1
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Robles-Fernández A, Jiménez-Boland D, Leon-Cecilla A, Villegas-Montoya M, Traverso JÁ, Cuadros MA, Martín-Rodríguez A, Lopez-Lopez MT, Bramini M, Moraila-Martínez CL, Sánchez-Moreno P. Tuning lipid nanocarrier mechanical properties to improve glioblastoma targeting and blood brain barrier penetration. NANOSCALE 2025. [PMID: 40293789 DOI: 10.1039/d5nr00984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nanocarrier lipid systems (NLSs) have emerged as versatile platforms for diagnostic and therapeutic applications, including drug delivery, gene therapy, and vaccine development. Recent advancements highlight their potential in targeting infectious diseases and treating pathological conditions like tumors, largely due to their ability to effectively encapsulate and deliver therapeutic agents. This study focuses on the synthesis and characterization of NLSs with varying lipid compositions to understand their physicochemical and mechanical properties, which are crucial for their performance in biomedical applications. NLSs were prepared using a solvent displacement method, resulting in formulations with different ratios of olive oil and stearic acid. These formulations were characterized to determine their size, polydispersity index, and surface charge. Dynamic Light Scattering and Nanoparticle Tracking Analysis revealed that the size of the NLSs increased with higher stearic acid content. The NLSs demonstrated stability across a range of pH levels and in cell culture medium. The biomolecular corona formation and its impact on surface charge were also evaluated, showing significant effects on NLS stability. Mechanical properties, including rigidity and deformability, were assessed using Atomic Force Microscopy and rheological tests. The study found that increasing stearic acid content enhanced NLS rigidity and adhesion strength, which is crucial for their behaviour in biological systems such as blood circulation, tumor targeting, and cellular uptake. Biological evaluations demonstrated that these mechanical properties significantly influenced bio-interactions. Softer NLSs with a pure olive oil core displayed enhanced translocation across an in vitro blood-brain barrier model, underscoring their potential for drug delivery to the brain. Conversely, glioblastoma cell uptake studies revealed that the more rigid NLSs were internalized more efficiently by U87-MG cells, suggesting a role for stiffness in cellular entry. These findings provide insights into optimizing NLSs for specific therapeutic applications, particularly in overcoming barriers like the blood-brain barrier and targeting cerebral diseases.
Collapse
Affiliation(s)
- Ana Robles-Fernández
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| | - Daniel Jiménez-Boland
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014, Granada, Spain
| | - Martín Villegas-Montoya
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Universidad Autónoma de Sinaloa, Facultad de Biología, 80040, Culiacán, Mexico
| | - José Ángel Traverso
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | - Miguel A Cuadros
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | | | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014, Granada, Spain
| | - Mattia Bramini
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | | | - Paola Sánchez-Moreno
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| |
Collapse
|
3
|
Baek MJ, Hur W, Kashiwagi S, Choi HS. Design Considerations for Organ-Selective Nanoparticles. ACS NANO 2025; 19:14605-14626. [PMID: 40193849 DOI: 10.1021/acsnano.5c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Nanoparticles (NPs) have been extensively researched for targeted diagnostic imaging and drug delivery, yet their clinical translation remains limited, with only a few achieving Food and Drug Administration approval. This limited success is primarily due to challenges in achieving precise organ- or tissue-specific targeting, which arise from off-target tissue accumulation and suboptimal clearance profiles. Herein we examine the critical role of physicochemical properties, including size, surface charge, shape, elasticity, hardness, and density, in governing the biodistribution, targetability, and clearance of NPs. We highlight recent advancements in engineering NPs for targeted imaging and drug delivery, showcasing both significant progress and the remaining challenges in the field of nanomedicine. Additionally, we discuss emerging tools and technologies that are being developed to address these challenges. Based on recent insights from materials science, biomedical engineering, computational biology, and clinical research, we propose key design considerations for next-generation nanomedicines with enhanced organ selectivity.
Collapse
Affiliation(s)
- Min-Jun Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Won Hur
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
4
|
Mondal S, Karmakar T. Unveiling Interactions of a Peptide-Bound Monolayer-Protected Metal Nanocluster with a Lipid Bilayer. J Phys Chem Lett 2025; 16:3351-3358. [PMID: 40131821 DOI: 10.1021/acs.jpclett.5c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are potential candidates for drug delivery because of their unique, versatile, and tunable physiochemical properties. The rational design of nanosized drug carriers relies on a deep understanding of their molecular-level interactions with cell membranes and other biological entities. In this work, we applied coarse-grained molecular dynamics and umbrella sampling simulations to investigate the interactions between the magainin 2 (MG2)-loaded Au144(MPA)60 (MPA = 5-mercaptopentanoic acid) nanocluster (MG2-MPC) and a model anionic tumor cell membrane. Electrostatic interactions between MPC ligands and MG2's positively charged residues with the polar headgroups of lipids play a crucial role in the adhesion of the MG2-MPC complex to the membrane surface. Furthermore, MG2-MPCs self-assemble in the linear trimeric supramolecular aggregate on the bilayer surface, indicating a possible mechanism of MPC's action in peptide delivery to the membrane.
Collapse
Affiliation(s)
- Soumya Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Zhou S, Lyu P, Huang Y, Man X, Xiao S. Nonmonotonous Translocation Dynamics of Highly Deformable Particles across Channels. ACS NANO 2025; 19:10807-10815. [PMID: 40073271 DOI: 10.1021/acsnano.4c11319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The translocation dynamics of cells and particles through geometric constrictions are critical in biological and biomedical processes from splenic filtration to tumor metastasis. While particle stiffness plays a key role, its role in highly nonequilibrium states remains poorly understood. Here, we present a multiscale model to investigate the impact of particle stiffness on the translocation dynamics in microfluidic channels. We find that semielastic particles exhibit superior translocation capabilities compared to both softer and more rigid particles, with a nonmonotonic stiffness dependence observed for highly deformable particles. Additionally, we identify crossover behaviors in translocation time driven by variations in the flow rate, particle size, and particle-plate interactions. Excessive particle deformation significantly regulates these dynamics, with stiffness-induced shape transitions from pancake-like to ellipsoidal forms, controlling frictional forces at the particle-channel interface and the sieve plate. The balance between these forces explains the observed nonmonotonic translocation dynamics. Our work provides insights into the relationship between particle deformability and flow dynamics, highlighting the importance of elasticity in translocation behavior. These findings have implications for designing microfluidic devices for efficient separation and analysis of cells with varying elasticities, advancing applications in human health diagnostics.
Collapse
Affiliation(s)
- Shenrong Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peihan Lyu
- School of Physics, Beihang University, Beijing 100191, China
| | - Yu Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingkun Man
- School of Physics, Beihang University, Beijing 100191, China
- Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China
| | - Shiyan Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly variable aggregation and glycosylation profiles and their roles in immunogenicity to protein-based therapeutics. J Pharm Sci 2025; 114:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
7
|
Pandey PK, Singh PP, Khatua S, Ranganathan R, Mishra A. In Vitro and In-Silico Assessment of Gaussian Curvature-driven Internalization Kinetics of Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:663-674. [PMID: 39719033 DOI: 10.1021/acsami.4c18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Nanoparticles have been of significant interest in various biomedical domains such as drug delivery, gene delivery, cytotoxicity analysis, and imaging. Despite the synthesis of a variety of nanoparticles, their cellular uptake efficiency remains a substantial obstacle, with only a small fraction of delivered nanoparticles (NPs) have been reported to traverse the cell membrane within 24 h. Consequently, higher doses are often necessitated, leading to increased toxicity concerns. In this investigation, we illustrate that nanoparticles having negative Gaussian curvature demonstrate rapid and efficient internalization into cells by lowering the energy barrier for membrane bending. Specifically, three types of gold nanoparticles; gold nanorods (GNR), gold nanodogbones at pH 4 (GDB4), and gold nanodogbones at pH 6 (GDB6) were synthesized, with Gaussian curvatures of 0, -166.91, and -376.62, respectively. Cellular uptake studies conducted via ICP-OES analysis reveal that GDB6 is taken up 140% more in A549 cells and 77% more in NIH3T3 cells compared to GNR. Confocal microscopy-based uptake studies further confirm the higher uptake of GDB6 compared to GNR. Additionally, molecular simulations indicate that GDB nanoparticles exhibit a significantly larger free energy change during translocation compared to GNR, emphasizing the impact of nanoparticle shape on uptake and translocation through the membrane and validating the efficacy of negative Gaussian curvature in enhancing cellular uptake, consistent with experimental observations. Overall, our findings emphasize the importance of nanoparticle curvature modulation in maximizing cellular uptake efficiency for improved biomedical applications, providing valuable insights into the design of nanomaterials for drug delivery purposes.
Collapse
Affiliation(s)
- Pramina Kumari Pandey
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
| | - Param Punj Singh
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
| | - Saumyakanti Khatua
- Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
| | - Raghavan Ranganathan
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
| | - Abhijit Mishra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
| |
Collapse
|
8
|
Thamizhchelvan AM, Ma H, Wu T, Nguyen D, Padelford J, Whitworth TJ, Li Y, Yang L, Mao H. Shape-dependent cellular uptake of iron oxide nanorods: mechanisms of endocytosis and implications on cell labeling and cellular delivery. NANOSCALE 2024; 16:21398-21415. [PMID: 39329423 PMCID: PMC11429166 DOI: 10.1039/d4nr02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The effects of nanoparticle morphology, especially size and shape, on their interactions with cells are of great interest in understanding the fate of nanoparticles in biological systems and designing them for biomedical applications. While size and shape-dependent cell behavior, endocytosis mechanism, and subcellular distribution of nanoparticles have been investigated extensively with gold and other nanoparticles, studies on iron oxide nanoparticles (IONP), one of the most promising and well-thought-of nanomaterials in biomedical applications, were limited. In this study, we synthesized oligosaccharide-coated water-soluble iron oxide nanorods (IONR) with different core sizes (nm) and different aspect ratios (i.e., length/width), such as IONR(L) at 140/6 nm and IONR(S) at 50/7 nm as well as spherical IONP (20 nm). We investigated how their sizes and shapes affect uptake mechanisms, localization, and cell viability in different cell lines. The results of transmission electron microscopy (TEM) and confocal fluorescence microscopic imaging confirmed the internalization of these nanoparticles in different types of cells and subsequent accumulation in the subcellular compartments, such as the endosomes, and into the cytosol. Specifically, IONR(L) exhibited the highest cellular uptake compared to IONR(S) and spherical IONP, 1.36-fold and 1.17-fold higher than that of spherical IONP in macrophages and pediatric brain tumor medulloblastoma cells, respectively. To examine the cellular uptake mechanisms preferred by the different IONR and IONP, we used different endocytosis inhibitors to block specific cellular internalization pathways when cells were treated with different nanoparticles. The results from these blocking experiments showed that IONR(L) enter macrophages and normal kidney cells through clathrin-mediated, dynamin-dependent, and macropinocytosis/phagocytosis pathways, while they are internalized in cancer cells primarily via clathrin/caveolae-mediated and phagocytosis mechanisms. Overall, our findings provide new insights into further development of magnetic IONR-based imaging probes and drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Anbu Mozhi Thamizhchelvan
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Hedi Ma
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Tianhe Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | - Darlene Nguyen
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | - Ted J Whitworth
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- 5M Biomed, LLC, Atlanta, Georgia 30303, USA
| | - Lily Yang
- Department of Surgery Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Zhang Y, Zhang M, Hu X, Hao H, Quan C, Ren T, Gao H, Wang J. Engineering a porphyrin COFs encapsulated by hyaluronic acid tumor-targeted nanoplatform for sequential chemo-photodynamic multimodal tumor therapy. Int J Biol Macromol 2024; 279:135328. [PMID: 39242006 DOI: 10.1016/j.ijbiomac.2024.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Han Hao
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Cuilu Quan
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Tiantian Ren
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan, Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064 Chengdu, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China.
| |
Collapse
|
10
|
Wang Y, Mo Y, Sun Y, Li J, An Y, Feng N, Liu Y. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J Nanobiotechnology 2024; 22:669. [PMID: 39487532 PMCID: PMC11531169 DOI: 10.1186/s12951-024-02930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles. Meanwhile, intestinal epithelial cells may absorb the NPs, allowing for their transcytosis or degradation. Conversely, nanoparticle-induced toxicity may occur as a biological response to the nanoparticle exposure. Additionally, immune response and cell functions in secretions such as mucin, peptide, and cytokines may also be altered. In this review, we discuss the bidirectional interactions between nanoparticles and cells focusing on enterocytes and goblet cells, M cells, and immune cells in the mucosa according to the essential role of intestinal epithelial cells and their crosstalk with immune cells. Furthermore, we discuss the recent advances of how the physiochemical properties of nanoparticles influence their interplay, delivery, and fate in intestinal mucosa. Understanding the fate of nanoparticles with different physiochemical properties from the perspective of their interaction with cells in mucosa provides essential support for the development, rational design, potency maximation, and application of advanced oral nanocarrier delivery systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yilei Mo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yingwei Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Jing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Yu An
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.
| |
Collapse
|
11
|
Sorokina AS, Gumerov RA, Noguchi H, Potemkin II. Computer Simulations of Responsive Nanogels at Lipid Membrane. Macromol Rapid Commun 2024; 45:e2400406. [PMID: 39150327 DOI: 10.1002/marc.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The swelling and collapse of responsive nanogels on a planar lipid bilayer are studied by means of mesoscopic computer simulations. The effects of molecular weight, cross-linking density, and adhesion strength are examined. The conditions for collapse-mediated engulfing by the bilayer are found. In particular, the results show that at low hydrophobicity level the increase in the nanogel softness decreases the engulfing rate. On the contrary, for stronger hydrophobicity level the trend changes to the opposite one. At the same time, when the cross-linking density is too low or the adhesion strength is too high the nanogel deformation at the membrane suppresses the engulfing regardless of the network swelling ratio. Finally, for comparative reasons, the behavior of the nanogels is also studied at the solid surface. These results may be useful in the design of soft particles capable of tuning of their elasticity and porosity for successful intracellular drug delivery.
Collapse
Affiliation(s)
- Anastasia S Sorokina
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| |
Collapse
|
12
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Ma T, Chen T, Tan H, Zhang S, Wei H, Wang Q, Zhang Z, Zhou W, Wang L, Wang G. Endocytosis efficiency and targeting ability by the cooperation of nanoparticles. NANOSCALE 2024; 16:18553-18569. [PMID: 39290054 DOI: 10.1039/d4nr01853b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cooperative wrapping of nanoparticles (NPs) with small sizes is an important pathway for the uptake of NPs by cell membranes. However, the cooperative wrapping efficiency and the effects of NPs' rigidity remain ambiguous. With the aid of computer simulations, we show that the complete wrapping mechanism of cooperative endocytosis is that the aggregation of NPs leads to greater wrapping forces than the single NP case, which triggers the increase of the wrapping degree and in turn further increases the wrapping forces until they are finally fully taken up. The effects of the NP size, initial distance, interaction strength, arrangement and stiffness on cooperative endocytosis were systematically studied. The cooperative wrapping efficiency increases as the NP radius increases. Hexagonal close packed NPs have the highest internalization efficiency. When the interactions are strong, softer NPs exhibit higher endocytosis efficiency. We further propose two strategies by combining NPs with different wrapping properties for targeting applications. By combining two NPs decorated with different types of ligands, the combination NPs can only be fully endocytosed by the cell membrane with two cognate types of receptors and adhere to the normal cell membrane with only one type of receptor. We also design composite NPs using a large NP non-covalently decorated with several small NPs. By harnessing the competition between the ligand-receptor interactions and the excluded volume interactions between the small NPs and the lipid membrane, the composite NPs have targeting ability towards the cancer cell membrane. The design concept of combining NPs with different wrapping properties for drug targeting applications may be very promising in biomedicine.
Collapse
Affiliation(s)
- Teng Ma
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Tianjiao Chen
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Huifeng Tan
- National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China
| | - Songsong Zhang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Hao Wei
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Qiang Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Zhijia Zhang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Wenjun Zhou
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lin Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| | - Guojun Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
| |
Collapse
|
14
|
Wan H, Xu D, Wang W, Cheng Y, Dai X, Jin X, Gao L, Zhang X, Miao B, He Q, Yan LT. Nonequilibrium Dynamic Phase Diagram for Transmembrane Transport of Active Particles. ACS NANO 2024; 18:24024-24034. [PMID: 39167054 DOI: 10.1021/acsnano.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In recent years, there has been considerable push toward the biomedical applications with active particles, which have great potential to revolutionize disease diagnostics and therapy. The direct penetration of active particles through the cell membrane leads to more efficient intracellular delivery than previously considered endocytosis processes but may cause membrane disruption. Understanding fundamental behaviors of cell membranes in response to such extreme impacts by active particles is crucial to develop active particle-based biomedical technologies and manage health and safety issues in this emerging field. Unfortunately, the physical principles underlying the nonequilibrium behaviors from endocytosis to direct penetration remain elusive, and experiments are challenging. Here, we present a computed dynamic phase diagram for transmembrane transport of active particles and identify four characteristic dynamic phases in endocytosis and direct penetration according to the particle activity and membrane tension. The boundaries dividing these phases are analytically obtained with theoretical models, elucidating the nonequilibrium physics and criteria for the transition between different phases. Furthermore, we numerically and experimentally show three distinct dynamic regimes related to the interplay between necking and wrapping during the endocytosis process of active particles, which strikingly contrast the regimes for passive particles. Overall, these findings could be useful for sharpening the understanding of basic principles underlying biological issues related to the safe and efficient biomedical applications of such emerging matters.
Collapse
Affiliation(s)
- Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, China
| | - Yanfang Cheng
- School of Medicine and Health, Harbin Institute of Technology, Yi Kuang Street 2, Harbin 150080, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Bing Miao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Yi Kuang Street 2, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Yang Z, Zhao Y, Zhang X, Huang L, Wang K, Sun J, Chen N, Yin W, Chen S, Zhi H, Xue L, An L, Li R, Dong H, Xu J, Li Y, Li Y. Nano-mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS NANO 2024; 18:21221-21235. [PMID: 39079080 DOI: 10.1021/acsnano.4c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of nanoparticles play a crucial role in regulating nanobiointeractions, influencing processes such as blood circulation, tumor accumulation/penetration, and internalization into cancer cells. Consequently, they have a significant impact on drug delivery and therapeutic efficacy. However, it remains unclear whether and how macrophages alter their biological function in response to nanoparticle elasticity. Here, we report on the nano-mechanical biological effects resulting from the interactions between elastic silica nanoparticles (SNs) and macrophages. The SNs with variational elasticity Young's moduli ranging from 81 to 837 MPa were synthesized, and it was demonstrated that M2 [tumor-associated macrophages (TAMs)] could be repolarized to M1 by the soft SNs. Additionally, our findings revealed that cell endocytosis, membrane tension, the curvature protein Baiap2, and the cytoskeleton were all influenced by the elasticity of SNs. Moreover, the mechanically sensitive protein Piezo1 on the cell membrane was activated, leading to calcium ion influx, activation of the NF-κB pathway, and the initiation of an inflammatory response. In vivo experiments demonstrated that the softest 81 MPa SNs enhanced tumor penetration and accumulation and repolarized TAMs in intratumoral hypoxic regions, ultimately resulting in a significant inhibition of tumor growth. Taken together, this study has established a cellular feedback mechanism in response to nanoparticle elasticity, which induces plasma membrane deformation and subsequent activation of mechanosensitive signals. This provides a distinctive "nano-mechanical immunoengineering" strategy for reprogramming TAMs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Zichen Yang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaoyou Zhang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Huang
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiuyuan Sun
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nana Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Weimin Yin
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shiyu Chen
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Zhi
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Liangyi Xue
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lulu An
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Rongjie Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Wang X, Hao X, Zhang Y, Wu Q, Zhou J, Cheng Z, Chen J, Liu S, Pan J, Wang Y, Fan JB. Bioinspired Adaptive Microdrugs Enhance the Chemotherapy of Malignant Glioma: Beyond Their Nanodrugs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405165. [PMID: 38758975 DOI: 10.1002/adma.202405165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Solid nanoparticle-mediated drug delivery systems are usually confined to nanoscale due to the enhanced permeability and retention effect. However, they remain a great challenge for malignant glioma chemotherapy because of poor drug delivery efficiency and insufficient tumor penetration resulting from the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Inspired by biological microparticles (e.g., cells) with excellent adaptive deformation, it is demonstrated that the adaptive microdrugs (even up to 3.0 µm in size) are more efficient than their nanodrugs (less than 200 nm in size) to cross BBB/BBTB and penetrate into tumor tissues, achieving highly efficient chemotherapy of malignant glioma. The distinct delivery of the adaptive microdrugs is mainly attributed to the enhanced interfacial binding and endocytosis via adaptive deformation. As expected, the obtained adaptive microdrugs exhibit enhanced accumulation, deep penetration, and cellular internalization into tumor tissues in comparison with nanodrugs, significantly improving the survival rate of glioblastoma mice. It is believed that the bioinspired adaptive microdrugs enable them to efficiently cross physiological barriers and deeply penetrate tumor tissues for drug delivery, providing an avenue for the treatment of solid tumors.
Collapse
Affiliation(s)
- Xuejiao Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qun Wu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510515, P. R. China
| | - Zhongman Cheng
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, P. R. China
| | - Sijia Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
17
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
18
|
Elblová P, Lunova M, Dejneka A, Jirsa M, Lunov O. Impact of mechanical cues on key cell functions and cell-nanoparticle interactions. DISCOVER NANO 2024; 19:106. [PMID: 38907808 PMCID: PMC11193707 DOI: 10.1186/s11671-024-04052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
Collapse
Affiliation(s)
- Petra Elblová
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021, Prague, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18200, Prague, Czech Republic.
| |
Collapse
|
19
|
Meng X, Zhu G, Yang YG, Sun T. Targeted delivery strategies: The interactions and applications of nanoparticles in liver diseases. Biomed Pharmacother 2024; 175:116702. [PMID: 38729052 DOI: 10.1016/j.biopha.2024.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
In recent years, nanoparticles have been broadly utilized in various drugs delivery formulations. Nanodelivery systems have shown promise in solving problems associated with the distribution of hydrophobic drugs and have promoted the accumulation of nanomedicines in the circulation or in organs. However, the injection dose of nanoparticles (NPs) is much greater than that needed by diseased tissues or organs. In other words, most of the NPs are localized off-target and do not reach the desired tissue or organs. With the rapid development of biodegradable and biosafety nanomaterials, the nanovectors represent assurance of safety. However, the off-target effects also induce concerns about the application of NPs, especially in the delivery of gene editing tools. Therefore, a complete understanding of the biological responses to NPs in the body will clearly guide the design of targeted delivery of NPs. The different properties of various nanodelivery systems may induce diverse interactions between carriers and organs. In this review, we describe the relationship between the liver, the most influenced organ of systemic administration of NPs, and targeted delivery nanoplatforms. Various transport vehicles have adopted multiple delivery strategies for the targeted delivery to the cells in the homeostasis liver and in diseased liver. Additionally, nanodelivery systems provide a novel strategy for treating incurable diseases. The appearance of a targeted delivery has profoundly improved the application of NPs to liver diseases.
Collapse
Affiliation(s)
- Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Ge Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
20
|
He Y, Wang Y, Wang L, Jiang W, Wilhelm S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin Drug Deliv 2024; 21:829-843. [PMID: 38946471 PMCID: PMC11281865 DOI: 10.1080/17425247.2024.2375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation. AREAS COVERED This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases. Additionally, we discuss how aging impacts the liver's phagocytic functions. EXPERT OPINION While liver accumulation can hinder nanomedicine safety and effectiveness, it also presents opportunities for treating certain liver diseases. A thorough understanding of nanoparticle-liver interactions is essential for advancing the clinical application of nanomedicines.
Collapse
Affiliation(s)
- Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
22
|
Sakamoto Y, Fujii S, Takano S, Fukushima J, Ando M, Kodera N, Nishimura T. Manipulation of Macrophage Uptake by Controlling the Aspect Ratio of Graft Copolymer Micelles. NANO LETTERS 2024; 24:5838-5846. [PMID: 38661003 DOI: 10.1021/acs.nanolett.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanostructures of drug carriers play a crucial role in nanomedicine due to their ability to influence drug delivery. There is yet no clear consensus regarding the optimal size and shape (e.g., aspect ratio) of nanoparticles for minimizing macrophage uptake, given the difficulties in controlling the shape and size of nanoparticles while maintaining identical surface properties. Here, we employed graft copolymer self-assembly to prepare polymer micelles with aspect ratios ranging from 1.0 (spherical) to 10.8 (cylindrical) and closely matched interfacial properties. Notably, our findings emphasize that cylindrical micelles with an aspect ratio of 2.4 are the least susceptible to macrophage uptake compared with both their longer counterparts and spherical micelles. This reduced uptake of the short cylindrical micelles results in a 3.3-fold increase in blood circulation time compared with their spherical counterparts. Controlling the aspect ratio of nanoparticles is crucial for improving drug delivery efficacy through better nanoparticle design.
Collapse
Affiliation(s)
- Yusuke Sakamoto
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Jokichi Fukushima
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Mitsuru Ando
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Ishikawa 920-1192, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Science, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
23
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
24
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
25
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
26
|
Ray R, Ghosh S, Maity A, Jana NR. Arginine Surface Density of Nanoparticles Controls Nonendocytic Cell Uptake and Autophagy Induction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5451-5461. [PMID: 38265005 DOI: 10.1021/acsami.3c14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nonendocytic cell uptake of nanomaterials is challenging, which requires specific surface chemistry and smaller particle size. Earlier works have shown that an arginine-terminated nanoparticle of <10-20 nm size shows nonendocytic uptake via direct membrane penetration. However, the roles of surface arginine density and the arginine-arginine distance at the nanoparticle surface in controlling such nonendocytic uptake mechanism is not yet explored. Here we show that a higher arginine density at the nanoparticle surface with an arginine-arginine distance of <3 nm is the most critical aspect for such nonendocytic uptake. We have used quantum dot (QD)-based nanoparticles as a model for fluorescent tracking inside cells and for quantitative estimation of cellular uptake. We found that arginine-terminated nanoparticles of 10 nm size can opt for the energy-dependent endocytosis pathway if the arginine-arginine distance is >3 nm. In contrast, nanoparticles with <3 nm arginine-arginine distance rapidly enter into the cell via the nonendocytic approach, are freely available in the cytosol in large amounts to capture the cellular adenosine triphosphate (ATP), generate oxidative stress, and induce ATP-deficient cellular autophagy. This work shows that arginine-arginine distance at the nanoparticle surface is another fundamental parameter, along with the particle size, for the nonendocytic cell uptake of foreign materials and to control intracellular activity. This approach may be utilized in designing nanoprobes and nanocarriers with more efficient biomedical performances.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anupam Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
27
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024; 65:1811-1832. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
28
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Chen Y, Fan Y, Huang Y, Liao X, Xu W, Zhang T. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115905. [PMID: 38171230 DOI: 10.1016/j.ecoenv.2023.115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Coal fly ash (CFA), a byproduct of coal combustion, is a hazardous industrial solid waste. Its excessive global production, coupled with improper disposal practices, insufficient utilization and limited awareness of its inherent hazards, poses a significant threat to both ecological environment and human health. Based on the physicochemical properties of CFA and its leachates, we elucidate the forms of CFA and potential pathways for its entry into the human body, as well as the leaching behavior, maximum tolerance and biological half-life of toxic elements present in CFA. Furthermore, we provide an overview of current strategies and methods for mitigating the leaching of these harmful elements from CFA. Moreover, we systemically summarize toxic effect of CFA on organisms across various tiers of complexity, analyze epidemiological findings concerning the human health implications resulting from CFA exposure, and delve into the biotoxicological mechanisms of CFA and its leachates at cellular and molecular levels. This review aims to enhance understanding of the potential toxicity of CFA, thereby promoting increased public awareness regarding the disposal and management of this industrial waste.
Collapse
Affiliation(s)
- Yi Chen
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yingjie Fan
- Chongqing Research Center for Jialing River Development, Institute of Intelligent Manufacturing and Automotive, Chongqing Technology and Business Institute, Chongqing 401520, China
| | - Yu Huang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenfeng Xu
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; JINSHAN Science & Technology (Group) Co., Ltd., Chongqing 401120, China.
| |
Collapse
|
30
|
Cao X, Wang C, Deng Z, Zhong Y, Chen H. Efficient ocular delivery of siRNA via pH-sensitive vehicles for corneal neovascularization inhibition. Int J Pharm X 2023; 5:100183. [PMID: 37234133 PMCID: PMC10206438 DOI: 10.1016/j.ijpx.2023.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Corneal neovascularization (CoNV)-induced blindness is an enduring and challenging condition with limited management options. Small interfering RNA (siRNA) is a promising strategy for preventing CoNV. This study reported a new strategy using siVEGFA to silence vascular endothelial growth factor A (VEGFA) for CoNV treatment. To improve the efficacy of siVEGFA delivery, a pH-sensitive polycationic mPEG2k-PAMA30-P(DEA29-D5A29) (TPPA) was fabricated. TPPA/siVEGFA polyplexes enter cells via clathrin-mediated endocytosis, resulting in higher cellular uptake efficiency and comparable silencing efficiency than that of Lipofectamine 2000 in vitro. Hemolytic assays verified that TPPA safe in normal physiological environments (pH 7.4) but can easily destroy membranes in acidic mature endosomes (pH 4.0). Studies on the distribution of TPPA in vivo showed that it could prolong the retention time of siVEGFA and promote its penetration in the cornea. In a mouse model induced by alkali burn, TPPA efficiently delivered siVEGFA to the lesion site and achieved VEGFA silencing efficiency. Importantly, the inhibitory effect of TPPA/siVEGFA on CoNV was comparable to that of the anti-VEGF drug ranibizumab. Delivering siRNA using pH-sensitive polycations to the ocular environment provides a new strategy to efficiently inhibit CoNV.
Collapse
Affiliation(s)
- Xiaowen Cao
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Changrong Wang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Zhennv Deng
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiming Zhong
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hao Chen
- School of Ophthalmology and Optometry/School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
31
|
Hu Q, Zhang B, Ren H, Zhou X, He C, Shen Y, Zhou Z, Hu H. Supramolecular metal-organic frameworks as host-guest nanoplatforms for versatile and customizable biomedical applications. Acta Biomater 2023; 168:617-627. [PMID: 37482147 DOI: 10.1016/j.actbio.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we show a facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatform for customizable multifunctional imaging. These β-CD-MOF nanoparticles were obtained with favorable morphology and size by controlling the degradation time. The β-CD-MOF were used as nanoplatforms for facile functionalization with adamantane (Ad)-modified probes through host-guest interactions between the surface β-CD units and Ad molecules. We demonstrated the method's feasibility and capability by developing various contrast agents for multiple biomedical imaging, including fluorescence imaging, magnetic resonance imaging (MRI), and computed tomography (CT) imaging. The nanoprobes showed superior performance compared to the corresponding small molecular probes, including better physio-chemical properties (e.g., about 5 times of T1 relaxivity for MRI, 1.2 times of Hounsfield units for CT), improved pharmacokinetics, effective tissue imaging capability, and low safety concerns. These β-CD-MOF-based nanoparticles are promising host-guest nanoplatforms for developing multifunctional and safe imaging probes. STATEMENT OF SIGNIFICANCE: Molecular imaging of disease with multifunctional nanoparticles has improved specificity and sensitivity but also raises the complexity, potential toxicity, and cost. Here, we introduce facile and degradable self-assembly β-cyclodextrin metal-organic framework (β-CD-MOF) nanoplatforms for customizable multifunctional imaging. The significance of this work includes: 1) This work reports the tailoring of MOFs nanoparticles with suitable sizes and shapes for biomedical applications through controllable morphological transition and degradation; 2) The β-CD-MOF-based host-guest nanoplatforms are facile and feasible for developing multifunctional nanoparticular contrast agents for effective tissue imaging; 3) The nanoparticular contrast agents show low safety concerns with a long-term tissue deposition similar to the small molecular probes.
Collapse
Affiliation(s)
- Qiuhui Hu
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huiming Ren
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China.
| | - Chengbin He
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hongjie Hu
- Department of Radiology, Sir Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
32
|
Montizaan D, Saunders C, Yang K, Sasidharan S, Maity S, Reker-Smit C, Stuart MCA, Montis C, Berti D, Roos WH, Salvati A. Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303267. [PMID: 37236202 DOI: 10.1002/smll.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Catherine Saunders
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Keni Yang
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Sajitha Sasidharan
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
33
|
Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. SOFT MATTER 2023; 19:5907-5915. [PMID: 37483086 DOI: 10.1039/d3sm00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.
Collapse
Affiliation(s)
- Md Muhtasim Billah
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
34
|
Chen H, Dong X, Ou L, Ma C, Yuan B, Yang K. Thermal-controlled cellular uptake of "hot" nanoparticles. NANOSCALE 2023; 15:12718-12727. [PMID: 37470374 DOI: 10.1039/d3nr02449k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Nanoparticles (NPs) have shown immense potential in the field of biomedical applications, particularly in NP-based photothermal therapy, which offers a remote-controlled approach to achieve precise temperature control for site-specific heating and sub-cellular tumor treatment. However, the molecular mechanisms underlying related cellular activities, such as the cellular uptake behavior of irradiated NPs in photothermal effects, remain elusive. In this study, we conducted a thorough investigation of the interaction between an irradiated NP with elevated temperature (ranging from 270 to 360 K) and a model bilayer membrane composed of DPPC or DOPC using nonequilibrium coarse-grained molecular dynamics simulations with the implicit-solvent Dry Martini force field. We observe that the interaction between a "hot" NP and a membrane is thermally regulated. In addition, the wrapping of membranes around NPs exhibits a strong dependence on the temperature of the irradiated NP, demonstrating a step-like change in behavior. This membrane wrapping effect is attributed to the heat conduction between NPs and membrane lipids, which occurs almost simultaneously with the membrane deformation and wrapping of NPs during the NP-membrane interaction process. Especially, during the process of heat conduction, a gel-to-fluid phase transition of the membrane may occur, which plays a crucial role in determining the deformation behavior of the membrane. Moreover, it is found that the membrane lipids in the two leaflets exhibit obvious and asymmetric molecular-level responses to heat flux, characterized by significant changes in packing states (e.g., the order parameter of lipid tails and area per lipid) and possible interdigitation between lipids. Furthermore, the thermal-controlled wrapping effect is tightly linked to the properties of NPs (e.g., size, NP-lipid affinity) and lipid species. Our findings are valuable for comprehending the thermal-regulated cellular internalization of NPs and offer insights into devising strategies to precisely modulate NP endocytosis by exploiting the interplay between heating and NP properties.
Collapse
Affiliation(s)
- Haibo Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Luping Ou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China.
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
35
|
Sun Z, Hou Y, Xu X, Li Z, Gong X, Chen D, Wu H, Yang J, Cui P, Ma G. A novel nonreversible heat-induced low-molecular-weight gel based on naturally-occurring self-assembled fupenzic acid for tumor therapy. Colloids Surf B Biointerfaces 2023; 228:113392. [PMID: 37290198 DOI: 10.1016/j.colsurfb.2023.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Herein, a nonreversible heat-induced supramolecular gel based on natural products was reported for the first time. This natural triterpenoid, fupenzic acid (FA), isolated from the roots of Rosa laevigata, was discovered to be capable of forming supramolecular gel spontaneously in 50 % ethanol-water solution induced by heating. Distinguished from the common thermosensitive gels, the FA-gel showed a distinctive nonreversible phase transition from the liquid to gel state upon heating. In this work, the entire gelation process of FA-gel induced by heating was recorded digitally by microrheology monitor. And a unique heat-induced gelation mechanism based on self-assembled FA has been proposed by using various experimental methods and molecular dynamics (MD) simulation. Its excellent injectability and stability were also demonstrated. Furthermore, the FA-gel had been evaluated to exhibit better anti-tumor activity and higher biosafety comparing with its equivalent free-drug, which opened up a new possibility to reinforce antitumor efficacy by using natural product gelator originated from traditional Chinese medicine (TCM) without any complicated chemical modifications.
Collapse
Affiliation(s)
- Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zongyang Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Xiaomei Gong
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Deli Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ping Cui
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
36
|
Xiao K, Ma R, Wu CX. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake. Phys Rev E 2023; 107:054401. [PMID: 37329073 DOI: 10.1103/physreve.107.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The cellular uptake of self-propelled nonspherical nanoparticles (NPs) or viruses by cell membrane is crucial in many biological processes, but its universal dynamics have yet to be elucidated. In this study, using the Onsager variational principle, we obtain a general wrapping equation for nonspherical self-propelled nanoparticles. Two analytical critical conditions are theoretically found, indicating a continuous full uptake for prolate particles and a snapthrough full uptake for oblate particles. They precisely capture the full uptake critical boundaries in the phase diagrams numerically constructed in terms of active force, aspect ratio, adhesion energy density, and membrane tension. It is found that enhancing activity (active force), reducing effective dynamic viscosity, increasing adhesion energy density, and decreasing membrane tension can significantly improve the wrapping efficiency of the self-propelled nonspherical nanoparticles. These results give a panoramic view of the uptake dynamics of active nonspherical nanoparticles, and may offer instructions for designing an effective active NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
37
|
LaMastro V, Campbell KM, Gonzalez P, Meng-Saccoccio T, Shukla A. Antifungal liposomes: Lipid saturation and cholesterol concentration impact interaction with fungal and mammalian cells. J Biomed Mater Res A 2023; 111:644-659. [PMID: 36740998 DOI: 10.1002/jbm.a.37501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 02/07/2023]
Abstract
Liposomes are lipid-based nanoparticles that have been used to deliver encapsulated drugs for a variety of applications, including treatment of life-threatening fungal infections. By understanding the effect of composition on liposome interactions with both fungal and mammalian cells, new effective antifungal liposomes can be developed. In this study, we investigated the impact of lipid saturation and cholesterol content on fungal and mammalian cell interactions with liposomes. We used three phospholipids with different saturation levels (saturated hydrogenated soy phosphatidylcholine (HSPC), mono-unsaturated 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), and di-unsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC)) and cholesterol concentrations ranging from 15% to 40% (w/w) in our liposome formulations. Using flow cytometry, >80% of Candida albicans SC5314 cells were found to interact with all liposome formulations developed, while >50% of clinical isolates tested exhibited interaction with these liposomes. In contrast, POPC-containing formulations exhibited low levels of interaction with murine fibroblasts and human umbilical vein endothelial cells (<30%), while HSPC and PLPC formulations had >50% and >80% interaction, respectively. Further, PLPC formulations caused a significant decrease in mammalian cell viability. Formulations that resulted in low levels of mammalian cell interaction, minimal cytotoxicity, and high levels of fungal cell interaction were then used to encapsulate the antifungal drug, amphotericin B. These liposomes eradicated planktonic C. albicans at drug concentrations lower than free drug, potentially due to the high levels of liposome-C. albicans interaction. Overall, this study provides new insights into the design of liposome formulations towards the development of new antifungal therapeutics.
Collapse
Affiliation(s)
- Veronica LaMastro
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | - Kayla M Campbell
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | - Peter Gonzalez
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Tobias Meng-Saccoccio
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
38
|
Oktay E, Alem F, Hernandez K, Girgis M, Green C, Mathur D, Medintz IL, Narayanan A, Veneziano R. DNA origami presenting the receptor binding domain of SARS-CoV-2 elicit robust protective immune response. Commun Biol 2023; 6:308. [PMID: 36959304 PMCID: PMC10034259 DOI: 10.1038/s42003-023-04689-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Effective and safe vaccines are invaluable tools in the arsenal to fight infectious diseases. The rapid spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the coronavirus disease 2019 pandemic has highlighted the need to develop methods for rapid and efficient vaccine development. DNA origami nanoparticles (DNA-NPs) presenting multiple antigens in prescribed nanoscale patterns have recently emerged as a safe, efficient, and easily scalable alternative for rational design of vaccines. Here, we are leveraging the unique properties of these DNA-NPs and demonstrate that precisely patterning ten copies of a reconstituted trimer of the receptor binding domain (RBD) of SARS-CoV-2 along with CpG adjuvants on the DNA-NPs is able to elicit a robust protective immunity against SARS-CoV-2 in a mouse model. Our results demonstrate the potential of our DNA-NP-based approach for developing safe and effective nanovaccines against infectious diseases with prolonged antibody response and effective protection in the context of a viral challenge.
Collapse
Affiliation(s)
- Esra Oktay
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Farhang Alem
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Keziah Hernandez
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Michael Girgis
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Christopher Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA.
| | - Remi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
39
|
Moreno-Gutierrez DS, Del Toro-Ríos X, Martinez-Sulvaran NJ, Perez-Altamirano MB, Hernandez-Garcia A. Programming the Cellular Uptake of Protein-Based Viromimetic Nanoparticles for Enhanced Delivery. Biomacromolecules 2023; 24:1563-1573. [PMID: 36877960 DOI: 10.1021/acs.biomac.2c01295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Viral mimetics is a noteworthy strategy to design efficient delivery systems without the safety drawbacks and engineering difficulties of modifying viral vectors. The triblock polypeptide CSB was previously designed de novo to self-assemble with DNA into nanocomplexes called artificial virus-like particles (AVLPs) due to their similarities to viral particles. Here, we show how we can incorporate new blocks into the CSB polypeptide to enhance its transfection without altering its self-assembly capabilities and the stability and morphology of the AVLPs. The addition of a short peptide (aurein) and/or a large protein (transferrin) to the AVLPs improved their internalization and specific targeting to cells by up to 11 times. Overall, these results show how we can further program the cellular uptake of the AVLPs with a wide range of bioactive blocks. This can pave the way to develop programmable and efficient gene delivery systems.
Collapse
Affiliation(s)
- David S Moreno-Gutierrez
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Ximena Del Toro-Ríos
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Natalia J Martinez-Sulvaran
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Mayra B Perez-Altamirano
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| | - Armando Hernandez-Garcia
- Laboratory of Biomolecular Engineering and Bionanotechnology, Department of Chemistry of Biomacromolecules, Institute of Chemistry, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
40
|
Gupta S, Santangelo CD, Patteson AE, Schwarz JM. How cells wrap around virus-like particles using extracellular filamentous protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526272. [PMID: 36778225 PMCID: PMC9915516 DOI: 10.1101/2023.01.30.526272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | | | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
41
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
42
|
Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023; 31:1-13. [PMID: 35857432 DOI: 10.1080/1061186x.2022.2104299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanomedicine offers considerable opportunities to improve drugability and reduce toxicity for tumour therapy. However, the application of nanomedicine has achieved little success in clinical trials due to multiple physiological barriers to drug delivery. Circulating cells are expected to improve the physical distribution of drugs and enhance the therapeutic effect by overcoming various biological barriers in collaboration with nano-drug delivery systems owing to excellent biocompatibility, low immunogenicity and a long-circulation time and strong binding specificity. Nonetheless, we have noticed some limitations in implementing tthe strategy. In this article, we intend to introduce the latest progress in research and application of circulating cell-mediated nano-drug delivery systems, describe the main cell-related drug delivery modes, sum up the relevant points of the transport systems in the process of loading, transport and release, and lastly discuss the advantages, challenges and future development trends in cell-mediated nano-drug delivery.
Collapse
Affiliation(s)
- Wuhao Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| | | | | | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China.,Shanghai Wei Er Lab, Shanghai, China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| |
Collapse
|
43
|
Lin Z, Aryal S, Cheng YH, Gesquiere AJ. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS NANO 2022; 16:19722-19754. [PMID: 36520546 PMCID: PMC9798869 DOI: 10.1021/acsnano.2c07312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 05/15/2023]
Abstract
Nanomaterials (NMs) have been increasingly used in a number of areas, including consumer products and nanomedicine. Target tissue dosimetry is important in the evaluation of safety, efficacy, and potential toxicity of NMs. Current evaluation of NM efficacy and safety involves the time-consuming collection of pharmacokinetic and toxicity data in animals and is usually completed one material at a time. This traditional approach no longer meets the demand of the explosive growth of NM-based products. There is an emerging need to develop methods that can help design safe and effective NMs in an efficient manner. In this review article, we critically evaluate existing studies on in vivo pharmacokinetic properties, in vitro cellular uptake and release and kinetic modeling, and whole-body physiologically based pharmacokinetic (PBPK) modeling studies of different NMs. Methods on how to simulate in vitro cellular uptake and release kinetics and how to extrapolate cellular and tissue dosimetry of NMs from in vitro to in vivo via PBPK modeling are discussed. We also share our perspectives on the current challenges and future directions of in vivo pharmacokinetic studies, in vitro cellular uptake and kinetic modeling, and whole-body PBPK modeling studies for NMs. Finally, we propose a nanomaterial in vitro to in vivo extrapolation via physiologically based pharmacokinetic modeling (Nano-IVIVE-PBPK) framework for high-throughput screening of target cellular and tissue dosimetry as well as potential toxicity of different NMs in order to meet the demand of efficient evaluation of the safety, efficacy, and potential toxicity of a rapidly increasing number of NM-based products.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32610, United States
- Center
for
Environmental and Human Toxicology, University
of Florida, Gainesville, Florida 32608, United
States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Andre J. Gesquiere
- Department
of Chemistry, College of Sciences, University
of Central Florida, Orlando, Florida 32816, United States
- NanoScience
Technology Center, University of Central
Florida, Orlando, Florida 32826, United States
- Department
of Materials Science and Engineering, College of Engineering,, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
44
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
45
|
Xiao K, Ma R, Wu CX. Force-induced wrapping phase transition in activated cellular uptake. Phys Rev E 2022; 106:044411. [PMID: 36397463 DOI: 10.1103/physreve.106.044411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Intracellular pathogens, including all viruses and many bacteria, enter a host cell through either passive endocytosis or active self-propulsion. Though the cellular uptake of passive particles via endocytic process has been studied extensively, little work has been done on the active entry of self-propelled pathogens, such as Listeria monocytogenes. Here, we present a theoretical model to investigate the adhesive wrapping of a self-propelled particle by a plasma membrane, and find a type of first-order wrapping transition from a small partial wrapping state to a large partial wrapping state triggered by the active force. The phase diagram displays more complex behaviors compared with the passive wrapping mediated merely by adhesion. We also find that a tubular protrusion can be formed if the active force exceeds a force barrier. These results may provide a useful guidance to the study of activity-driven cellular entry of active particles into cells.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
46
|
Wu JLY, Stordy BP, Nguyen LNM, Deutschman CP, Chan WCW. A proposed mathematical description of in vivo nanoparticle delivery. Adv Drug Deliv Rev 2022; 189:114520. [PMID: 36041671 DOI: 10.1016/j.addr.2022.114520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are promising vehicles for the precise delivery of molecular therapies to diseased sites. Nanoparticles interact with a series of tissues and cells before they reach their target, which causes less than 1% of administered nanoparticles to be delivered to these target sites. Researchers have been studying the nano-bio interactions that mediate nanoparticle delivery to develop guidelines for designing nanoparticles with enhanced delivery properties. In this review article, we describe these nano-bio interactions with a series of mathematical equations that quantitatively define the nanoparticle delivery process. We employ a compartment model framework to describe delivery where nanoparticles are either (1) at the site of administration, (2) in the vicinity of target cells, (3) internalized by the target cells, or (4) sequestered away in off-target sites or eliminated from the body. This framework explains how different biological processes govern nanoparticle transport between these compartments, and the role of intercompartmental transport rates in determining the final nanoparticle delivery efficiency. Our framework provides guiding principles to engineer nanoparticles for improved targeted delivery.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin P Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Luan N M Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Christopher P Deutschman
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
47
|
Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art. Biomaterials 2022; 291:121879. [DOI: 10.1016/j.biomaterials.2022.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
48
|
Chen X, Zhang S, Li J, Huang X, Ye H, Qiao X, Xue Z, Yang W, Wang T. Influence of Elasticity of Hydrogel Nanoparticles on Their Tumor Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202644. [PMID: 35981891 PMCID: PMC9561785 DOI: 10.1002/advs.202202644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Indexed: 05/28/2023]
Abstract
Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.
Collapse
Affiliation(s)
- Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Department of OrthopedicsChinese PLA General HospitalBeijing100853P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xiaobin Huang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
49
|
Gurnani P, Sanchez-Cano C, Xandri-Monje H, Zhang J, Ellacott SH, Mansfield EDH, Hartlieb M, Dallmann R, Perrier S. Probing the Effect of Rigidity on the Cellular Uptake of Core-Shell Nanoparticles: Stiffness Effects are Size Dependent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203070. [PMID: 35986441 DOI: 10.1002/smll.202203070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles are well established vectors for the delivery of a wide range of biomedically relevant cargoes. Numerous studies have investigated the impact of size, shape, charge, and surface functionality of nanoparticles on mammalian cellular uptake. Rigidity has been studied to a far lesser extent, and its effects are still unclear. Here, the importance of this property, and its interplay with particle size, is systematically explored using a library of core-shell spherical PEGylated nanoparticles synthesized by RAFT emulsion polymerization. Rigidity of these particles is controlled by altering the intrinsic glass transition temperature of their constituting polymers. Three polymeric core rigidities are tested: hard, medium, and soft using two particle sizes, 50 and 100 nm diameters. Cellular uptake studies indicate that softer particles are taken up faster and threefold more than harder nanoparticles with the larger 100 nm particles. In addition, the study indicates major differences in the cellular uptake pathway, with harder particles being internalized through clathrin- and caveolae-mediated endocytosis as well as macropinocytosis, while softer particles are taken up bycaveolae- and non-receptormediated endocytosis. However, 50 nm derivatives do not show any appreciable differences in uptake efficiency, suggesting that rigidity as a parameter in the biological regime may be size dependent.
Collapse
Affiliation(s)
- Pratik Gurnani
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Carlos Sanchez-Cano
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Helena Xandri-Monje
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Junliang Zhang
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sean H Ellacott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Edward D H Mansfield
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Matthias Hartlieb
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Robert Dallmann
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Cancer Research Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Cancer Research Centre, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
50
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|