1
|
Faccini de Lima C, Hewagama ND, Uchida M, Douglas T, Jadhao V. Multilayered ordered arrays self-assembled from a mixed population of nanoparticles. SOFT MATTER 2025; 21:3720-3740. [PMID: 40260997 DOI: 10.1039/d4sm01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
An experimentally-informed coarse-grained model is presented to probe the self-assembly of multiple types of charged nanoparticles in a one-pot mixture in the presence of oppositely charged linkers across a broad range of nanoparticle charge and ionic strength of the solution. The model is applied to study the self-assembly of negatively-charged bacteriophage P22 virus-like particles (VLPs) of different types, with each type comprising VLPs of a distinct surface charge, in the presence of positively-charged polyamidoamine (PAMAM) generation-6 (G6) dendrimers. The model accurately captures the self-assembly of one-component systems, including the assembly states of the highest-charged P22 variant that were inaccessible with earlier models, revealing that P22 VLPs assemble into ordered arrays below a threshold ionic strength that increases with increasing variant charge, consistent with experiments. Molecular dynamics simulations of two, three, and four-component mixtures of P22 VLPs show that changing the ionic strength gradually over the range of well separated threshold ionic strengths via dialysis generates hierarchical assembly of ordered multilayered core-shell structures, with each layer comprising VLPs of a single variant type. A quick decrease in the ionic strength via rapid dilution leads to amorphous aggregates with a mixed composition of different variants. The mechanisms driving the VLPs into different macrostructures are explored by examining the bound and bridging dendrimers associated with the different types of VLPs. Simulation findings are consistent with experiments and establish salt dialysis as a simple and versatile strategy to engineer multilayered and ordered structures via a single-pot synthesis of multiple types of nanoscale building blocks.
Collapse
Affiliation(s)
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, California 93740, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, USA.
| |
Collapse
|
2
|
Sun X, Lian Y, Tian T, Cui Z. Advancements in Functional Nanomaterials Inspired by Viral Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402980. [PMID: 39058214 DOI: 10.1002/smll.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Virus-like particles (VLPs) are nanostructures composed of one or more structural proteins, exhibiting stable and symmetrical structures. Their precise compositions and dimensions provide versatile opportunities for modifications, enhancing their functionality. Consequently, VLP-based nanomaterials have gained widespread adoption across diverse domains. This review focuses on three key aspects: the mechanisms of viral capsid protein self-assembly into VLPs, design methods for constructing multifunctional VLPs, and strategies for synthesizing multidimensional nanomaterials using VLPs. It provides a comprehensive overview of the advancements in virus-inspired functional nanomaterials, encompassing VLP assembly, functionalization, and the synthesis of multidimensional nanomaterials. Additionally, this review explores future directions, opportunities, and challenges in the field of VLP-based nanomaterials, aiming to shed light on potential advancements and prospects in this exciting area of research.
Collapse
Affiliation(s)
- Xianxun Sun
- College of Life Science, Jiang Han University, Wuhan, 430056, China
| | - Yindong Lian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Tian
- College of Life Science, Jiang Han University, Wuhan, 430056, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
3
|
Lee SKA, Tsai ST, Glotzer SC. Classification of complex local environments in systems of particle shapes through shape symmetry-encoded data augmentation. J Chem Phys 2024; 160:154102. [PMID: 38624110 DOI: 10.1063/5.0194820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucleation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue for better order parameters in complex systems that are challenging to study using traditional approaches. However, the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmentation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the performance of our classifiers on four different scenarios involving self-assembly of cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes with different degrees of truncation. The proposed training process and data augmentation technique are both straightforward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential applications in structure identification of any particle-based or molecular system where orientations can be defined.
Collapse
Affiliation(s)
- Shih-Kuang Alex Lee
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sun-Ting Tsai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon C Glotzer
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
4
|
Zhang C, Chen X, Liu B, Zang J, Zhang T, Zhao G. Preparation and Unique Three-Dimensional Self-Assembly Property of Starfish Ferritin. Foods 2023; 12:3903. [PMID: 37959022 PMCID: PMC10647799 DOI: 10.3390/foods12213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The structure and assembly properties of ferritin derived from aquatic products remain to be explored. Constructing diverse three-dimensional (3D) protein architectures with the same building blocks has important implications for nutrient delivery, medicine and materials science. Herein, ferritin from Asterias forbesii (AfFer) was prepared, and its crystal structure was resolved at 1.91 Å for the first time. Notably, different from the crystal structure of other reported ferritin, AfFer exhibited a BCT lattice arrangement in its crystals. Bioinspired by the crystal structure of AfFer, we described an effective approach for manufacturing 3D porous, crystalline nanoarchitectures by redesigning the shared protein interface involved in different 3D protein arrays. Based on this strategy, two 3D superlattices of body-centered tetragonal and simple cubicwere constructed with ferritin molecules as the building blocks. This study provided a potentially generalizable strategy for constructing different 3D protein-based crystalline biomaterials with the same building blocks.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (C.Z.); (X.C.); (B.L.); (J.Z.); (T.Z.)
| |
Collapse
|
5
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Wang Y, Douglas T. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43621-43632. [PMID: 37695852 DOI: 10.1021/acsami.3c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Hewagama ND, Uchida M, Wang Y, Kraj P, Lee B, Douglas T. Higher-Order VLP-Based Protein Macromolecular Framework Structures Assembled via Coiled-Coil Interactions. Biomacromolecules 2023; 24:3716-3728. [PMID: 37467146 DOI: 10.1021/acs.biomac.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Hierarchical organization is one of the fundamental features observed in biological systems that allows for efficient and effective functioning. Virus-like particles (VLPs) are elegant examples of a hierarchically organized supramolecular structure, where many subunits are self-assembled to generate the functional cage-like architecture. Utilizing VLPs as building blocks to construct two- and three-dimensional (3D) higher-order structures is an emerging research area in developing functional biomimetic materials. VLPs derived from P22 bacteriophages can be repurposed as nanoreactors by encapsulating enzymes and modular units to build higher-order catalytic materials via several techniques. In this study, we have used coiled-coil peptide interactions to mediate the P22 interparticle assembly into a highly stable, amorphous protein macromolecular framework (PMF) material, where the assembly does not depend on the VLP morphology, a limitation observed in previously reported P22 PMF assemblies. Many encapsulated enzymes lose their optimum functionalities under the harsh conditions that are required for the P22 VLP morphology transitions. Therefore, the coiled-coil-based PMF provides a fitting and versatile platform for constructing functional higher-order catalytic materials compatible with sensitive enzymes. We have characterized the material properties of the PMF and utilized the disordered PMF to construct a biocatalytic 3D material performing single- and multistep catalysis.
Collapse
Affiliation(s)
- Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, California 93740, United States
| | - Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Pawel Kraj
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
9
|
Essus VA, Souza Júnior GSE, Nunes GHP, Oliveira JDS, de Faria BM, Romão LF, Cortines JR. Bacteriophage P22 Capsid as a Pluripotent Nanotechnology Tool. Viruses 2023; 15:516. [PMID: 36851730 PMCID: PMC9962691 DOI: 10.3390/v15020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The Salmonella enterica bacteriophage P22 is one of the most promising models for the development of virus-like particle (VLP) nanocages. It possesses an icosahedral T = 7 capsid, assembled by the combination of two structural proteins: the coat protein (gp5) and the scaffold protein (gp8). The P22 capsid has the remarkable capability of undergoing structural transition into three morphologies with differing diameters and wall-pore sizes. These varied morphologies can be explored for the design of nanoplatforms, such as for the development of cargo internalization strategies. The capsid proteic nature allows for the extensive modification of its structure, enabling the addition of non-native structures to alter the VLP properties or confer them to diverse ends. Various molecules were added to the P22 VLP through genetic, chemical, and other means to both the capsid and the scaffold protein, permitting the encapsulation or the presentation of cargo. This allows the particle to be exploited for numerous purposes-for example, as a nanocarrier, nanoreactor, and vaccine model, among other applications. Therefore, the present review intends to give an overview of the literature on this amazing particle.
Collapse
Affiliation(s)
- Victor Alejandro Essus
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Getúlio Silva e Souza Júnior
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Gabriel Henrique Pereira Nunes
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Juliana dos Santos Oliveira
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| | - Bruna Mafra de Faria
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bl. F026, Rio de Janeiro 21941-590, Brazil
| | - Juliana Reis Cortines
- Laboratório de Virologia e Espectrometria de Massas (LAVEM), Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21590-902, Brazil
| |
Collapse
|
10
|
Uchida M, Selivanovitch E, McCoy K, Douglas T. Fabrication of Protein Macromolecular Frameworks (PMFs) and Their Application in Catalytic Materials. Methods Mol Biol 2023; 2671:111-120. [PMID: 37308641 PMCID: PMC11034859 DOI: 10.1007/978-1-0716-3222-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The construction of three-dimensional (3D) array materials from nanoscale building blocks has drawn significant interest because of their potential to exhibit collective properties and functions arising from the interactions between individual building blocks. Protein cages such as virus-like particles (VLPs) have distinct advantages as building blocks for higher-order assemblies because they are extremely homogeneous in size and can be engineered with new functionalities by chemical and/or genetic modification. In this chapter, we describe a protocol for constructing a new class of protein-based superlattices, called protein macromolecular frameworks (PMFs). We also describe an exemplary method to evaluate the catalytic activity of enzyme-enclosed PMFs, which exhibit enhanced catalytic activity due to the preferential partitioning of charged substrates into the PMF.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA, USA.
| | | | - Kimberly McCoy
- Department of Chemistry and Biochemistry, California State University, Fresno, Fresno, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Zhang X, Zeng R, Zhang T, Lv C, Zang J, Zhao G. Spatiotemporal control over 3D protein nanocage superlattices for the hierarchical encapsulation and release of different cargo molecules. J Mater Chem B 2022; 10:9968-9973. [PMID: 36472186 DOI: 10.1039/d2tb01961b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Taking inspiration from Nature, we have constructed a two-compartment system based on 3D ferritin nanocage superlattices, the self-assembly behavior of which can be spatiotemporally controlled using two designed switches. One pH switch regulates the assembly of the ferritin subunit into its shell-like structure, whereas the other metal switch is responsible for assembly of the 3D superlattices from ferritin nanocages as building blocks. Consequently, this system holds great promise for the hierarchical encapsulation and release of two different cargo molecules.
Collapse
Affiliation(s)
- Xiaorong Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Ruiqi Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
12
|
Esquirol L, McNeale D, Douglas T, Vickers CE, Sainsbury F. Rapid Assembly and Prototyping of Biocatalytic Virus-like Particle Nanoreactors. ACS Synth Biol 2022; 11:2709-2718. [PMID: 35880829 DOI: 10.1021/acssynbio.2c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein cages are attractive as molecular scaffolds for the fundamental study of enzymes and metabolons and for the creation of biocatalytic nanoreactors for in vitro and in vivo use. Virus-like particles (VLPs) such as those derived from the P22 bacteriophage capsid protein make versatile self-assembling protein cages and can be used to encapsulate a broad range of protein cargos. In vivo encapsulation of enzymes within VLPs requires fusion to the coat protein or a scaffold protein. However, the expression level, stability, and activity of cargo proteins can vary upon fusion. Moreover, it has been shown that molecular crowding of enzymes inside VLPs can affect their catalytic properties. Consequently, testing of numerous parameters is required for production of the most efficient nanoreactor for a given cargo enzyme. Here, we present a set of acceptor vectors that provide a quick and efficient way to build, test, and optimize cargo loading inside P22 VLPs. We prototyped the system using a yellow fluorescent protein and then applied it to mevalonate kinases (MKs), a key enzyme class in the industrially important terpene (isoprenoid) synthesis pathway. Different MKs required considerably different approaches to deliver maximal encapsulation as well as optimal kinetic parameters, demonstrating the value of being able to rapidly access a variety of encapsulation strategies. The vector system described here provides an approach to optimize cargo enzyme behavior in bespoke P22 nanoreactors. This will facilitate industrial applications as well as basic research on nanoreactor-cargo behavior.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia E Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane 4000 Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.,Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland 4102, Australia
| |
Collapse
|
13
|
Uchida M, Brunk NE, Hewagama ND, Lee B, Prevelige PE, Jadhao V, Douglas T. Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles. ACS NANO 2022; 16:7662-7673. [PMID: 35549153 DOI: 10.1021/acsnano.1c11272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biology shows many examples of spatially controlled assembly of cells and biomacromolecules into hierarchically organized structures, to which many of the complex biological functions are attributed. While such biological structures have inspired the design of synthetic materials, it is still a great challenge to control the spatial arrangement of individual building blocks when assembling multiple types of components into bulk materials. Here, we report self-assembly of multilayered, ordered protein arrays from mixed populations of virus-like particles (VLPs). We systematically tuned the magnitude of the surface charge of the VLPs via mutagenesis to prepare four different types of VLPs for mixing. A mixture of up to four types of VLPs selectively assembled into higher-order structures in the presence of oppositely charged dendrimers during a gradual lowering of the ionic strength of the solution. The assembly resulted in the formation of three-dimensional ordered VLP arrays with up to four distinct layers including a central core, with each layer comprising a single type of VLP. A coarse-grained computational model was developed and simulated using molecular dynamics to probe the formation of the multilayered, core-shell structure. Our findings establish a simple and versatile bottom-up strategy to synthesize multilayered, ordered materials by controlling the spatial arrangement of multiple types of nanoscale building blocks in a one-pot fabrication.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Avenue, Fresno, California 93740, United States
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicholas E Brunk
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
- Wolfram Research, 100 Trade Center Drive, Champaign, Illinois 61820, United States
- VeriSIM Life Inc., 1 Sansome Street, Suite 3500, San Francisco, California 94104, United States
| | - Nathasha D Hewagama
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, 700 N. Woodlawn Avenue, Bloomington, Indiana 47408, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
14
|
Wang Y, Douglas T. Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Materials. Acc Chem Res 2022; 55:1349-1359. [PMID: 35507643 DOI: 10.1021/acs.accounts.2c00056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ConspectusWhen viewed through the lens of materials science, nature provides a vast library of hierarchically organized structures that serve as inspiration and raw materials for new synthetic materials. The structural organization of complex bioarchitectures with advanced functions arises from the association of building blocks and is strongly supported by ubiquitous mechanisms of self-assembly, where interactions among components result in spontaneous assembly into defined structures. Viruses are exemplary, where a capsid structure, often formed from the self-assembly of many individual protein subunits, serves as a vehicle for the transport and protection of the viral genome. Higher-order assemblies of viral particles are also found in nature with unexpected collective behaviors. When the infectious aspect of viruses is removed, the self-assembly of viral particles and their potential for hierarchical assembly become an inspiration for the design and construction of a new class of functional materials at a range of different length scales.Salmonella typhimurium bacteriophage P22 is a well-studied model for understanding viral self-assembly and the construction of virus-like particle (VLP)-based materials. The formation of cage-like P22 VLP structures results from scaffold protein (SP)-directed self-assembly of coat protein (CP) subunits into icosahedral capsids with encapsulation of SP inside the capsid. Employing the CP-SP interaction during self-assembly, the encapsulation of guest protein cargos inside P22 VLPs can be achieved with control over the composition and the number of guest cargos. The morphology of cargo-loaded VLPs can be altered, along with changes in both the physical properties of the capsid and the cargo-capsid interactions, by mimicking aspects of the infectious P22 viral maturation. The structure of the capsid differentiates the inside cavity from the outside environment and serves as a protecting layer for the encapsulated cargos. Pores in the capsid shell regulate molecular exchange between inside and outside, where small molecules can traverse the capsid freely while the diffusion of larger molecules is limited by the pores. The interior cavity of the P22 capsid can be packed with hundreds of copies of cargo proteins (especially enzymes), enforcing intermolecular proximity, making this an ideal model system in which to study enzymatic catalysis in crowded and confined environments. These aspects highlight the development of functional nanomaterials from individual P22 VLPs, through biomimetic design and self-assembly, resulting in fabrication of nanoreactors with controlled catalytic behaviors.Individual P22 VLPs have been used as building blocks for the self-assembly of higher-order structures. This relies on a balance between the intrinsic interparticle repulsion and a tunable interparticle attraction. The ordering of VLPs within three-dimensional assemblies is dependent on the balance between repulsive and attractive interactions: too strong an attraction results in kinetically trapped disordered structures, while decreasing the attraction can lead to more ordered arrays. These higher-order assemblies display collective behavior of high charge density beyond those of the individual VLPs.The development of synthetic nanomaterials based on P22 VLPs demonstrates how the potential for hierarchical self-assembly can be applied to other self-assembling capsid structures across multiple length scales toward future bioinspired functional materials.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
17
|
Uchida M, Manzo E, Echeveria D, Jiménez S, Lovell L. Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Curr Opin Virol 2022; 52:250-257. [PMID: 34974380 PMCID: PMC8939255 DOI: 10.1016/j.coviro.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Viruses have drawn significant scientific interest from a wide variety of disciplines beyond virology because of their elegant architectures and delicately balanced activities. A virus-like particle (VLP), a noninfectious protein cage derived from viruses or other cage-forming proteins, has been exploited as a nano-scale platform for bioinspired engineering and synthetic manipulation with a range of applications. Encapsulation of functional proteins, especially enzymes, is an emerging use of VLPs that is promising not only for developing efficient and robust catalytic materials, but also for providing fundamental insights into the effects of enzyme compartmentalization commonly observed in cells. This review highlights recent advances in employing VLPs as a container for confining enzymes. To accomplish larger and more controlled enzyme loading, various different enzyme encapsulation strategies have been developed; many of these strategies are inspired from assembly and genome loading mechanisms of viral capsids. Characterization of VLPs' physicochemical properties, such as porosity, could lead to rational manipulation and a better understanding of the catalytic behavior of the materials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA.
| | - Elia Manzo
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Dustin Echeveria
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Sophie Jiménez
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Logan Lovell
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| |
Collapse
|
18
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
19
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
20
|
Zeng R, Lv C, Wang C, Zhao G. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnol Adv 2021; 52:107835. [PMID: 34520791 DOI: 10.1016/j.biotechadv.2021.107835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Elegant protein assembly to generate new biomaterials undergoes extremely rapid development for wide extension of biotechnology applications, which can be a powerful tool not only for creating nanomaterials but also for advancing understanding of the structure of life. Unique biological properties of proteins bestow these artificial biomaterials diverse functions that can permit them to be applied in encapsulation, bioimaging, biocatalysis, biosensors, photosynthetic apparatus, electron transport, magnetogenetic applications, vaccine development and antibodies design. This review gives a perspective view of the latest advances in the construction of protein-based nanomaterials. We initially start with distinguishable, specific interactions to construct sundry nanomaterials through protein self-assembly and concisely expound the assembly mechanism from the design strategy. And then, the design and construction of 0D, 1D, 2D, 3D protein assembled nanomaterials are especially highlighted. Furthermore, the potential applications have been discussed in detail. Overall, this review will illustrate how to fabricate highly sophisticated nanomaterials oriented toward applications in biotechnology based on the rules of supramolecular chemistry.
Collapse
Affiliation(s)
- Ruiqi Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China.
| |
Collapse
|
21
|
Selivanovitch E, Uchida M, Lee B, Douglas T. Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover. ACS NANO 2021; 15:15687-15699. [PMID: 34473481 PMCID: PMC9136710 DOI: 10.1021/acsnano.1c05004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spatial partitioning of chemical processes is an important attribute of many biological systems, the effect of which is reflected in the high efficiency of enzymes found within otherwise chaotic cellular environments. Barriers, often provided through the formation of compartments or phase segregation, gate the access of macromolecules and small molecules within the cell and provide an added level of metabolic control. Taking inspiration from nature, we have designed virus-like particles (VLPs) as nanoreactor compartments that sequester enzyme catalysts and have used these as building blocks to construct 3D protein macromolecular framework (PMF) materials, which are structurally characterized using small-angle X-ray scattering (SAXS). The highly charged PMFs form a separate phase in suspension, and by tuning the ionic strength, we show positively charged molecules preferentially partition into the PMF, while negatively charged molecules are excluded. This molecular partitioning was exploited to tune the catalytic activity of enzymes enclosed within the individual particles in the PMF, the results of which showed that positively charged substrates had turnover rates that were 8500× faster than their negatively charged counterparts. Moreover, the catalytic PMF led to cooperative behavior resulting in charge dependent trends opposite to those observed with individual P22 nanoreactor particles.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry and Biochemistry, California State University Fresno, Fresno, California 93740, Unites States
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Selivanovitch E, LaFrance B, Douglas T. Molecular exclusion limits for diffusion across a porous capsid. Nat Commun 2021; 12:2903. [PMID: 34006828 PMCID: PMC8131759 DOI: 10.1038/s41467-021-23200-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular communication across physical barriers requires pores to connect the environments on either side and discriminate between the diffusants. Here we use porous virus-like particles (VLPs) derived from bacteriophage P22 to investigate the range of molecule sizes able to gain access to its interior. Although there are cryo-EM models of the VLP, they may not accurately depict the parameters of the molecules able to pass across the pores due to the dynamic nature of the P22 particles in the solution. After encapsulating the enzyme AdhD within the P22 VLPs, we use a redox reaction involving PAMAM dendrimer modified NADH/NAD+ to examine the size and charge limitations of molecules entering P22. Utilizing the three different accessible morphologies of the P22 particles, we determine the effective pore sizes of each and demonstrate that negatively charged substrates diffuse across more readily when compared to those that are neutral, despite the negatively charge exterior of the particles.
Collapse
Affiliation(s)
| | - Benjamin LaFrance
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
23
|
Zhang JT, Ma J, Kankala RK, Yu Q, Wang SB, Chen AZ. Recent Advances in Fabrication of Well-Organized Protein-Based Nanostructures. ACS APPLIED BIO MATERIALS 2021; 4:4039-4048. [DOI: 10.1021/acsabm.1c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-Ting Zhang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Jingyao Ma
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Qianqian Yu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, People’s Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, People’s Republic of China
| |
Collapse
|
24
|
Li B, Cui Y, Wang X, Tang R. Novel nanomaterial-organism hybrids with biomedical potential. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1706. [PMID: 33644977 DOI: 10.1002/wnan.1706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Instinctive hierarchically biomineralized structures of various organisms, such as eggs, algae, and magnetotactic bacteria, afford extra protection and distinct performance, which endow fragile organisms with a tenacious ability to adapt and survive. However, spontaneous formation of hybrid materials is difficult for most organisms in nature. Rapid development of chemistry and materials science successfully obtained the combinations of organisms with nanomaterials by biomimetic mineralization thus demonstrating the reproduction of the structures and functions and generation of novel functions that organisms do not possess. The rational design of biomaterial-organism hybridization can control biological recognition, interactions, and metabolism of the organisms. Thus, nanomaterial-organism hybrids represent a next generation of organism engineering with great potential biomedical applications. This review summarizes recent advances in material-directed organism engineering and is mainly focused on biomimetic mineralization technologies and their outstanding biomedical applications. Three representative types of biomimetic mineralization are systematically introduced, including external mineralization, internal mineralization, and genetic engineering mineralization. The methods involving hybridization of nanomaterials and organisms based on biomimetic mineralization strategies are described. These strategies resulted in applications of various nanomaterial-organism hybrids with multiplex functions in cell engineering, cancer treatment, and vaccine improvement. Unlike classical biological approaches, this material-based bioregulation is universal, effective, and inexpensive. In particular, instead of traditional medical solutions, the integration of nanomaterials and organisms may exploit novel strategies to solve current biomedical problems. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Benke Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China.,Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Construction of thermally robust and porous shrimp ferritin crystalline for molecular encapsulation through intermolecular arginine-arginine attractions. Food Chem 2021; 349:129089. [PMID: 33548881 DOI: 10.1016/j.foodchem.2021.129089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 01/10/2021] [Indexed: 12/31/2022]
Abstract
Protein colloid crystals are considered as high porous soft materials, presenting great potentials in nutrients and drug encapsulation, but protein crystal fabrication usually needs precipitant and high protein concentration. Herein, an easy implemented approach was reported for the construction of protein colloid crystals in diluted solution with shimp ferritin as building blocks by taking advantage of the strength of multiple intermolecular arginine-arginine interactions. The X-ray single-crystal structure reveals that a group of exquisite arginine-arginine interactions between two neighboring ferritin enable them self-assembly into long-range ordered protein soft materials. The arginine-arginine interactions mediate crystal generation favored at pH 9.5 with 200 mM NaCl, and the resulting colloid crystals exhibit high thermal stability (90 °C for 30 min). Importantly, the interglobular cavity in colloid crystals is three times larger in volume than that of intrinsic ferritin cavity in each unit cell, which can be used for molecular encapsulation.
Collapse
|
26
|
Song C, Shen M, Rodrigues J, Mignani S, Majoral JP, Shi X. Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coord Chem Rev 2020; 421:213463. [DOI: 10.1016/j.ccr.2020.213463] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Chen H, Liu Y, Zhang T, Zhao G. Construction of three-dimensional interleaved protein hetero-superlattices in solution by cooperative electrostatic and aromatic stacking interactions. J Colloid Interface Sci 2020; 582:1-11. [PMID: 32814217 DOI: 10.1016/j.jcis.2020.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Hierarchical assembly of naturally occurring assemblies is accurate and responsible for performing various cellular functions. However, Nature's wisdom in navigating the assembly process to desired protein assemblies by the cooperation of multiple noncovalent interactions has been underexploited for protein superstructures constructions. Owing to the chemical diversity of noncovalent interactions, it should be possible to fabricate protein assemblies with novel properties in high efficiency through the cooperation of different noncovalent interaction. EXPERIMENTS Both charged residues and aromatic residues are introduced on the exterior surface of ferritin centered at their symmetry axes, mixing of complementary variants forms ordered assemblies through the cooperation of two kinds of chemical-diverse noncovalent interactions. The assemblies were further characterized in terms of their assembly behavior, structure, size, assembly kinetics, properties and stabilities. FINDINGS We utilized both electrostatic and π-π stacking interactions between complementary nanocages to cooperatively trigger the self-assembly into predesigned interleaved hetero-superlattices which exhibit high electrolyte stability and thermal stability. The size of the hetero-superlattices can be well controlled with ranges from nanometers to micrometers in solution in response to external stimuli such as pH and salt concentration. The hetero-superlattice may have the potential applications in hybrid bio-templating, light-harvesting and compartmentalized encapsulation.
Collapse
Affiliation(s)
- Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
28
|
Majsterkiewicz K, Azuma Y, Heddle JG. Connectability of protein cages. NANOSCALE ADVANCES 2020; 2:2255-2264. [PMID: 36133365 PMCID: PMC9416917 DOI: 10.1039/d0na00227e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/27/2020] [Indexed: 06/14/2023]
Abstract
Regular, hollow proteinaceous nanoparticles are widespread in nature. The well-defined structures as well as diverse functions of naturally existing protein cages have inspired the development of new nanoarchitectures with desired capabilities. In such approaches, a key functionality is "connectability". Engineering of interfaces between cage building blocks to modulate intra-cage connectability leads to protein cages with new morphologies and assembly-disassembly properties. Modification of protein cage surfaces to control inter-cage connectability enables their arrangement into lattice-like nanomaterials. Here, we review the current progress in control of intra- and inter-cage connectability for protein cage-based nanotechnology development.
Collapse
Affiliation(s)
- Karolina Majsterkiewicz
- Małopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A 30-387 Krakow Poland
- Postgraduate School of Molecular Medicine Trojdena 2a 02-091 Warsaw Poland
| | - Yusuke Azuma
- Małopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A 30-387 Krakow Poland
| | - Jonathan G Heddle
- Małopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A 30-387 Krakow Poland
| |
Collapse
|
29
|
Fluorescent immunochromatographic assay for quantitative detection of the foot-and-mouth disease virus serotype O antibody. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Chakraborti S, Lin TY, Glatt S, Heddle JG. Enzyme encapsulation by protein cages. RSC Adv 2020; 10:13293-13301. [PMID: 35492120 PMCID: PMC9051456 DOI: 10.1039/c9ra10983h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for in vivo diagnostic and therapeutic use as well as for ex vivo applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Ting-Yu Lin
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Sebastian Glatt
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| |
Collapse
|
32
|
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
- College of Life ScienceJiang Han University Wuhan 430056 China
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
33
|
Minamihata K, Tsukamoto K, Adachi M, Shimizu R, Mishina M, Kuroki R, Nagamune T. Genetically fused charged peptides induce rapid crystallization of proteins. Chem Commun (Camb) 2020; 56:3891-3894. [PMID: 32134050 DOI: 10.1039/c9cc09529b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We utilized electrostatic interaction to induce rapid crystallization of streptavidin. Simply mixing streptavidins possessing either a positively or negatively charged peptide at their C-terminus generated diffraction-quality crystals in a few hours. We modified the streptavidin crystals with fluorescent molecules using biotin, demonstrating the concept of protein crystals as functional biomaterials.
Collapse
Affiliation(s)
- K Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Hou F, Liu H, Zhang Y, Gao Z, Sun S, Tang Y, Guo H. Upconversion nanoparticles-labelled immunochromatographic assay for quantitative biosensing. NEW J CHEM 2020. [DOI: 10.1039/d0nj03156a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantitative determination of FMDV antibody using immunochromatographic strips with high sensitivity and specificity was achieved within 20 minutes.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Haiyun Liu
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Zhendong Gao
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology
- OIE/China National Foot-and-Mouth Disease Reference Laboratory
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou 730046
| |
Collapse
|
35
|
Wu J, Wu H, Nakagawa S, Gao J. Virus-derived materials: bury the hatchet with old foes. Biomater Sci 2020; 8:1058-1072. [DOI: 10.1039/c9bm01383k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viruses, with special architecture and unique biological nature, can be utilized for various biomedical applications.
Collapse
Affiliation(s)
- Jiahe Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Honghui Wu
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Shinsaku Nakagawa
- Department of Pharmaceutics
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita
- Japan
| | - Jianqing Gao
- Institute of Pharmaceutics
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
36
|
Guagnini F, Engilberge S, Ramberg KO, Pérez J, Crowley PB. Engineered assembly of a protein–cucurbituril biohybrid. Chem Commun (Camb) 2020; 56:360-363. [DOI: 10.1039/c9cc07198a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Additional Q7 binding sites drive protein aggregation in solution and statistical disorder in the crystalline biohybrid suggest new possibilities for protein-based materials.
Collapse
Affiliation(s)
| | | | - Kiefer O. Ramberg
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Javier Pérez
- Synchrotron SOLEIL
- L’Orme des Merisiers
- 91192 Gif-sur-Yvette Cedex
- France
| | - Peter B. Crowley
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| |
Collapse
|
37
|
Virus capsid assembly across different length scales inspire the development of virus-based biomaterials. Curr Opin Virol 2019; 36:38-46. [PMID: 31071601 DOI: 10.1016/j.coviro.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
In biology, there are an abundant number of self-assembled structures organized according to hierarchical levels of complexity. In some examples, the assemblies formed at each level exhibit unique properties and behaviors not present in individual components. Viruses are an example of such where first individual subunits come together to form a capsid structure, some utilizing a scaffolding protein to template or catalyze the capsid formation. Increasing the level of complexity, the viral capsids can then be used as building blocks of higher-level assemblies. This has inspired scientists to design and construct virus capsid-based functional nano-materials. This review provides some insight into the assembly of virus capsids across several length scales, and certain properties that arise at different levels, providing examples found in naturally occurring systems and those that are synthetically designed.
Collapse
|
38
|
Brunk NE, Uchida M, Lee B, Fukuto M, Yang L, Douglas T, Jadhao V. Linker-Mediated Assembly of Virus-Like Particles into Ordered Arrays via Electrostatic Control. ACS APPLIED BIO MATERIALS 2019; 2:2192-2201. [DOI: 10.1021/acsabm.9b00166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nicholas E. Brunk
- Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
39
|
Abstract
![]()
Ordered
protein assemblies are attracting interest as next-generation
biomaterials with a remarkable range of structural and functional
properties, leading to potential applications in biocatalysis, materials
templating, drug delivery and vaccine development. This Review covers
ordered protein assemblies including protein nanowires/nanofibrils,
nanorings, nanotubes, designed two- and three-dimensional ordered
protein lattices and protein-like cages including polyhedral virus-like
cage structures. The main focus is on designed ordered protein assemblies,
in which the spatial organization of the proteins is controlled by
tailored noncovalent interactions (including metal ion binding interactions,
electrostatic interactions and ligand–receptor interactions
among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein
assemblies including bacterial S-layers and cage-like and rod-like
viruses to impart novel function, e.g. enzymatic activity, is also
considered. A diversity of structures have been created using distinct
approaches, and this Review provides a summary of the state-of-the-art
in the development of these systems, which have exceptional potential
as advanced bionanomaterials for a diversity of applications.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
40
|
Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M, Teschke CM, Alexandrescu AT, Parent KN. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 2019; 8:e45345. [PMID: 30945633 PMCID: PMC6449081 DOI: 10.7554/elife.45345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Jason R Schrad
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Feig
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Carolyn M Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| |
Collapse
|
41
|
de Ruiter MV, Klem R, Luque D, Cornelissen JJLM, Castón JR. Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for in vitro catalysis. NANOSCALE 2019; 11:4130-4146. [PMID: 30793729 DOI: 10.1039/c8nr09204d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The organization of enzymes into different subcellular compartments is essential for correct cell function. Protein-based cages are a relatively recently discovered subclass of structurally dynamic cellular compartments that can be mimicked in the laboratory to encapsulate enzymes. These synthetic structures can then be used to improve our understanding of natural protein-based cages, or as nanoreactors in industrial catalysis, metabolic engineering, and medicine. Since the function of natural protein-based cages is related to their three-dimensional structure, it is important to determine this at the highest possible resolution if viable nanoreactors are to be engineered. Cryo-electron microscopy (cryo-EM) is ideal for undertaking such analyses within a feasible time frame and at near-native conditions. This review describes how three-dimensional cryo-EM is used in this field and discusses its advantages. An overview is also given of the nanoreactors produced so far, their structure, function, and applications.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Nguyen TK, Negishi H, Abe S, Ueno T. Construction of supramolecular nanotubes from protein crystals. Chem Sci 2019; 10:1046-1051. [PMID: 30774900 PMCID: PMC6346403 DOI: 10.1039/c8sc04167a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
Investigations involving the design of protein assemblies for the development of biomaterials are receiving significant attention. In nature, proteins can be driven into assemblies frequently by various non-covalent interactions. Assembly of proteins into supramolecules can be conducted under limited conditions in solution. These factors force the assembly process into an equilibrium state with low stability. Here, we report a new method for preparing assemblies using protein crystals as non-equilibrium molecular scaffolds. Protein crystals provide an ideal environment with a highly ordered packing of subunits in which the supramolecular assembled structures are formed in the crystalline matrix. Based on this feature, we demonstrate the self-assembly of supramolecular nanotubes constructed from protein crystals triggered by co-oxidation with cross-linkers. The assembly of tubes is driven by the formation of disulfide bonds to retain the intermolecular interactions within each assembly in the crystalline matrix after dissolution of the crystals.
Collapse
Affiliation(s)
- Tien Khanh Nguyen
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Hashiru Negishi
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Satoshi Abe
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| | - Takafumi Ueno
- School of Life Science and Technology , Tokyo Institute of Technology , Nagatsuta-cho , Midori-ku , Yokohama 226-8501 , Japan .
| |
Collapse
|
43
|
Chen H, Zhou K, Wang Y, Zang J, Zhao G. Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions. Chem Commun (Camb) 2019; 55:11299-11302. [DOI: 10.1039/c9cc06262a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Zinc ion triggered self-assembly of re-engineered Dps nanocages into highly ordered architectures with a bcc structure.
Collapse
Affiliation(s)
- H. Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - K. Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - Y. Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - J. Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| | - G. Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing Key Laboratory of Functional Food from Plant Resources
- Beijing
| |
Collapse
|
44
|
Selivanovitch E, Koliyatt R, Douglas T. Chemically Induced Morphogenesis of P22 Virus-like Particles by the Surfactant Sodium Dodecyl Sulfate. Biomacromolecules 2018; 20:389-400. [PMID: 30462501 DOI: 10.1021/acs.biomac.8b01357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the infectious P22 bacteriophage, the packaging of DNA into the initially formed procapsid triggers a remarkable morphological transformation where the capsid expands from 58 to 62 nm. Along with the increase in size, this maturation also provides greater stability to the capsid and initiates the release of the scaffolding protein (SP). (2,4) In the P22 virus-like particle (VLP), this transformation can be mimicked in vitro by heating the procapsid particles to 65 °C or by treatment with sodium dodecyl sulfate (SDS). (5,6) Heating the P22 particles at 65 °C for 20 min is well established to trigger the transformation of P22 to the expanded (EX) P22 VLP but does not always result in a fully expanded population. Incubation with SDS resulted in a >80% expanded population for all P22 variants used in this work. This study elucidates the importance of the stoichiometric ratio between P22 subunits and SDS, the charge of the headgroup, and length of the carbon chain for the transformation. We propose a mechanism by which the expansion takes place, where both the negatively charged sulfate group and hydrophobic tail interact with the coat protein (CP) monomers within the capsid shell in a process that is facilitated by an internal osmotic pressure generated by an encapsulated macromolecular cargo.
Collapse
Affiliation(s)
| | - Ranjit Koliyatt
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Trevor Douglas
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
45
|
Li X, Ma Z, Zhang Y, Pan S, Fu M, He C, An Q. Multiple-Enzyme Graphene Microparticle Presenting Adaptive Chemical Network Capabilities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39194-39204. [PMID: 30336666 DOI: 10.1021/acsami.8b13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interrelated reaction networks steered by multiple types of enzymes are among the most intriguing enzyme-based cellular features. These reaction networks display advanced features such as adaptation, stimuli-responsiveness, and decision-making in accordance with environmental cues. However, artificial enzyme particles are still deficient in network-level capabilities, mostly because delicate enzymes are difficult to immobilize and assemble. In this study, we propose a general strategy to prepare enzyme-based particles that demonstrate network reaction capability. We assembled multiple types of proteins with a nanoscopic binder prepared from polyelectrolyte and graphene. After assembly, the enzymes all preserved their catalytic capabilities. By incorporating multiple types of enzymes, the particles additionally displayed network-reaction capabilities. We were able to use NIR irradiations to quasi-reversibly adjust the catalytic abilities of these enzyme-based particles. In addition, after a biomimetic mineralization process was used to wrap the protein complexes in a MOF shell, the particles were more robust and catalytically active even after being immersed in acidic (pH 4) or basic (pH 10) solutions for 3 days. This study provides an insight into the study of network properties of functional enzyme particles experimentally and enriches scientific understanding of multifunctional or stimuli-responsive behaviors at the reaction network level. The building of artificial reaction networks possesses high potential in realizing intelligent microparticles that can perform complicated tasks.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Shaofeng Pan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Meng Fu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Chengjun He
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| |
Collapse
|
46
|
Wang X, Xiao Y, Hao H, Zhang Y, Xu X, Tang R. Therapeutic Potential of Biomineralization‐Based Engineering. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xiaoyu Wang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Yun Xiao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Haibin Hao
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ying Zhang
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Xurong Xu
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Qiushi Academy for Advanced StudiesZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
- Center for Biomaterials and Biopathways, Department of ChemistryZhejiang University No. 38 Zheda Road Hangzhou Zhejiang 310027 China
| |
Collapse
|
47
|
McCoy K, Selivanovitch E, Luque D, Lee B, Edwards E, Castón JR, Douglas T. Cargo Retention inside P22 Virus-Like Particles. Biomacromolecules 2018; 19:3738-3746. [PMID: 30092631 DOI: 10.1021/acs.biomac.8b00867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral protein cages, with their regular and programmable architectures, are excellent platforms for the development of functional nanomaterials. The ability to transform a virus into a material with intended structure and function relies on the existence of a well-understood model system, a noninfectious virus-like particle (VLP) counterpart. Here, we study the factors important to the ability of P22 VLP to retain or release various protein cargo molecules depending on the nature of the cargo, the capsid morphology, and the environmental conditions. Because the interaction between the internalized scaffold protein (SP) and the capsid coat protein (CP) is noncovalent, we have studied the efficiency with which a range of SP variants can dissociate from the interior of different P22 VLP morphologies and exit by traversing the porous capsid. Understanding the types of cargos that are either retained or released from the P22 VLP will aid in the rational design of functional nanomaterials.
Collapse
Affiliation(s)
- Kimberly McCoy
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Ekaterina Selivanovitch
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Daniel Luque
- Department of Structure of Macromolecules , Centro Nacional de Biotecnología (CNB-CSIC) , Darwin 3 , 28049 Madrid , Spain.,Centro Nacional de Microbiología/ISCIII, 28220 Majadahonda, Madrid , Spain
| | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Ethan Edwards
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - José R Castón
- Department of Structure of Macromolecules , Centro Nacional de Biotecnología (CNB-CSIC) , Darwin 3 , 28049 Madrid , Spain
| | - Trevor Douglas
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|