1
|
Li Z, Xu E, Zhang Y, Du C, Geng Y, Zhu H, Zhang R, Ma C, Zhang D. Deciphering spatiotemporal molecular pattern of traumatic brain injury by resveratrol-engineered two-dimensional-material-based field-effect-transistor biopatch. Biosens Bioelectron 2025; 279:117360. [PMID: 40158492 DOI: 10.1016/j.bios.2025.117360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/15/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Traumatic Brain Injury (TBI) is a severe neurological disorder with an incomplete understanding of its underlying mechanisms, primarily due to the lack of effective strategy for in situ spatiotemporal analysis. Biomarkers associated with TBI, such as glial fibrillary acidic protein (GFAP), are typically detected in vitro rather than in situ, with a notable absence of spatiotemporal dynamics analysis. Herein, we developed a resveratrol-functionalized silver nanowires-doped MXene-based field-effect transistor biopatch (Res-Ag-MFETs) for in-situ spatiotemporal GFAP analysis, aiming to elucidate the TBI's biomolecular mechanisms. We employed silver nanowires (AgNWs)-doped two-dimensional MXene as the FET's semiconductor and validated the favorable capability of MXene@AgNWs via morphological, elemental characterization, and DFT simulations. Res-Ag-MFETs demonstrated a favorable capability to suppress neuronal damage and inflammation, as evidenced by histological staining and bioactivity tests. Additionally, Res-Ag-MFETs demonstrated remarkable reproducibility (RSD = 2.12%), stability, and sensitivity for GFAP quantification, achieving a detection limit as low as 0.47 pg/mL. Ultimately, Res-Ag-MFETs enabled efficient in-situ spatiotemporal analysis of GFAP in a Sprague Dawley (SD) rat with TBI, revealing a progressive diffusion of GFAP from the centre to the periphery over time. This advancement provides a novel platform for spatiotemporal dynamics analysis of biochemical markers in brain disorders, potentially laying the groundwork for further exploration of underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Enhong Xu
- Department of Otolaryngology, Naval Medical Center of PLA, Shanghai, 200053, China.
| | - Yelei Zhang
- Department of Neurosurgery, Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 210009, China
| | - Chaonan Du
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuanming Geng
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Haitao Zhu
- Department of Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, 200062, China.
| | - Ru Zhang
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Danfeng Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Du Nguyen D, Shuklin F, Barulina E, Albitskaya H, Novikov S, Chernov AI, Kim I, Barulin A. Recent advances in dynamic single-molecule analysis platforms for diagnostics: Advantages over bulk assays and miniaturization approaches. Biosens Bioelectron 2025; 278:117361. [PMID: 40117897 DOI: 10.1016/j.bios.2025.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Single-molecule science is a unique technique for unraveling molecular biophysical processes. Sensitivity to single molecules provides the capacity for the early diagnosis of low biomarker amounts. Furthermore, the miniaturization of instruments for portable diagnostic tools toward point-of-care testing (POCT) is a crucial development in this field. Herein, we discuss recent developments in single-molecule sensing platforms and their advantages for diagnostics over bulk measurements including molecular size measurements, interaction dynamics, and fast biomarker sensing and sequencing at low concentrations. We highlight the capabilities of dynamic optical and electrical sensing platforms for single-biomolecule and single-vesicle monitoring associated with neurodegenerative disorders, viral diseases, cancers, and more. Current approaches to instrument miniaturization have brought technology closer to portable diagnostics settings via smartphone-based devices, multifunctional portable microscopes, handheld electrical circuit devices, and remote single-molecule assays. Finally, we provide an overview of the clinical applications of single-molecule sensors in POCT assays. Altogether, single-molecule analyses platforms exhibit significant potential for the development of novel portable healthcare devices.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Fedor Shuklin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Elena Barulina
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia; Russian Quantum Center, Moscow, 121205, Russia
| | - Hristina Albitskaya
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Sergey Novikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Alexander I Chernov
- Russian Quantum Center, Moscow, 121205, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Aleksandr Barulin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia.
| |
Collapse
|
3
|
Macchia E, Bollella P, Torsi L. Bioelectronic Large-Area Transistors for High-Performance Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:407-425. [PMID: 40009741 DOI: 10.1146/annurev-anchem-061522-034729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bioelectronics, originating from Galvani's eighteenth-century experiments, blends biology, medicine, and electronics to create devices that can be closely connected to biological systems. This review focuses on bioelectronic large-area field-effect transistor (FET) sensing devices, emphasizing their sensitivity, specificity, and reliability. The role of analytical chemistry in optimizing performance-level control is pivotal, and the review discusses key performance metrics, including limit of identification (LOI), reliability and selectivity. The assessment of the LOI level is addressed using examples of FET-based bioelectronic sensors capable of detecting concentrations at least in the picomolar range. Examples of sensors capable of detecting concentrations in the tens of zeptomolar range are also provided, demonstrating that a single molecule in 0.1 mL can be reliably detected. Working at the LOI also minimizes random errors, which can be as low as 1%. The review also explores the use of molecularly imprinted polymers for highly selective FET bioelectronic detections, noting their sustainability and robustness in comparison to natural antibodies.
Collapse
Affiliation(s)
- Eleonora Macchia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Bollella
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| | - Luisa Torsi
- Centre for Colloid and Surface Science, University of Bari Aldo Moro, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy;
| |
Collapse
|
4
|
Yu J, Zhou R, Liu S, Zheng J, Yan H, Su S, Chai N, Segal E, Jiang C, Guo K, Li CZ. Electrochemical Biosensors for the Detection of Exosomal microRNA Biomarkers for Early Diagnosis of Neurodegenerative Diseases. Anal Chem 2025; 97:5355-5371. [PMID: 40057850 PMCID: PMC11923972 DOI: 10.1021/acs.analchem.4c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Early and precise diagnosis of neurodegenerative disorders like Alzheimer's (AD) and Parkinson's (PD) is crucial for slowing their progression and enhancing patient outcomes. Exosomal microRNAs (miRNAs) are emerging as promising biomarkers due to their ability to reflect the diseases' pathology, yet their low abundance poses significant detection hurdles. This review article delves into the burgeoning field of electrochemical biosensors, designed for the precise detection of exosomal miRNA biomarkers. Electrochemical biosensors offer a compelling solution, combining the sensitivity required to detect low-abundance biomarkers with the specificity needed to discern miRNA profiles distinctive to neural pathological states. We explore the operational principles of these biosensors, including the electrochemical transduction mechanisms that facilitate miRNA detection. The review also summarizes advancements in nanotechnology, signal enhancement, bioreceptor anchoring, and microfluidic integration that improve sensor accuracy. The evidence of their use in neurodegenerative disease diagnosis is analyzed, focusing on the clinical impact, diagnostic precision, and obstacles faced in practical applications. Their potential integration into point-of-care testing and regulatory considerations for their market entry are discussed. Looking toward the future, the article highlights forthcoming innovations that might revolutionize early diagnostic processes. Electrochemical biosensors, with their impressive sensitivity, specificity, and point-of-care compatibility, are on track to become instrumental in the early diagnosis of neurodegenerative diseases, possibly transforming patient care and prognosis.
Collapse
Affiliation(s)
- Jiacheng Yu
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Runzhi Zhou
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Shan Liu
- Sichuan
Provincial Key Laboratory for Human Disease Gene Study, Department
of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan
Provincial People’s Hospital, University
of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jintao Zheng
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Haoyang Yan
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Song Su
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ningli Chai
- Department
of Gastroenterology, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Ester Segal
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
| | - Cheng Jiang
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| | - Keying Guo
- Biotechnology
and Food Engineering, Guangdong Technion-Israel
Institute of Technology (GTIIT), Shantou 515063, China
- Faculty
of Biotechnology and Food Engineering, Technion-Israel
Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong
Provincial Key Laboratory of Materials and Technologies for Energy
Conversion, Shantou 515063, China
- Monash Institute
of Pharmaceutical Sciences (MIPS), Monash
University, Parkville VIC 3052, Australia
| | - Chen-zhong Li
- School
of Medicine, The Chinese University of Hong
Kong Shenzhen, Shenzhen 518172, China
| |
Collapse
|
5
|
Di Franco C, Macchia E, Catacchio M, Caputo M, Scandurra C, Sarcina L, Bollella P, Tricase A, Innocenti M, Funari R, Piscitelli M, Scamarcio G, Torsi L. Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412347. [PMID: 39513396 PMCID: PMC11714235 DOI: 10.1002/advs.202412347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 11/15/2024]
Abstract
The electric dipoles of proteins in a biolayer determine their dielectric properties through the polarization density P. Hence, its reproducibility is crucial for applications, particularly in bioelectronics. Biolayers encompassing capturing antibodies covalently bound at a biosensing interface are generally preferred for their assumed higher stability. However, surface physisorption is shown to offer advantages like easily scalable fabrication processes and high stability. The present study investigates the effects of electric-field (EF)-cycling of anti-Immunoglobulin M (anti-IgM) biolayers physisorbed on Au. The impact of EF-cycling on the dielectric, optical, and mechanical properties of anti-IgM biolayer is investigated. A reduction of the dispersion (standard deviation over a set of 31 samples) of the measured P values is observed, while the set median stays almost constant. Hence, physisorption combined with EF cycling, results in a biolayer with highly reproducible bioelectronic properties. Additionally, the study provides important insights into the mechanisms of dielectric rearrangement of dipole moments in capturing biolayers after EF-cycling. Notably, EF-cycling acts as an annealing process, driving the proteins in the biolayer into a statistically more probable and stable conformational state. Understanding these phenomena enhances the knowledge of the properties of physisorbed biolayers and can inform design strategies for bioelectronic devices.
Collapse
Affiliation(s)
- Cinzia Di Franco
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Michele Catacchio
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Angelo Tricase
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
- Centre for Colloid and Surface Science at Università degli Studi di Bari Aldo MoroBari20125Italy
| | - Massimo Innocenti
- Dipartimento di ChimicaUniversità degli Studi di FirenzeINSTM Consortium ℅ Dip. ChimicaVia della Lastruccia 3–13Sesto FiorentinoI‐50019FlorenceItaly
| | - Riccardo Funari
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- Istituto di Intelligenza MeccanicaScuola Superiore Sant'Anna, Via G. Moruzzi, 1Pisa56124Italy
| | - Matteo Piscitelli
- Institituto di Fotonica e Nanotecnologia (IFN) , Consiglio Nazionale delle Ricerche (CNR)CNR IFNBari70126Italy
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
- CNR‐ Istituto Nanoscienze c/o Scuola Normale SuperiorePisa56127Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
6
|
Macchia E, Björkström K, Tewari A, Eskonen V, Luukkonen A, Ghafari AM, Sarcina L, Caputo M, Tong-Ochoa N, Kopra K, Pettersson F, Gounani Z, Torsi L, Härmä H, Österbacka R. Label-free electronic detection of peptide post-translational modification with functional enzyme-driven assay at the physical limit. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101874. [PMID: 39906902 PMCID: PMC11791991 DOI: 10.1016/j.xcrp.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 02/06/2025]
Abstract
High-performance, ultra-sensitive, and universal protein post-translational modification (PTM) and protein-protein interaction (PPI) technologies are eagerly pursued in the pharmaceutical industry and bioanalytical research. Novel PTM and PPI detection methods outperform traditional assays in scope and scalability, enabling the collection of information on multiple biochemical targets. Detecting peptides and proteins at the single-molecule level is done by utilizing nanosized transducing elements and assaying solutions at very high analyte concentrations, in the nanomolar range or higher. Here, a proof of principle of a biosensing platform for single-molecule PTM detection is demonstrated. This platform is based on the single molecule with a large transistor (SiMoT) technology, encompassing a millimeter-sized electrolyte-gated organic field-effect transistor, for label-free PTM detection with a zeptomolar limit of detection. Sensitivity is improved 106- to 1012-fold compared with mass-spectrometry and luminescence-based assay methods. A functional assay for detecting enzyme-driven peptide PTMs in the zeptomolar concentration range is demonstrated using multivariate data processing, opening the way for future applications to monitor PTMs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Kim Björkström
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amit Tewari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Ville Eskonen
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Axel Luukkonen
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Amir Mohammad Ghafari
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mariapia Caputo
- Department of Pharmaceutical Sciences, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Natalia Tong-Ochoa
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Kari Kopra
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Fredrik Pettersson
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zahra Gounani
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500 Turku, Finland
| | - Ronald Österbacka
- Physics and Center for Functional Materials, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
7
|
Scandurra C, Björkström K, Caputo M, Sarcina L, Genco E, Modena F, Viola FA, Brunetti C, Kovács‐Vajna ZM, Franco CD, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Wheeler M, Caironi M, Cantatore E, Torricelli F, Esposito I, Macchia E, Torsi L. Analysis of Clinical Samples of Pancreatic Cyst's Lesions with A Multi-Analyte Bioelectronic Simot Array Benchmarked Against Ultrasensitive Chemiluminescent Immunoassay. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308141. [PMID: 38234100 PMCID: PMC11251558 DOI: 10.1002/advs.202308141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Indexed: 01/19/2024]
Abstract
Pancreatic cancer, ranking as the third factor in cancer-related deaths, necessitates enhanced diagnostic measures through early detection. In response, SiMoT-Single-molecule with a large Transistor multiplexing array, achieving a Technology Readiness Level of 5, is proposed for a timely identification of pancreatic cancer precursor cysts and is benchmarked against the commercially available chemiluminescent immunoassay SIMOA (Single molecule array) SP-X System. A cohort of 39 samples, comprising 33 cyst fluids and 6 blood plasma specimens, undergoes detailed examination with both technologies. The SiMoT array targets oncoproteins MUC1 and CD55, and oncogene KRAS, while the SIMOA SP-X planar technology exclusively focuses on MUC1 and CD55. Employing Principal Component Analysis (PCA) for multivariate data processing, the SiMoT array demonstrates effective discrimination of malignant/pre-invasive high-grade or potentially malignant low-grade pancreatic cysts from benign non-mucinous cysts. Conversely, PCA analysis applied to SIMOA assay reveals less effective differentiation ability among the three cyst classes. Notably, SiMoT unique capability of concurrently analyzing protein and genetic markers with the threshold of one single molecule in 0.1 mL positions it as a comprehensive and reliable diagnostic tool. The electronic response generated by the SiMoT array facilitates direct digital data communication, suggesting potential applications in the development of field-deployable liquid biopsy.
Collapse
Affiliation(s)
- Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Kim Björkström
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | - Mariapia Caputo
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| | - Enrico Genco
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Francesco Modena
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
- Present address:
Dipartimento di Ingegneria Elettrica ed ElettronicaUniversità degli Studi di CagliariVia Marengo 3Cagliari09123Italy
| | | | - Zsolt M. Kovács‐Vajna
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | | | - Lena Haeberle
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Piero Larizza
- Masmec Biomed – Masmec SpA divisionModugno (BA)70026Italy
| | | | - Ronald Österbacka
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBari70125Italy
| | | | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milan20134Italy
| | - Eugenio Cantatore
- Department of Electrical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di BresciaBrescia25123Italy
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of Düsseldorf40225DuesseldorfGermany
| | - Eleonora Macchia
- The Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- Dipartimento di Farmacia‐Scienze del FarmacoUniversità degli Studi di Bari “Aldo Moro”Bari70125Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface ScienceUniversità degli Studi di Bari Aldo MoroBari20125Italy
| |
Collapse
|
8
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
9
|
Macchia E, Torricelli F, Caputo M, Sarcina L, Scandurra C, Bollella P, Catacchio M, Piscitelli M, Di Franco C, Scamarcio G, Torsi L. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309705. [PMID: 38108547 DOI: 10.1002/adma.202309705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Screening asymptomatic organisms (humans, animals, plants) with a high-diagnostic accuracy using point-of-care-testing (POCT) technologies, though still visionary holds great potential. Convenient surveillance requires easy-to-use, cost-effective, ultra-portable but highly reliable, in-vitro-diagnostic devices that are ready for use wherever they are needed. Currently, there are not yet such devices available on the market, but there are a couple more promising technologies developed at readiness-level 5: the Clustered-Regularly-Interspaced-Short-Palindromic-Repeats (CRISPR) lateral-flow-strip tests and the Single-Molecule-with-a-large-Transistor (SiMoT) bioelectronic palmar devices. They both hold key features delineated by the World-Health-Organization for POCT systems and an occurrence of false-positive and false-negative errors <1-5% resulting in diagnostic-selectivity and sensitivity >95-99%, while limit-of-detections are of few markers. CRISPR-strip is a molecular assay that, can detect down to few copies of DNA/RNA markers in blood while SiMoT immunometric and molecular test can detect down to a single oligonucleotide, protein marker, or pathogens in 0.1mL of blood, saliva, and olive-sap. These technologies can prospectively enable the systematic and reliable surveillance of asymptomatic ones prior to worsening/proliferation of illnesses allowing for timely diagnosis and swift prognosis. This could establish a proactive healthcare ecosystem that results in effective treatments for all living organisms generating diffuse and well-being at efficient costs.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Paolo Bollella
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Michele Catacchio
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Matteo Piscitelli
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | | | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
- CNR IFN, Bari, 70126, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
10
|
Kaushal JB, Raut P, Kumar S. Organic Electronics in Biosensing: A Promising Frontier for Medical and Environmental Applications. BIOSENSORS 2023; 13:976. [PMID: 37998151 PMCID: PMC10669243 DOI: 10.3390/bios13110976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
The promising field of organic electronics has ushered in a new era of biosensing technology, thus offering a promising frontier for applications in both medical diagnostics and environmental monitoring. This review paper provides a comprehensive overview of organic electronics' remarkable progress and potential in biosensing applications. It explores the multifaceted aspects of organic materials and devices, thereby highlighting their unique advantages, such as flexibility, biocompatibility, and low-cost fabrication. The paper delves into the diverse range of biosensors enabled by organic electronics, including electrochemical, optical, piezoelectric, and thermal sensors, thus showcasing their versatility in detecting biomolecules, pathogens, and environmental pollutants. Furthermore, integrating organic biosensors into wearable devices and the Internet of Things (IoT) ecosystem is discussed, wherein they offer real-time, remote, and personalized monitoring solutions. The review also addresses the current challenges and future prospects of organic biosensing, thus emphasizing the potential for breakthroughs in personalized medicine, environmental sustainability, and the advancement of human health and well-being.
Collapse
Affiliation(s)
- Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (J.B.K.); (P.R.)
| | - Sanjay Kumar
- Durham School of Architectural Engineering and Construction, Scott Campus, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| |
Collapse
|
11
|
Genco E, Modena F, Sarcina L, Björkström K, Brunetti C, Caironi M, Caputo M, Demartis VM, Di Franco C, Frusconi G, Haeberle L, Larizza P, Mancini MT, Österbacka R, Reeves W, Scamarcio G, Scandurra C, Wheeler M, Cantatore E, Esposito I, Macchia E, Torricelli F, Viola FA, Torsi L. A Single-Molecule Bioelectronic Portable Array for Early Diagnosis of Pancreatic Cancer Precursors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304102. [PMID: 37452695 DOI: 10.1002/adma.202304102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
A cohort of 47 patients is screened for pancreatic cancer precursors with a portable 96-well bioelectronic sensing-array for single-molecule assay in cysts fluid and blood plasma, deployable at point-of-care (POC). Pancreatic cancer precursors are mucinous cysts diagnosed with a sensitivity of at most 80% by state-of-the-art cytopathological molecular analyses (e.g., KRASmut DNA). Adding the simultaneous assay of proteins related to malignant transformation (e.g., MUC1 and CD55) is deemed essential to enhance diagnostic accuracy. The bioelectronic array proposed here, based on single-molecule-with-a-large-transistor (SiMoT) technology, can assay both nucleic acids and proteins at the single-molecule limit-of-identification (LOI) (1% of false-positives and false-negatives). It comprises an enzyme-linked immunosorbent assay (ELISA)-like 8 × 12-array organic-electronics disposable cartridge with an electrolyte-gated organic transistor sensor array, and a reusable reader, integrating a custom Si-IC chip, operating via software installed on a USB-connected smart device. The cartridge is complemented by a 3D-printed sensing gate cover plate. KRASmut , MUC1, and CD55 biomarkers either in plasma or cysts-fluid from 5 to 6 patients at a time, are multiplexed at single-molecule LOI in 1.5 h. The pancreatic cancer precursors are classified via a machine-learning analysis resulting in at least 96% diagnostic-sensitivity and 100% diagnostic-specificity. This preliminary study opens the way to POC liquid-biopsy-based early diagnosis of pancreatic-cancer precursors in plasma.
Collapse
Affiliation(s)
- Enrico Genco
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Francesco Modena
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - Kim Björkström
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Mariapia Caputo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Virginia Maria Demartis
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | | | - Giulia Frusconi
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Lena Haeberle
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Piero Larizza
- Masmec Biomed - Masmec SpA division, Modugno (BA), 70026, Italy
| | | | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
| | | | - Gaetano Scamarcio
- CNR IFN, Bari, 70126, Italy
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| | - May Wheeler
- FlexEnable Technology Ltd, Cambridge, CB4 0FX, UK
| | - Eugenio Cantatore
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, Turku, 20500, Finland
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, 70125, Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, 25123, Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan, 20134, Italy
| | - Luisa Torsi
- Dipartimento di Chimica and Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, Bari, 20125, Italy
| |
Collapse
|
12
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Sun C, Wang T. Organic thin-film transistors and related devices in life and health monitoring. NANO RESEARCH 2023:1-19. [PMID: 37359073 PMCID: PMC10102697 DOI: 10.1007/s12274-023-5606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5606-1.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
14
|
Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem 2023; 415:1607-1625. [PMID: 36719440 PMCID: PMC9888355 DOI: 10.1007/s00216-023-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.
Collapse
Affiliation(s)
- Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | - Xiao Su
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
15
|
Berzina B, Peramune U, Kim S, Saurabh K, Claus EL, Strait ME, Ganapathysubramanian B, Anand RK. Electrokinetic Enrichment and Label-Free Electrochemical Detection of Nucleic Acids by Conduction of Ions along the Surface of Bioconjugated Beads. ACS Sens 2023; 8:1173-1182. [PMID: 36800317 DOI: 10.1021/acssensors.2c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In this paper, we report a method to integrate the electrokinetic pre-enrichment of nucleic acids within a bed of probe-modified microbeads with their label-free electrochemical detection. In this detection scheme, hybridization of locally enriched target nucleic acids to the beads modulates the conduction of ions along the bead surfaces. This is a fundamental advancement in that this mechanism is similar to that observed in nanopore sensors, yet occurs in a bed of microbeads with microscale interstices. In application, this approach has several distinct advantages. First, electrokinetic enrichment requires only a simple DC power supply, and in combination with nonoptical detection, it makes this method amenable to point-of-care applications. Second, the sensor is easy to fabricate and comprises a packed bed of commercially available microbeads, which can be readily modified with a wide range of probe types, thereby making this a versatile platform. Finally, the sensor is highly sensitive (picomolar) despite the modest 100-fold pre-enrichment we employ here by faradaic ion concentration polarization (fICP). Further gains are anticipated under conditions for fICP focusing that are known to yield higher enrichment factors (up to 100,000-fold enrichment). Here, we demonstrate the detection of 3.7 pM single-stranded DNA complementary to the bead-bound oligoprobe, following a 30 min single step of enrichment and hybridization. Our results indicate that a shift in the slope of a current-voltage curve occurs upon hybridization and that this shift is proportional to the logarithm of the concentration of target DNA. Finally, we investigate the proposed mechanism of sensing by developing a numerical simulation that shows an increase in ion flux through the bed of insulating beads, given the changes in surface charge and zeta potential, consistent with our experimental conditions.
Collapse
Affiliation(s)
- Beatrise Berzina
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Umesha Peramune
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Sungu Kim
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Kumar Saurabh
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Echo L Claus
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Madison E Strait
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Baskar Ganapathysubramanian
- The Department of Mechanical Engineering, Iowa State University, 2043 Black Engineering, 2529 Union Drive, Ames, Iowa 50011-2030, United States
| | - Robbyn K Anand
- The Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
16
|
Montero-Jimenez M, Amante FL, Fenoy GE, Scotto J, Azzaroni O, Marmisolle WA. PEDOT-Polyamine-Based Organic Electrochemical Transistors for Monitoring Protein Binding. BIOSENSORS 2023; 13:288. [PMID: 36832054 PMCID: PMC9954629 DOI: 10.3390/bios13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The fabrication of efficient organic electrochemical transistors (OECTs)-based biosensors requires the design of biocompatible interfaces for the immobilization of biorecognition elements, as well as the development of robust channel materials to enable the transduction of the biochemical event into a reliable electrical signal. In this work, PEDOT-polyamine blends are shown as versatile organic films that can act as both highly conducting channels of the transistors and non-denaturing platforms for the construction of the biomolecular architectures that operate as sensing surfaces. To achieve this goal, we synthesized and characterized films of PEDOT and polyallylamine hydrochloride (PAH) and employed them as conducting channels in the construction of OECTs. Next, we studied the response of the obtained devices to protein adsorption, using glucose oxidase (GOx) as a model system, through two different strategies: The direct electrostatic adsorption of GOx on the PEDOT-PAH film and the specific recognition of the protein by a lectin attached to the surface. Firstly, we used surface plasmon resonance to monitor the adsorption of the proteins and the stability of the assemblies on PEDOT-PAH films. Then, we monitored the same processes with the OECT showing the capability of the device to perform the detection of the protein binding process in real time. In addition, the sensing mechanisms enabling the monitoring of the adsorption process with the OECTs for the two strategies are discussed.
Collapse
|
17
|
Parmeggiani M, Ballesio A, Battistoni S, Carcione R, Cocuzza M, D’Angelo P, Erokhin VV, Marasso SL, Rinaldi G, Tarabella G, Vurro D, Pirri CF. Organic Bioelectronics Development in Italy: A Review. MICROMACHINES 2023; 14:460. [PMID: 36838160 PMCID: PMC9966652 DOI: 10.3390/mi14020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions.
Collapse
Affiliation(s)
- Matteo Parmeggiani
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Alberto Ballesio
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Silvia Battistoni
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Rocco Carcione
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Matteo Cocuzza
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Pasquale D’Angelo
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Victor V. Erokhin
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Simone Luigi Marasso
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Giorgia Rinaldi
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
| | - Giuseppe Tarabella
- Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Davide Vurro
- Camlin Italy Srl, Via Budellungo 2, 43124 Parma, Italy
| | - Candido Fabrizio Pirri
- Chilab–Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Via Lungo Piazza d’Armi 6, 10034 Turin, Italy
- Center for Sustainable Future Technologies, Italian Institute of Technology, Via Livorno 60, 10144 Turin, Italy
| |
Collapse
|
18
|
Zhang T, Ren W, Xiao F, Li J, Zu B, Dou X. Engineered olfactory system for in vitro artificial nose. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH, Vakili O, Taheri-Anganeh M, Karima S, Movahedpour A. A review of highly sensitive electrochemical genosensors for microRNA detection: A novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem 2022. [PMID: 36445196 DOI: 10.1002/bab.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.
Collapse
Affiliation(s)
- Mehrnoosh Azimi Sanavi
- Department of Biochemistry and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Mahdavian
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafiseh Dorosti
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Sari, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, Vienna, Austria
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
20
|
Macchia E, Kovács-Vajna ZM, Loconsole D, Sarcina L, Redolfi M, Chironna M, Torricelli F, Torsi L. A handheld intelligent single-molecule binary bioelectronic system for fast and reliable immunometric point-of-care testing. SCIENCE ADVANCES 2022; 8:eabo0881. [PMID: 35857467 PMCID: PMC9258948 DOI: 10.1126/sciadv.abo0881] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular tests are highly reliable and sensitive but lack portability and are not simple to use; conversely, easy-to-use antigenic tests still lack high performance. BioScreen combines single-molecule sensitivity and outstanding reliability with ultraportability and simplicity of use. This digital platform is capable of artificial intelligence-based binary classification at the limit of identification of a single marker/virus in 0.1 ml. The diagnostic sensitivity, specificity, and accuracy reach 99.2% as validated through 240 assays, including a pilot clinical trial. The versatile immunometric system can detect the SARS-CoV-2 virus, spike S1, and immunoglobulin G antigen proteins in saliva, blood serum, and swab. BioScreen has a small footprint comprising a disposable cartridge and a handheld electronic reader connected to a smart device. The sample handling is minimal, and the assay time to result is 21 min. Reliable and sensitive self-testing with an ultraportable and easy-to-use diagnostic system operated directly by a patient holds the potential to revolutionize point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Universit. degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M. Kovács-Vajna
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Daniela Loconsole
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | | | - Maria Chironna
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
| | - Fabrizio Torricelli
- Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
- Corrresponding author. (F.T.); (L.T.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro,” 70125 Bari, Italy
- Corrresponding author. (F.T.); (L.T.)
| |
Collapse
|
21
|
Macchia E, De Caro L, Torricelli F, Franco CD, Mangiatordi GF, Scamarcio G, Torsi L. Why a Diffusing Single-Molecule can be Detected in Few Minutes by a Large Capturing Bioelectronic Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104381. [PMID: 35522000 PMCID: PMC9284160 DOI: 10.1002/advs.202104381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/29/2022] [Indexed: 05/28/2023]
Abstract
Single-molecule detection at a nanometric interface in a femtomolar solution, can take weeks as the encounter rate between the diffusing molecule to be detected and the transducing nanodevice is negligibly small. On the other hand, several experiments prove that macroscopic label-free sensors based on field-effect-transistors, engaging micrometric or millimetric detecting interfaces are capable to assay a single-molecule in a large volume within few minutes. The present work demonstrates why at least a single molecule out of a few diffusing in a 100 µL volume has a high probability to hit a large capturing and detecting electronic interface. To this end, sensing data, measured with an electrolyte-gated FET whose gate is functionalized with 1012 capturing anti-immunoglobulin G, are here provided along with a Brownian diffusion-based modeling. The EG-FET assays solutions down to some tens of zM in concentrations with volumes ranging from 25 µL to 1 mL in which the functionalized gates are incubated for times ranging from 30 s to 20 min. The high level of accordance between the experimental data and a model based on the Einstein's diffusion-theory proves how the single-molecule detection process at large-capturing interfaces is controlled by Brownian diffusion and yet is highly probable and fast.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and EngineeringÅbo Akademi UniversityTurku20500Finland
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
| | - Liberato De Caro
- Institute of CrystallographyNational Research Councilvia Amendola 122/OBari70126Italy
| | - Fabrizio Torricelli
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento Ingegneria dell'InformazioneUniversità degli Studi di Bresciavia Branze 38Brescia25123Italy
| | - Cinzia Di Franco
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro,”Bari70125Italy
- CNRIstituto di Fotonica e NanotecnologieSede di BariBari70125Italy
| | | | - Gaetano Scamarcio
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- CNRIstituto di Fotonica e NanotecnologieSede di BariBari70125Italy
- Dipartimento Interateneo di Fisica “M. Merlin,”Università degli Studi di Bari “Aldo Moro,”Bari70125Italy
| | - Luisa Torsi
- CSGI (Centre for Colloid and Surface Science)Bari70125Italy
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro,”Bari70125Italy
| |
Collapse
|
22
|
Sarcina L, Viola F, Modena F, Picca RA, Bollella P, Di Franco C, Cioffi N, Caironi M, Österbacka R, Esposito I, Scamarcio G, Torsi L, Torricelli F, Macchia E. A large-area organic transistor with 3D-printed sensing gate for noninvasive single-molecule detection of pancreatic mucinous cyst markers. Anal Bioanal Chem 2022; 414:5657-5669. [PMID: 35410389 PMCID: PMC9242948 DOI: 10.1007/s00216-022-04040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Early diagnosis in a premalignant (or pre-invasive) state represents the only chance for cure in neoplastic diseases such as pancreatic-biliary cancer, which are otherwise detected at later stages and can only be treated using palliative approaches, with no hope for a cure. Screening methods for the purpose of secondary prevention are not yet available for these cancers. Current diagnostic methods mostly rely on imaging techniques and conventional cytopathology, but they do not display adequate sensitivity to allow valid early diagnosis. Next-generation sequencing can be used to detect DNA markers down to the physical limit; however, this assay requires labeling and is time-consuming. The additional determination of a protein marker that is a predictor of aggressive behavior is a promising innovative approach, which holds the potential to improve diagnostic accuracy. Moreover, the possibility to detect biomarkers in blood serum offers the advantage of a noninvasive diagnosis. In this study, both the DNA and protein markers of pancreatic mucinous cysts were analyzed in human blood serum down to the single-molecule limit using the SiMoT (single-molecule assay with a large transistor) platform. The SiMoT device proposed herein, which exploits an inkjet-printed organic semiconductor on plastic foil, comprises an innovative 3D-printed sensing gate module, consisting of a truncated cone that protrudes from a plastic substrate and is compatible with standard ELISA wells. This 3D gate concept adds tremendous control over the biosensing system stability, along with minimal consumption of the capturing molecules and body fluid samples. The 3D sensing gate modules were extensively characterized from both a material and electrical perspective, successfully proving their suitability as detection interfaces for biosensing applications. KRAS and MUC1 target molecules were successfully analyzed in diluted human blood serum with the 3D sensing gate functionalized with b-KRAS and anti-MUC1, achieving a limit of detection of 10 zM and 40 zM, respectively. These limits of detection correspond to (1 ± 1) KRAS and (2 ± 1) MUC1 molecules in the 100 μL serum sample volume. This study provides a promising application of the 3D SiMoT platform, potentially facilitating the timely, noninvasive, and reliable identification of pancreatic cancer precursor cysts.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Fabrizio Viola
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
| | - Francesco Modena
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
- Dipartimento di Elettronica, Infomazione e Bioingegneria; Politecnico di Milano, Milano, Italy
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Cinzia Di Franco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
| | - Mario Caironi
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133, Milan, Italy
| | - Ronald Österbacka
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital of Düsseldorf, 40225, Duesseldorf, Germany
| | - Gaetano Scamarcio
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125, Bari, Italy
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123, Brescia, Italy.
| | - Eleonora Macchia
- CSGI (Centre for Colloid and Surface Science), Via E. Orabona 4, 70125, Bari, Italy.
- The Faculty of Science and Engineering, Åbo Akademi University, Porthaninkatu 3, FI-20500, Turku, Finland.
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
23
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
24
|
Poimanova EY, Shaposhnik PA, Anisimov DS, Zavyalova EG, Trul AA, Skorotetcky MS, Borshchev OV, Vinnitskiy DZ, Polinskaya MS, Krylov VB, Nifantiev NE, Agina EV, Ponomarenko SA. Biorecognition Layer Based On Biotin-Containing [1]Benzothieno[3,2- b][1]benzothiophene Derivative for Biosensing by Electrolyte-Gated Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16462-16476. [PMID: 35357127 DOI: 10.1021/acsami.1c24109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Requirements of speed and simplicity in testing stimulate the development of modern biosensors. Electrolyte-gated organic field-effect transistors (EGOFETs) are a promising platform for ultrasensitive, fast, and reliable detection of biological molecules for low-cost, point-of-care bioelectronic sensing. Biosensitivity of the EGOFET devices can be achieved by modification with receptors of one of the electronic active interfaces of the transistor gate or organic semiconductor surface. Functionalization of the latter gives the advantage in the creation of a planar architecture and compact devices for lab-on-chip design. Herein, we propose a universal, fast, and simple technique based on doctor blading and Langmuir-Schaefer methods for functionalization of the semiconducting surface of C8-BTBT-C8, allowing the fabrication of a large-scale biorecognition layer based on the novel functional derivative of BTBT-containing biotin fragments as a foundation for further biomodification. The fabricated devices are very efficient and operate stably in phosphate-buffered saline solution with high reproducibility of electrical properties in the EGOFET regime. The development of biorecognition properties of the proposed biolayer is based on the streptavidin-biotin interactions between the consecutive layers and can be used for a wide variety of receptors. As a proof-of-concept, we demonstrate the specific response of the BTBT-based biorecognition layer in EGOFETs to influenza A virus (H7N1 strain). The elaborated approach to biorecognition layer formation is appropriate but not limited to aptamer-based receptor molecules and can be further applied for fabricating several biosensors for various analytes on one substrate and paves the way for "electronic tongue" creation.
Collapse
Affiliation(s)
- Elena Yu Poimanova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Polina A Shaposhnik
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| | - Daniil S Anisimov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Elena G Zavyalova
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| | - Askold A Trul
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Maxim S Skorotetcky
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Oleg V Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Dmitry Z Vinnitskiy
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Marina S Polinskaya
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Vadim B Krylov
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninskiy pr. 47, 119991 Moscow, Russian Federation
| | - Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russian Federation
| |
Collapse
|
25
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
26
|
Electrically Switchable Film Structure of Conjugated Polymer Composites. MATERIALS 2022; 15:ma15062219. [PMID: 35329669 PMCID: PMC8951423 DOI: 10.3390/ma15062219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Domains rich in different blend components phase-separate during deposition, creating a film morphology that determines the performance of active layers in organic electronics. However, morphological control either relies on additional fabrication steps or is limited to a small region where an external interaction is applied. Here, we show that different semiconductor-insulator polymer composites can be rapidly dip-coated with the film structure electrically switched between distinct morphologies during deposition guided by the meniscus formed between the stationary barrier and horizontally drawn solid substrate. Reversible and repeatable changes between the morphologies used in devices, e.g., lateral morphologies and stratified layers of semiconductors and insulators, or between phase-inverted droplet-like structures are manifested only for one polarity of the voltage applied across the meniscus as a rectangular pulse. This phenomenon points to a novel mechanism, related to voltage-induced doping and the doping-dependent solubility of the conjugated polymer, equivalent to an increased semiconductor content that controls the composite morphologies. This is effective only for the positively polarized substrate rather than the barrier, as the former entrains the nearby lower part of the coating solution that forms the final composite film. The mechanism, applied to the pristine semiconductor solution, results in an increased semiconductor deposition and 40-times higher film conductance.
Collapse
|
27
|
Sarcina L, Macchia E, Tricase A, Scandurra C, Imbriano A, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based field effect transistor: State‐of‐the‐art and future perspectives. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
28
|
Tricase A, Imbriano A, Macchia E, Sarcina L, Scandurra C, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based amperometric wide field biosensors: Is single‐molecule detection possible? ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
29
|
Macchia E, Torricelli F, Bollella P, Sarcina L, Tricase A, Di Franco C, Österbacka R, Kovács-Vajna ZM, Scamarcio G, Torsi L. Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection. Chem Rev 2022; 122:4636-4699. [PMID: 35077645 DOI: 10.1021/acs.chemrev.1c00290] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.
Collapse
Affiliation(s)
- Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Cinzia Di Franco
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy
| | - Ronald Österbacka
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Zsolt M Kovács-Vajna
- Dipartimento Ingegneria dell'Informazione, Università degli Studi di Brescia, 25123 Brescia, Italy
| | - Gaetano Scamarcio
- CNR, Istituto di Fotonica e Nanotecnologie, Sede di Bari, 70125 Bari, Italy.,Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Luisa Torsi
- Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Centre for Colloid and Surface Science - Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
30
|
Affiliation(s)
- Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou P. R. China
| |
Collapse
|
31
|
|
32
|
Song Y, Wagner J, Katz HE. The behavior of carboxylated and hydroxylated polythiophene as bioreceptor layer: Anti‐human IgG and human IgG interaction detection based on organic electrochemical transistors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yunjia Song
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Justine Wagner
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
33
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
34
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
35
|
Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic bioelectronics involves the connection of organic semiconductors with living organisms, organs, tissues, cells, membranes, proteins, and even small molecules. In recent years, this field has received great interest due to the development of all kinds of devices architectures, enabling the detection of several relevant biomarkers, the stimulation and sensing of cells and tissues, and the recording of electrophysiological signals, among others. In this review, we discuss recent functionalization approaches for PEDOT and PEDOT:PSS films with the aim of integrating biomolecules for the fabrication of bioelectronics platforms. As the choice of the strategy is determined by the conducting polymer synthesis method, initially PEDOT and PEDOT:PSS films preparation methods are presented. Later, a wide variety of PEDOT functionalization approaches are discussed, together with bioconjugation techniques to develop efficient organic-biological interfaces. Finally, and by making use of these approaches, the fabrication of different platforms towards organic bioelectronics devices is reviewed.
Collapse
|
36
|
Surface Plasmon Resonance Assay for Label‐Free and Selective Detection of
Xylella Fastidiosa. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
37
|
Molazemhosseini A, Viola FA, Berger FJ, Zorn NF, Zaumseil J, Caironi M. A Rapidly Stabilizing Water-Gated Field-Effect Transistor Based on Printed Single-Walled Carbon Nanotubes for Biosensing Applications. ACS APPLIED ELECTRONIC MATERIALS 2021; 3:3106-3113. [PMID: 34485915 PMCID: PMC8411763 DOI: 10.1021/acsaelm.1c00332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Biosensors are expected to revolutionize disease management through provision of low-cost diagnostic platforms for molecular and pathogenic detection with high sensitivity and short response time. In this context, there has been an ever-increasing interest in using electrolyte-gated field-effect transistors (EG-FETs) for biosensing applications owing to their expanding potential of being employed for label-free detection of a broad range of biomarkers with high selectivity and sensitivity while operating at sub-volt working potentials. Although organic semiconductors have been widely utilized as the channel in EG-FETs, primarily due to their compatibility with cost-effective low-temperature solution-processing fabrication techniques, alternative carbon-based platforms have the potential to provide similar advantages with improved electronic performances. Here, we propose the use of inkjet-printed polymer-wrapped monochiral single-walled carbon nanotubes (s-SWCNTs) for the channel of EG-FETs in an aqueous environment. In particular, we show that our EG-CNTFETs require only an hour of stabilization before producing a highly stable response suitable for biosensing, with a drastic time reduction with respect to the most exploited organic semiconductor for biosensors. As a proof-of-principle, we successfully employed our water-gated device to detect the well-known biotin-streptavidin binding event.
Collapse
Affiliation(s)
- Alireza Molazemhosseini
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Fabrizio Antonio Viola
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Felix J. Berger
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universitaẗ Heidelberg, D-69120 Heidelberg, Germany
| | - Mario Caironi
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| |
Collapse
|
38
|
Selvaraj M, Greco P, Sensi M, Saygin GD, Bellassai N, D'Agata R, Spoto G, Biscarini F. Label free detection of miRNA-21 with electrolyte gated organic field effect transistors (EGOFETs). Biosens Bioelectron 2021; 182:113144. [PMID: 33799026 DOI: 10.1016/j.bios.2021.113144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
We report a dual gate/common channel organic transistor architecture designed for quantifying the concentration of one of the strands of miRNA-21 in solution. The device allows one to measure the differential response between two gate electrodes, viz. one sensing and one reference, both immersed in the electrolyte above the transistor channel. Hybridization with oligonucleotide in the picomolar regime induces a sizable reduction of the current flowing through the transistor channel. The device signal is reported at various gate voltages, showing maximum sensitivity in the sublinear regime, with a limit of detection as low as 35 pM. We describe the dose curves with an analytical function derived from a thermodynamic model of the reaction equilibria relevant in our experiment and device configuration, and we show that the apparent Hill dependence on analyte concentration, whose exponent lies between 0.5 and 1, emerges from the interplay of the different equilibria. The binding free energy characteristic of the hybridization on the device surface is found to be approximately 20% lower with respect to the reaction in solution, hinting to partially inhibiting effect of the surface and presence of competing reactions. Impedance spectroscopy and surface plasmon resonance (SPR) performed on the same oligonucleotide pair were correlated to the electronic current transduced by the EGOFET, and confirmed the selectivity of the biorecognition probe covalently bound on the gold surface.
Collapse
Affiliation(s)
- Meenu Selvaraj
- Scriba Nanotecnologie s.r.l., Via di Corticella 183/8, I-40128, Bologna, Italy; Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Pierpaolo Greco
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy.
| | - Matteo Sensi
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
| | - Gulseren Deniz Saygin
- Scriba Nanotecnologie s.r.l., Via di Corticella 183/8, I-40128, Bologna, Italy; Department of Physics, Informatics and Mathematics, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy
| | - Noemi Bellassai
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Giuseppe Spoto
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, I-95125, Catania, Italy
| | - Fabio Biscarini
- Department of Life Sciences, Università, Degli Studi di Modena e Reggio Emilia, Via Campi 103, I-41125, Modena, Italy; Center for Translational Neurophysiology - Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, I-44100, Ferrara, Italy
| |
Collapse
|
39
|
Abstract
The ultimate goal of single-cell analyses is to obtain the biomolecular content for each cell in unicellular and multicellular organisms at different points of their life cycle under variable environmental conditions. These require an assessment of: a) the total number of cells, b) the total number of cell types, and c) the complete and quantitative single molecular detection and identification for all classes of biopolymers, and organic and inorganic compounds, in each individual cell. For proteins, glycans, lipids, and metabolites, whose sequences cannot be amplified by copying as in the case of nucleic acids, the detection limit by mass spectrometry is about 105 molecules. Therefore, proteomic, glycomic, lipidomic, and metabolomic analyses do not yet permit the assembly of the complete single-cell omes. The construction of novel nanoelectrophoretic arrays and nano in microarrays on a single 1-cm-diameter chip has shown proof of concept for a high throughput platform for parallel processing of thousands of individual cells. Combined with dynamic secondary ion mass spectrometry, with 3D scanning capability and lateral resolution of 50 nm, the sensitivity of single molecular quantification and identification for all classes of biomolecules could be reached. Further development and routine application of such technological and instrumentation solution would allow assembly of complete omes with a quantitative assessment of structural and functional cellular diversity at the molecular level.
Collapse
|
40
|
Zhang Y, Zeng Q, Shen Y, Yang L, Yu F. Electrochemical Stability Investigations and Drug Toxicity Tests of Electrolyte-Gated Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56216-56221. [PMID: 33327057 DOI: 10.1021/acsami.0c15024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrolyte-gated organic field-effect transistors (EGOFETs) are emerging as a new frontier of organic bioelectronics, with promising applications in biosensing, pharmaceutical testing, and neuroscience. However, the limited charge carriers' mobility and well-known environmental instability of conjugated polymers constrain the real applications of organic bioelectronics. Here, we comparatively studied the electrochemical stability of p-type conjugated polymer films in the EGOFET configuration. By combining electrochemical stability tests, morphology characterization, and EQCM-D monitoring, we find that a donor-acceptor copolymer, poly(N-alkyldiketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene) (DPP-DTT) shows improved mobility and electrochemical stability under an electrolyte, which may benefit from the ordered morphology and close alkyl side-chains' interdigitation preventing water diffusion and ion doping during long-term operation under an electrolyte. Based on the DPP-DTT EGOFETs, we have demonstrated a low-cost drug toxicity test platform that is sensitive enough to distinguish the cytotoxicity of different chemicals. This study overall pushes forward the development of organic bioelectronics with enhanced stability and sensitivity and presents successful exploitation of EGOFET in pharmaceutical research.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Qiming Zeng
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Yujie Shen
- Shenzhen Pynect Science and Technology Ltd., Shenzhen 518055, P. R. China
| | - Li Yang
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| | - Fei Yu
- Department of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, P. R. China
| |
Collapse
|
41
|
Lubrano C, Matrone GM, Iaconis G, Santoro F. New Frontiers for Selective Biosensing with Biomembrane-Based Organic Transistors. ACS NANO 2020; 14:12271-12280. [PMID: 33052643 PMCID: PMC8015208 DOI: 10.1021/acsnano.0c07053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biosensing plays vital roles in multiple fields, including healthcare monitoring, drug screening, disease diagnosis, and environmental pollution control. In recent years, transistor-based devices have been considered to be valid platforms for fast, low-cost sensing of diverse analytes. Without additional functionalization, however, these devices lack selectivity; several strategies have been developed for the direct immobilization of bioreceptors on the transistor surface to improve detection capabilities. In this scenario, organic transistors have gained attention for their abilities to be coupled to biological systems and to detect biomolecules. In this Perspective, we discuss recent developments in organic-transistor-based biosensors, highlighting how their coupling with artificial membranes provides a strategy to improve sensitivity and selectivity in biosensing applications. Looking at future applications, this class of biosensors represents a breakthrough starting point for implementing multimodal high-throughput screening platforms.
Collapse
Affiliation(s)
- Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80126 Naples, Italy
| | | | - Gennaro Iaconis
- Department
of Medicine, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
42
|
Sarcina L, Torsi L, Picca RA, Manoli K, Macchia E. Assessment of Gold Bio-Functionalization for Wide-Interface Biosensing Platforms. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3678. [PMID: 32630091 PMCID: PMC7374319 DOI: 10.3390/s20133678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
The continuous improvement of the technical potential of bioelectronic devices for biosensing applications will provide clinicians with a reliable tool for biomarker quantification down to the single molecule. Eventually, physicians will be able to identify the very moment at which the illness state begins, with a terrific impact on the quality of life along with a reduction of health care expenses. However, in clinical practice, to gather enough information to formulate a diagnosis, multiple biomarkers are normally quantified from the same biological sample simultaneously. Therefore, it is critically important to translate lab-based bioelectronic devices based on electrolyte gated thin-film transistor technology into a cost-effective portable multiplexing array prototype. In this perspective, the assessment of cost-effective manufacturability represents a crucial step, with specific regard to the optimization of the bio-functionalization protocol of the transistor gate module. Hence, we have assessed, using surface plasmon resonance technique, a sustainable and reliable cost-effective process to successfully bio-functionalize a gold surface, suitable as gate electrode for wide-field bioelectronic sensors. The bio-functionalization process herein investigated allows to reduce the biorecognition element concentration to one-tenth, drastically impacting the manufacturing costs while retaining high analytical performance.
Collapse
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| | - Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Kyriaki Manoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy; (L.S.); (L.T.); (R.A.P.)
- CSGI (Centre for Colloid and Surface Science), Department of Chemistry, 70125 Bari, Italy
| | - Eleonora Macchia
- The Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland;
| |
Collapse
|
43
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|