nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on integrin α5β1-selective substrates, rapidly recruit αvβ3 integrins, but not vice versa. Blocking of integrin αvβ3 hindered FA maturation and cell spreading on α5β1-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvβ3 engagement for efficient adhesion. Recruitment of αvβ3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness supporting FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the responsible ligand for integrin αvβ3 accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin co-operation and the critical role for αvβ3 integrins in promoting cell adhesion on α5β1-selective substrates.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
46
|
Tang B, Zhang B, Zhuang J, Wang Q, Dong L, Cheng K, Weng W. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomater 2018; 74:291-301. [PMID: 29729416 DOI: 10.1016/j.actbio.2018.04.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. STATEMENT OF SIGNIFICANCE The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding state of integrin α5β1 with fibronectin induces effective activation of integrin-mediated FAK/ERK signaling pathway to upregulate cellular osteogenic differentiation. This work provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Bolin Tang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Bo Zhang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Junjun Zhuang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Qi Wang
- Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lingqing Dong
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China; The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
47
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
48
|
Li S, Nih LR, Bachman H, Fei P, Li Y, Nam E, Dimatteo R, Carmichael ST, Barker TH, Segura T. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. NATURE MATERIALS 2017; 16:953-961. [PMID: 28783156 PMCID: PMC5809173 DOI: 10.1038/nmat4954] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 06/30/2017] [Indexed: 05/05/2023]
Abstract
Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.
Collapse
Affiliation(s)
- Shuoran Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Lina R. Nih
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Haylee Bachman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yilei Li
- Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA
- NovuMind Inc., Santa Clara, CA, 95054, USA
| | - Eunwoo Nam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - S. Thomas Carmichael
- Department of Medicine, Neurology, University of California, Los Angeles, CA 90095, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, Dermatology, University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Corresponding author: Prof. Tatiana Segura Tel.: +1-310-206-3980,
| |
Collapse
|